android_kernel_google_msm/drivers/regulator/pmic8058-regulator.c

1757 lines
46 KiB
C
Raw Normal View History

/* Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/err.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/mfd/pmic8058.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/mfd/pm8xxx/core.h>
#include <linux/regulator/pmic8058-regulator.h>
/* Regulator types */
#define REGULATOR_TYPE_LDO 0
#define REGULATOR_TYPE_SMPS 1
#define REGULATOR_TYPE_LVS 2
#define REGULATOR_TYPE_NCP 3
/* Common masks */
#define REGULATOR_EN_MASK 0x80
#define REGULATOR_BANK_MASK 0xF0
#define REGULATOR_BANK_SEL(n) ((n) << 4)
#define REGULATOR_BANK_WRITE 0x80
#define LDO_TEST_BANKS 7
#define SMPS_TEST_BANKS 8
#define REGULATOR_TEST_BANKS_MAX SMPS_TEST_BANKS
/* LDO programming */
/* CTRL register */
#define LDO_ENABLE_MASK 0x80
#define LDO_ENABLE 0x80
#define LDO_PULL_DOWN_ENABLE_MASK 0x40
#define LDO_PULL_DOWN_ENABLE 0x40
#define LDO_CTRL_PM_MASK 0x20
#define LDO_CTRL_PM_HPM 0x00
#define LDO_CTRL_PM_LPM 0x20
#define LDO_CTRL_VPROG_MASK 0x1F
/* TEST register bank 0 */
#define LDO_TEST_LPM_MASK 0x40
#define LDO_TEST_LPM_SEL_CTRL 0x00
#define LDO_TEST_LPM_SEL_TCXO 0x40
/* TEST register bank 2 */
#define LDO_TEST_VPROG_UPDATE_MASK 0x08
#define LDO_TEST_RANGE_SEL_MASK 0x04
#define LDO_TEST_FINE_STEP_MASK 0x02
#define LDO_TEST_FINE_STEP_SHIFT 1
/* TEST register bank 4 */
#define LDO_TEST_RANGE_EXT_MASK 0x01
/* TEST register bank 5 */
#define LDO_TEST_PIN_CTRL_MASK 0x0F
#define LDO_TEST_PIN_CTRL_EN3 0x08
#define LDO_TEST_PIN_CTRL_EN2 0x04
#define LDO_TEST_PIN_CTRL_EN1 0x02
#define LDO_TEST_PIN_CTRL_EN0 0x01
/* TEST register bank 6 */
#define LDO_TEST_PIN_CTRL_LPM_MASK 0x0F
/* Allowable voltage ranges */
#define PLDO_LOW_UV_MIN 750000
#define PLDO_LOW_UV_MAX 1537500
#define PLDO_LOW_FINE_STEP_UV 12500
#define PLDO_NORM_UV_MIN 1500000
#define PLDO_NORM_UV_MAX 3075000
#define PLDO_NORM_FINE_STEP_UV 25000
#define PLDO_HIGH_UV_MIN 1750000
#define PLDO_HIGH_UV_MAX 4900000
#define PLDO_HIGH_FINE_STEP_UV 50000
#define NLDO_UV_MIN 750000
#define NLDO_UV_MAX 1537500
#define NLDO_FINE_STEP_UV 12500
/* SMPS masks and values */
/* CTRL register */
/* Legacy mode */
#define SMPS_LEGACY_ENABLE 0x80
#define SMPS_LEGACY_PULL_DOWN_ENABLE 0x40
#define SMPS_LEGACY_VREF_SEL_MASK 0x20
#define SMPS_LEGACY_VPROG_MASK 0x1F
/* Advanced mode */
#define SMPS_ADVANCED_BAND_MASK 0xC0
#define SMPS_ADVANCED_BAND_OFF 0x00
#define SMPS_ADVANCED_BAND_1 0x40
#define SMPS_ADVANCED_BAND_2 0x80
#define SMPS_ADVANCED_BAND_3 0xC0
#define SMPS_ADVANCED_VPROG_MASK 0x3F
/* Legacy mode voltage ranges */
#define SMPS_MODE1_UV_MIN 1500000
#define SMPS_MODE1_UV_MAX 3050000
#define SMPS_MODE1_UV_STEP 50000
#define SMPS_MODE2_UV_MIN 750000
#define SMPS_MODE2_UV_MAX 1525000
#define SMPS_MODE2_UV_STEP 25000
#define SMPS_MODE3_UV_MIN 375000
#define SMPS_MODE3_UV_MAX 1150000
#define SMPS_MODE3_UV_STEP 25000
/* Advanced mode voltage ranges */
#define SMPS_BAND3_UV_MIN 1500000
#define SMPS_BAND3_UV_MAX 3075000
#define SMPS_BAND3_UV_STEP 25000
#define SMPS_BAND2_UV_MIN 750000
#define SMPS_BAND2_UV_MAX 1537500
#define SMPS_BAND2_UV_STEP 12500
#define SMPS_BAND1_UV_MIN 375000
#define SMPS_BAND1_UV_MAX 1162500
#define SMPS_BAND1_UV_STEP 12500
#define SMPS_UV_MIN SMPS_MODE3_UV_MIN
#define SMPS_UV_MAX SMPS_MODE1_UV_MAX
/* Test2 register bank 1 */
#define SMPS_LEGACY_VLOW_SEL_MASK 0x01
/* Test2 register bank 6 */
#define SMPS_ADVANCED_PULL_DOWN_ENABLE 0x08
/* Test2 register bank 7 */
#define SMPS_ADVANCED_MODE_MASK 0x02
#define SMPS_ADVANCED_MODE 0x02
#define SMPS_LEGACY_MODE 0x00
#define SMPS_IN_ADVANCED_MODE(vreg) \
((vreg->test_reg[7] & SMPS_ADVANCED_MODE_MASK) == SMPS_ADVANCED_MODE)
/* BUCK_SLEEP_CNTRL register */
#define SMPS_PIN_CTRL_MASK 0xF0
#define SMPS_PIN_CTRL_A1 0x80
#define SMPS_PIN_CTRL_A0 0x40
#define SMPS_PIN_CTRL_D1 0x20
#define SMPS_PIN_CTRL_D0 0x10
#define SMPS_PIN_CTRL_LPM_MASK 0x0F
#define SMPS_PIN_CTRL_LPM_A1 0x08
#define SMPS_PIN_CTRL_LPM_A0 0x04
#define SMPS_PIN_CTRL_LPM_D1 0x02
#define SMPS_PIN_CTRL_LPM_D0 0x01
/* BUCK_CLOCK_CNTRL register */
#define SMPS_CLK_DIVIDE2 0x40
#define SMPS_CLK_CTRL_MASK 0x30
#define SMPS_CLK_CTRL_FOLLOW_TCXO 0x00
#define SMPS_CLK_CTRL_PWM 0x10
#define SMPS_CLK_CTRL_PFM 0x20
/* LVS masks and values */
/* CTRL register */
#define LVS_ENABLE_MASK 0x80
#define LVS_ENABLE 0x80
#define LVS_PULL_DOWN_ENABLE_MASK 0x40
#define LVS_PULL_DOWN_ENABLE 0x00
#define LVS_PULL_DOWN_DISABLE 0x40
#define LVS_PIN_CTRL_MASK 0x0F
#define LVS_PIN_CTRL_EN0 0x08
#define LVS_PIN_CTRL_EN1 0x04
#define LVS_PIN_CTRL_EN2 0x02
#define LVS_PIN_CTRL_EN3 0x01
/* NCP masks and values */
/* CTRL register */
#define NCP_VPROG_MASK 0x1F
#define NCP_UV_MIN 1500000
#define NCP_UV_MAX 3050000
#define NCP_UV_STEP 50000
#define GLOBAL_ENABLE_MAX (2)
struct pm8058_enable {
u16 addr;
u8 reg;
};
struct pm8058_vreg {
struct device *dev;
struct pm8058_vreg_pdata *pdata;
struct regulator_dev *rdev;
struct pm8058_enable *global_enable[GLOBAL_ENABLE_MAX];
int hpm_min_load;
int save_uV;
unsigned pc_vote;
unsigned optimum;
unsigned mode_initialized;
u16 ctrl_addr;
u16 test_addr;
u16 clk_ctrl_addr;
u16 sleep_ctrl_addr;
u8 type;
u8 ctrl_reg;
u8 test_reg[REGULATOR_TEST_BANKS_MAX];
u8 clk_ctrl_reg;
u8 sleep_ctrl_reg;
u8 is_nmos;
u8 global_enable_mask[GLOBAL_ENABLE_MAX];
};
#define LDO_M2(_id, _ctrl_addr, _test_addr, _is_nmos, _hpm_min_load, \
_en0, _en0_mask, _en1, _en1_mask) \
[PM8058_VREG_ID_##_id] = { \
.ctrl_addr = _ctrl_addr, \
.test_addr = _test_addr, \
.type = REGULATOR_TYPE_LDO, \
