sensors: add a lightweight wrapper

Wraps our old API 1.0 sensors into API 1.3:
- fixes sensor flags and maxDelays
- adds batching support
- adds flush support (experimental, enabled by default)

Tested by running Android 8.1 CtsSensorTestCases, passing all tests.

Change-Id: I5aa66fa75f67f1775821975e1eab801d0ef42598
Signed-off-by: Svyatoslav Ryhel <clamor95@gmail.com>
This commit is contained in:
Daniel Jarai 2018-01-20 23:07:26 +02:00 committed by followmsi
parent 63ff521afe
commit 638068a7a4
10 changed files with 263 additions and 1008 deletions

View File

@ -1,3 +0,0 @@
subdirs = [
"sensors",
]

View File

@ -1 +0,0 @@
sensors.flo.so

View File

@ -224,9 +224,6 @@ PRODUCT_PACKAGES += \
android.hardware.renderscript@1.0-impl
# Sensors
PRODUCT_COPY_FILES += \
$(LOCAL_PATH)/configs/sensors/_hals.conf:$(TARGET_COPY_OUT_VENDOR)/etc/sensors/_hals.conf
PRODUCT_PACKAGES += \
android.hardware.sensors@1.0-impl \
sensors.msm8960

View File

@ -1,15 +0,0 @@
cc_library_static {
name: "multihal-asus",
vendor: true,
srcs: [
"multihal.cpp",
"SensorEventQueue.cpp"
],
shared_libs: [
"liblog",
"libcutils",
"libutils",
"libdl"
],
export_include_dirs: ["."],
}

View File

@ -1,5 +1,5 @@
#
# Copyright (C) 2013 The Android Open-Source Project
# Copyright (C) 2018 Unlegacy Android Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -23,20 +23,10 @@ LOCAL_MODULE := sensors.$(TARGET_BOARD_PLATFORM)
LOCAL_MODULE_RELATIVE_PATH := hw
LOCAL_PROPRIETARY_MODULE := true
LOCAL_CFLAGS := -DLOG_TAG=\"MultiHal\"
LOCAL_CFLAGS := -DLOG_TAG=\"sensors_wrapper\"
LOCAL_SRC_FILES := \
multihal.cpp \
SensorEventQueue.cpp \
LOCAL_SRC_FILES := sensors_wrapper.cpp
LOCAL_SHARED_LIBRARIES := \
libcutils \
libdl \
liblog \
libutils \
LOCAL_STRIP_MODULE := false
LOCAL_SHARED_LIBRARIES := liblog
include $(BUILD_SHARED_LIBRARY)
include $(call all-makefiles-under, $(LOCAL_PATH))

View File

@ -1,91 +0,0 @@
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <hardware/sensors.h>
#include <algorithm>
#include <pthread.h>
#include <cutils/log.h>
#include "SensorEventQueue.h"
SensorEventQueue::SensorEventQueue(int capacity) {
mCapacity = capacity;
mStart = 0;
mSize = 0;
mData = new sensors_event_t[mCapacity];
pthread_cond_init(&mSpaceAvailableCondition, NULL);
}
SensorEventQueue::~SensorEventQueue() {
delete[] mData;
mData = NULL;
pthread_cond_destroy(&mSpaceAvailableCondition);
}
int SensorEventQueue::getWritableRegion(int requestedLength, sensors_event_t** out) {
if (mSize == mCapacity || requestedLength <= 0) {
*out = NULL;
return 0;
}
// Start writing after the last readable record.
int firstWritable = (mStart + mSize) % mCapacity;
int lastWritable = firstWritable + requestedLength - 1;
// Don't go past the end of the data array.
if (lastWritable > mCapacity - 1) {
lastWritable = mCapacity - 1;
}
// Don't go into the readable region.
if (firstWritable < mStart && lastWritable >= mStart) {
lastWritable = mStart - 1;
}
*out = &mData[firstWritable];
return lastWritable - firstWritable + 1;
}
void SensorEventQueue::markAsWritten(int count) {
mSize += count;
}
int SensorEventQueue::getSize() {
return mSize;
}
sensors_event_t* SensorEventQueue::peek() {
if (mSize == 0) return NULL;
return &mData[mStart];
}
void SensorEventQueue::dequeue() {
if (mSize == 0) return;
if (mSize == mCapacity) {
pthread_cond_broadcast(&mSpaceAvailableCondition);
}
mSize--;
mStart = (mStart + 1) % mCapacity;
}
// returns true if it waited, or false if it was a no-op.
bool SensorEventQueue::waitForSpace(pthread_mutex_t* mutex) {
bool waited = false;
while (mSize == mCapacity) {
waited = true;
pthread_cond_wait(&mSpaceAvailableCondition, mutex);
}
return waited;
}

