1
0
Fork 0
mirror of https://github.com/followmsi/android_kernel_google_msm.git synced 2024-11-06 23:17:41 +00:00
android_kernel_google_msm/drivers/thermal/msm8960_tsens.c

1054 lines
31 KiB
C
Raw Normal View History

/* Copyright (c) 2011-2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/*
* Qualcomm MSM8960 TSENS driver
*
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/thermal.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/msm_tsens.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/pm.h>
#include <mach/msm_iomap.h>
#include <mach/socinfo.h>
/* Trips: from very hot to very cold */
enum tsens_trip_type {
TSENS_TRIP_STAGE3 = 0,
TSENS_TRIP_STAGE2,
TSENS_TRIP_STAGE1,
TSENS_TRIP_STAGE0,
TSENS_TRIP_NUM,
};
/* MSM8960 TSENS register info */
#define TSENS_CAL_DEGC 30
#define TSENS_MAIN_SENSOR 0
#define TSENS_8960_QFPROM_ADDR0 (MSM_QFPROM_BASE + 0x00000404)
#define TSENS_8960_QFPROM_SPARE_ADDR0 (MSM_QFPROM_BASE + 0x00000414)
#define TSENS_8960_CONFIG 0x9b
#define TSENS_8960_CONFIG_SHIFT 0
#define TSENS_8960_CONFIG_MASK (0xf << TSENS_8960_CONFIG_SHIFT)
#define TSENS_CNTL_ADDR (MSM_CLK_CTL_BASE + 0x00003620)
#define TSENS_EN BIT(0)
#define TSENS_SW_RST BIT(1)
#define TSENS_ADC_CLK_SEL BIT(2)
#define SENSOR0_EN BIT(3)
#define SENSOR1_EN BIT(4)
#define SENSOR2_EN BIT(5)
#define SENSOR3_EN BIT(6)
#define SENSOR4_EN BIT(7)
#define SENSORS_EN (SENSOR0_EN | SENSOR1_EN | \
SENSOR2_EN | SENSOR3_EN | SENSOR4_EN)
#define TSENS_STATUS_CNTL_OFFSET 8
#define TSENS_MIN_STATUS_MASK BIT((tsens_status_cntl_start))
#define TSENS_LOWER_STATUS_CLR BIT((tsens_status_cntl_start + 1))
#define TSENS_UPPER_STATUS_CLR BIT((tsens_status_cntl_start + 2))
#define TSENS_MAX_STATUS_MASK BIT((tsens_status_cntl_start + 3))
#define TSENS_MEASURE_PERIOD 4 /* 1 sec. default */
#define TSENS_8960_SLP_CLK_ENA BIT(26)
#define TSENS_THRESHOLD_ADDR (MSM_CLK_CTL_BASE + 0x00003624)
#define TSENS_THRESHOLD_MAX_CODE 0xff
#define TSENS_THRESHOLD_MIN_CODE 0
#define TSENS_THRESHOLD_MAX_LIMIT_SHIFT 24
#define TSENS_THRESHOLD_MIN_LIMIT_SHIFT 16
#define TSENS_THRESHOLD_UPPER_LIMIT_SHIFT 8
#define TSENS_THRESHOLD_LOWER_LIMIT_SHIFT 0
#define TSENS_THRESHOLD_MAX_LIMIT_MASK (TSENS_THRESHOLD_MAX_CODE << \
TSENS_THRESHOLD_MAX_LIMIT_SHIFT)
#define TSENS_THRESHOLD_MIN_LIMIT_MASK (TSENS_THRESHOLD_MAX_CODE << \
TSENS_THRESHOLD_MIN_LIMIT_SHIFT)
#define TSENS_THRESHOLD_UPPER_LIMIT_MASK (TSENS_THRESHOLD_MAX_CODE << \
TSENS_THRESHOLD_UPPER_LIMIT_SHIFT)
#define TSENS_THRESHOLD_LOWER_LIMIT_MASK (TSENS_THRESHOLD_MAX_CODE << \
TSENS_THRESHOLD_LOWER_LIMIT_SHIFT)
/* Initial temperature threshold values */
#define TSENS_LOWER_LIMIT_TH 0x50
#define TSENS_UPPER_LIMIT_TH 0xdf
#define TSENS_MIN_LIMIT_TH 0x0
#define TSENS_MAX_LIMIT_TH 0xff
#define TSENS_S0_STATUS_ADDR (MSM_CLK_CTL_BASE + 0x00003628)
#define TSENS_STATUS_ADDR_OFFSET 2
#define TSENS_SENSOR_STATUS_SIZE 4
#define TSENS_INT_STATUS_ADDR (MSM_CLK_CTL_BASE + 0x0000363c)
#define TSENS_LOWER_INT_MASK BIT(1)
#define TSENS_UPPER_INT_MASK BIT(2)
#define TSENS_MAX_INT_MASK BIT(3)
#define TSENS_TRDY_MASK BIT(7)
#define TSENS_8960_CONFIG_ADDR (MSM_CLK_CTL_BASE + 0x00003640)
#define TSENS_TRDY_RDY_MIN_TIME 1000
#define TSENS_TRDY_RDY_MAX_TIME 1100
#define TSENS_SENSOR_SHIFT 16
#define TSENS_RED_SHIFT 8
#define TSENS_8960_QFPROM_SHIFT 4
#define TSENS_SENSOR_QFPROM_SHIFT 2
#define TSENS_SENSOR0_SHIFT 3
#define TSENS_MASK1 1
#define TSENS_8660_QFPROM_ADDR (MSM_QFPROM_BASE + 0x000000bc)
#define TSENS_8660_QFPROM_RED_TEMP_SENSOR0_SHIFT 24
#define TSENS_8660_QFPROM_TEMP_SENSOR0_SHIFT 16
#define TSENS_8660_QFPROM_TEMP_SENSOR0_MASK (255 \
<< TSENS_8660_QFPROM_TEMP_SENSOR0_SHIFT)
#define TSENS_8660_CONFIG 01
#define TSENS_8660_CONFIG_SHIFT 28