.hpm_min_load = PM8058_VREG_##_hpm_min_load##_HPM_MIN_LOAD, \
.is_nmos = _is_nmos, \
.global_enable = { \
[0] = _en0, \
[1] = _en1, \
}, \
.global_enable_mask = { \
[0] = _en0_mask, \
[1] = _en1_mask, \
}, \
}
#define LDO(_id, _ctrl_addr, _test_addr, _is_nmos, _hpm_min_load, \
_en0, _en0_mask) \
LDO_M2(_id, _ctrl_addr, _test_addr, _is_nmos, _hpm_min_load, \
_en0, _en0_mask, NULL, 0)
#define SMPS(_id, _ctrl_addr, _test_addr, _clk_ctrl_addr, _sleep_ctrl_addr, \
_hpm_min_load, _en0, _en0_mask) \
[PM8058_VREG_ID_##_id] = { \
.ctrl_addr = _ctrl_addr, \
.test_addr = _test_addr, \
.clk_ctrl_addr = _clk_ctrl_addr, \
.sleep_ctrl_addr = _sleep_ctrl_addr, \
.type = REGULATOR_TYPE_SMPS, \
.hpm_min_load = PM8058_VREG_##_hpm_min_load##_HPM_MIN_LOAD, \
.global_enable = { \
[0] = _en0, \
[1] = NULL, \
}, \
.global_enable_mask = { \
[0] = _en0_mask, \
[1] = 0, \
}, \
}
#define LVS(_id, _ctrl_addr, _en0, _en0_mask) \
[PM8058_VREG_ID_##_id] = { \
.ctrl_addr = _ctrl_addr, \
.type = REGULATOR_TYPE_LVS, \
.global_enable = { \
[0] = _en0, \
[1] = NULL, \
}, \
.global_enable_mask = { \
[0] = _en0_mask, \
[1] = 0, \
}, \
}
#define NCP(_id, _ctrl_addr, _test1) \
[PM8058_VREG_ID_##_id] = { \
.ctrl_addr = _ctrl_addr, \
.type = REGULATOR_TYPE_NCP, \
.test_addr = _test1, \
.global_enable = { \
[0] = NULL, \
[1] = NULL, \
}, \
.global_enable_mask = { \
[0] = 0, \
[1] = 0, \
}, \
}
#define MASTER_ENABLE_COUNT 6
#define EN_MSM 0
#define EN_PH 1
#define EN_RF 2
#define EN_GRP_5_4 3
#define EN_GRP_3_2 4
#define EN_GRP_1_0 5
/* Master regulator control registers */
static struct pm8058_enable m_en[MASTER_ENABLE_COUNT] = {
[EN_MSM] = {
.addr = 0x018, /* VREG_EN_MSM */
},
[EN_PH] = {
.addr = 0x019, /* VREG_EN_PH */
},
[EN_RF] = {
.addr = 0x01A, /* VREG_EN_RF */
},
[EN_GRP_5_4] = {
.addr = 0x1C8, /* VREG_EN_MSM_GRP_5-4 */
},
[EN_GRP_3_2] = {
.addr = 0x1C9, /* VREG_EN_MSM_GRP_3-2 */
},
[EN_GRP_1_0] = {
.addr = 0x1CA, /* VREG_EN_MSM_GRP_1-0 */
},
};
static struct pm8058_vreg pm8058_vreg[] = {
/* id ctrl test n/p hpm_min m_en m_en_mask */
LDO(L0, 0x009, 0x065, 1, LDO_150, &m_en[EN_GRP_5_4], BIT(3)),
LDO(L1, 0x00A, 0x066, 1, LDO_300, &m_en[EN_GRP_5_4], BIT(6) | BIT(2)),
LDO(L2, 0x00B, 0x067, 0, LDO_300, &m_en[EN_GRP_3_2], BIT(2)),
LDO(L3, 0x00C, 0x068, 0, LDO_150, &m_en[EN_GRP_1_0], BIT(1)),
LDO(L4, 0x00D, 0x069, 0, LDO_50, &m_en[EN_MSM], 0),
LDO(L5, 0x00E, 0x06A, 0, LDO_300, &m_en[EN_GRP_1_0], BIT(7)),
LDO(L6, 0x00F, 0x06B, 0, LDO_50, &m_en[EN_GRP_1_0], BIT(2)),
LDO(L7, 0x010, 0x06C, 0, LDO_50, &m_en[EN_GRP_3_2], BIT(3)),
LDO(L8, 0x011, 0x06D, 0, LDO_300, &m_en[EN_PH], BIT(7)),
LDO(L9, 0x012, 0x06E, 0, LDO_300, &m_en[EN_GRP_1_0], BIT(3)),
LDO(L10, 0x013, 0x06F, 0, LDO_300, &m_en[EN_GRP_3_2], BIT(4)),
LDO(L11, 0x014, 0x070, 0, LDO_150, &m_en[EN_PH], BIT(4)),
LDO(L12, 0x015, 0x071, 0, LDO_150, &m_en[EN_PH], BIT(3)),
LDO(L13, 0x016, 0x072, 0, LDO_300, &m_en[EN_GRP_3_2], BIT(1)),
LDO(L14, 0x017, 0x073, 0, LDO_300, &m_en[EN_GRP_1_0], BIT(5)),
LDO(L15, 0x089, 0x0E5, 0, LDO_300, &m_en[EN_GRP_1_0], BIT(4)),
LDO(L16, 0x08A, 0x0E6, 0, LDO_300, &m_en[EN_GRP_3_2], BIT(0)),
LDO(L17, 0x08B, 0x0E7, 0, LDO_150, &m_en[EN_RF], BIT(7)),
LDO(L18, 0x11D, 0x125, 0, LDO_150, &m_en[EN_RF], BIT(6)),
LDO(L19, 0x11E, 0x126, 0, LDO_150, &m_en[EN_RF], BIT(5)),
LDO(L20, 0x11F, 0x127, 0, LDO_150, &m_en[EN_RF], BIT(4)),
LDO_M2(L21, 0x120, 0x128, 1, LDO_150, &m_en[EN_GRP_5_4], BIT(1),
&m_en[EN_GRP_1_0], BIT(6)),
LDO(L22, 0x121, 0x129, 1, LDO_300, &m_en[EN_GRP_3_2], BIT(7)),
LDO(L23, 0x122, 0x12A, 1, LDO_300, &m_en[EN_GRP_5_4], BIT(0)),
LDO(L24, 0x123, 0x12B, 1, LDO_150, &m_en[EN_RF], BIT(3)),
LDO(L25, 0x124, 0x12C, 1, LDO_150, &m_en[EN_RF], BIT(2)),
/* id ctrl test2 clk sleep hpm_min m_en m_en_mask */
SMPS(S0, 0x004, 0x084, 0x1D1, 0x1D8, SMPS, &m_en[EN_MSM], BIT(7)),
SMPS(S1, 0x005, 0x085, 0x1D2, 0x1DB, SMPS, &m_en[EN_MSM], BIT(6)),
SMPS(S2, 0x110, 0x119, 0x1D3, 0x1DE, SMPS, &m_en[EN_GRP_5_4], BIT(5)),
SMPS(S3, 0x111, 0x11A, 0x1D4, 0x1E1, SMPS, &m_en[EN_GRP_5_4],
BIT(7) | BIT(4)),
SMPS(S4, 0x112, 0x11B, 0x1D5, 0x1E4, SMPS, &m_en[EN_GRP_3_2], BIT(5)),
/* id ctrl m_en m_en_mask */
LVS(LVS0, 0x12D, &m_en[EN_RF], BIT(1)),
LVS(LVS1, 0x12F, &m_en[EN_GRP_1_0], BIT(0)),
/* id ctrl test1 */
NCP(NCP, 0x090, 0x0EC),
};
static int pm8058_smps_set_voltage_advanced(struct pm8058_vreg *vreg, int uV,
int force_on);
static int pm8058_smps_set_voltage_legacy(struct pm8058_vreg *vreg, int uV);
static int _pm8058_vreg_is_enabled(struct pm8058_vreg *vreg);
static unsigned int pm8058_vreg_get_mode(struct regulator_dev *dev);
static void print_write_error(struct pm8058_vreg *vreg, int rc,
const char *func);
static int pm8058_vreg_write(struct pm8058_vreg *vreg,
u16 addr, u8 val, u8 mask, u8 *reg_save)
{
int rc = 0;
u8 reg;
reg = (*reg_save & ~mask) | (val & mask);
if (reg != *reg_save)
rc = pm8xxx_writeb(vreg->dev->parent, addr, reg);
if (rc)
pr_err("%s: pm8xxx_write failed, rc=%d\n", __func__, rc);
else
*reg_save = reg;
return rc;
}
static int pm8058_vreg_is_global_enabled(struct pm8058_vreg *vreg)
{
int ret = 0, i;
for (i = 0;
(i < GLOBAL_ENABLE_MAX) && !ret && vreg->global_enable[i]; i++)
ret = vreg->global_enable[i]->reg &
vreg->global_enable_mask[i];
return ret;
}
static int pm8058_vreg_set_global_enable(struct pm8058_vreg *vreg, int on)
{
int rc = 0, i;
for (i = 0;
(i < GLOBAL_ENABLE_MAX) && !rc && vreg->global_enable[i]; i++)
rc = pm8058_vreg_write(vreg, vreg->global_enable[i]->addr,
(on ? vreg->global_enable_mask[i] : 0),
vreg->global_enable_mask[i],
&vreg->global_enable[i]->reg);
return rc;
}
static int pm8058_vreg_using_pin_ctrl(struct pm8058_vreg *vreg)