View File

@ -1,76 +0,0 @@
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SENSOREVENTQUEUE_H_
#define SENSOREVENTQUEUE_H_
#include <hardware/sensors.h>
#include <pthread.h>
/*
* Fixed-size circular queue, with an API developed around the sensor HAL poll() method.
* Poll() takes a pointer to a buffer, which is written by poll() before it returns.
* This class can provide a pointer to a spot in its internal buffer for poll() to
* write to, instead of using an intermediate buffer and a memcpy.
*
* Thread safety:
* Reading can be done safely after grabbing the mutex lock, while poll() writing in a separate
* thread without a mutex lock. But there can only be one writer at a time.
*/
class SensorEventQueue {
int mCapacity;
int mStart; // start of readable region
int mSize; // number of readable items
sensors_event_t* mData;
pthread_cond_t mSpaceAvailableCondition;
public:
explicit SensorEventQueue(int capacity);
~SensorEventQueue();
// Returns length of region, between zero and min(capacity, requestedLength). If there is any
// writable space, it will return a region of at least one. Because it must return
// a pointer to a contiguous region, it may return smaller regions as we approach the end of
// the data array.
// Only call while holding the lock.
// The region is not marked internally in any way. Subsequent calls may return overlapping
// regions. This class expects there to be exactly one writer at a time.
int getWritableRegion(int requestedLength, sensors_event_t** out);
// After writing to the region returned by getWritableRegion(), call this to indicate how
// many records were actually written.
// This increases size() by count.
// Only call while holding the lock.
void markAsWritten(int count);
// Gets the number of readable records.
// Only call while holding the lock.
int getSize();
// Returns pointer to the first readable record, or NULL if size() is zero.
// Only call this while holding the lock.
sensors_event_t* peek();
// This will decrease the size by one, freeing up the oldest readable event's slot for writing.
// Only call while holding the lock.
void dequeue();
// Blocks until space is available. No-op if there is already space.
// Returns true if it had to wait.
bool waitForSpace(pthread_mutex_t* mutex);
};
#endif // SENSOREVENTQUEUE_H_