#define TSENS_8660_CONFIG_MASK (3 << TSENS_8660_CONFIG_SHIFT)
#define TSENS_8660_SLP_CLK_ENA BIT(24)
#define TSENS_8064_SENSOR5_EN BIT(8)
#define TSENS_8064_SENSOR6_EN BIT(9)
#define TSENS_8064_SENSOR7_EN BIT(10)
#define TSENS_8064_SENSOR8_EN BIT(11)
#define TSENS_8064_SENSOR9_EN BIT(12)
#define TSENS_8064_SENSOR10_EN BIT(13)
#define TSENS_8064_SENSORS_EN (SENSORS_EN | \
TSENS_8064_SENSOR5_EN | \
TSENS_8064_SENSOR6_EN | \
TSENS_8064_SENSOR7_EN | \
TSENS_8064_SENSOR8_EN | \
TSENS_8064_SENSOR9_EN | \
TSENS_8064_SENSOR10_EN)
#define TSENS_8064_STATUS_CNTL (MSM_CLK_CTL_BASE + 0x00003660)
#define TSENS_8064_S5_STATUS_ADDR (MSM_CLK_CTL_BASE + 0x00003664)
#define TSENS_8064_SEQ_SENSORS 5
#define TSENS_8064_S4_S5_OFFSET 40
#define TSENS_CNTL_RESUME_MASK 0xfffffff9
#define TSENS_8960_SENSOR_MASK 0xf8
#define TSENS_8064_SENSOR_MASK 0x3ff8
static int tsens_status_cntl_start;
struct tsens_tm_device_sensor {
struct thermal_zone_device *tz_dev;
enum thermal_device_mode mode;
unsigned int sensor_num;
struct work_struct work;
int offset;
int calib_data;
int calib_data_backup;
uint32_t slope_mul_tsens_factor;
};
struct tsens_tm_device {
bool prev_reading_avail;
int tsens_factor;
uint32_t tsens_num_sensor;
enum platform_type hw_type;
int pm_tsens_thr_data;
int pm_tsens_cntl;
struct work_struct tsens_work;
struct tsens_tm_device_sensor sensor[0];
};
struct tsens_tm_device *tmdev;
/* Temperature on y axis and ADC-code on x-axis */
static int tsens_tz_code_to_degC(int adc_code, int sensor_num)
{
int degcbeforefactor, degc;
degcbeforefactor = (adc_code *
tmdev->sensor[sensor_num].slope_mul_tsens_factor
+ tmdev->sensor[sensor_num].offset);
if (degcbeforefactor == 0)
degc = degcbeforefactor;
else if (degcbeforefactor > 0)
degc = (degcbeforefactor + tmdev->tsens_factor/2)
/ tmdev->tsens_factor;
else
degc = (degcbeforefactor - tmdev->tsens_factor/2)
/ tmdev->tsens_factor;
return degc;
}
static int tsens_tz_degC_to_code(int degC, int sensor_num)
{
int code = (degC * tmdev->tsens_factor -
tmdev->sensor[sensor_num].offset
+ tmdev->sensor[sensor_num].slope_mul_tsens_factor/2)
/ tmdev->sensor[sensor_num].slope_mul_tsens_factor;
if (code > TSENS_THRESHOLD_MAX_CODE)
code = TSENS_THRESHOLD_MAX_CODE;
else if (code < TSENS_THRESHOLD_MIN_CODE)
code = TSENS_THRESHOLD_MIN_CODE;
return code;
}
static void tsens8960_get_temp(int sensor_num, unsigned long *temp)
{
unsigned int code, offset = 0, sensor_addr;
if (!tmdev->prev_reading_avail) {
while (!(readl_relaxed(TSENS_INT_STATUS_ADDR)
& TSENS_TRDY_MASK))
usleep_range(TSENS_TRDY_RDY_MIN_TIME,
TSENS_TRDY_RDY_MAX_TIME);
tmdev->prev_reading_avail = true;
}
sensor_addr = (unsigned int)TSENS_S0_STATUS_ADDR;
if (tmdev->hw_type == APQ_8064 &&
sensor_num >= TSENS_8064_SEQ_SENSORS)
offset = TSENS_8064_S4_S5_OFFSET;
code = readl_relaxed(sensor_addr + offset +
(sensor_num << TSENS_STATUS_ADDR_OFFSET));
*temp = tsens_tz_code_to_degC(code, sensor_num);
}
static int tsens_tz_get_temp(struct thermal_zone_device *thermal,
unsigned long *temp)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
if (!tm_sensor || tm_sensor->mode != THERMAL_DEVICE_ENABLED || !temp)
return -EINVAL;
tsens8960_get_temp(tm_sensor->sensor_num, temp);
return 0;
}
int tsens_get_temp(struct tsens_device *device, unsigned long *temp)
{
if (!tmdev)
return -ENODEV;
tsens8960_get_temp(device->sensor_num, temp);
return 0;
}
EXPORT_SYMBOL(tsens_get_temp);
static int tsens_tz_get_mode(struct thermal_zone_device *thermal,
enum thermal_device_mode *mode)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
if (!tm_sensor || !mode)
return -EINVAL;
*mode = tm_sensor->mode;
return 0;
}
/* Function to enable the mode.
* If the main sensor is disabled all the sensors are disable and
* the clock is disabled.