{
int ret = 0;
switch (vreg->type) {
case REGULATOR_TYPE_LDO:
ret = ((vreg->test_reg[5] & LDO_TEST_PIN_CTRL_MASK) << 4)
| (vreg->test_reg[6] & LDO_TEST_PIN_CTRL_LPM_MASK);
break;
case REGULATOR_TYPE_SMPS:
ret = vreg->sleep_ctrl_reg
& (SMPS_PIN_CTRL_MASK | SMPS_PIN_CTRL_LPM_MASK);
break;
case REGULATOR_TYPE_LVS:
ret = vreg->ctrl_reg & LVS_PIN_CTRL_MASK;
break;
}
return ret;
}
static int pm8058_vreg_set_pin_ctrl(struct pm8058_vreg *vreg, int on)
{
int rc = 0, bank;
u8 val = 0, mask;
unsigned pc = vreg->pdata->pin_ctrl;
unsigned pf = vreg->pdata->pin_fn;
switch (vreg->type) {
case REGULATOR_TYPE_LDO:
if (on) {
if (pc & PM8058_VREG_PIN_CTRL_D0)
val |= LDO_TEST_PIN_CTRL_EN0;
if (pc & PM8058_VREG_PIN_CTRL_D1)
val |= LDO_TEST_PIN_CTRL_EN1;
if (pc & PM8058_VREG_PIN_CTRL_A0)
val |= LDO_TEST_PIN_CTRL_EN2;
if (pc & PM8058_VREG_PIN_CTRL_A1)
val |= LDO_TEST_PIN_CTRL_EN3;
bank = (pf == PM8058_VREG_PIN_FN_ENABLE ? 5 : 6);
rc = pm8058_vreg_write(vreg, vreg->test_addr,
val | REGULATOR_BANK_SEL(bank)
| REGULATOR_BANK_WRITE,
LDO_TEST_PIN_CTRL_MASK | REGULATOR_BANK_MASK,
&vreg->test_reg[bank]);
if (rc)
goto bail;
val = LDO_TEST_LPM_SEL_CTRL | REGULATOR_BANK_WRITE
| REGULATOR_BANK_SEL(0);
mask = LDO_TEST_LPM_MASK | REGULATOR_BANK_MASK;
rc = pm8058_vreg_write(vreg, vreg->test_addr, val, mask,
&vreg->test_reg[0]);
if (rc)
goto bail;
if (pf == PM8058_VREG_PIN_FN_ENABLE) {
/* Pin control ON/OFF */
rc = pm8058_vreg_write(vreg, vreg->ctrl_addr,
LDO_CTRL_PM_HPM,
LDO_ENABLE_MASK | LDO_CTRL_PM_MASK,
&vreg->ctrl_reg);
if (rc)
goto bail;
rc = pm8058_vreg_set_global_enable(vreg, 0);
if (rc)
goto bail;
} else {
/* Pin control LPM/HPM */
rc = pm8058_vreg_write(vreg, vreg->ctrl_addr,
LDO_ENABLE | LDO_CTRL_PM_LPM,
LDO_ENABLE_MASK | LDO_CTRL_PM_MASK,
&vreg->ctrl_reg);
if (rc)
goto bail;
}
} else {
/* Pin control off */
rc = pm8058_vreg_write(vreg, vreg->test_addr,
REGULATOR_BANK_SEL(5) | REGULATOR_BANK_WRITE,
LDO_TEST_PIN_CTRL_MASK | REGULATOR_BANK_MASK,
&vreg->test_reg[5]);
if (rc)
goto bail;
rc = pm8058_vreg_write(vreg, vreg->test_addr,
REGULATOR_BANK_SEL(6) | REGULATOR_BANK_WRITE,
LDO_TEST_PIN_CTRL_MASK | REGULATOR_BANK_MASK,
&vreg->test_reg[6]);
if (rc)
goto bail;
}
break;
case REGULATOR_TYPE_SMPS:
if (on) {
if (pf == PM8058_VREG_PIN_FN_ENABLE) {
/* Pin control ON/OFF */
if (pc & PM8058_VREG_PIN_CTRL_D0)
val |= SMPS_PIN_CTRL_D0;
if (pc & PM8058_VREG_PIN_CTRL_D1)
val |= SMPS_PIN_CTRL_D1;
if (pc & PM8058_VREG_PIN_CTRL_A0)
val |= SMPS_PIN_CTRL_A0;
if (pc & PM8058_VREG_PIN_CTRL_A1)
val |= SMPS_PIN_CTRL_A1;
} else {
/* Pin control LPM/HPM */
if (pc & PM8058_VREG_PIN_CTRL_D0)
val |= SMPS_PIN_CTRL_LPM_D0;
if (pc & PM8058_VREG_PIN_CTRL_D1)
val |= SMPS_PIN_CTRL_LPM_D1;
if (pc & PM8058_VREG_PIN_CTRL_A0)
val |= SMPS_PIN_CTRL_LPM_A0;
if (pc & PM8058_VREG_PIN_CTRL_A1)
val |= SMPS_PIN_CTRL_LPM_A1;
}
rc = pm8058_vreg_set_global_enable(vreg, 0);
if (rc)
goto bail;
rc = pm8058_smps_set_voltage_legacy(vreg,
vreg->save_uV);
if (rc)
goto bail;
rc = pm8058_vreg_write(vreg, vreg->sleep_ctrl_addr, val,
SMPS_PIN_CTRL_MASK | SMPS_PIN_CTRL_LPM_MASK,
&vreg->sleep_ctrl_reg);
if (rc)
goto bail;
rc = pm8058_vreg_write(vreg, vreg->ctrl_addr,
(pf == PM8058_VREG_PIN_FN_ENABLE
? 0 : SMPS_LEGACY_ENABLE),
SMPS_LEGACY_ENABLE, &vreg->ctrl_reg);
if (rc)
goto bail;
rc = pm8058_vreg_write(vreg, vreg->clk_ctrl_addr,
(pf == PM8058_VREG_PIN_FN_ENABLE
? SMPS_CLK_CTRL_PWM : SMPS_CLK_CTRL_PFM),
SMPS_CLK_CTRL_MASK, &vreg->clk_ctrl_reg);
if (rc)
goto bail;
} else {
/* Pin control off */
if (!SMPS_IN_ADVANCED_MODE(vreg)) {
if (_pm8058_vreg_is_enabled(vreg))
val = SMPS_LEGACY_ENABLE;
rc = pm8058_vreg_write(vreg, vreg->ctrl_addr,
val, SMPS_LEGACY_ENABLE,
&vreg->ctrl_reg);
if (rc)
goto bail;
}
rc = pm8058_vreg_write(vreg, vreg->sleep_ctrl_addr, 0,
SMPS_PIN_CTRL_MASK | SMPS_PIN_CTRL_LPM_MASK,
&vreg->sleep_ctrl_reg);
if (rc)
goto bail;
rc = pm8058_smps_set_voltage_advanced(vreg,
vreg->save_uV, 0);
if (rc)
goto bail;
}
break;
case REGULATOR_TYPE_LVS:
if (on) {
if (pc & PM8058_VREG_PIN_CTRL_D0)
val |= LVS_PIN_CTRL_EN0;
if (pc & PM8058_VREG_PIN_CTRL_D1)
val |= LVS_PIN_CTRL_EN1;
if (pc & PM8058_VREG_PIN_CTRL_A0)
val |= LVS_PIN_CTRL_EN2;
if (pc & PM8058_VREG_PIN_CTRL_A1)
val |= LVS_PIN_CTRL_EN3;
rc = pm8058_vreg_write(vreg, vreg->ctrl_addr, val,
LVS_PIN_CTRL_MASK | LVS_ENABLE_MASK,
&vreg->ctrl_reg);
if (rc)
goto bail;
rc = pm8058_vreg_set_global_enable(vreg, 0);
if (rc)
goto bail;
} else {
/* Pin control off */
if (_pm8058_vreg_is_enabled(vreg))
val = LVS_ENABLE;
rc = pm8058_vreg_write(vreg, vreg->ctrl_addr, val,
LVS_ENABLE_MASK | LVS_PIN_CTRL_MASK,
&vreg->ctrl_reg);
if (rc)
goto bail;
}
break;
}
bail:
if (rc)
print_write_error(vreg, rc, __func__);
return rc;
}
static int pm8058_vreg_enable(struct regulator_dev *dev)
{
struct pm8058_vreg *vreg = rdev_get_drvdata(dev);
int mode;
int rc = 0;
mode = pm8058_vreg_get_mode(dev);
if (mode == REGULATOR_MODE_IDLE) {
/* Turn on pin control. */
rc = pm8058_vreg_set_pin_ctrl(vreg, 1);
if (rc)
goto bail;
return rc;
}
if (vreg->type == REGULATOR_TYPE_SMPS && SMPS_IN_ADVANCED_MODE(vreg))
rc = pm8058_smps_set_voltage_advanced(vreg, vreg->save_uV, 1);
else
rc = pm8058_vreg_write(vreg, vreg->ctrl_addr, REGULATOR_EN_MASK,
REGULATOR_EN_MASK, &vreg->ctrl_reg);
bail:
if (rc)
print_write_error(vreg, rc, __func__);
return rc;
}
static int _pm8058_vreg_is_enabled(struct pm8058_vreg *vreg)
{
/*
* All regulator types except advanced mode SMPS have enable bit in
* bit 7 of the control register. Global enable and pin control also
* do not work for advanced mode SMPS.
