android_kernel_google_msm/drivers/iommu/msm_iommu.c

1304 lines
29 KiB
C
Raw Normal View History

/* Copyright (c) 2010-2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/iommu.h>
#include <linux/clk.h>
#include <linux/scatterlist.h>
#include <asm/cacheflush.h>
#include <asm/sizes.h>
#include <mach/iommu_hw-8xxx.h>
#include <mach/iommu.h>
#include <mach/msm_smsm.h>
#define MRC(reg, processor, op1, crn, crm, op2) \
__asm__ __volatile__ ( \
" mrc " #processor "," #op1 ", %0," #crn "," #crm "," #op2 "\n" \
: "=r" (reg))
#define RCP15_PRRR(reg) MRC(reg, p15, 0, c10, c2, 0)
#define RCP15_NMRR(reg) MRC(reg, p15, 0, c10, c2, 1)
/* Sharability attributes of MSM IOMMU mappings */
#define MSM_IOMMU_ATTR_NON_SH 0x0
#define MSM_IOMMU_ATTR_SH 0x4
/* Cacheability attributes of MSM IOMMU mappings */
#define MSM_IOMMU_ATTR_NONCACHED 0x0
#define MSM_IOMMU_ATTR_CACHED_WB_WA 0x1
#define MSM_IOMMU_ATTR_CACHED_WB_NWA 0x2
#define MSM_IOMMU_ATTR_CACHED_WT 0x3
static inline void clean_pte(unsigned long *start, unsigned long *end,
int redirect)
{
if (!redirect)
dmac_flush_range(start, end);
}
/* bitmap of the page sizes currently supported */
#define MSM_IOMMU_PGSIZES (SZ_4K | SZ_64K | SZ_1M | SZ_16M)
static int msm_iommu_tex_class[4];
DEFINE_MUTEX(msm_iommu_lock);
/**
* Remote spinlock implementation based on Peterson's algorithm to be used
* to synchronize IOMMU config port access between CPU and GPU.
* This implements Process 0 of the spin lock algorithm. GPU implements
* Process 1. Flag and turn is stored in shared memory to allow GPU to
* access these.
*/
struct msm_iommu_remote_lock {
int initialized;
struct remote_iommu_petersons_spinlock *lock;
};
static struct msm_iommu_remote_lock msm_iommu_remote_lock;
#ifdef CONFIG_MSM_IOMMU_GPU_SYNC
static void _msm_iommu_remote_spin_lock_init(void)
{
msm_iommu_remote_lock.lock = smem_alloc(SMEM_SPINLOCK_ARRAY, 32);
memset(msm_iommu_remote_lock.lock, 0,
sizeof(*msm_iommu_remote_lock.lock));
}
void msm_iommu_remote_p0_spin_lock(void)
{
msm_iommu_remote_lock.lock->flag[PROC_APPS] = 1;
msm_iommu_remote_lock.lock->turn = 1;
smp_mb();
while (msm_iommu_remote_lock.lock->flag[PROC_GPU] == 1 &&
msm_iommu_remote_lock.lock->turn == 1)
cpu_relax();
}
void msm_iommu_remote_p0_spin_unlock(void)
{
smp_mb();
msm_iommu_remote_lock.lock->flag[PROC_APPS] = 0;
}
#endif
inline void msm_iommu_mutex_lock(void)
{
mutex_lock(&msm_iommu_lock);
}
inline void msm_iommu_mutex_unlock(void)
{
mutex_unlock(&msm_iommu_lock);
}
void *msm_iommu_lock_initialize(void)
{
mutex_lock(&msm_iommu_lock);
if (!msm_iommu_remote_lock.initialized) {
msm_iommu_remote_lock_init();
msm_iommu_remote_lock.initialized = 1;
}
mutex_unlock(&msm_iommu_lock);
return msm_iommu_remote_lock.lock;
}
struct msm_priv {
unsigned long *pgtable;
int redirect;
struct list_head list_attached;
};
static int __enable_clocks(struct msm_iommu_drvdata *drvdata)
{
int ret;
ret = clk_prepare_enable(drvdata->pclk);
if (ret)
goto fail;
if (drvdata->clk) {
ret = clk_prepare_enable(drvdata->clk);
if (ret)
clk_disable_unprepare(drvdata->pclk);
}
fail:
return ret;
}
static void __disable_clocks(struct msm_iommu_drvdata *drvdata)
{
if (drvdata->clk)
clk_disable_unprepare(drvdata->clk);
clk_disable_unprepare(drvdata->pclk);