* If the main sensor is not enabled and sub sensor is enabled
* returns with an error stating the main sensor is not enabled.
*/
static int tsens_tz_set_mode(struct thermal_zone_device *thermal,
enum thermal_device_mode mode)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
unsigned int reg, mask, i;
if (!tm_sensor)
return -EINVAL;
if (mode != tm_sensor->mode) {
reg = readl_relaxed(TSENS_CNTL_ADDR);
mask = 1 << (tm_sensor->sensor_num + TSENS_SENSOR0_SHIFT);
if (mode == THERMAL_DEVICE_ENABLED) {
if ((mask != SENSOR0_EN) && !(reg & SENSOR0_EN)) {
pr_info("Main sensor not enabled\n");
return -EINVAL;
}
writel_relaxed(reg | TSENS_SW_RST, TSENS_CNTL_ADDR);
if (tmdev->hw_type == MSM_8960 ||
tmdev->hw_type == MDM_9615 ||
tmdev->hw_type == APQ_8064)
reg |= mask | TSENS_8960_SLP_CLK_ENA
| TSENS_EN;
else
reg |= mask | TSENS_8660_SLP_CLK_ENA
| TSENS_EN;
tmdev->prev_reading_avail = false;
} else {
reg &= ~mask;
if (!(reg & SENSOR0_EN)) {
if (tmdev->hw_type == APQ_8064)
reg &= ~(TSENS_8064_SENSORS_EN |
TSENS_8960_SLP_CLK_ENA |
TSENS_EN);
else if (tmdev->hw_type == MSM_8960 ||
tmdev->hw_type == MDM_9615)
reg &= ~(SENSORS_EN |
TSENS_8960_SLP_CLK_ENA |
TSENS_EN);
else
reg &= ~(SENSORS_EN |
TSENS_8660_SLP_CLK_ENA |
TSENS_EN);
for (i = 1; i < tmdev->tsens_num_sensor; i++)
tmdev->sensor[i].mode = mode;
}
}
writel_relaxed(reg, TSENS_CNTL_ADDR);
}
tm_sensor->mode = mode;
return 0;
}
static int tsens_tz_get_trip_type(struct thermal_zone_device *thermal,
int trip, enum thermal_trip_type *type)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
if (!tm_sensor || trip < 0 || !type)
return -EINVAL;
switch (trip) {
case TSENS_TRIP_STAGE3:
*type = THERMAL_TRIP_CRITICAL;
break;
case TSENS_TRIP_STAGE2:
*type = THERMAL_TRIP_CONFIGURABLE_HI;
break;
case TSENS_TRIP_STAGE1:
*type = THERMAL_TRIP_CONFIGURABLE_LOW;
break;
case TSENS_TRIP_STAGE0:
*type = THERMAL_TRIP_CRITICAL_LOW;
break;
default:
return -EINVAL;
}
return 0;
}
static int tsens_tz_activate_trip_type(struct thermal_zone_device *thermal,
int trip, enum thermal_trip_activation_mode mode)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
unsigned int reg_cntl, reg_th, code, hi_code, lo_code, mask;
if (!tm_sensor || trip < 0)
return -EINVAL;
lo_code = TSENS_THRESHOLD_MIN_CODE;
hi_code = TSENS_THRESHOLD_MAX_CODE;
if (tmdev->hw_type == APQ_8064)
reg_cntl = readl_relaxed(TSENS_8064_STATUS_CNTL);
else
reg_cntl = readl_relaxed(TSENS_CNTL_ADDR);
reg_th = readl_relaxed(TSENS_THRESHOLD_ADDR);
switch (trip) {
case TSENS_TRIP_STAGE3:
code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK)
>> TSENS_THRESHOLD_MAX_LIMIT_SHIFT;
mask = TSENS_MAX_STATUS_MASK;
if (!(reg_cntl & TSENS_UPPER_STATUS_CLR))
lo_code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK)
>> TSENS_THRESHOLD_UPPER_LIMIT_SHIFT;
else if (!(reg_cntl & TSENS_LOWER_STATUS_CLR))
lo_code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK)
>> TSENS_THRESHOLD_LOWER_LIMIT_SHIFT;
else if (!(reg_cntl & TSENS_MIN_STATUS_MASK))
lo_code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK)
>> TSENS_THRESHOLD_MIN_LIMIT_SHIFT;
break;
case TSENS_TRIP_STAGE2:
code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK)
>> TSENS_THRESHOLD_UPPER_LIMIT_SHIFT;
mask = TSENS_UPPER_STATUS_CLR;
if (!(reg_cntl & TSENS_MAX_STATUS_MASK))
hi_code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK)
>> TSENS_THRESHOLD_MAX_LIMIT_SHIFT;
if (!(reg_cntl & TSENS_LOWER_STATUS_CLR))
lo_code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK)
>> TSENS_THRESHOLD_LOWER_LIMIT_SHIFT;
else if (!(reg_cntl & TSENS_MIN_STATUS_MASK))
lo_code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK)
>> TSENS_THRESHOLD_MIN_LIMIT_SHIFT;
break;
case TSENS_TRIP_STAGE1:
code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK)
>> TSENS_THRESHOLD_LOWER_LIMIT_SHIFT;