*/
if (!(vreg->type == REGULATOR_TYPE_SMPS && SMPS_IN_ADVANCED_MODE(vreg))
&& ((vreg->ctrl_reg & REGULATOR_EN_MASK)
|| pm8058_vreg_is_global_enabled(vreg)
|| pm8058_vreg_using_pin_ctrl(vreg)))
return 1;
else if (vreg->type == REGULATOR_TYPE_SMPS
&& SMPS_IN_ADVANCED_MODE(vreg)
&& ((vreg->ctrl_reg & SMPS_ADVANCED_BAND_MASK)
!= SMPS_ADVANCED_BAND_OFF))
return 1;
return 0;
}
static int pm8058_vreg_is_enabled(struct regulator_dev *dev)
{
struct pm8058_vreg *vreg = rdev_get_drvdata(dev);
return _pm8058_vreg_is_enabled(vreg);
}
static int pm8058_vreg_disable(struct regulator_dev *dev)
{
struct pm8058_vreg *vreg = rdev_get_drvdata(dev);
int rc = 0;
/* Disable in global control register. */
rc = pm8058_vreg_set_global_enable(vreg, 0);
if (rc)
goto bail;
/* Turn off pin control. */
rc = pm8058_vreg_set_pin_ctrl(vreg, 0);
if (rc)
goto bail;
/* Disable in local control register. */
if (vreg->type == REGULATOR_TYPE_SMPS && SMPS_IN_ADVANCED_MODE(vreg))
rc = pm8058_vreg_write(vreg, vreg->ctrl_addr,
SMPS_ADVANCED_BAND_OFF, SMPS_ADVANCED_BAND_MASK,
&vreg->ctrl_reg);
else
rc = pm8058_vreg_write(vreg, vreg->ctrl_addr, 0,
REGULATOR_EN_MASK, &vreg->ctrl_reg);
bail:
if (rc)
print_write_error(vreg, rc, __func__);
return rc;
}
static int pm8058_pldo_set_voltage(struct pm8058_vreg *vreg, int uV)
{
int vmin, rc = 0;
unsigned vprog, fine_step;
u8 range_ext, range_sel, fine_step_reg;
if (uV < PLDO_LOW_UV_MIN || uV > PLDO_HIGH_UV_MAX)
return -EINVAL;
if (uV < PLDO_LOW_UV_MAX + PLDO_LOW_FINE_STEP_UV) {
vmin = PLDO_LOW_UV_MIN;
fine_step = PLDO_LOW_FINE_STEP_UV;
range_ext = 0;
range_sel = LDO_TEST_RANGE_SEL_MASK;
} else if (uV < PLDO_NORM_UV_MAX + PLDO_NORM_FINE_STEP_UV) {
vmin = PLDO_NORM_UV_MIN;
fine_step = PLDO_NORM_FINE_STEP_UV;
range_ext = 0;
range_sel = 0;
} else {
vmin = PLDO_HIGH_UV_MIN;
fine_step = PLDO_HIGH_FINE_STEP_UV;
range_ext = LDO_TEST_RANGE_EXT_MASK;
range_sel = 0;
}
vprog = (uV - vmin) / fine_step;
fine_step_reg = (vprog & 1) << LDO_TEST_FINE_STEP_SHIFT;
vprog >>= 1;
/*
* Disable program voltage update if range extension, range select,
* or fine step have changed and the regulator is enabled.
*/
if (_pm8058_vreg_is_enabled(vreg) &&
(((range_ext ^ vreg->test_reg[4]) & LDO_TEST_RANGE_EXT_MASK)
|| ((range_sel ^ vreg->test_reg[2]) & LDO_TEST_RANGE_SEL_MASK)
|| ((fine_step_reg ^ vreg->test_reg[2])
& LDO_TEST_FINE_STEP_MASK))) {
rc = pm8058_vreg_write(vreg, vreg->test_addr,
REGULATOR_BANK_SEL(2) | REGULATOR_BANK_WRITE,
REGULATOR_BANK_MASK | LDO_TEST_VPROG_UPDATE_MASK,
&vreg->test_reg[2]);
if (rc)
goto bail;
}
/* Write new voltage. */
rc = pm8058_vreg_write(vreg, vreg->ctrl_addr, vprog,
LDO_CTRL_VPROG_MASK, &vreg->ctrl_reg);
if (rc)
goto bail;
/* Write range extension. */
rc = pm8058_vreg_write(vreg, vreg->test_addr,
range_ext | REGULATOR_BANK_SEL(4)
| REGULATOR_BANK_WRITE,
LDO_TEST_RANGE_EXT_MASK | REGULATOR_BANK_MASK,
&vreg->test_reg[4]);
if (rc)
goto bail;
/* Write fine step, range select and program voltage update. */
rc = pm8058_vreg_write(vreg, vreg->test_addr,
fine_step_reg | range_sel | REGULATOR_BANK_SEL(2)
| REGULATOR_BANK_WRITE | LDO_TEST_VPROG_UPDATE_MASK,
LDO_TEST_FINE_STEP_MASK | LDO_TEST_RANGE_SEL_MASK
| REGULATOR_BANK_MASK | LDO_TEST_VPROG_UPDATE_MASK,
&vreg->test_reg[2]);
bail:
if (rc)
print_write_error(vreg, rc, __func__);
return rc;
}
static int pm8058_nldo_set_voltage(struct pm8058_vreg *vreg, int uV)
{
unsigned vprog, fine_step_reg;
int rc;
if (uV < NLDO_UV_MIN || uV > NLDO_UV_MAX)
return -EINVAL;
vprog = (uV - NLDO_UV_MIN) / NLDO_FINE_STEP_UV;
fine_step_reg = (vprog & 1) << LDO_TEST_FINE_STEP_SHIFT;
vprog >>= 1;
/* Write new voltage. */
rc = pm8058_vreg_write(vreg, vreg->ctrl_addr, vprog,
LDO_CTRL_VPROG_MASK, &vreg->ctrl_reg);
if (rc)
goto bail;
/* Write fine step. */
rc = pm8058_vreg_write(vreg, vreg->test_addr,
fine_step_reg | REGULATOR_BANK_SEL(2)
| REGULATOR_BANK_WRITE | LDO_TEST_VPROG_UPDATE_MASK,
LDO_TEST_FINE_STEP_MASK | REGULATOR_BANK_MASK
| LDO_TEST_VPROG_UPDATE_MASK,
&vreg->test_reg[2]);
bail:
if (rc)
print_write_error(vreg, rc, __func__);
return rc;
}
static int pm8058_ldo_set_voltage(struct regulator_dev *dev,
int min_uV, int max_uV, unsigned *selector)
{
struct pm8058_vreg *vreg = rdev_get_drvdata(dev);
if (vreg->is_nmos)
return pm8058_nldo_set_voltage(vreg, min_uV);
else
return pm8058_pldo_set_voltage(vreg, min_uV);
}
static int pm8058_pldo_get_voltage(struct pm8058_vreg *vreg)
{
int vmin, fine_step;
u8 range_ext, range_sel, vprog, fine_step_reg;
fine_step_reg = vreg->test_reg[2] & LDO_TEST_FINE_STEP_MASK;
range_sel = vreg->test_reg[2] & LDO_TEST_RANGE_SEL_MASK;
range_ext = vreg->test_reg[4] & LDO_TEST_RANGE_EXT_MASK;
vprog = vreg->ctrl_reg & LDO_CTRL_VPROG_MASK;
vprog = (vprog << 1) | (fine_step_reg >> LDO_TEST_FINE_STEP_SHIFT);
if (range_sel) {
/* low range mode */
fine_step = PLDO_LOW_FINE_STEP_UV;
vmin = PLDO_LOW_UV_MIN;
} else if (!range_ext) {
/* normal mode */
fine_step = PLDO_NORM_FINE_STEP_UV;
vmin = PLDO_NORM_UV_MIN;
} else {
/* high range mode */
fine_step = PLDO_HIGH_FINE_STEP_UV;
vmin = PLDO_HIGH_UV_MIN;
}
return fine_step * vprog + vmin;
}
static int pm8058_nldo_get_voltage(struct pm8058_vreg *vreg)
{
u8 vprog, fine_step_reg;
fine_step_reg = vreg->test_reg[2] & LDO_TEST_FINE_STEP_MASK;
vprog = vreg->ctrl_reg & LDO_CTRL_VPROG_MASK;
vprog = (vprog << 1) | (fine_step_reg >> LDO_TEST_FINE_STEP_SHIFT);
return NLDO_FINE_STEP_UV * vprog + NLDO_UV_MIN;
}
static int pm8058_ldo_get_voltage(struct regulator_dev *dev)
{