}
static int __flush_iotlb_va(struct iommu_domain *domain, unsigned int va)
{
struct msm_priv *priv = domain->priv;
struct msm_iommu_drvdata *iommu_drvdata;
struct msm_iommu_ctx_drvdata *ctx_drvdata;
int ret = 0;
int asid;
list_for_each_entry(ctx_drvdata, &priv->list_attached, attached_elm) {
if (!ctx_drvdata->pdev || !ctx_drvdata->pdev->dev.parent)
BUG();
iommu_drvdata = dev_get_drvdata(ctx_drvdata->pdev->dev.parent);
if (!iommu_drvdata)
BUG();
ret = __enable_clocks(iommu_drvdata);
if (ret)
goto fail;
msm_iommu_remote_spin_lock();
asid = GET_CONTEXTIDR_ASID(iommu_drvdata->base,
ctx_drvdata->num);
SET_TLBIVA(iommu_drvdata->base, ctx_drvdata->num,
asid | (va & TLBIVA_VA));
mb();
msm_iommu_remote_spin_unlock();
__disable_clocks(iommu_drvdata);
}
fail:
return ret;
}
static int __flush_iotlb(struct iommu_domain *domain)
{
struct msm_priv *priv = domain->priv;
struct msm_iommu_drvdata *iommu_drvdata;
struct msm_iommu_ctx_drvdata *ctx_drvdata;
int ret = 0;
int asid;
list_for_each_entry(ctx_drvdata, &priv->list_attached, attached_elm) {
if (!ctx_drvdata->pdev || !ctx_drvdata->pdev->dev.parent)
BUG();
iommu_drvdata = dev_get_drvdata(ctx_drvdata->pdev->dev.parent);
if (!iommu_drvdata)
BUG();
ret = __enable_clocks(iommu_drvdata);
if (ret)
goto fail;
msm_iommu_remote_spin_lock();
asid = GET_CONTEXTIDR_ASID(iommu_drvdata->base,
ctx_drvdata->num);
SET_TLBIASID(iommu_drvdata->base, ctx_drvdata->num, asid);
mb();
msm_iommu_remote_spin_unlock();
__disable_clocks(iommu_drvdata);
}
fail:
return ret;
}
static void __reset_context(void __iomem *base, int ctx)
{
SET_BPRCOSH(base, ctx, 0);
SET_BPRCISH(base, ctx, 0);
SET_BPRCNSH(base, ctx, 0);
SET_BPSHCFG(base, ctx, 0);
SET_BPMTCFG(base, ctx, 0);
SET_ACTLR(base, ctx, 0);
SET_SCTLR(base, ctx, 0);
SET_FSRRESTORE(base, ctx, 0);
SET_TTBR0(base, ctx, 0);
SET_TTBR1(base, ctx, 0);
SET_TTBCR(base, ctx, 0);
SET_BFBCR(base, ctx, 0);
SET_PAR(base, ctx, 0);
SET_FAR(base, ctx, 0);
SET_TLBFLPTER(base, ctx, 0);
SET_TLBSLPTER(base, ctx, 0);
SET_TLBLKCR(base, ctx, 0);
SET_PRRR(base, ctx, 0);
SET_NMRR(base, ctx, 0);
mb();
}
static void __program_context(void __iomem *base, int ctx, int ncb,
phys_addr_t pgtable, int redirect,
int ttbr_split)
{
unsigned int prrr, nmrr;
int i, j, found;
msm_iommu_remote_spin_lock();
__reset_context(base, ctx);
/* Set up HTW mode */
/* TLB miss configuration: perform HTW on miss */
SET_TLBMCFG(base, ctx, 0x3);
/* V2P configuration: HTW for access */
SET_V2PCFG(base, ctx, 0x3);
SET_TTBCR(base, ctx, ttbr_split);
SET_TTBR0_PA(base, ctx, (pgtable >> TTBR0_PA_SHIFT));
if (ttbr_split)
SET_TTBR1_PA(base, ctx, (pgtable >> TTBR1_PA_SHIFT));
/* Enable context fault interrupt */
SET_CFEIE(base, ctx, 1);
/* Stall access on a context fault and let the handler deal with it */
SET_CFCFG(base, ctx, 1);
/* Redirect all cacheable requests to L2 slave port. */
SET_RCISH(base, ctx, 1);
SET_RCOSH(base, ctx, 1);
SET_RCNSH(base, ctx, 1);
/* Turn on TEX Remap */
SET_TRE(base, ctx, 1);
/* Set TEX remap attributes */
RCP15_PRRR(prrr);
RCP15_NMRR(nmrr);
SET_PRRR(base, ctx, prrr);
SET_NMRR(base, ctx, nmrr);
/* Turn on BFB prefetch */
SET_BFBDFE(base, ctx, 1);
/* Configure page tables as inner-cacheable and shareable to reduce
* the TLB miss penalty.