mask = TSENS_LOWER_STATUS_CLR;
if (!(reg_cntl & TSENS_MIN_STATUS_MASK))
lo_code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK)
>> TSENS_THRESHOLD_MIN_LIMIT_SHIFT;
if (!(reg_cntl & TSENS_UPPER_STATUS_CLR))
hi_code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK)
>> TSENS_THRESHOLD_UPPER_LIMIT_SHIFT;
else if (!(reg_cntl & TSENS_MAX_STATUS_MASK))
hi_code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK)
>> TSENS_THRESHOLD_MAX_LIMIT_SHIFT;
break;
case TSENS_TRIP_STAGE0:
code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK)
>> TSENS_THRESHOLD_MIN_LIMIT_SHIFT;
mask = TSENS_MIN_STATUS_MASK;
if (!(reg_cntl & TSENS_LOWER_STATUS_CLR))
hi_code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK)
>> TSENS_THRESHOLD_LOWER_LIMIT_SHIFT;
else if (!(reg_cntl & TSENS_UPPER_STATUS_CLR))
hi_code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK)
>> TSENS_THRESHOLD_UPPER_LIMIT_SHIFT;
else if (!(reg_cntl & TSENS_MAX_STATUS_MASK))
hi_code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK)
>> TSENS_THRESHOLD_MAX_LIMIT_SHIFT;
break;
default:
return -EINVAL;
}
if (mode == THERMAL_TRIP_ACTIVATION_DISABLED) {
if (tmdev->hw_type == APQ_8064)
writel_relaxed(reg_cntl | mask, TSENS_8064_STATUS_CNTL);
else
writel_relaxed(reg_cntl | mask, TSENS_CNTL_ADDR);
} else {
if (code < lo_code || code > hi_code) {
pr_info("%s with invalid code %x\n", __func__, code);
return -EINVAL;
}
if (tmdev->hw_type == APQ_8064)
writel_relaxed(reg_cntl & ~mask,
TSENS_8064_STATUS_CNTL);
else
writel_relaxed(reg_cntl & ~mask, TSENS_CNTL_ADDR);
}
mb();
return 0;
}
static int tsens_tz_get_trip_temp(struct thermal_zone_device *thermal,
int trip, unsigned long *temp)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
unsigned int reg;
if (!tm_sensor || trip < 0 || !temp)
return -EINVAL;
reg = readl_relaxed(TSENS_THRESHOLD_ADDR);
switch (trip) {
case TSENS_TRIP_STAGE3:
reg = (reg & TSENS_THRESHOLD_MAX_LIMIT_MASK)
>> TSENS_THRESHOLD_MAX_LIMIT_SHIFT;
break;
case TSENS_TRIP_STAGE2:
reg = (reg & TSENS_THRESHOLD_UPPER_LIMIT_MASK)
>> TSENS_THRESHOLD_UPPER_LIMIT_SHIFT;
break;
case TSENS_TRIP_STAGE1:
reg = (reg & TSENS_THRESHOLD_LOWER_LIMIT_MASK)
>> TSENS_THRESHOLD_LOWER_LIMIT_SHIFT;
break;
case TSENS_TRIP_STAGE0:
reg = (reg & TSENS_THRESHOLD_MIN_LIMIT_MASK)
>> TSENS_THRESHOLD_MIN_LIMIT_SHIFT;
break;
default:
return -EINVAL;
}
*temp = tsens_tz_code_to_degC(reg, tm_sensor->sensor_num);
return 0;
}
static int tsens_tz_get_crit_temp(struct thermal_zone_device *thermal,
unsigned long *temp)
{
return tsens_tz_get_trip_temp(thermal, TSENS_TRIP_STAGE3, temp);
}
static int tsens_tz_notify(struct thermal_zone_device *thermal,
int count, enum thermal_trip_type type)
{
/* TSENS driver does not shutdown the device.
All Thermal notification are sent to the
thermal daemon to take appropriate action */
return 1;
}
static int tsens_tz_set_trip_temp(struct thermal_zone_device *thermal,
int trip, long temp)
{
struct tsens_tm_device_sensor *tm_sensor = thermal->devdata;
unsigned int reg_th, reg_cntl;
int code, hi_code, lo_code, code_err_chk;
code_err_chk = code = tsens_tz_degC_to_code(temp,
tm_sensor->sensor_num);
if (!tm_sensor || trip < 0)
return -EINVAL;
lo_code = TSENS_THRESHOLD_MIN_CODE;
hi_code = TSENS_THRESHOLD_MAX_CODE;
if (tmdev->hw_type == APQ_8064)
reg_cntl = readl_relaxed(TSENS_8064_STATUS_CNTL);
else
reg_cntl = readl_relaxed(TSENS_CNTL_ADDR);
reg_th = readl_relaxed(TSENS_THRESHOLD_ADDR);
switch (trip) {
case TSENS_TRIP_STAGE3:
code <<= TSENS_THRESHOLD_MAX_LIMIT_SHIFT;
reg_th &= ~TSENS_THRESHOLD_MAX_LIMIT_MASK;
if (!(reg_cntl & TSENS_UPPER_STATUS_CLR))
lo_code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK)
>> TSENS_THRESHOLD_UPPER_LIMIT_SHIFT;
else if (!(reg_cntl & TSENS_LOWER_STATUS_CLR))