View File

@ -1,776 +0,0 @@
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SensorEventQueue.h"
#include "multihal.h"
#define LOG_NDEBUG 1
#include <cutils/log.h>
#include <cutils/atomic.h>
#include <hardware/sensors.h>
#include <vector>
#include <string>
#include <fstream>
#include <map>
#include <unordered_map>
#include <dirent.h>
#include <dlfcn.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <math.h>
#include <poll.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
static pthread_mutex_t init_modules_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t init_sensors_mutex = PTHREAD_MUTEX_INITIALIZER;
// This mutex is shared by all queues
static pthread_mutex_t queue_mutex = PTHREAD_MUTEX_INITIALIZER;
// Used to pause the multihal poll(). Broadcasted by sub-polling tasks if waiting_for_data.
static pthread_cond_t data_available_cond = PTHREAD_COND_INITIALIZER;
bool waiting_for_data = false;
/*
* Vector of sub modules, whose indexes are referred to in this file as module_index.
*/
static std::vector<hw_module_t *> *sub_hw_modules = NULL;
/*
* Map to retrieve the API version of each sub_hw_module.
*/
static std::unordered_map<hw_module_t *, int> *sub_hw_versions = NULL;
/*
* Comparable class that globally identifies a sensor, by module index and local handle.
* A module index is the module's index in sub_hw_modules.
* A local handle is the handle the sub-module assigns to a sensor.
*/
struct FullHandle {
int moduleIndex;
int localHandle;
bool operator<(const FullHandle &that) const {
if (moduleIndex < that.moduleIndex) {
return true;
}
if (moduleIndex > that.moduleIndex) {
return false;
}
return localHandle < that.localHandle;
}
bool operator==(const FullHandle &that) const {
return moduleIndex == that.moduleIndex && localHandle == that.localHandle;
}
};
std::map<int, FullHandle> global_to_full;
std::map<FullHandle, int> full_to_global;
int next_global_handle = 1;
static int assign_global_handle(int module_index, int local_handle) {
int global_handle = next_global_handle++;
FullHandle full_handle;
full_handle.moduleIndex = module_index;
full_handle.localHandle = local_handle;
full_to_global[full_handle] = global_handle;
global_to_full[global_handle] = full_handle;
return global_handle;
}
// Returns the local handle, or -1 if it does not exist.
static int get_local_handle(int global_handle) {
if (global_to_full.count(global_handle) == 0) {
ALOGW("Unknown global_handle %d", global_handle);
return -1;
}
return global_to_full[global_handle].localHandle;
}
// Returns the sub_hw_modules index of the module that contains the sensor associates with this
// global_handle, or -1 if that global_handle does not exist.
static int get_module_index(int global_handle) {
if (global_to_full.count(global_handle) == 0) {
ALOGW("Unknown global_handle %d", global_handle);
return -1;
}
FullHandle f = global_to_full[global_handle];
ALOGV("FullHandle for global_handle %d: moduleIndex %d, localHandle %d",
global_handle, f.moduleIndex, f.localHandle);
return f.moduleIndex;
}
// Returns the global handle for this full_handle, or -1 if the full_handle is unknown.
static int get_global_handle(FullHandle* full_handle) {
int global_handle = -1;
if (full_to_global.count(*full_handle)) {
global_handle = full_to_global[*full_handle];
} else {
ALOGW("Unknown FullHandle: moduleIndex %d, localHandle %d",
full_handle->moduleIndex, full_handle->localHandle);
}
return global_handle;
}
static const int SENSOR_EVENT_QUEUE_CAPACITY = 36;
struct TaskContext {
sensors_poll_device_t* device;
SensorEventQueue* queue;
};
void *writerTask(void* ptr) {
ALOGV("writerTask STARTS");
TaskContext* ctx = (TaskContext*)ptr;
sensors_poll_device_t* device = ctx->device;
SensorEventQueue* queue = ctx->queue;
sensors_event_t* buffer;
int eventsPolled;
while (1) {
pthread_mutex_lock(&queue_mutex);
if (queue->waitForSpace(&queue_mutex)) {
ALOGV("writerTask waited for space");
}
int bufferSize = queue->getWritableRegion(SENSOR_EVENT_QUEUE_CAPACITY, &buffer);
// Do blocking poll outside of lock
pthread_mutex_unlock(&queue_mutex);
ALOGV("writerTask before poll() - bufferSize = %d", bufferSize);
eventsPolled = device->poll(device, buffer, bufferSize);
ALOGV("writerTask poll() got %d events.", eventsPolled);
if (eventsPolled <= 0) {
if (eventsPolled < 0) {
ALOGV("writerTask ignored error %d from %s", eventsPolled, device->common.module->name);
ALOGE("ERROR: Fix %s so it does not return error from poll()", device->common.module->name);
}
continue;
}
pthread_mutex_lock(&queue_mutex);
queue->markAsWritten(eventsPolled);
ALOGV("writerTask wrote %d events", eventsPolled);
if (waiting_for_data) {
ALOGV("writerTask - broadcast data_available_cond");
pthread_cond_broadcast(&data_available_cond);
}
pthread_mutex_unlock(&queue_mutex);
}
// never actually returns