struct pm8058_vreg *vreg = rdev_get_drvdata(dev);
if (vreg->is_nmos)
return pm8058_nldo_get_voltage(vreg);
else
return pm8058_pldo_get_voltage(vreg);
}
static int pm8058_smps_get_voltage_advanced(struct pm8058_vreg *vreg)
{
u8 vprog, band;
int uV = 0;
vprog = vreg->ctrl_reg & SMPS_ADVANCED_VPROG_MASK;
band = vreg->ctrl_reg & SMPS_ADVANCED_BAND_MASK;
if (band == SMPS_ADVANCED_BAND_1)
uV = vprog * SMPS_BAND1_UV_STEP + SMPS_BAND1_UV_MIN;
else if (band == SMPS_ADVANCED_BAND_2)
uV = vprog * SMPS_BAND2_UV_STEP + SMPS_BAND2_UV_MIN;
else if (band == SMPS_ADVANCED_BAND_3)
uV = vprog * SMPS_BAND3_UV_STEP + SMPS_BAND3_UV_MIN;
else
uV = vreg->save_uV;
return uV;
}
static int pm8058_smps_get_voltage_legacy(struct pm8058_vreg *vreg)
{
u8 vlow, vref, vprog;
int uV;
vlow = vreg->test_reg[1] & SMPS_LEGACY_VLOW_SEL_MASK;
vref = vreg->ctrl_reg & SMPS_LEGACY_VREF_SEL_MASK;
vprog = vreg->ctrl_reg & SMPS_LEGACY_VPROG_MASK;
if (vlow && vref) {
/* mode 3 */
uV = vprog * SMPS_MODE3_UV_STEP + SMPS_MODE3_UV_MIN;
} else if (vref) {
/* mode 2 */
uV = vprog * SMPS_MODE2_UV_STEP + SMPS_MODE2_UV_MIN;
} else {
/* mode 1 */
uV = vprog * SMPS_MODE1_UV_STEP + SMPS_MODE1_UV_MIN;
}
return uV;
}
static int _pm8058_smps_get_voltage(struct pm8058_vreg *vreg)
{
if (SMPS_IN_ADVANCED_MODE(vreg))
return pm8058_smps_get_voltage_advanced(vreg);
return pm8058_smps_get_voltage_legacy(vreg);
}
static int pm8058_smps_get_voltage(struct regulator_dev *dev)
{
struct pm8058_vreg *vreg = rdev_get_drvdata(dev);
return _pm8058_smps_get_voltage(vreg);
}
static int pm8058_smps_set_voltage_advanced(struct pm8058_vreg *vreg,
int uV, int force_on)
{
u8 vprog, band;
int rc, new_uV;
if (uV < SMPS_BAND1_UV_MAX + SMPS_BAND1_UV_STEP) {
vprog = ((uV - SMPS_BAND1_UV_MIN) / SMPS_BAND1_UV_STEP);
band = SMPS_ADVANCED_BAND_1;
new_uV = SMPS_BAND1_UV_MIN + vprog * SMPS_BAND1_UV_STEP;
} else if (uV < SMPS_BAND2_UV_MAX + SMPS_BAND2_UV_STEP) {
vprog = ((uV - SMPS_BAND2_UV_MIN) / SMPS_BAND2_UV_STEP);
band = SMPS_ADVANCED_BAND_2;
new_uV = SMPS_BAND2_UV_MIN + vprog * SMPS_BAND2_UV_STEP;
} else {
vprog = ((uV - SMPS_BAND3_UV_MIN) / SMPS_BAND3_UV_STEP);
band = SMPS_ADVANCED_BAND_3;
new_uV = SMPS_BAND3_UV_MIN + vprog * SMPS_BAND3_UV_STEP;
}
/* Do not set band if regulator currently disabled. */
if (!_pm8058_vreg_is_enabled(vreg) && !force_on)
band = SMPS_ADVANCED_BAND_OFF;
/* Set advanced mode bit to 1. */
rc = pm8058_vreg_write(vreg, vreg->test_addr, SMPS_ADVANCED_MODE
| REGULATOR_BANK_WRITE | REGULATOR_BANK_SEL(7),
SMPS_ADVANCED_MODE_MASK | REGULATOR_BANK_MASK,
&vreg->test_reg[7]);
if (rc)
goto bail;
/* Set voltage and voltage band. */
rc = pm8058_vreg_write(vreg, vreg->ctrl_addr, band | vprog,
SMPS_ADVANCED_BAND_MASK | SMPS_ADVANCED_VPROG_MASK,
&vreg->ctrl_reg);
if (rc)
goto bail;
vreg->save_uV = new_uV;
bail:
return rc;
}
static int pm8058_smps_set_voltage_legacy(struct pm8058_vreg *vreg, int uV)
{
u8 vlow, vref, vprog, pd, en;
int rc;
if (uV < SMPS_MODE3_UV_MAX + SMPS_MODE3_UV_STEP) {
vprog = ((uV - SMPS_MODE3_UV_MIN) / SMPS_MODE3_UV_STEP);
vref = SMPS_LEGACY_VREF_SEL_MASK;
vlow = SMPS_LEGACY_VLOW_SEL_MASK;
} else if (uV < SMPS_MODE2_UV_MAX + SMPS_MODE2_UV_STEP) {
vprog = ((uV - SMPS_MODE2_UV_MIN) / SMPS_MODE2_UV_STEP);
vref = SMPS_LEGACY_VREF_SEL_MASK;
vlow = 0;
} else {
vprog = ((uV - SMPS_MODE1_UV_MIN) / SMPS_MODE1_UV_STEP);
vref = 0;
vlow = 0;
}
/* set vlow bit for ultra low voltage mode */
rc = pm8058_vreg_write(vreg, vreg->test_addr,
vlow | REGULATOR_BANK_WRITE | REGULATOR_BANK_SEL(1),
REGULATOR_BANK_MASK | SMPS_LEGACY_VLOW_SEL_MASK,
&vreg->test_reg[1]);
if (rc)
goto bail;
/* Set advanced mode bit to 0. */
rc = pm8058_vreg_write(vreg, vreg->test_addr, SMPS_LEGACY_MODE
| REGULATOR_BANK_WRITE | REGULATOR_BANK_SEL(7),
SMPS_ADVANCED_MODE_MASK | REGULATOR_BANK_MASK,
&vreg->test_reg[7]);
if (rc)
goto bail;
en = (_pm8058_vreg_is_enabled(vreg) ? SMPS_LEGACY_ENABLE : 0);
pd = (vreg->pdata->pull_down_enable ? SMPS_LEGACY_PULL_DOWN_ENABLE : 0);
/* Set voltage (and the rest of the control register). */
rc = pm8058_vreg_write(vreg, vreg->ctrl_addr, en | pd | vref | vprog,
SMPS_LEGACY_ENABLE | SMPS_LEGACY_PULL_DOWN_ENABLE
| SMPS_LEGACY_VREF_SEL_MASK | SMPS_LEGACY_VPROG_MASK,
&vreg->ctrl_reg);
vreg->save_uV = pm8058_smps_get_voltage_legacy(vreg);
bail:
return rc;
}
static int pm8058_smps_set_voltage(struct regulator_dev *dev,
int min_uV, int max_uV, unsigned *selector)
{
struct pm8058_vreg *vreg = rdev_get_drvdata(dev);
int rc = 0;
if (min_uV < SMPS_UV_MIN || min_uV > SMPS_UV_MAX)
return -EINVAL;
if (SMPS_IN_ADVANCED_MODE(vreg))
rc = pm8058_smps_set_voltage_advanced(vreg, min_uV, 0);
else
rc = pm8058_smps_set_voltage_legacy(vreg, min_uV);
if (rc)
print_write_error(vreg, rc, __func__);
return rc;
}
static int pm8058_ncp_set_voltage(struct regulator_dev *dev,
int min_uV, int max_uV, unsigned *selector)
{
struct pm8058_vreg *vreg = rdev_get_drvdata(dev);
int rc;
u8 val;
if (min_uV < NCP_UV_MIN || min_uV > NCP_UV_MAX)
return -EINVAL;
val = (min_uV - NCP_UV_MIN) / NCP_UV_STEP;
/* voltage setting */
rc = pm8058_vreg_write(vreg, vreg->ctrl_addr, val, NCP_VPROG_MASK,
&vreg->ctrl_reg);
if (rc)
print_write_error(vreg, rc, __func__);
return rc;
}
static int pm8058_ncp_get_voltage(struct regulator_dev *dev)
{
struct pm8058_vreg *vreg = rdev_get_drvdata(dev);
u8 vprog = vreg->ctrl_reg & NCP_VPROG_MASK;
return NCP_UV_MIN + vprog * NCP_UV_STEP;
}
static int pm8058_ldo_set_mode(struct pm8058_vreg *vreg, unsigned int mode)
{
int rc = 0;
u8 mask, val;