lo_code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK)
>> TSENS_THRESHOLD_LOWER_LIMIT_SHIFT;
else if (!(reg_cntl & TSENS_MIN_STATUS_MASK))
lo_code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK)
>> TSENS_THRESHOLD_MIN_LIMIT_SHIFT;
break;
case TSENS_TRIP_STAGE2:
code <<= TSENS_THRESHOLD_UPPER_LIMIT_SHIFT;
reg_th &= ~TSENS_THRESHOLD_UPPER_LIMIT_MASK;
if (!(reg_cntl & TSENS_MAX_STATUS_MASK))
hi_code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK)
>> TSENS_THRESHOLD_MAX_LIMIT_SHIFT;
if (!(reg_cntl & TSENS_LOWER_STATUS_CLR))
lo_code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK)
>> TSENS_THRESHOLD_LOWER_LIMIT_SHIFT;
else if (!(reg_cntl & TSENS_MIN_STATUS_MASK))
lo_code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK)
>> TSENS_THRESHOLD_MIN_LIMIT_SHIFT;
break;
case TSENS_TRIP_STAGE1:
code <<= TSENS_THRESHOLD_LOWER_LIMIT_SHIFT;
reg_th &= ~TSENS_THRESHOLD_LOWER_LIMIT_MASK;
if (!(reg_cntl & TSENS_MIN_STATUS_MASK))
lo_code = (reg_th & TSENS_THRESHOLD_MIN_LIMIT_MASK)
>> TSENS_THRESHOLD_MIN_LIMIT_SHIFT;
if (!(reg_cntl & TSENS_UPPER_STATUS_CLR))
hi_code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK)
>> TSENS_THRESHOLD_UPPER_LIMIT_SHIFT;
else if (!(reg_cntl & TSENS_MAX_STATUS_MASK))
hi_code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK)
>> TSENS_THRESHOLD_MAX_LIMIT_SHIFT;
break;
case TSENS_TRIP_STAGE0:
code <<= TSENS_THRESHOLD_MIN_LIMIT_SHIFT;
reg_th &= ~TSENS_THRESHOLD_MIN_LIMIT_MASK;
if (!(reg_cntl & TSENS_LOWER_STATUS_CLR))
hi_code = (reg_th & TSENS_THRESHOLD_LOWER_LIMIT_MASK)
>> TSENS_THRESHOLD_LOWER_LIMIT_SHIFT;
else if (!(reg_cntl & TSENS_UPPER_STATUS_CLR))
hi_code = (reg_th & TSENS_THRESHOLD_UPPER_LIMIT_MASK)
>> TSENS_THRESHOLD_UPPER_LIMIT_SHIFT;
else if (!(reg_cntl & TSENS_MAX_STATUS_MASK))
hi_code = (reg_th & TSENS_THRESHOLD_MAX_LIMIT_MASK)
>> TSENS_THRESHOLD_MAX_LIMIT_SHIFT;
break;
default:
return -EINVAL;
}
if (code_err_chk < lo_code || code_err_chk > hi_code)
return -EINVAL;
writel_relaxed(reg_th | code, TSENS_THRESHOLD_ADDR);
return 0;
}
static struct thermal_zone_device_ops tsens_thermal_zone_ops = {
.get_temp = tsens_tz_get_temp,
.get_mode = tsens_tz_get_mode,
.set_mode = tsens_tz_set_mode,
.get_trip_type = tsens_tz_get_trip_type,
.activate_trip_type = tsens_tz_activate_trip_type,
.get_trip_temp = tsens_tz_get_trip_temp,
.set_trip_temp = tsens_tz_set_trip_temp,
.get_crit_temp = tsens_tz_get_crit_temp,
.notify = tsens_tz_notify,
};
static void notify_uspace_tsens_fn(struct work_struct *work)
{
struct tsens_tm_device_sensor *tm = container_of(work,
struct tsens_tm_device_sensor, work);
sysfs_notify(&tm->tz_dev->device.kobj,
NULL, "type");
}
static void tsens_scheduler_fn(struct work_struct *work)
{
struct tsens_tm_device *tm = container_of(work, struct tsens_tm_device,
tsens_work);
unsigned int threshold, threshold_low, i, code, reg, sensor, mask;
unsigned int sensor_addr;
bool upper_th_x, lower_th_x;
int adc_code;
if (tmdev->hw_type == APQ_8064) {
reg = readl_relaxed(TSENS_8064_STATUS_CNTL);
writel_relaxed(reg | TSENS_LOWER_STATUS_CLR |
TSENS_UPPER_STATUS_CLR, TSENS_8064_STATUS_CNTL);
} else {
reg = readl_relaxed(TSENS_CNTL_ADDR);
writel_relaxed(reg | TSENS_LOWER_STATUS_CLR |
TSENS_UPPER_STATUS_CLR, TSENS_CNTL_ADDR);
}
mask = ~(TSENS_LOWER_STATUS_CLR | TSENS_UPPER_STATUS_CLR);
threshold = readl_relaxed(TSENS_THRESHOLD_ADDR);
threshold_low = (threshold & TSENS_THRESHOLD_LOWER_LIMIT_MASK)
>> TSENS_THRESHOLD_LOWER_LIMIT_SHIFT;
threshold = (threshold & TSENS_THRESHOLD_UPPER_LIMIT_MASK)
>> TSENS_THRESHOLD_UPPER_LIMIT_SHIFT;
sensor = readl_relaxed(TSENS_CNTL_ADDR);
if (tmdev->hw_type == APQ_8064) {
reg = readl_relaxed(TSENS_8064_STATUS_CNTL);
sensor &= (uint32_t) TSENS_8064_SENSORS_EN;
} else {
reg = sensor;
sensor &= (uint32_t) SENSORS_EN;
}
sensor >>= TSENS_SENSOR0_SHIFT;