return NULL;
}
/*
* Cache of all sensors, with original handles replaced by global handles.
* This will be handled to get_sensors_list() callers.
*/
static struct sensor_t const* global_sensors_list = NULL;
static int global_sensors_count = -1;
/*
* Extends a sensors_poll_device_1 by including all the sub-module's devices.
*/
struct sensors_poll_context_t {
/*
* This is the device that SensorDevice.cpp uses to make API calls
* to the multihal, which fans them out to sub-HALs.
*/
sensors_poll_device_1 proxy_device; // must be first
void addSubHwDevice(struct hw_device_t*);
int activate(int handle, int enabled);
int setDelay(int handle, int64_t ns);
int poll(sensors_event_t* data, int count);
int batch(int handle, int flags, int64_t period_ns, int64_t timeout);
int flush(int handle);
int inject_sensor_data(struct sensors_poll_device_1 *dev, const sensors_event_t *data);
int close();
std::vector<hw_device_t*> sub_hw_devices;
std::vector<SensorEventQueue*> queues;
std::vector<pthread_t> threads;
int nextReadIndex;
sensors_poll_device_t* get_v0_device_by_handle(int global_handle);
sensors_poll_device_1_t* get_v1_device_by_handle(int global_handle);
int get_device_version_by_handle(int global_handle);
void copy_event_remap_handle(sensors_event_t* src, sensors_event_t* dest, int sub_index);
};
void sensors_poll_context_t::addSubHwDevice(struct hw_device_t* sub_hw_device) {
ALOGV("addSubHwDevice");
this->sub_hw_devices.push_back(sub_hw_device);
SensorEventQueue *queue = new SensorEventQueue(SENSOR_EVENT_QUEUE_CAPACITY);
this->queues.push_back(queue);
TaskContext* taskContext = new TaskContext();
taskContext->device = (sensors_poll_device_t*) sub_hw_device;
taskContext->queue = queue;
pthread_t writerThread;
pthread_create(&writerThread, NULL, writerTask, taskContext);
this->threads.push_back(writerThread);
}
// Returns the device pointer, or NULL if the global handle is invalid.
sensors_poll_device_t* sensors_poll_context_t::get_v0_device_by_handle(int global_handle) {
int sub_index = get_module_index(global_handle);
if (sub_index < 0 || sub_index >= (int) this->sub_hw_devices.size()) {
return NULL;
}
return (sensors_poll_device_t*) this->sub_hw_devices[sub_index];
}
// Returns the device pointer, or NULL if the global handle is invalid.
sensors_poll_device_1_t* sensors_poll_context_t::get_v1_device_by_handle(int global_handle) {
int sub_index = get_module_index(global_handle);
if (sub_index < 0 || sub_index >= (int) this->sub_hw_devices.size()) {
return NULL;
}
return (sensors_poll_device_1_t*) this->sub_hw_devices[sub_index];
}
// Returns the device version, or -1 if the handle is invalid.
int sensors_poll_context_t::get_device_version_by_handle(int handle) {
sensors_poll_device_t* v0 = this->get_v0_device_by_handle(handle);
if (v0) {
return v0->common.version;
} else {
return -1;
}
}
static bool halIsAPILevelCompliant(sensors_poll_context_t *ctx, int handle, int level) {
int version = ctx->get_device_version_by_handle(handle);
return version != -1 && (version >= level);
}
const char *apiNumToStr(int version) {
switch(version) {
case SENSORS_DEVICE_API_VERSION_1_0:
return "SENSORS_DEVICE_API_VERSION_1_0";
case SENSORS_DEVICE_API_VERSION_1_1:
return "SENSORS_DEVICE_API_VERSION_1_1";
case SENSORS_DEVICE_API_VERSION_1_2:
return "SENSORS_DEVICE_API_VERSION_1_2";
case SENSORS_DEVICE_API_VERSION_1_3:
return "SENSORS_DEVICE_API_VERSION_1_3";
case SENSORS_DEVICE_API_VERSION_1_4:
return "SENSORS_DEVICE_API_VERSION_1_4";
default:
return "UNKNOWN";
}
}
int sensors_poll_context_t::activate(int handle, int enabled) {
int retval = -EINVAL;
ALOGV("activate");
int local_handle = get_local_handle(handle);
sensors_poll_device_t* v0 = this->get_v0_device_by_handle(handle);
if (local_handle >= 0 && v0) {
retval = v0->activate(v0, local_handle, enabled);
} else {
ALOGE("IGNORING activate(enable %d) call to non-API-compliant sensor handle=%d !",
enabled, handle);
}
ALOGV("retval %d", retval);
return retval;
}
int sensors_poll_context_t::setDelay(int handle, int64_t ns) {
int retval = -EINVAL;
ALOGV("setDelay");
int local_handle = get_local_handle(handle);
sensors_poll_device_t* v0 = this->get_v0_device_by_handle(handle);
if (local_handle >= 0 && v0) {
retval = v0->setDelay(v0, local_handle, ns);
} else {
ALOGE("IGNORING setDelay() call for non-API-compliant sensor handle=%d !", handle);
}
ALOGV("retval %d", retval);
return retval;
}
void sensors_poll_context_t::copy_event_remap_handle(sensors_event_t* dest, sensors_event_t* src,
int sub_index) {
memcpy(dest, src, sizeof(struct sensors_event_t));
// A normal event's "sensor" field is a local handle. Convert it to a global handle.
// A meta-data event must have its sensor set to 0, but it has a nested event
// with a local handle that needs to be converted to a global handle.
FullHandle full_handle;