switch (mode) {
case REGULATOR_MODE_FAST:
/* HPM */
val = (_pm8058_vreg_is_enabled(vreg) ? LDO_ENABLE : 0)
| LDO_CTRL_PM_HPM;
mask = LDO_ENABLE_MASK | LDO_CTRL_PM_MASK;
rc = pm8058_vreg_write(vreg, vreg->ctrl_addr, val, mask,
&vreg->ctrl_reg);
if (rc)
goto bail;
if (pm8058_vreg_using_pin_ctrl(vreg))
rc = pm8058_vreg_set_pin_ctrl(vreg, 0);
if (rc)
goto bail;
break;
case REGULATOR_MODE_STANDBY:
/* LPM */
val = (_pm8058_vreg_is_enabled(vreg) ? LDO_ENABLE : 0)
| LDO_CTRL_PM_LPM;
mask = LDO_ENABLE_MASK | LDO_CTRL_PM_MASK;
rc = pm8058_vreg_write(vreg, vreg->ctrl_addr, val, mask,
&vreg->ctrl_reg);
if (rc)
goto bail;
val = LDO_TEST_LPM_SEL_CTRL | REGULATOR_BANK_WRITE
| REGULATOR_BANK_SEL(0);
mask = LDO_TEST_LPM_MASK | REGULATOR_BANK_MASK;
rc = pm8058_vreg_write(vreg, vreg->test_addr, val, mask,
&vreg->test_reg[0]);
if (rc)
goto bail;
if (pm8058_vreg_using_pin_ctrl(vreg))
rc = pm8058_vreg_set_pin_ctrl(vreg, 0);
if (rc)
goto bail;
break;
case REGULATOR_MODE_IDLE:
/* Pin Control */
if (_pm8058_vreg_is_enabled(vreg))
rc = pm8058_vreg_set_pin_ctrl(vreg, 1);
if (rc)
goto bail;
break;
default:
pr_err("%s: invalid mode: %u\n", __func__, mode);
return -EINVAL;
}
bail:
if (rc)
print_write_error(vreg, rc, __func__);
return rc;
}
static int pm8058_smps_set_mode(struct pm8058_vreg *vreg, unsigned int mode)
{
int rc = 0;
u8 mask, val;
switch (mode) {
case REGULATOR_MODE_FAST:
/* HPM */
val = SMPS_CLK_CTRL_PWM;
mask = SMPS_CLK_CTRL_MASK;
rc = pm8058_vreg_write(vreg, vreg->clk_ctrl_addr, val, mask,
&vreg->clk_ctrl_reg);
if (rc)
goto bail;
if (pm8058_vreg_using_pin_ctrl(vreg))
rc = pm8058_vreg_set_pin_ctrl(vreg, 0);
if (rc)
goto bail;
break;
case REGULATOR_MODE_STANDBY:
/* LPM */
val = SMPS_CLK_CTRL_PFM;
mask = SMPS_CLK_CTRL_MASK;
rc = pm8058_vreg_write(vreg, vreg->clk_ctrl_addr, val, mask,
&vreg->clk_ctrl_reg);
if (rc)
goto bail;
if (pm8058_vreg_using_pin_ctrl(vreg))
rc = pm8058_vreg_set_pin_ctrl(vreg, 0);
if (rc)
goto bail;
break;
case REGULATOR_MODE_IDLE:
/* Pin Control */
if (_pm8058_vreg_is_enabled(vreg))
rc = pm8058_vreg_set_pin_ctrl(vreg, 1);
if (rc)
goto bail;
break;
default:
pr_err("%s: invalid mode: %u\n", __func__, mode);
return -EINVAL;
}
bail:
if (rc)
print_write_error(vreg, rc, __func__);
return rc;
}
static int pm8058_lvs_set_mode(struct pm8058_vreg *vreg, unsigned int mode)
{
int rc = 0;
if (mode == REGULATOR_MODE_IDLE) {
/* Use pin control. */
if (_pm8058_vreg_is_enabled(vreg))
rc = pm8058_vreg_set_pin_ctrl(vreg, 1);
} else {
/* Turn off pin control. */
rc = pm8058_vreg_set_pin_ctrl(vreg, 0);
}
return rc;
}
/*
* Optimum mode programming:
* REGULATOR_MODE_FAST: Go to HPM (highest priority)
* REGULATOR_MODE_STANDBY: Go to pin ctrl mode if there are any pin ctrl
* votes, else go to LPM
*
* Pin ctrl mode voting via regulator set_mode:
* REGULATOR_MODE_IDLE: Go to pin ctrl mode if the optimum mode is LPM, else
* go to HPM
* REGULATOR_MODE_NORMAL: Go to LPM if it is the optimum mode, else go to HPM
*/
static int pm8058_vreg_set_mode(struct regulator_dev *dev, unsigned int mode)
{
struct pm8058_vreg *vreg = rdev_get_drvdata(dev);
unsigned prev_optimum = vreg->optimum;
unsigned prev_pc_vote = vreg->pc_vote;
unsigned prev_mode_initialized = vreg->mode_initialized;
int new_mode = REGULATOR_MODE_FAST;
int rc = 0;
/* Determine new mode to go into. */
switch (mode) {
case REGULATOR_MODE_FAST:
new_mode = REGULATOR_MODE_FAST;
vreg->optimum = mode;
vreg->mode_initialized = 1;
break;
case REGULATOR_MODE_STANDBY:
if (vreg->pc_vote)
new_mode = REGULATOR_MODE_IDLE;
else
new_mode = REGULATOR_MODE_STANDBY;
vreg->optimum = mode;
vreg->mode_initialized = 1;
break;
case REGULATOR_MODE_IDLE:
if (vreg->pc_vote++)
goto done; /* already taken care of */
if (vreg->mode_initialized
&& vreg->optimum == REGULATOR_MODE_FAST)
new_mode = REGULATOR_MODE_FAST;
else
new_mode = REGULATOR_MODE_IDLE;
break;
case REGULATOR_MODE_NORMAL:
if (vreg->pc_vote && --(vreg->pc_vote))
goto done; /* already taken care of */
if (vreg->optimum == REGULATOR_MODE_STANDBY)
new_mode = REGULATOR_MODE_STANDBY;
else
new_mode = REGULATOR_MODE_FAST;
break;
default:
pr_err("%s: unknown mode, mode=%u\n", __func__, mode);
return -EINVAL;
}
switch (vreg->type) {
case REGULATOR_TYPE_LDO:
rc = pm8058_ldo_set_mode(vreg, new_mode);
break;
case REGULATOR_TYPE_SMPS:
rc = pm8058_smps_set_mode(vreg, new_mode);
break;
case REGULATOR_TYPE_LVS:
rc = pm8058_lvs_set_mode(vreg, new_mode);
break;
}
if (rc) {
print_write_error(vreg, rc, __func__);
vreg->mode_initialized = prev_mode_initialized;
vreg->optimum = prev_optimum;
vreg->pc_vote = prev_pc_vote;
return rc;
}
done:
return 0;
}
static unsigned int pm8058_vreg_get_mode(struct regulator_dev *dev)
{
struct pm8058_vreg *vreg = rdev_get_drvdata(dev);
if (!vreg->mode_initialized && vreg->pc_vote)
return REGULATOR_MODE_IDLE;
/* Check physical pin control state. */
switch (vreg->type) {
case REGULATOR_TYPE_LDO:
if (!(vreg->ctrl_reg & LDO_ENABLE_MASK)
&& !pm8058_vreg_is_global_enabled(vreg)
&& (vreg->test_reg[5] & LDO_TEST_PIN_CTRL_MASK))
return REGULATOR_MODE_IDLE;
else if (((vreg->ctrl_reg & LDO_ENABLE_MASK)
|| pm8058_vreg_is_global_enabled(vreg))
&& (vreg->ctrl_reg & LDO_CTRL_PM_MASK)
&& (vreg->test_reg[6] & LDO_TEST_PIN_CTRL_LPM_MASK))
return REGULATOR_MODE_IDLE;
break;
case REGULATOR_TYPE_SMPS:
if (!SMPS_IN_ADVANCED_MODE(vreg)
&& !(vreg->ctrl_reg & REGULATOR_EN_MASK)
&& !pm8058_vreg_is_global_enabled(vreg)
&& (vreg->sleep_ctrl_reg & SMPS_PIN_CTRL_MASK))
return REGULATOR_MODE_IDLE;