*/
if (redirect) {
SET_TTBR0_SH(base, ctx, 1);
SET_TTBR1_SH(base, ctx, 1);
SET_TTBR0_NOS(base, ctx, 1);
SET_TTBR1_NOS(base, ctx, 1);
SET_TTBR0_IRGNH(base, ctx, 0); /* WB, WA */
SET_TTBR0_IRGNL(base, ctx, 1);
SET_TTBR1_IRGNH(base, ctx, 0); /* WB, WA */
SET_TTBR1_IRGNL(base, ctx, 1);
SET_TTBR0_ORGN(base, ctx, 1); /* WB, WA */
SET_TTBR1_ORGN(base, ctx, 1); /* WB, WA */
}
/* Find if this page table is used elsewhere, and re-use ASID */
found = 0;
for (i = 0; i < ncb; i++)
if (GET_TTBR0_PA(base, i) == (pgtable >> TTBR0_PA_SHIFT) &&
i != ctx) {
SET_CONTEXTIDR_ASID(base, ctx, \
GET_CONTEXTIDR_ASID(base, i));
found = 1;
break;
}
/* If page table is new, find an unused ASID */
if (!found) {
for (i = 0; i < ncb; i++) {
found = 0;
for (j = 0; j < ncb; j++) {
if (GET_CONTEXTIDR_ASID(base, j) == i &&
j != ctx)
found = 1;
}
if (!found) {
SET_CONTEXTIDR_ASID(base, ctx, i);
break;
}
}
BUG_ON(found);
}
/* Enable the MMU */
SET_M(base, ctx, 1);
mb();
msm_iommu_remote_spin_unlock();
}
static int msm_iommu_domain_init(struct iommu_domain *domain, int flags)
{
struct msm_priv *priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
goto fail_nomem;
INIT_LIST_HEAD(&priv->list_attached);
priv->pgtable = (unsigned long *)__get_free_pages(GFP_KERNEL,
get_order(SZ_16K));
if (!priv->pgtable)
goto fail_nomem;
#ifdef CONFIG_IOMMU_PGTABLES_L2
priv->redirect = flags & MSM_IOMMU_DOMAIN_PT_CACHEABLE;
#endif
memset(priv->pgtable, 0, SZ_16K);
domain->priv = priv;
clean_pte(priv->pgtable, priv->pgtable + NUM_FL_PTE, priv->redirect);
return 0;
fail_nomem:
kfree(priv);
return -ENOMEM;
}
static void msm_iommu_domain_destroy(struct iommu_domain *domain)
{
struct msm_priv *priv;
unsigned long *fl_table;
int i;
mutex_lock(&msm_iommu_lock);
priv = domain->priv;
domain->priv = NULL;
if (priv) {
fl_table = priv->pgtable;
for (i = 0; i < NUM_FL_PTE; i++)
if ((fl_table[i] & 0x03) == FL_TYPE_TABLE)
free_page((unsigned long) __va(((fl_table[i]) &
FL_BASE_MASK)));
free_pages((unsigned long)priv->pgtable, get_order(SZ_16K));
priv->pgtable = NULL;
}
kfree(priv);
mutex_unlock(&msm_iommu_lock);
}
static int msm_iommu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
struct msm_priv *priv;
struct msm_iommu_ctx_dev *ctx_dev;
struct msm_iommu_drvdata *iommu_drvdata;
struct msm_iommu_ctx_drvdata *ctx_drvdata;
struct msm_iommu_ctx_drvdata *tmp_drvdata;
int ret = 0;
mutex_lock(&msm_iommu_lock);
priv = domain->priv;
if (!priv || !dev) {
ret = -EINVAL;
goto fail;
}
iommu_drvdata = dev_get_drvdata(dev->parent);
ctx_drvdata = dev_get_drvdata(dev);
ctx_dev = dev->platform_data;
if (!iommu_drvdata || !ctx_drvdata || !ctx_dev) {
ret = -EINVAL;
goto fail;
}
if (!list_empty(&ctx_drvdata->attached_elm)) {
ret = -EBUSY;
goto fail;
}
list_for_each_entry(tmp_drvdata, &priv->list_attached, attached_elm)
if (tmp_drvdata == ctx_drvdata) {
ret = -EBUSY;
goto fail;
}
ret = __enable_clocks(iommu_drvdata);
if (ret)
goto fail;
__program_context(iommu_drvdata->base, ctx_dev->num, iommu_drvdata->ncb,
__pa(priv->pgtable), priv->redirect,
iommu_drvdata->ttbr_split);
__disable_clocks(iommu_drvdata);
list_add(&(ctx_drvdata->attached_elm), &priv->list_attached);
ctx_drvdata->attached_domain = domain;
fail:
mutex_unlock(&msm_iommu_lock);
return ret;
}
static void msm_iommu_detach_dev(struct iommu_domain *domain,
struct device *dev)
{
struct msm_priv *priv;
struct msm_iommu_ctx_dev *ctx_dev;
struct msm_iommu_drvdata *iommu_drvdata;