full_handle.moduleIndex = sub_index;
// If it's a metadata event, rewrite the inner payload, not the sensor field.
// If the event's sensor field is unregistered for any reason, rewrite the sensor field
// with a -1, instead of writing an incorrect but plausible sensor number, because
// get_global_handle() returns -1 for unknown FullHandles.
if (dest->type == SENSOR_TYPE_META_DATA) {
full_handle.localHandle = dest->meta_data.sensor;
dest->meta_data.sensor = get_global_handle(&full_handle);
} else {
full_handle.localHandle = dest->sensor;
dest->sensor = get_global_handle(&full_handle);
}
}
int sensors_poll_context_t::poll(sensors_event_t *data, int maxReads) {
ALOGV("poll");
int empties = 0;
int queueCount = 0;
int eventsRead = 0;
pthread_mutex_lock(&queue_mutex);
queueCount = (int)this->queues.size();
while (eventsRead == 0) {
while (empties < queueCount && eventsRead < maxReads) {
SensorEventQueue* queue = this->queues.at(this->nextReadIndex);
sensors_event_t* event = queue->peek();
if (event == NULL) {
empties++;
} else {
empties = 0;
this->copy_event_remap_handle(&data[eventsRead], event, nextReadIndex);
if (data[eventsRead].sensor == -1) {
// Bad handle, do not pass corrupted event upstream !
ALOGW("Dropping bad local handle event packet on the floor");
} else {
eventsRead++;
}
queue->dequeue();
}
this->nextReadIndex = (this->nextReadIndex + 1) % queueCount;
}
if (eventsRead == 0) {
// The queues have been scanned and none contain data, so wait.
ALOGV("poll stopping to wait for data");
waiting_for_data = true;
pthread_cond_wait(&data_available_cond, &queue_mutex);
waiting_for_data = false;
empties = 0;
}
}
pthread_mutex_unlock(&queue_mutex);
ALOGV("poll returning %d events.", eventsRead);
return eventsRead;
}
int sensors_poll_context_t::batch(int handle, int flags, int64_t period_ns, int64_t timeout) {
ALOGV("batch");
int retval = -EINVAL;
int local_handle = get_local_handle(handle);
sensors_poll_device_1_t* v1 = this->get_v1_device_by_handle(handle);
if (local_handle >= 0 && v1) {
if (halIsAPILevelCompliant(this, handle, SENSORS_DEVICE_API_VERSION_1_1)) {
retval = v1->batch(v1, local_handle, flags, period_ns, timeout);
} else {
// NOTE: unlike setDelay(), batch() can be called when the
// sensor is disabled.
// Negative values are not allowed
if (period_ns < 0 || timeout < 0) {
ALOGE("%s: Invalid parameters", __func__);
return -EINVAL;
}
// The HAL should silently clamp period_ns. Here it is assumed
// that maxDelay and minDelay are set properly
int sub_index = get_module_index(handle);
int maxDelay = global_sensors_list[sub_index].maxDelay;
int minDelay = global_sensors_list[sub_index].minDelay;
if (period_ns < minDelay) {
period_ns = minDelay;
} else if (period_ns > maxDelay) {
period_ns = maxDelay;
}
retval = v1->setDelay((sensors_poll_device_t*)v1, handle, period_ns);
// Batch should only fail for internal errors
if (retval < 0) {
ALOGE("setDelay() returned %d", retval);
}
}
} else {
ALOGE("IGNORING batch() call to non-API-compliant sensor handle=%d !", handle);
}
ALOGV("retval %d", retval);
return retval;
}
int sensors_poll_context_t::flush(int handle) {
ALOGV("flush");
int retval = -EINVAL;
int local_handle = get_local_handle(handle);
sensors_poll_device_1_t* v1 = this->get_v1_device_by_handle(handle);
if (local_handle >= 0 && v1) {
if (halIsAPILevelCompliant(this, handle, SENSORS_DEVICE_API_VERSION_1_1)) {
retval = v1->flush(v1, local_handle);
} else {
// FIXME: for now sensorservice allows -EINVAL as return value
// for non-oneshot sensors. This may change in future and flush()
// will need to generate META_DATA_FLUSH_COMPLETE events.
retval = -EINVAL;
}
} else {
ALOGE("IGNORING flush() call to non-API-compliant sensor handle=%d !", handle);
}
ALOGV("retval %d", retval);
return retval;
}
int sensors_poll_context_t::inject_sensor_data(struct sensors_poll_device_1 *dev,
const sensors_event_t *data) {
int retval = -EINVAL;
ALOGV("inject_sensor_data");
// Get handle for the sensor owning the event being injected
int local_handle = get_local_handle(data->sensor);
sensors_poll_device_1_t* v1 = this->get_v1_device_by_handle(data->sensor);
if (halIsAPILevelCompliant(this, data->sensor, SENSORS_DEVICE_API_VERSION_1_4) &&
local_handle >= 0 && v1) {
retval = v1->inject_sensor_data(dev, data);
} else {
ALOGE("IGNORED inject_sensor_data(type=%d, handle=%d) call to non-API-compliant sensor",
data->type, data->sensor);
}
ALOGV("retval %d", retval);
return retval;
}
int sensors_poll_context_t::close() {
ALOGV("close");
for (std::vector<hw_device_t*>::iterator it = this->sub_hw_devices.begin();
it != this->sub_hw_devices.end(); it++) {
hw_device_t* dev = *it;
int retval = dev->close(dev);
ALOGV("retval %d", retval);
}
return 0;
}
static int device__close(struct hw_device_t *dev) {
sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev;
if (ctx != NULL) {
int retval = ctx->close();
delete ctx;
}
return 0;
}
static int device__activate(struct sensors_poll_device_t *dev, int handle,
int enabled) {
sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev;
return ctx->activate(handle, enabled);
}
static int device__setDelay(struct sensors_poll_device_t *dev, int handle,
int64_t ns) {
sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev;
return ctx->setDelay(handle, ns);
}
static int device__poll(struct sensors_poll_device_t *dev, sensors_event_t* data,
int count) {
sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev;
return ctx->poll(data, count);
}
static int device__batch(struct sensors_poll_device_1 *dev, int handle,
int flags, int64_t period_ns, int64_t timeout) {
sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev;
return ctx->batch(handle, flags, period_ns, timeout);
}
static int device__flush(struct sensors_poll_device_1 *dev, int handle) {
sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev;
return ctx->flush(handle);
}
static int device__inject_sensor_data(struct sensors_poll_device_1 *dev,
const sensors_event_t *data) {
sensors_poll_context_t* ctx = (sensors_poll_context_t*) dev;
return ctx->inject_sensor_data(dev, data);
}
static int open_sensors(const struct hw_module_t* module, const char* name,
struct hw_device_t** device);
static bool starts_with(const char* s, const char* prefix) {
if (s == NULL || prefix == NULL) {
return false;
}
size_t s_size = strlen(s);
size_t prefix_size = strlen(prefix);
return s_size >= prefix_size && strncmp(s, prefix, prefix_size) == 0;
}
/*
* Adds valid paths from the config file to the vector passed in.
* The vector must not be null.
*/
static void get_so_paths(std::vector<std::string> *so_paths) {
const std::vector<const char *> config_path_list(
{ MULTI_HAL_CONFIG_FILE_PATH, DEPRECATED_MULTI_HAL_CONFIG_FILE_PATH });
std::ifstream stream;
const char *path = nullptr;
for (auto i : config_path_list) {
std::ifstream f(i);
if (f) {
stream = std::move(f);
path = i;
break;
}
}
if(!stream) {
ALOGW("No multihal config file found");
return;
}
ALOGE_IF(strcmp(path, DEPRECATED_MULTI_HAL_CONFIG_FILE_PATH) == 0,
"Multihal configuration file path %s is not compatible with Treble "
"requirements. Please move it to %s.",
path, MULTI_HAL_CONFIG_FILE_PATH);
ALOGV("Multihal config file found at %s", path);
std::string line;
while (std::getline(stream, line)) {
ALOGV("config file line: '%s'", line.c_str());
so_paths->push_back(line);
}
}
/*
* Ensures that the sub-module array is initialized.
* This can be first called from get_sensors_list or from open_sensors.
*/
static void lazy_init_modules() {
pthread_mutex_lock(&init_modules_mutex);
if (sub_hw_modules != NULL) {
pthread_mutex_unlock(&init_modules_mutex);
return;
}
std::vector<std::string> *so_paths = new std::vector<std::string>();
get_so_paths(so_paths);
// dlopen the module files and cache their module symbols in sub_hw_modules
sub_hw_modules = new std::vector<hw_module_t *>();
dlerror(); // clear any old errors
const char* sym = HAL_MODULE_INFO_SYM_AS_STR;
for (std::vector<std::string>::iterator it = so_paths->begin(); it != so_paths->end(); it++) {
const char* path = it->c_str();
void* lib_handle = dlopen(path, RTLD_LAZY);
if (lib_handle == NULL) {
ALOGW("dlerror(): %s", dlerror());
} else {
ALOGI("Loaded library from %s", path);
ALOGV("Opening symbol \"%s\"", sym);
// clear old errors
dlerror();
struct hw_module_t* module = (hw_module_t*) dlsym(lib_handle, sym);
const char* error;
if ((error = dlerror()) != NULL) {
ALOGW("Error calling dlsym: %s", error);
} else if (module == NULL) {
ALOGW("module == NULL");
} else {
ALOGV("Loaded symbols from \"%s\"", sym);
sub_hw_modules->push_back(module);
}
}
}
pthread_mutex_unlock(&init_modules_mutex);
}
/*
* Fix the flags of the sensor to be compliant with the API version
* reported by the wrapper.
*/
static void fix_sensor_flags(int version, sensor_t& sensor) {
if (version < SENSORS_DEVICE_API_VERSION_1_3) {
if (sensor.type == SENSOR_TYPE_PROXIMITY ||
sensor.type == SENSOR_TYPE_TILT_DETECTOR) {
int new_flags = SENSOR_FLAG_WAKE_UP | SENSOR_FLAG_ON_CHANGE_MODE;
ALOGV("Changing flags of handle=%d from %x to %x",
sensor.handle, sensor.flags, new_flags);
sensor.flags = new_flags;
}
}
}
/*
* Lazy-initializes global_sensors_count, global_sensors_list, and module_sensor_handles.
*/
static void lazy_init_sensors_list() {
ALOGV("lazy_init_sensors_list");
pthread_mutex_lock(&init_sensors_mutex);
if (global_sensors_list != NULL) {
// already initialized
pthread_mutex_unlock(&init_sensors_mutex);
ALOGV("lazy_init_sensors_list - early return");
return;
}
ALOGV("lazy_init_sensors_list needs to do work");
lazy_init_modules();
// Count all the sensors, then allocate an array of blanks.