sensor_addr = (unsigned int)TSENS_S0_STATUS_ADDR;
for (i = 0; i < tmdev->tsens_num_sensor; i++) {
if (i == TSENS_8064_SEQ_SENSORS)
sensor_addr += TSENS_8064_S4_S5_OFFSET;
if (sensor & TSENS_MASK1) {
code = readl_relaxed(sensor_addr);
upper_th_x = code >= threshold;
lower_th_x = code <= threshold_low;
if (upper_th_x)
mask |= TSENS_UPPER_STATUS_CLR;
if (lower_th_x)
mask |= TSENS_LOWER_STATUS_CLR;
if (upper_th_x || lower_th_x) {
/* Notify user space */
schedule_work(&tm->sensor[i].work);
adc_code = readl_relaxed(sensor_addr);
pr_debug("Trigger (%d degrees) for sensor %d\n",
tsens_tz_code_to_degC(adc_code, i), i);
}
}
sensor >>= 1;
sensor_addr += TSENS_SENSOR_STATUS_SIZE;
}
if (tmdev->hw_type == APQ_8064)
writel_relaxed(reg & mask, TSENS_8064_STATUS_CNTL);
else
writel_relaxed(reg & mask, TSENS_CNTL_ADDR);
mb();
}
static irqreturn_t tsens_isr(int irq, void *data)
{
schedule_work(&tmdev->tsens_work);
return IRQ_HANDLED;
}
#ifdef CONFIG_PM
static int tsens_suspend(struct device *dev)
{
int i = 0;
tmdev->pm_tsens_thr_data = readl_relaxed(TSENS_THRESHOLD_ADDR);
tmdev->pm_tsens_cntl = readl_relaxed(TSENS_CNTL_ADDR);
writel_relaxed(tmdev->pm_tsens_cntl &
~(TSENS_8960_SLP_CLK_ENA | TSENS_EN), TSENS_CNTL_ADDR);
tmdev->prev_reading_avail = 0;
for (i = 0; i < tmdev->tsens_num_sensor; i++)
tmdev->sensor[i].mode = THERMAL_DEVICE_DISABLED;
disable_irq_nosync(TSENS_UPPER_LOWER_INT);
mb();
return 0;
}
static int tsens_resume(struct device *dev)
{
unsigned int reg_cntl = 0, reg_cfg = 0, reg_sensor_mask = 0;
unsigned int reg_status_cntl = 0, reg_thr_data = 0, i = 0;
reg_cntl = readl_relaxed(TSENS_CNTL_ADDR);
writel_relaxed(reg_cntl | TSENS_SW_RST, TSENS_CNTL_ADDR);
if (tmdev->hw_type == MSM_8960 || tmdev->hw_type == MDM_9615) {
reg_cntl |= TSENS_8960_SLP_CLK_ENA |
(TSENS_MEASURE_PERIOD << 18) |
TSENS_MIN_STATUS_MASK | TSENS_MAX_STATUS_MASK |
SENSORS_EN;
writel_relaxed(reg_cntl, TSENS_CNTL_ADDR);
} else if (tmdev->hw_type == APQ_8064) {
reg_cntl |= TSENS_8960_SLP_CLK_ENA |
(TSENS_MEASURE_PERIOD << 18) |
(((1 << tmdev->tsens_num_sensor) - 1)
<< TSENS_SENSOR0_SHIFT);
writel_relaxed(reg_cntl, TSENS_CNTL_ADDR);
reg_status_cntl = readl_relaxed(TSENS_8064_STATUS_CNTL);
reg_status_cntl |= TSENS_MIN_STATUS_MASK |
TSENS_MAX_STATUS_MASK;
writel_relaxed(reg_status_cntl, TSENS_8064_STATUS_CNTL);
}
reg_cfg = readl_relaxed(TSENS_8960_CONFIG_ADDR);
reg_cfg = (reg_cfg & ~TSENS_8960_CONFIG_MASK) |
(TSENS_8960_CONFIG << TSENS_8960_CONFIG_SHIFT);
writel_relaxed(reg_cfg, TSENS_8960_CONFIG_ADDR);
writel_relaxed((tmdev->pm_tsens_cntl & TSENS_CNTL_RESUME_MASK),
TSENS_CNTL_ADDR);
reg_cntl = readl_relaxed(TSENS_CNTL_ADDR);
writel_relaxed(tmdev->pm_tsens_thr_data, TSENS_THRESHOLD_ADDR);
reg_thr_data = readl_relaxed(TSENS_THRESHOLD_ADDR);
if (tmdev->hw_type == MSM_8960 || tmdev->hw_type == MDM_9615)
reg_sensor_mask = ((reg_cntl & TSENS_8960_SENSOR_MASK)
>> TSENS_SENSOR0_SHIFT);
else {
reg_sensor_mask = ((reg_cntl & TSENS_8064_SENSOR_MASK)
>> TSENS_SENSOR0_SHIFT);
}
for (i = 0; i < tmdev->tsens_num_sensor; i++) {
if (reg_sensor_mask & TSENS_MASK1)
tmdev->sensor[i].mode = THERMAL_DEVICE_ENABLED;
reg_sensor_mask >>= 1;
}
enable_irq(TSENS_UPPER_LOWER_INT);
mb();
return 0;
}
static const struct dev_pm_ops tsens_pm_ops = {
.suspend = tsens_suspend,
.resume = tsens_resume,
};
#endif
static void tsens_disable_mode(void)
{
unsigned int reg_cntl = 0;
reg_cntl = readl_relaxed(TSENS_CNTL_ADDR);
if (tmdev->hw_type == MSM_8960 || tmdev->hw_type == MDM_9615 ||
tmdev->hw_type == APQ_8064)
writel_relaxed(reg_cntl &
~((((1 << tmdev->tsens_num_sensor) - 1) <<
TSENS_SENSOR0_SHIFT) | TSENS_8960_SLP_CLK_ENA
| TSENS_EN), TSENS_CNTL_ADDR);
else if (tmdev->hw_type == MSM_8660)
writel_relaxed(reg_cntl &
~((((1 << tmdev->tsens_num_sensor) - 1) <<