struct msm_iommu_ctx_drvdata *ctx_drvdata;
int ret;
mutex_lock(&msm_iommu_lock);
priv = domain->priv;
if (!priv || !dev)
goto fail;
iommu_drvdata = dev_get_drvdata(dev->parent);
ctx_drvdata = dev_get_drvdata(dev);
ctx_dev = dev->platform_data;
if (!iommu_drvdata || !ctx_drvdata || !ctx_dev)
goto fail;
ret = __enable_clocks(iommu_drvdata);
if (ret)
goto fail;
msm_iommu_remote_spin_lock();
SET_TLBIASID(iommu_drvdata->base, ctx_dev->num,
GET_CONTEXTIDR_ASID(iommu_drvdata->base, ctx_dev->num));
__reset_context(iommu_drvdata->base, ctx_dev->num);
msm_iommu_remote_spin_unlock();
__disable_clocks(iommu_drvdata);
list_del_init(&ctx_drvdata->attached_elm);
ctx_drvdata->attached_domain = NULL;
fail:
mutex_unlock(&msm_iommu_lock);
}
static int __get_pgprot(int prot, int len)
{
unsigned int pgprot;
int tex;
if (!(prot & (IOMMU_READ | IOMMU_WRITE))) {
prot |= IOMMU_READ | IOMMU_WRITE;
WARN_ONCE(1, "No attributes in iommu mapping; assuming RW\n");
}
if ((prot & IOMMU_WRITE) && !(prot & IOMMU_READ)) {
prot |= IOMMU_READ;
WARN_ONCE(1, "Write-only iommu mappings unsupported; falling back to RW\n");
}
if (prot & IOMMU_CACHE)
tex = (pgprot_kernel >> 2) & 0x07;
else
tex = msm_iommu_tex_class[MSM_IOMMU_ATTR_NONCACHED];
if (tex < 0 || tex > NUM_TEX_CLASS - 1)
return 0;
if (len == SZ_16M || len == SZ_1M) {
pgprot = FL_SHARED;
pgprot |= tex & 0x01 ? FL_BUFFERABLE : 0;
pgprot |= tex & 0x02 ? FL_CACHEABLE : 0;
pgprot |= tex & 0x04 ? FL_TEX0 : 0;
pgprot |= FL_AP0 | FL_AP1;
pgprot |= prot & IOMMU_WRITE ? 0 : FL_AP2;
} else {
pgprot = SL_SHARED;
pgprot |= tex & 0x01 ? SL_BUFFERABLE : 0;
pgprot |= tex & 0x02 ? SL_CACHEABLE : 0;
pgprot |= tex & 0x04 ? SL_TEX0 : 0;
pgprot |= SL_AP0 | SL_AP1;
pgprot |= prot & IOMMU_WRITE ? 0 : SL_AP2;
}
return pgprot;
}
static unsigned long *make_second_level(struct msm_priv *priv,
unsigned long *fl_pte)
{
unsigned long *sl;
sl = (unsigned long *) __get_free_pages(GFP_KERNEL,
get_order(SZ_4K));
if (!sl) {
pr_debug("Could not allocate second level table\n");
goto fail;
}
memset(sl, 0, SZ_4K);
clean_pte(sl, sl + NUM_SL_PTE, priv->redirect);
*fl_pte = ((((int)__pa(sl)) & FL_BASE_MASK) | \
FL_TYPE_TABLE);
clean_pte(fl_pte, fl_pte + 1, priv->redirect);
fail:
return sl;
}
static int sl_4k(unsigned long *sl_pte, phys_addr_t pa, unsigned int pgprot)
{
int ret = 0;
if (*sl_pte) {
ret = -EBUSY;
goto fail;
}
*sl_pte = (pa & SL_BASE_MASK_SMALL) | SL_NG | SL_SHARED
| SL_TYPE_SMALL | pgprot;
fail:
return ret;
}
static int sl_64k(unsigned long *sl_pte, phys_addr_t pa, unsigned int pgprot)
{
int ret = 0;
int i;
for (i = 0; i < 16; i++)
if (*(sl_pte+i)) {
ret = -EBUSY;
goto fail;
}
for (i = 0; i < 16; i++)
*(sl_pte+i) = (pa & SL_BASE_MASK_LARGE) | SL_NG
| SL_SHARED | SL_TYPE_LARGE | pgprot;
fail:
return ret;
}
static inline int fl_1m(unsigned long *fl_pte, phys_addr_t pa, int pgprot)
{
if (*fl_pte)
return -EBUSY;
*fl_pte = (pa & 0xFFF00000) | FL_NG | FL_TYPE_SECT | FL_SHARED
| pgprot;
return 0;
}
static inline int fl_16m(unsigned long *fl_pte, phys_addr_t pa, int pgprot)
{
int i;
int ret = 0;
for (i = 0; i < 16; i++)
if (*(fl_pte+i)) {
ret = -EBUSY;
goto fail;
}
for (i = 0; i < 16; i++)
*(fl_pte+i) = (pa & 0xFF000000) | FL_SUPERSECTION
| FL_TYPE_SECT | FL_SHARED | FL_NG | pgprot;
fail:
return ret;
}
static int msm_iommu_map(struct iommu_domain *domain, unsigned long va,
phys_addr_t pa, size_t len, int prot)
{
struct msm_priv *priv;
unsigned long *fl_table;
unsigned long *fl_pte;