else if (!SMPS_IN_ADVANCED_MODE(vreg)
&& ((vreg->ctrl_reg & REGULATOR_EN_MASK)
|| pm8058_vreg_is_global_enabled(vreg))
&& ((vreg->clk_ctrl_reg & SMPS_CLK_CTRL_MASK)
== SMPS_CLK_CTRL_PFM)
&& (vreg->sleep_ctrl_reg & SMPS_PIN_CTRL_LPM_MASK))
return REGULATOR_MODE_IDLE;
break;
case REGULATOR_TYPE_LVS:
if (!(vreg->ctrl_reg & LVS_ENABLE_MASK)
&& !pm8058_vreg_is_global_enabled(vreg)
&& (vreg->ctrl_reg & LVS_PIN_CTRL_MASK))
return REGULATOR_MODE_IDLE;
}
if (vreg->optimum == REGULATOR_MODE_FAST)
return REGULATOR_MODE_FAST;
else if (vreg->pc_vote)
return REGULATOR_MODE_IDLE;
else if (vreg->optimum == REGULATOR_MODE_STANDBY)
return REGULATOR_MODE_STANDBY;
return REGULATOR_MODE_FAST;
}
unsigned int pm8058_vreg_get_optimum_mode(struct regulator_dev *dev,
int input_uV, int output_uV, int load_uA)
{
struct pm8058_vreg *vreg = rdev_get_drvdata(dev);
if (load_uA <= 0) {
/*
* pm8058_vreg_get_optimum_mode is being called before consumers
* have specified their load currents via
* regulator_set_optimum_mode. Return whatever the existing mode
* is.
*/
return pm8058_vreg_get_mode(dev);
}
if (load_uA >= vreg->hpm_min_load)
return REGULATOR_MODE_FAST;
return REGULATOR_MODE_STANDBY;
}
static struct regulator_ops pm8058_ldo_ops = {
.enable = pm8058_vreg_enable,
.disable = pm8058_vreg_disable,
.is_enabled = pm8058_vreg_is_enabled,
.set_voltage = pm8058_ldo_set_voltage,
.get_voltage = pm8058_ldo_get_voltage,
.set_mode = pm8058_vreg_set_mode,
.get_mode = pm8058_vreg_get_mode,
.get_optimum_mode = pm8058_vreg_get_optimum_mode,
};
static struct regulator_ops pm8058_smps_ops = {
.enable = pm8058_vreg_enable,
.disable = pm8058_vreg_disable,
.is_enabled = pm8058_vreg_is_enabled,
.set_voltage = pm8058_smps_set_voltage,
.get_voltage = pm8058_smps_get_voltage,
.set_mode = pm8058_vreg_set_mode,
.get_mode = pm8058_vreg_get_mode,
.get_optimum_mode = pm8058_vreg_get_optimum_mode,
};
static struct regulator_ops pm8058_lvs_ops = {
.enable = pm8058_vreg_enable,
.disable = pm8058_vreg_disable,
.is_enabled = pm8058_vreg_is_enabled,
.set_mode = pm8058_vreg_set_mode,
.get_mode = pm8058_vreg_get_mode,
};
static struct regulator_ops pm8058_ncp_ops = {
.enable = pm8058_vreg_enable,
.disable = pm8058_vreg_disable,
.is_enabled = pm8058_vreg_is_enabled,
.set_voltage = pm8058_ncp_set_voltage,
.get_voltage = pm8058_ncp_get_voltage,
};
#define VREG_DESCRIP(_id, _name, _ops) \
[_id] = { \
.id = _id, \
.name = _name, \
.ops = _ops, \
.type = REGULATOR_VOLTAGE, \
.owner = THIS_MODULE, \
}
static struct regulator_desc pm8058_vreg_descrip[] = {
VREG_DESCRIP(PM8058_VREG_ID_L0, "8058_l0", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L1, "8058_l1", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L2, "8058_l2", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L3, "8058_l3", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L4, "8058_l4", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L5, "8058_l5", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L6, "8058_l6", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L7, "8058_l7", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L8, "8058_l8", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L9, "8058_l9", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L10, "8058_l10", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L11, "8058_l11", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L12, "8058_l12", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L13, "8058_l13", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L14, "8058_l14", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L15, "8058_l15", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L16, "8058_l16", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L17, "8058_l17", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L18, "8058_l18", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L19, "8058_l19", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L20, "8058_l20", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L21, "8058_l21", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L22, "8058_l22", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L23, "8058_l23", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L24, "8058_l24", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_L25, "8058_l25", &pm8058_ldo_ops),
VREG_DESCRIP(PM8058_VREG_ID_S0, "8058_s0", &pm8058_smps_ops),
VREG_DESCRIP(PM8058_VREG_ID_S1, "8058_s1", &pm8058_smps_ops),
VREG_DESCRIP(PM8058_VREG_ID_S2, "8058_s2", &pm8058_smps_ops),
VREG_DESCRIP(PM8058_VREG_ID_S3, "8058_s3", &pm8058_smps_ops),
VREG_DESCRIP(PM8058_VREG_ID_S4, "8058_s4", &pm8058_smps_ops),
VREG_DESCRIP(PM8058_VREG_ID_LVS0, "8058_lvs0", &pm8058_lvs_ops),
VREG_DESCRIP(PM8058_VREG_ID_LVS1, "8058_lvs1", &pm8058_lvs_ops),
VREG_DESCRIP(PM8058_VREG_ID_NCP, "8058_ncp", &pm8058_ncp_ops),
};
static int pm8058_master_enable_init(struct pm8058_vreg *vreg)
{
int rc = 0, i;
for (i = 0; i < MASTER_ENABLE_COUNT; i++) {
rc = pm8xxx_readb(vreg->dev->parent, m_en[i].addr,
&(m_en[i].reg));
if (rc)
goto bail;
}
bail:
if (rc)
pr_err("%s: pm8xxx_read failed, rc=%d\n", __func__, rc);
return rc;
}
static int pm8058_init_ldo(struct pm8058_vreg *vreg)
{
int rc = 0, i;
u8 bank;
/* Save the current test register state. */
for (i = 0; i < LDO_TEST_BANKS; i++) {
bank = REGULATOR_BANK_SEL(i);
rc = pm8xxx_writeb(vreg->dev->parent, vreg->test_addr, bank);
if (rc)
goto bail;
rc = pm8xxx_readb(vreg->dev->parent, vreg->test_addr,
&vreg->test_reg[i]);