TSENS_SENSOR0_SHIFT) | TSENS_8660_SLP_CLK_ENA
| TSENS_EN), TSENS_CNTL_ADDR);
}
static void tsens_hw_init(void)
{
unsigned int reg_cntl = 0, reg_cfg = 0, reg_thr = 0;
unsigned int reg_status_cntl = 0;
reg_cntl = readl_relaxed(TSENS_CNTL_ADDR);
writel_relaxed(reg_cntl | TSENS_SW_RST, TSENS_CNTL_ADDR);
if (tmdev->hw_type == MSM_8960 || tmdev->hw_type == MDM_9615) {
reg_cntl |= TSENS_8960_SLP_CLK_ENA |
(TSENS_MEASURE_PERIOD << 18) |
TSENS_LOWER_STATUS_CLR | TSENS_UPPER_STATUS_CLR |
TSENS_MIN_STATUS_MASK | TSENS_MAX_STATUS_MASK |
SENSORS_EN;
writel_relaxed(reg_cntl, TSENS_CNTL_ADDR);
reg_cntl |= TSENS_EN;
writel_relaxed(reg_cntl, TSENS_CNTL_ADDR);
reg_cfg = readl_relaxed(TSENS_8960_CONFIG_ADDR);
reg_cfg = (reg_cfg & ~TSENS_8960_CONFIG_MASK) |
(TSENS_8960_CONFIG << TSENS_8960_CONFIG_SHIFT);
writel_relaxed(reg_cfg, TSENS_8960_CONFIG_ADDR);
} else if (tmdev->hw_type == MSM_8660) {
reg_cntl |= TSENS_8660_SLP_CLK_ENA | TSENS_EN |
(TSENS_MEASURE_PERIOD << 16) |
TSENS_LOWER_STATUS_CLR | TSENS_UPPER_STATUS_CLR |
TSENS_MIN_STATUS_MASK | TSENS_MAX_STATUS_MASK |
(((1 << tmdev->tsens_num_sensor) - 1) <<
TSENS_SENSOR0_SHIFT);
/* set TSENS_CONFIG bits (bits 29:28 of TSENS_CNTL) to '01';
this setting found to be optimal. */
reg_cntl = (reg_cntl & ~TSENS_8660_CONFIG_MASK) |
(TSENS_8660_CONFIG << TSENS_8660_CONFIG_SHIFT);
writel_relaxed(reg_cntl, TSENS_CNTL_ADDR);
} else if (tmdev->hw_type == APQ_8064) {
reg_cntl |= TSENS_8960_SLP_CLK_ENA |
(TSENS_MEASURE_PERIOD << 18) |
(((1 << tmdev->tsens_num_sensor) - 1)
<< TSENS_SENSOR0_SHIFT);
writel_relaxed(reg_cntl, TSENS_CNTL_ADDR);
reg_status_cntl = readl_relaxed(TSENS_8064_STATUS_CNTL);
reg_status_cntl |= TSENS_LOWER_STATUS_CLR |
TSENS_UPPER_STATUS_CLR |
TSENS_MIN_STATUS_MASK |
TSENS_MAX_STATUS_MASK;
writel_relaxed(reg_status_cntl, TSENS_8064_STATUS_CNTL);
reg_cntl |= TSENS_EN;
writel_relaxed(reg_cntl, TSENS_CNTL_ADDR);
reg_cfg = readl_relaxed(TSENS_8960_CONFIG_ADDR);
reg_cfg = (reg_cfg & ~TSENS_8960_CONFIG_MASK) |
(TSENS_8960_CONFIG << TSENS_8960_CONFIG_SHIFT);
writel_relaxed(reg_cfg, TSENS_8960_CONFIG_ADDR);
}
reg_thr |= (TSENS_LOWER_LIMIT_TH << TSENS_THRESHOLD_LOWER_LIMIT_SHIFT) |
(TSENS_UPPER_LIMIT_TH << TSENS_THRESHOLD_UPPER_LIMIT_SHIFT) |
(TSENS_MIN_LIMIT_TH << TSENS_THRESHOLD_MIN_LIMIT_SHIFT) |
(TSENS_MAX_LIMIT_TH << TSENS_THRESHOLD_MAX_LIMIT_SHIFT);
writel_relaxed(reg_thr, TSENS_THRESHOLD_ADDR);
}
static int tsens_calib_sensors8660(void)
{
uint32_t *main_sensor_addr, sensor_shift, red_sensor_shift;
uint32_t sensor_mask, red_sensor_mask;
main_sensor_addr = TSENS_8660_QFPROM_ADDR;
sensor_shift = TSENS_SENSOR_SHIFT;
red_sensor_shift = sensor_shift + TSENS_RED_SHIFT;
sensor_mask = TSENS_THRESHOLD_MAX_CODE << sensor_shift;
red_sensor_mask = TSENS_THRESHOLD_MAX_CODE << red_sensor_shift;
tmdev->sensor[TSENS_MAIN_SENSOR].calib_data =
(readl_relaxed(main_sensor_addr) & sensor_mask)
>> sensor_shift;
tmdev->sensor[TSENS_MAIN_SENSOR].calib_data_backup =
(readl_relaxed(main_sensor_addr)
& red_sensor_mask) >> red_sensor_shift;
if (tmdev->sensor[TSENS_MAIN_SENSOR].calib_data_backup)
tmdev->sensor[TSENS_MAIN_SENSOR].calib_data =
tmdev->sensor[TSENS_MAIN_SENSOR].calib_data_backup;
if (!tmdev->sensor[TSENS_MAIN_SENSOR].calib_data) {
pr_err("QFPROM TSENS calibration data not present\n");
return -ENODEV;
}
tmdev->sensor[TSENS_MAIN_SENSOR].offset = tmdev->tsens_factor *
TSENS_CAL_DEGC -
tmdev->sensor[TSENS_MAIN_SENSOR].slope_mul_tsens_factor *
tmdev->sensor[TSENS_MAIN_SENSOR].calib_data;
tmdev->prev_reading_avail = false;
INIT_WORK(&tmdev->sensor[TSENS_MAIN_SENSOR].work,
notify_uspace_tsens_fn);
return 0;
}
static int tsens_calib_sensors8960(void)
{
uint32_t i;
uint8_t *main_sensor_addr, *backup_sensor_addr;
for (i = 0; i < tmdev->tsens_num_sensor; i++) {
main_sensor_addr = TSENS_8960_QFPROM_ADDR0 + i;