unsigned long fl_offset;
unsigned long *sl_table;
unsigned long *sl_pte;
unsigned long sl_offset;
unsigned int pgprot;
int ret = 0;
mutex_lock(&msm_iommu_lock);
priv = domain->priv;
if (!priv) {
ret = -EINVAL;
goto fail;
}
fl_table = priv->pgtable;
if (len != SZ_16M && len != SZ_1M &&
len != SZ_64K && len != SZ_4K) {
pr_debug("Bad size: %d\n", len);
ret = -EINVAL;
goto fail;
}
if (!fl_table) {
pr_debug("Null page table\n");
ret = -EINVAL;
goto fail;
}
pgprot = __get_pgprot(prot, len);
if (!pgprot) {
ret = -EINVAL;
goto fail;
}
fl_offset = FL_OFFSET(va); /* Upper 12 bits */
fl_pte = fl_table + fl_offset; /* int pointers, 4 bytes */
if (len == SZ_16M) {
ret = fl_16m(fl_pte, pa, pgprot);
if (ret)
goto fail;
clean_pte(fl_pte, fl_pte + 16, priv->redirect);
}
if (len == SZ_1M) {
ret = fl_1m(fl_pte, pa, pgprot);
if (ret)
goto fail;
clean_pte(fl_pte, fl_pte + 1, priv->redirect);
}
/* Need a 2nd level table */
if (len == SZ_4K || len == SZ_64K) {
if (*fl_pte == 0) {
if (make_second_level(priv, fl_pte) == NULL) {
ret = -ENOMEM;
goto fail;
}
}
if (!(*fl_pte & FL_TYPE_TABLE)) {
ret = -EBUSY;
goto fail;
}
}
sl_table = (unsigned long *) __va(((*fl_pte) & FL_BASE_MASK));
sl_offset = SL_OFFSET(va);
sl_pte = sl_table + sl_offset;
if (len == SZ_4K) {
ret = sl_4k(sl_pte, pa, pgprot);
if (ret)
goto fail;
clean_pte(sl_pte, sl_pte + 1, priv->redirect);
}
if (len == SZ_64K) {
ret = sl_64k(sl_pte, pa, pgprot);
if (ret)
goto fail;
clean_pte(sl_pte, sl_pte + 16, priv->redirect);
}
ret = __flush_iotlb_va(domain, va);
fail:
mutex_unlock(&msm_iommu_lock);
return ret;
}
static size_t msm_iommu_unmap(struct iommu_domain *domain, unsigned long va,
size_t len)
{
struct msm_priv *priv;
unsigned long *fl_table;
unsigned long *fl_pte;
unsigned long fl_offset;
unsigned long *sl_table;
unsigned long *sl_pte;
unsigned long sl_offset;
int i, ret = 0;
mutex_lock(&msm_iommu_lock);
priv = domain->priv;
if (!priv)
goto fail;
fl_table = priv->pgtable;
if (len != SZ_16M && len != SZ_1M &&
len != SZ_64K && len != SZ_4K) {
pr_debug("Bad length: %d\n", len);
goto fail;
}
if (!fl_table) {
pr_debug("Null page table\n");
goto fail;
}
fl_offset = FL_OFFSET(va); /* Upper 12 bits */
fl_pte = fl_table + fl_offset; /* int pointers, 4 bytes */
if (*fl_pte == 0) {
pr_debug("First level PTE is 0\n");
goto fail;
}
/* Unmap supersection */
if (len == SZ_16M) {
for (i = 0; i < 16; i++)
*(fl_pte+i) = 0;
clean_pte(fl_pte, fl_pte + 16, priv->redirect);
}
if (len == SZ_1M) {
*fl_pte = 0;
clean_pte(fl_pte, fl_pte + 1, priv->redirect);
}
sl_table = (unsigned long *) __va(((*fl_pte) & FL_BASE_MASK));
sl_offset = SL_OFFSET(va);
sl_pte = sl_table + sl_offset;
if (len == SZ_64K) {
for (i = 0; i < 16; i++)
*(sl_pte+i) = 0;
clean_pte(sl_pte, sl_pte + 16, priv->redirect);
}
if (len == SZ_4K) {
*sl_pte = 0;
clean_pte(sl_pte, sl_pte + 1, priv->redirect);
}
if (len == SZ_4K || len == SZ_64K) {
int used = 0;
for (i = 0; i < NUM_SL_PTE; i++)
if (sl_table[i])
used = 1;
if (!used) {
free_page((unsigned long)sl_table);
*fl_pte = 0;
clean_pte(fl_pte, fl_pte + 1, priv->redirect);
}
}
ret = __flush_iotlb_va(domain, va);
fail:
mutex_unlock(&msm_iommu_lock);
/* the IOMMU API requires us to return how many bytes were unmapped */
len = ret ? 0 : len;
return len;
}
static unsigned int get_phys_addr(struct scatterlist *sg)
{
/*
* Try sg_dma_address first so that we can
* map carveout regions that do not have a
* struct page associated with them.