global_sensors_count = 0;
const struct sensor_t *subhal_sensors_list;
for (std::vector<hw_module_t*>::iterator it = sub_hw_modules->begin();
it != sub_hw_modules->end(); it++) {
struct sensors_module_t *module = (struct sensors_module_t*) *it;
global_sensors_count += module->get_sensors_list(module, &subhal_sensors_list);
ALOGV("increased global_sensors_count to %d", global_sensors_count);
}
// The global_sensors_list is full of consts.
// Manipulate this non-const list, and point the const one to it when we're done.
sensor_t* mutable_sensor_list = new sensor_t[global_sensors_count];
// index of the next sensor to set in mutable_sensor_list
int mutable_sensor_index = 0;
int module_index = 0;
for (std::vector<hw_module_t*>::iterator it = sub_hw_modules->begin();
it != sub_hw_modules->end(); it++) {
hw_module_t *hw_module = *it;
ALOGV("examine one module");
// Read the sub-module's sensor list.
struct sensors_module_t *module = (struct sensors_module_t*) hw_module;
int module_sensor_count = module->get_sensors_list(module, &subhal_sensors_list);
ALOGV("the module has %d sensors", module_sensor_count);
// Copy the HAL's sensor list into global_sensors_list,
// with the handle changed to be a global handle.
for (int i = 0; i < module_sensor_count; i++) {
ALOGV("examining one sensor");
const struct sensor_t *local_sensor = &subhal_sensors_list[i];
int local_handle = local_sensor->handle;
memcpy(&mutable_sensor_list[mutable_sensor_index], local_sensor,
sizeof(struct sensor_t));
// Overwrite the global version's handle with a global handle.
int global_handle = assign_global_handle(module_index, local_handle);
mutable_sensor_list[mutable_sensor_index].handle = global_handle;
ALOGV("module_index %d, local_handle %d, global_handle %d",
module_index, local_handle, global_handle);
int version = sub_hw_versions->at(*it);
fix_sensor_flags(version, mutable_sensor_list[mutable_sensor_index]);
mutable_sensor_index++;
}
module_index++;
}
// Set the const static global_sensors_list to the mutable one allocated by this function.
global_sensors_list = mutable_sensor_list;
delete sub_hw_versions;
sub_hw_versions = NULL;
pthread_mutex_unlock(&init_sensors_mutex);
ALOGV("end lazy_init_sensors_list");
}
static int module__get_sensors_list(__unused struct sensors_module_t* module,
struct sensor_t const** list) {
ALOGV("module__get_sensors_list start");
lazy_init_sensors_list();
*list = global_sensors_list;
ALOGV("global_sensors_count: %d", global_sensors_count);
for (int i = 0; i < global_sensors_count; i++) {
ALOGV("sensor type: %d", global_sensors_list[i].type);
}
return global_sensors_count;
}
static struct hw_module_methods_t sensors_module_methods = {
.open = open_sensors
};
struct sensors_module_t HAL_MODULE_INFO_SYM = {
.common = {
.tag = HARDWARE_MODULE_TAG,
.version_major = 1,
.version_minor = 1,
.id = SENSORS_HARDWARE_MODULE_ID,
.name = "MultiHal Sensor Module",
.author = "Google, Inc",
.methods = &sensors_module_methods,
.dso = NULL,
.reserved = {0},
},
.get_sensors_list = module__get_sensors_list
};
struct sensors_module_t *get_multi_hal_module_info() {
return (&HAL_MODULE_INFO_SYM);
}
static int open_sensors(const struct hw_module_t* hw_module, const char* name,
struct hw_device_t** hw_device_out) {
ALOGV("open_sensors begin...");
lazy_init_modules();
// Create proxy device, to return later.
sensors_poll_context_t *dev = new sensors_poll_context_t();
memset(dev, 0, sizeof(sensors_poll_device_1_t));
dev->proxy_device.common.tag = HARDWARE_DEVICE_TAG;
dev->proxy_device.common.version = SENSORS_DEVICE_API_VERSION_1_4;
dev->proxy_device.common.module = const_cast<hw_module_t*>(hw_module);
dev->proxy_device.common.close = device__close;
dev->proxy_device.activate = device__activate;
dev->proxy_device.setDelay = device__setDelay;
dev->proxy_device.poll = device__poll;
dev->proxy_device.batch = device__batch;
dev->proxy_device.flush = device__flush;
dev->proxy_device.inject_sensor_data = device__inject_sensor_data;
dev->nextReadIndex = 0;
sub_hw_versions = new std::unordered_map<hw_module_t *, int>();
// Open() the subhal modules. Remember their devices in a vector parallel to sub_hw_modules.
for (std::vector<hw_module_t*>::iterator it = sub_hw_modules->begin();
it != sub_hw_modules->end(); it++) {
sensors_module_t *sensors_module = (sensors_module_t*) *it;
struct hw_device_t* sub_hw_device;
int sub_open_result = sensors_module->common.methods->open(*it, name, &sub_hw_device);
if (!sub_open_result) {
ALOGV("This HAL reports API level : %s",
apiNumToStr(sub_hw_device->version));
dev->addSubHwDevice(sub_hw_device);
sub_hw_versions->insert(std::make_pair(*it, sub_hw_device->version));
}
}
// Prepare the output param and return
*hw_device_out = &dev->proxy_device.common;
ALOGV("...open_sensors end");
return 0;
}