backup_sensor_addr = TSENS_8960_QFPROM_SPARE_ADDR0 + i;
tmdev->sensor[i].calib_data = readb_relaxed(main_sensor_addr);
tmdev->sensor[i].calib_data_backup =
readb_relaxed(backup_sensor_addr);
if (tmdev->sensor[i].calib_data_backup)
tmdev->sensor[i].calib_data =
tmdev->sensor[i].calib_data_backup;
if (!tmdev->sensor[i].calib_data) {
pr_err("QFPROM TSENS calibration data not present\n");
return -ENODEV;
}
tmdev->sensor[i].offset = (TSENS_CAL_DEGC *
tmdev->tsens_factor)
- (tmdev->sensor[i].calib_data *
tmdev->sensor[i].slope_mul_tsens_factor);
tmdev->prev_reading_avail = false;
INIT_WORK(&tmdev->sensor[i].work, notify_uspace_tsens_fn);
}
return 0;
}
static int tsens_calib_sensors(void)
{
int rc = -ENODEV;
if (tmdev->hw_type == MSM_8660)
rc = tsens_calib_sensors8660();
else if (tmdev->hw_type == MSM_8960 || tmdev->hw_type == MDM_9615 ||
tmdev->hw_type == APQ_8064)
rc = tsens_calib_sensors8960();
return rc;
}
int msm_tsens_early_init(struct tsens_platform_data *pdata)
{
int rc = 0, i;
if (!pdata) {
pr_err("No TSENS Platform data\n");
return -EINVAL;
}
tmdev = kzalloc(sizeof(struct tsens_tm_device) +
pdata->tsens_num_sensor *
sizeof(struct tsens_tm_device_sensor),
GFP_ATOMIC);
if (tmdev == NULL) {
pr_err("%s: kzalloc() failed.\n", __func__);
return -ENOMEM;
}
for (i = 0; i < pdata->tsens_num_sensor; i++)
tmdev->sensor[i].slope_mul_tsens_factor = pdata->slope[i];
tmdev->tsens_factor = pdata->tsens_factor;
tmdev->tsens_num_sensor = pdata->tsens_num_sensor;
tmdev->hw_type = pdata->hw_type;
rc = tsens_calib_sensors();
if (rc < 0) {
kfree(tmdev);
tmdev = NULL;
return rc;
}
if (tmdev->hw_type == APQ_8064)
tsens_status_cntl_start = 0;
else
tsens_status_cntl_start = TSENS_STATUS_CNTL_OFFSET;
tsens_hw_init();
pr_debug("msm_tsens_early_init: done\n");
return rc;
}
static int __devinit tsens_tm_probe(struct platform_device *pdev)
{
int rc, i;
if (!tmdev) {
pr_info("%s : TSENS early init not done.\n", __func__);
return -EFAULT;
}
for (i = 0; i < tmdev->tsens_num_sensor; i++) {
char name[18];
snprintf(name, sizeof(name), "tsens_tz_sensor%d", i);
tmdev->sensor[i].mode = THERMAL_DEVICE_ENABLED;
tmdev->sensor[i].sensor_num = i;
tmdev->sensor[i].tz_dev = thermal_zone_device_register(name,
TSENS_TRIP_NUM, &tmdev->sensor[i],
&tsens_thermal_zone_ops, 0, 0, 0, 0);
if (IS_ERR(tmdev->sensor[i].tz_dev)) {
pr_err("%s: thermal_zone_device_register() failed.\n",
__func__);
rc = -ENODEV;
goto fail;
}
}
rc = request_irq(TSENS_UPPER_LOWER_INT, tsens_isr,
IRQF_TRIGGER_RISING, "tsens_interrupt", tmdev);
if (rc < 0) {
pr_err("%s: request_irq FAIL: %d\n", __func__, rc);
for (i = 0; i < tmdev->tsens_num_sensor; i++)
thermal_zone_device_unregister(tmdev->sensor[i].tz_dev);
goto fail;
}
INIT_WORK(&tmdev->tsens_work, tsens_scheduler_fn);
pr_debug("%s: OK\n", __func__);
mb();
return 0;
fail:
tsens_disable_mode();
kfree(tmdev);
tmdev = NULL;
mb();
return rc;
}
static int __devexit tsens_tm_remove(struct platform_device *pdev)
{
int i;
tsens_disable_mode();
mb();
free_irq(TSENS_UPPER_LOWER_INT, tmdev);
for (i = 0; i < tmdev->tsens_num_sensor; i++)
thermal_zone_device_unregister(tmdev->sensor[i].tz_dev);
kfree(tmdev);
tmdev = NULL;
return 0;
}
static struct platform_driver tsens_tm_driver = {
.probe = tsens_tm_probe,
.remove = tsens_tm_remove,
.driver = {
.name = "tsens8960-tm",
.owner = THIS_MODULE,
#ifdef CONFIG_PM
.pm = &tsens_pm_ops,
#endif
},
};
static int __init _tsens_tm_init(void)
{
return platform_driver_register(&tsens_tm_driver);
}
module_init(_tsens_tm_init);
static void __exit _tsens_tm_remove(void)
{
platform_driver_unregister(&tsens_tm_driver);
}
module_exit(_tsens_tm_remove);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MSM8960 Temperature Sensor driver");
MODULE_VERSION("1.0");
MODULE_ALIAS("platform:tsens8960-tm");