*/
unsigned int pa = sg_dma_address(sg);
if (pa == 0)
pa = sg_phys(sg);
return pa;
}
static inline int is_fully_aligned(unsigned int va, phys_addr_t pa, size_t len,
int align)
{
return IS_ALIGNED(va, align) && IS_ALIGNED(pa, align)
&& (len >= align);
}
static int msm_iommu_map_range(struct iommu_domain *domain, unsigned int va,
struct scatterlist *sg, unsigned int len,
int prot)
{
unsigned int pa;
unsigned int offset = 0;
unsigned long *fl_table;
unsigned long *fl_pte;
unsigned long fl_offset;
unsigned long *sl_table = NULL;
unsigned long sl_offset, sl_start;
unsigned int chunk_size, chunk_offset = 0;
int ret = 0;
struct msm_priv *priv;
unsigned int pgprot4k, pgprot64k, pgprot1m, pgprot16m;
mutex_lock(&msm_iommu_lock);
BUG_ON(len & (SZ_4K - 1));
priv = domain->priv;
fl_table = priv->pgtable;
pgprot4k = __get_pgprot(prot, SZ_4K);
pgprot64k = __get_pgprot(prot, SZ_64K);
pgprot1m = __get_pgprot(prot, SZ_1M);
pgprot16m = __get_pgprot(prot, SZ_16M);
if (!pgprot4k || !pgprot64k || !pgprot1m || !pgprot16m) {
ret = -EINVAL;
goto fail;
}
fl_offset = FL_OFFSET(va); /* Upper 12 bits */
fl_pte = fl_table + fl_offset; /* int pointers, 4 bytes */
pa = get_phys_addr(sg);
while (offset < len) {
chunk_size = SZ_4K;
if (is_fully_aligned(va, pa, sg->length - chunk_offset,
SZ_16M))
chunk_size = SZ_16M;
else if (is_fully_aligned(va, pa, sg->length - chunk_offset,
SZ_1M))
chunk_size = SZ_1M;
/* 64k or 4k determined later */
/* for 1M and 16M, only first level entries are required */
if (chunk_size >= SZ_1M) {
if (chunk_size == SZ_16M) {
ret = fl_16m(fl_pte, pa, pgprot16m);
if (ret)
goto fail;
clean_pte(fl_pte, fl_pte + 16, priv->redirect);
fl_pte += 16;
} else if (chunk_size == SZ_1M) {
ret = fl_1m(fl_pte, pa, pgprot1m);
if (ret)
goto fail;
clean_pte(fl_pte, fl_pte + 1, priv->redirect);
fl_pte++;
}
offset += chunk_size;
chunk_offset += chunk_size;
va += chunk_size;
pa += chunk_size;
if (chunk_offset >= sg->length && offset < len) {
chunk_offset = 0;
sg = sg_next(sg);
pa = get_phys_addr(sg);
if (pa == 0) {
pr_debug("No dma address for sg %p\n",
sg);
ret = -EINVAL;
goto fail;
}
}
continue;
}
/* for 4K or 64K, make sure there is a second level table */
if (*fl_pte == 0) {
if (!make_second_level(priv, fl_pte)) {
ret = -ENOMEM;
goto fail;
}
}
if (!(*fl_pte & FL_TYPE_TABLE)) {
ret = -EBUSY;
goto fail;
}
sl_table = __va(((*fl_pte) & FL_BASE_MASK));
sl_offset = SL_OFFSET(va);
/* Keep track of initial position so we
* don't clean more than we have to
*/
sl_start = sl_offset;
/* Build the 2nd level page table */
while (offset < len && sl_offset < NUM_SL_PTE) {
/* Map a large 64K page if the chunk is large enough and
* the pa and va are aligned
*/
if (is_fully_aligned(va, pa, sg->length - chunk_offset,
SZ_64K))
chunk_size = SZ_64K;
else
chunk_size = SZ_4K;
if (chunk_size == SZ_4K) {
sl_4k(&sl_table[sl_offset], pa, pgprot4k);
sl_offset++;
} else {
BUG_ON(sl_offset + 16 > NUM_SL_PTE);
sl_64k(&sl_table[sl_offset], pa, pgprot64k);
sl_offset += 16;
}
offset += chunk_size;
chunk_offset += chunk_size;
va += chunk_size;
pa += chunk_size;
if (chunk_offset >= sg->length && offset < len) {
chunk_offset = 0;
sg = sg_next(sg);
pa = get_phys_addr(sg);
if (pa == 0) {
pr_debug("No dma address for sg %p\n",
sg);
ret = -EINVAL;
goto fail;
}
}
}
clean_pte(sl_table + sl_start, sl_table + sl_offset,
priv->redirect);
fl_pte++;
sl_offset = 0;
}
__flush_iotlb(domain);
fail:
mutex_unlock(&msm_iommu_lock);
return ret;
}
static int msm_iommu_unmap_range(struct iommu_domain *domain, unsigned int va,
unsigned int len)
{
unsigned int offset = 0;
unsigned long *fl_table;
unsigned long *fl_pte;
unsigned long fl_offset;
unsigned long *sl_table;
unsigned long sl_start, sl_end;
int used, i;
struct msm_priv *priv;
mutex_lock(&msm_iommu_lock);
BUG_ON(len & (SZ_4K - 1));
priv = domain->priv;
fl_table = priv->pgtable;
fl_offset = FL_OFFSET(va); /* Upper 12 bits */
fl_pte = fl_table + fl_offset; /* int pointers, 4 bytes */
while (offset < len) {
if (*fl_pte & FL_TYPE_TABLE) {
sl_start = SL_OFFSET(va);
sl_table = __va(((*fl_pte) & FL_BASE_MASK));
sl_end = ((len - offset) / SZ_4K) + sl_start;
if (sl_end > NUM_SL_PTE)
sl_end = NUM_SL_PTE;
memset(sl_table + sl_start, 0, (sl_end - sl_start) * 4);
clean_pte(sl_table + sl_start, sl_table + sl_end,
priv->redirect);
offset += (sl_end - sl_start) * SZ_4K;
va += (sl_end - sl_start) * SZ_4K;
/* Unmap and free the 2nd level table if all mappings
* in it were removed. This saves memory, but the table
* will need to be re-allocated the next time someone
* tries to map these VAs.