View File

@ -1,29 +0,0 @@
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef HARDWARE_LIBHARDWARE_MODULES_SENSORS_MULTIHAL_H_
#define HARDWARE_LIBHARDWARE_MODULES_SENSORS_MULTIHAL_H_
#include <hardware/sensors.h>
#include <hardware/hardware.h>
static const char* MULTI_HAL_CONFIG_FILE_PATH = "/vendor/etc/sensors/_hals.conf";
// Depracated because system partition HAL config file does not satisfy treble requirements.
static const char* DEPRECATED_MULTI_HAL_CONFIG_FILE_PATH = "/system/etc/sensors/_hals.conf";
struct sensors_module_t *get_multi_hal_module_info(void);
#endif // HARDWARE_LIBHARDWARE_MODULES_SENSORS_MULTIHAL_H_

259
sensors/sensors_wrapper.cpp Normal file
View File

@ -0,0 +1,259 @@
/*
* Copyright (C) 2018 Unlegacy Android Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cutils/log.h>
#include <hardware/sensors.h>
#include <string>
#include <dlfcn.h>
#include <errno.h>
// The "real" sensor lib to wrap around
#define SENSOR_LIB "sensors.flo.so"
// Enable experimental flush support
#define FLUSH_SUPPORT
static void *lib_handle = NULL;
static struct sensors_module_t *lib_sensors_module;
static struct hw_device_t *lib_hw_device;
static sensors_poll_device_1_t dev;
// Copy of the original sensors list with the fixed properties
static const struct sensor_t *global_sensors_list = NULL;
#ifdef FLUSH_SUPPORT
static bool flush_requested = false;
static int32_t flush_requested_sensors = 0;
static pthread_mutex_t flush_lock = PTHREAD_MUTEX_INITIALIZER;
#endif
static int open_lib()
{
if (lib_handle != NULL)
return 0;
lib_handle = dlopen(SENSOR_LIB, RTLD_LAZY);
if (lib_handle == NULL) {
ALOGW("dlerror(): %s", dlerror());
return -EINVAL;
} else {
const char *sym = HAL_MODULE_INFO_SYM_AS_STR;
ALOGV("Loaded library %s", SENSOR_LIB);
ALOGV("Opening symbol \"%s\"", sym);
// clear old errors
dlerror();
lib_sensors_module = (sensors_module_t *) dlsym(lib_handle, sym);
const char* error;
if ((error = dlerror()) != NULL) {
ALOGE("Error calling dlsym: %s", error);
dlclose(lib_handle);
return -EINVAL;
} else {
ALOGV("Loaded symbols from \"%s\"", sym);
}
}
return 0;
}
static int get_sensor_index_from_handle(int handle)
{
// we're expected to always succeed here
for (int i = 0; /* no condition */; ++i) {
if (global_sensors_list[i].handle == handle)
return i;
}
return -1;
}
static int sensors_get_sensors_list(struct sensors_module_t *module __unused,
struct sensor_t const** sensors_list)
{
int ret = open_lib();
if (ret < 0)
return 0;
int sensors_count =
lib_sensors_module->get_sensors_list(lib_sensors_module, sensors_list);
// sensors_list is full of consts - Manipulate this non-const list,
// and point the const one to it when we're done.
sensor_t *mutable_sensor_list = new sensor_t[sensors_count];
memcpy(mutable_sensor_list, *sensors_list,
sizeof(struct sensor_t) * sensors_count);
global_sensors_list = mutable_sensor_list;
*sensors_list = global_sensors_list;
// fix sensor properties
for (int i = 0; i < sensors_count; ++i) {
sensor_t *sensor = &mutable_sensor_list[i];
if (sensor->type == SENSOR_TYPE_PROXIMITY)
sensor->flags = SENSOR_FLAG_WAKE_UP | SENSOR_FLAG_ON_CHANGE_MODE;
else if (sensor->type == SENSOR_TYPE_SIGNIFICANT_MOTION)
sensor->flags = SENSOR_FLAG_WAKE_UP | SENSOR_FLAG_ONE_SHOT_MODE;
else
sensor->maxDelay = 1000000; // 1 sec
}
return sensors_count;
}
static int sensor_device_close(struct hw_device_t *dev __unused)
{
lib_hw_device->close(lib_hw_device);
dlclose(lib_handle);
lib_handle = NULL;
delete[] global_sensors_list;
return 0;
}
static int sensor_device_activate(struct sensors_poll_device_t *dev __unused,
int handle, int enabled)
{
struct sensors_poll_device_t *mod =
(struct sensors_poll_device_t *) lib_hw_device;
ALOGV("%s: handle=%d enabled=%d", __func__, handle, enabled);
return mod->activate(mod, handle,enabled);
}
static int sensor_device_set_delay(struct sensors_poll_device_t *dev __unused,
int handle, int64_t ns)
{
struct sensors_poll_device_t *mod =
(struct sensors_poll_device_t *) lib_hw_device;
return mod->setDelay(mod, handle, ns);
}
static int sensor_device_poll(struct sensors_poll_device_t *dev __unused,
sensors_event_t* data, int count)
{
struct sensors_poll_device_t *mod =
(struct sensors_poll_device_t *) lib_hw_device;
int num_events = mod->poll(mod, data, count);
for (int i = 0; i < num_events; ++i) {
ALOGV("%s: received event type=%d timestamp=%lld",
__func__, data[i].type, data[i].timestamp);
}
#ifdef FLUSH_SUPPORT
pthread_mutex_lock(&flush_lock);
if (flush_requested && num_events < count) {
ALOGV("%s: adding flush event", __func__);
flush_requested = false;
data[num_events].version = META_DATA_VERSION;
data[num_events].type = SENSOR_TYPE_META_DATA;
data[num_events].sensor = 0;
data[num_events].timestamp = 0;
data[num_events].meta_data.what = META_DATA_FLUSH_COMPLETE;
data[num_events].meta_data.sensor = flush_requested_sensors;
flush_requested_sensors = 0;
++num_events;
}
pthread_mutex_unlock(&flush_lock);
#endif
ALOGV("%s: returning %d events", __func__, num_events);
return num_events;
}
static int sensor_device_batch(struct sensors_poll_device_1 *dev __unused,
int handle, int flags __unused, int64_t period_ns, int64_t timeout __unused)
{
struct sensors_poll_device_t *mod =
(struct sensors_poll_device_t *) lib_hw_device;
int sensor_index = get_sensor_index_from_handle(handle);
int maxDelay = global_sensors_list[sensor_index].maxDelay;
int minDelay = global_sensors_list[sensor_index].minDelay;
if (period_ns < minDelay) {
period_ns = minDelay;
} else if (period_ns > maxDelay * 1000) {
period_ns = maxDelay * 1000;
}
ALOGV("%s: handle=%d type=%d maxDelay=%d minDelay=%d, delay set to %lld",
__func__, handle, global_sensors_list[sensor_index].type,
maxDelay, minDelay, period_ns);
return mod->setDelay(mod, handle, period_ns);
}
static int sensor_device_flush(struct sensors_poll_device_1 *dev __unused,
int sensor_handle)
{
#ifdef FLUSH_SUPPORT
pthread_mutex_lock(&flush_lock);
flush_requested = true;
flush_requested_sensors |= sensor_handle;
pthread_mutex_unlock(&flush_lock);
return 0;
#else
return -EINVAL;
#endif
}
static int open_sensors(const struct hw_module_t *hw_module, const char *name,
struct hw_device_t **hw_device_out)
{
int ret = open_lib();
if (ret < 0)
return ret;
ret = lib_sensors_module->common.methods->
open((hw_module_t *) lib_sensors_module, name, &lib_hw_device);
if (ret < 0) {
dlclose(lib_handle);
return ret;
}
memset(&dev, 0, sizeof(sensors_poll_device_1_t));
dev.common.tag = HARDWARE_DEVICE_TAG;
dev.common.version = SENSORS_DEVICE_API_VERSION_1_3;
dev.common.module = const_cast<hw_module_t*>(hw_module);
dev.common.close = sensor_device_close;
dev.activate = sensor_device_activate;
dev.setDelay = sensor_device_set_delay;
dev.poll = sensor_device_poll;
dev.batch = sensor_device_batch;
dev.flush = sensor_device_flush;
*hw_device_out = &dev.common;
return 0;
}
static struct hw_module_methods_t sensors_module_methods = {
.open = open_sensors
};
struct sensors_module_t HAL_MODULE_INFO_SYM = {
.common = {
.tag = HARDWARE_MODULE_TAG,
.module_api_version = SENSORS_MODULE_API_VERSION_0_1,
.hal_api_version = SENSORS_MODULE_API_VERSION_0_1,
.id = SENSORS_HARDWARE_MODULE_ID,
.name = "Flo Sensors Module",
.author = "Google, Inc",
.methods = &sensors_module_methods,
.dso = NULL,
.reserved = {0},
},
.get_sensors_list = sensors_get_sensors_list
};