if (rc)
goto bail;
vreg->test_reg[i] |= REGULATOR_BANK_WRITE;
}
if ((vreg->ctrl_reg & LDO_CTRL_PM_MASK) == LDO_CTRL_PM_LPM)
vreg->optimum = REGULATOR_MODE_STANDBY;
else
vreg->optimum = REGULATOR_MODE_FAST;
/* Set pull down enable based on platform data. */
rc = pm8058_vreg_write(vreg, vreg->ctrl_addr,
(vreg->pdata->pull_down_enable ? LDO_PULL_DOWN_ENABLE : 0),
LDO_PULL_DOWN_ENABLE_MASK, &vreg->ctrl_reg);
bail:
return rc;
}
static int pm8058_init_smps(struct pm8058_vreg *vreg)
{
int rc = 0, i;
u8 bank;
/* Save the current test2 register state. */
for (i = 0; i < SMPS_TEST_BANKS; i++) {
bank = REGULATOR_BANK_SEL(i);
rc = pm8xxx_writeb(vreg->dev->parent, vreg->test_addr, bank);
if (rc)
goto bail;
rc = pm8xxx_readb(vreg->dev->parent, vreg->test_addr,
&vreg->test_reg[i]);
if (rc)
goto bail;
vreg->test_reg[i] |= REGULATOR_BANK_WRITE;
}
/* Save the current clock control register state. */
rc = pm8xxx_readb(vreg->dev->parent, vreg->clk_ctrl_addr,
&vreg->clk_ctrl_reg);
if (rc)
goto bail;
/* Save the current sleep control register state. */
rc = pm8xxx_readb(vreg->dev->parent, vreg->sleep_ctrl_addr,
&vreg->sleep_ctrl_reg);
if (rc)
goto bail;
vreg->save_uV = 1; /* This is not a no-op. */
vreg->save_uV = _pm8058_smps_get_voltage(vreg);
if ((vreg->clk_ctrl_reg & SMPS_CLK_CTRL_MASK) == SMPS_CLK_CTRL_PFM)
vreg->optimum = REGULATOR_MODE_STANDBY;
else
vreg->optimum = REGULATOR_MODE_FAST;
/* Set advanced mode pull down enable based on platform data. */
rc = pm8058_vreg_write(vreg, vreg->test_addr,
(vreg->pdata->pull_down_enable
? SMPS_ADVANCED_PULL_DOWN_ENABLE : 0)
| REGULATOR_BANK_SEL(6) | REGULATOR_BANK_WRITE,
REGULATOR_BANK_MASK | SMPS_ADVANCED_PULL_DOWN_ENABLE,
&vreg->test_reg[6]);
if (rc)
goto bail;
if (!SMPS_IN_ADVANCED_MODE(vreg)) {
/* Set legacy mode pull down enable based on platform data. */
rc = pm8058_vreg_write(vreg, vreg->ctrl_addr,
(vreg->pdata->pull_down_enable
? SMPS_LEGACY_PULL_DOWN_ENABLE : 0),
SMPS_LEGACY_PULL_DOWN_ENABLE, &vreg->ctrl_reg);
if (rc)
goto bail;
}
bail:
return rc;
}
static int pm8058_init_lvs(struct pm8058_vreg *vreg)
{
int rc = 0;
vreg->optimum = REGULATOR_MODE_FAST;
/* Set pull down enable based on platform data. */
rc = pm8058_vreg_write(vreg, vreg->ctrl_addr,
(vreg->pdata->pull_down_enable
? LVS_PULL_DOWN_ENABLE : LVS_PULL_DOWN_DISABLE),
LVS_PULL_DOWN_ENABLE_MASK, &vreg->ctrl_reg);
return rc;
}
static int pm8058_init_ncp(struct pm8058_vreg *vreg)
{
int rc = 0;
/* Save the current test1 register state. */
rc = pm8xxx_readb(vreg->dev->parent, vreg->test_addr,
&vreg->test_reg[0]);
if (rc)
goto bail;
vreg->optimum = REGULATOR_MODE_FAST;
bail:
return rc;
}
static int pm8058_init_regulator(struct pm8058_vreg *vreg)
{
static int master_enable_inited;
int rc = 0;
vreg->mode_initialized = 0;
if (!master_enable_inited) {
rc = pm8058_master_enable_init(vreg);
if (!rc)
master_enable_inited = 1;
}
/* save the current control register state */
rc = pm8xxx_readb(vreg->dev->parent, vreg->ctrl_addr, &vreg->ctrl_reg);
if (rc)
goto bail;
switch (vreg->type) {
case REGULATOR_TYPE_LDO:
rc = pm8058_init_ldo(vreg);
break;
case REGULATOR_TYPE_SMPS:
rc = pm8058_init_smps(vreg);
break;
case REGULATOR_TYPE_LVS:
rc = pm8058_init_lvs(vreg);
break;
case REGULATOR_TYPE_NCP:
rc = pm8058_init_ncp(vreg);
break;
}
bail:
if (rc)
pr_err("%s: pm8058_read/write failed; initial register states "
"unknown, rc=%d\n", __func__, rc);
return rc;
}
static int __devinit pm8058_vreg_probe(struct platform_device *pdev)
{
struct regulator_desc *rdesc;
struct pm8058_vreg *vreg;
const char *reg_name = NULL;
int rc = 0;
if (pdev == NULL)
return -EINVAL;
if (pdev->id >= 0 && pdev->id < PM8058_VREG_MAX) {
rdesc = &pm8058_vreg_descrip[pdev->id];
vreg = &pm8058_vreg[pdev->id];
vreg->pdata = pdev->dev.platform_data;
reg_name = pm8058_vreg_descrip[pdev->id].name;
vreg->dev = &pdev->dev;
rc = pm8058_init_regulator(vreg);
if (rc)
goto bail;
/* Disallow idle and normal modes if pin control isn't set. */
if (vreg->pdata->pin_ctrl == 0)
vreg->pdata->init_data.constraints.valid_modes_mask
&= ~(REGULATOR_MODE_NORMAL | REGULATOR_MODE_IDLE);
vreg->rdev = regulator_register(rdesc, &pdev->dev,
&vreg->pdata->init_data, vreg, NULL);
if (IS_ERR(vreg->rdev)) {
rc = PTR_ERR(vreg->rdev);
pr_err("%s: regulator_register failed for %s, rc=%d\n",
__func__, reg_name, rc);
}
} else {
rc = -ENODEV;
}
bail:
if (rc)
pr_err("%s: error for %s, rc=%d\n", __func__, reg_name, rc);
return rc;
}
static int __devexit pm8058_vreg_remove(struct platform_device *pdev)
{
regulator_unregister(pm8058_vreg[pdev->id].rdev);
return 0;
}
static struct platform_driver pm8058_vreg_driver = {
.probe = pm8058_vreg_probe,
.remove = __devexit_p(pm8058_vreg_remove),
.driver = {
.name = "pm8058-regulator",
.owner = THIS_MODULE,
},
};
static int __init pm8058_vreg_init(void)
{
return platform_driver_register(&pm8058_vreg_driver);
}
static void __exit pm8058_vreg_exit(void)
{
platform_driver_unregister(&pm8058_vreg_driver);
}
static void print_write_error(struct pm8058_vreg *vreg, int rc,
const char *func)
{
const char *reg_name = NULL;
ptrdiff_t id = vreg - pm8058_vreg;
if (id >= 0 && id < PM8058_VREG_MAX)
reg_name = pm8058_vreg_descrip[id].name;
pr_err("%s: pm8058_vreg_write failed for %s, rc=%d\n",
func, reg_name, rc);
}
subsys_initcall(pm8058_vreg_init);
module_exit(pm8058_vreg_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("PMIC8058 regulator driver");
MODULE_VERSION("1.0");
MODULE_ALIAS("platform:pm8058-regulator");