*/
used = 0;
/* If we just unmapped the whole table, don't bother
* seeing if there are still used entries left.
*/
if (sl_end - sl_start != NUM_SL_PTE)
for (i = 0; i < NUM_SL_PTE; i++)
if (sl_table[i]) {
used = 1;
break;
}
if (!used) {
free_page((unsigned long)sl_table);
*fl_pte = 0;
clean_pte(fl_pte, fl_pte + 1, priv->redirect);
}
sl_start = 0;
} else {
*fl_pte = 0;
clean_pte(fl_pte, fl_pte + 1, priv->redirect);
va += SZ_1M;
offset += SZ_1M;
sl_start = 0;
}
fl_pte++;
}
__flush_iotlb(domain);
mutex_unlock(&msm_iommu_lock);
return 0;
}
static phys_addr_t msm_iommu_iova_to_phys(struct iommu_domain *domain,
unsigned long va)
{
struct msm_priv *priv;
struct msm_iommu_drvdata *iommu_drvdata;
struct msm_iommu_ctx_drvdata *ctx_drvdata;
unsigned int par;
void __iomem *base;
phys_addr_t ret = 0;
int ctx;
mutex_lock(&msm_iommu_lock);
priv = domain->priv;
if (list_empty(&priv->list_attached))
goto fail;
ctx_drvdata = list_entry(priv->list_attached.next,
struct msm_iommu_ctx_drvdata, attached_elm);
iommu_drvdata = dev_get_drvdata(ctx_drvdata->pdev->dev.parent);
base = iommu_drvdata->base;
ctx = ctx_drvdata->num;
ret = __enable_clocks(iommu_drvdata);
if (ret)
goto fail;
msm_iommu_remote_spin_lock();
SET_V2PPR(base, ctx, va & V2Pxx_VA);
mb();
par = GET_PAR(base, ctx);
/* We are dealing with a supersection */
if (GET_NOFAULT_SS(base, ctx))
ret = (par & 0xFF000000) | (va & 0x00FFFFFF);
else /* Upper 20 bits from PAR, lower 12 from VA */
ret = (par & 0xFFFFF000) | (va & 0x00000FFF);
if (GET_FAULT(base, ctx))
ret = 0;
msm_iommu_remote_spin_unlock();
__disable_clocks(iommu_drvdata);
fail:
mutex_unlock(&msm_iommu_lock);
return ret;
}
static int msm_iommu_domain_has_cap(struct iommu_domain *domain,
unsigned long cap)
{
return 0;
}
static void print_ctx_regs(void __iomem *base, int ctx)
{
unsigned int fsr = GET_FSR(base, ctx);
pr_err("FAR = %08x PAR = %08x\n",
GET_FAR(base, ctx), GET_PAR(base, ctx));
pr_err("FSR = %08x [%s%s%s%s%s%s%s%s%s%s]\n", fsr,
(fsr & 0x02) ? "TF " : "",
(fsr & 0x04) ? "AFF " : "",
(fsr & 0x08) ? "APF " : "",
(fsr & 0x10) ? "TLBMF " : "",
(fsr & 0x20) ? "HTWDEEF " : "",
(fsr & 0x40) ? "HTWSEEF " : "",
(fsr & 0x80) ? "MHF " : "",
(fsr & 0x10000) ? "SL " : "",
(fsr & 0x40000000) ? "SS " : "",
(fsr & 0x80000000) ? "MULTI " : "");
pr_err("FSYNR0 = %08x FSYNR1 = %08x\n",
GET_FSYNR0(base, ctx), GET_FSYNR1(base, ctx));
pr_err("TTBR0 = %08x TTBR1 = %08x\n",
GET_TTBR0(base, ctx), GET_TTBR1(base, ctx));
pr_err("SCTLR = %08x ACTLR = %08x\n",
GET_SCTLR(base, ctx), GET_ACTLR(base, ctx));
pr_err("PRRR = %08x NMRR = %08x\n",
GET_PRRR(base, ctx), GET_NMRR(base, ctx));
}
irqreturn_t msm_iommu_fault_handler(int irq, void *dev_id)
{
struct msm_iommu_ctx_drvdata *ctx_drvdata = dev_id;
struct msm_iommu_drvdata *drvdata;
void __iomem *base;
unsigned int fsr, num;
int ret;
mutex_lock(&msm_iommu_lock);
BUG_ON(!ctx_drvdata);
drvdata = dev_get_drvdata(ctx_drvdata->pdev->dev.parent);
BUG_ON(!drvdata);
base = drvdata->base;
num = ctx_drvdata->num;
ret = __enable_clocks(drvdata);
if (ret)
goto fail;
msm_iommu_remote_spin_lock();
fsr = GET_FSR(base, num);
if (fsr) {
if (!ctx_drvdata->attached_domain) {
pr_err("Bad domain in interrupt handler\n");
ret = -ENOSYS;
} else
ret = report_iommu_fault(ctx_drvdata->attached_domain,
&ctx_drvdata->pdev->dev,
GET_FAR(base, num), 0);
if (ret == -ENOSYS) {
pr_err("Unexpected IOMMU page fault!\n");
pr_err("name = %s\n", drvdata->name);
pr_err("context = %s (%d)\n", ctx_drvdata->name, num);
pr_err("Interesting registers:\n");
print_ctx_regs(base, num);
}
SET_FSR(base, num, fsr);
SET_RESUME(base, num, 1);
ret = IRQ_HANDLED;
} else
ret = IRQ_NONE;
msm_iommu_remote_spin_unlock();
__disable_clocks(drvdata);
fail:
mutex_unlock(&msm_iommu_lock);
return ret;
}
static phys_addr_t msm_iommu_get_pt_base_addr(struct iommu_domain *domain)
{
struct msm_priv *priv = domain->priv;
return __pa(priv->pgtable);
}
static struct iommu_ops msm_iommu_ops = {
.domain_init = msm_iommu_domain_init,
.domain_destroy = msm_iommu_domain_destroy,
.attach_dev = msm_iommu_attach_dev,
.detach_dev = msm_iommu_detach_dev,
.map = msm_iommu_map,
.unmap = msm_iommu_unmap,
.map_range = msm_iommu_map_range,
.unmap_range = msm_iommu_unmap_range,
.iova_to_phys = msm_iommu_iova_to_phys,
.domain_has_cap = msm_iommu_domain_has_cap,
.get_pt_base_addr = msm_iommu_get_pt_base_addr,
.pgsize_bitmap = MSM_IOMMU_PGSIZES,
};
static int __init get_tex_class(int icp, int ocp, int mt, int nos)
{
int i = 0;
unsigned int prrr = 0;
unsigned int nmrr = 0;
int c_icp, c_ocp, c_mt, c_nos;
RCP15_PRRR(prrr);
RCP15_NMRR(nmrr);
for (i = 0; i < NUM_TEX_CLASS; i++) {
c_nos = PRRR_NOS(prrr, i);
c_mt = PRRR_MT(prrr, i);
c_icp = NMRR_ICP(nmrr, i);
c_ocp = NMRR_OCP(nmrr, i);
if (icp == c_icp && ocp == c_ocp && c_mt == mt && c_nos == nos)
return i;
}
return -ENODEV;
}
static void __init setup_iommu_tex_classes(void)
{
msm_iommu_tex_class[MSM_IOMMU_ATTR_NONCACHED] =
get_tex_class(CP_NONCACHED, CP_NONCACHED, MT_NORMAL, 1);
msm_iommu_tex_class[MSM_IOMMU_ATTR_CACHED_WB_WA] =
get_tex_class(CP_WB_WA, CP_WB_WA, MT_NORMAL, 1);
msm_iommu_tex_class[MSM_IOMMU_ATTR_CACHED_WB_NWA] =
get_tex_class(CP_WB_NWA, CP_WB_NWA, MT_NORMAL, 1);
msm_iommu_tex_class[MSM_IOMMU_ATTR_CACHED_WT] =
get_tex_class(CP_WT, CP_WT, MT_NORMAL, 1);
}
static int __init msm_iommu_init(void)
{
if (!msm_soc_version_supports_iommu_v1())
return -ENODEV;
msm_iommu_lock_initialize();
setup_iommu_tex_classes();
bus_set_iommu(&platform_bus_type, &msm_iommu_ops);
return 0;
}
subsys_initcall(msm_iommu_init);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Stepan Moskovchenko <stepanm@codeaurora.org>");