mirror of
https://github.com/followmsi/android_kernel_google_msm.git
synced 2024-11-06 23:17:41 +00:00
KEYS: Correctly destroy key payloads when their keytype is removed
unregister_key_type() has code to mark a key as dead and make it unavailable in one loop and then destroy all those unavailable key payloads in the next loop. However, the loop to mark keys dead renders the key undetectable to the second loop by changing the key type pointer also. Fix this by the following means: (1) The key code has two garbage collectors: one deletes unreferenced keys and the other alters keyrings to delete links to old dead, revoked and expired keys. They can end up holding each other up as both want to scan the key serial tree under spinlock. Combine these into a single routine. (2) Move the dead key marking, dead link removal and dead key removal into the garbage collector as a three phase process running over the three cycles of the normal garbage collection procedure. This is tracked by the KEY_GC_REAPING_DEAD_1, _2 and _3 state flags. unregister_key_type() then just unlinks the key type from the list, wakes up the garbage collector and waits for the third phase to complete. (3) Downgrade the key types sem in unregister_key_type() once it has deleted the key type from the list so that it doesn't block the keyctl() syscall. (4) Dead keys that cannot be simply removed in the third phase have their payloads destroyed with the key's semaphore write-locked to prevent interference by the keyctl() syscall. There should be no in-kernel users of dead keys of that type by the point of unregistration, though keyctl() may be holding a reference. (5) Only perform timer recalculation in the GC if the timer actually expired. If it didn't, we'll get another cycle when it goes off - and if the key that actually triggered it has been removed, it's not a problem. (6) Only garbage collect link if the timer expired or if we're doing dead key clean up phase 2. (7) As only key_garbage_collector() is permitted to use rb_erase() on the key serial tree, it doesn't need to revalidate its cursor after dropping the spinlock as the node the cursor points to must still exist in the tree. (8) Drop the spinlock in the GC if there is contention on it or if we need to reschedule. After dealing with that, get the spinlock again and resume scanning. This has been tested in the following ways: (1) Run the keyutils testsuite against it. (2) Using the AF_RXRPC and RxKAD modules to test keytype removal: Load the rxrpc_s key type: # insmod /tmp/af-rxrpc.ko # insmod /tmp/rxkad.ko Create a key (http://people.redhat.com/~dhowells/rxrpc/listen.c): # /tmp/listen & [1] 8173 Find the key: # grep rxrpc_s /proc/keys 091086e1 I--Q-- 1 perm 39390000 0 0 rxrpc_s 52:2 Link it to a session keyring, preferably one with a higher serial number: # keyctl link 0x20e36251 @s Kill the process (the key should remain as it's linked to another place): # fg /tmp/listen ^C Remove the key type: rmmod rxkad rmmod af-rxrpc This can be made a more effective test by altering the following part of the patch: if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) { /* Make sure everyone revalidates their keys if we marked a * bunch as being dead and make sure all keyring ex-payloads * are destroyed. */ kdebug("dead sync"); synchronize_rcu(); To call synchronize_rcu() in GC phase 1 instead. That causes that the keyring's old payload content to hang around longer until it's RCU destroyed - which usually happens after GC phase 3 is complete. This allows the destroy_dead_key branch to be tested. Reported-by: Benjamin Coddington <bcodding@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
This commit is contained in:
parent
d199798bdf
commit
0c061b5707
3 changed files with 268 additions and 218 deletions
|
@ -1,6 +1,6 @@
|
|||
/* Key garbage collector
|
||||
*
|
||||
* Copyright (C) 2009 Red Hat, Inc. All Rights Reserved.
|
||||
* Copyright (C) 2009-2011 Red Hat, Inc. All Rights Reserved.
|
||||
* Written by David Howells (dhowells@redhat.com)
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
|
@ -23,21 +23,31 @@ unsigned key_gc_delay = 5 * 60;
|
|||
/*
|
||||
* Reaper for unused keys.
|
||||
*/
|
||||
static void key_gc_unused_keys(struct work_struct *work);
|
||||
DECLARE_WORK(key_gc_unused_work, key_gc_unused_keys);
|
||||
static void key_garbage_collector(struct work_struct *work);
|
||||
DECLARE_WORK(key_gc_work, key_garbage_collector);
|
||||
|
||||
/*
|
||||
* Reaper for links from keyrings to dead keys.
|
||||
*/
|
||||
static void key_gc_timer_func(unsigned long);
|
||||
static void key_gc_dead_links(struct work_struct *);
|
||||
static DEFINE_TIMER(key_gc_timer, key_gc_timer_func, 0, 0);
|
||||
static DECLARE_WORK(key_gc_work, key_gc_dead_links);
|
||||
static key_serial_t key_gc_cursor; /* the last key the gc considered */
|
||||
static bool key_gc_again;
|
||||
static unsigned long key_gc_executing;
|
||||
|
||||
static time_t key_gc_next_run = LONG_MAX;
|
||||
static time_t key_gc_new_timer;
|
||||
static struct key_type *key_gc_dead_keytype;
|
||||
|
||||
static unsigned long key_gc_flags;
|
||||
#define KEY_GC_KEY_EXPIRED 0 /* A key expired and needs unlinking */
|
||||
#define KEY_GC_REAP_KEYTYPE 1 /* A keytype is being unregistered */
|
||||
#define KEY_GC_REAPING_KEYTYPE 2 /* Cleared when keytype reaped */
|
||||
|
||||
|
||||
/*
|
||||
* Any key whose type gets unregistered will be re-typed to this if it can't be
|
||||
* immediately unlinked.
|
||||
*/
|
||||
struct key_type key_type_dead = {
|
||||
.name = "dead",
|
||||
};
|
||||
|
||||
/*
|
||||
* Schedule a garbage collection run.
|
||||
|
@ -50,31 +60,75 @@ void key_schedule_gc(time_t gc_at)
|
|||
|
||||
kenter("%ld", gc_at - now);
|
||||
|
||||
if (gc_at <= now) {
|
||||
if (gc_at <= now || test_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags)) {
|
||||
kdebug("IMMEDIATE");
|
||||
queue_work(system_nrt_wq, &key_gc_work);
|
||||
} else if (gc_at < key_gc_next_run) {
|
||||
kdebug("DEFERRED");
|
||||
key_gc_next_run = gc_at;
|
||||
expires = jiffies + (gc_at - now) * HZ;
|
||||
mod_timer(&key_gc_timer, expires);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* The garbage collector timer kicked off
|
||||
* Some key's cleanup time was met after it expired, so we need to get the
|
||||
* reaper to go through a cycle finding expired keys.
|
||||
*/
|
||||
static void key_gc_timer_func(unsigned long data)
|
||||
{
|
||||
kenter("");
|
||||
key_gc_next_run = LONG_MAX;
|
||||
set_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags);
|
||||
queue_work(system_nrt_wq, &key_gc_work);
|
||||
}
|
||||
|
||||
/*
|
||||
* wait_on_bit() sleep function for uninterruptible waiting
|
||||
*/
|
||||
static int key_gc_wait_bit(void *flags)
|
||||
{
|
||||
schedule();
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Reap keys of dead type.
|
||||
*
|
||||
* We use three flags to make sure we see three complete cycles of the garbage
|
||||
* collector: the first to mark keys of that type as being dead, the second to
|
||||
* collect dead links and the third to clean up the dead keys. We have to be
|
||||
* careful as there may already be a cycle in progress.
|
||||
*
|
||||
* The caller must be holding key_types_sem.
|
||||
*/
|
||||
void key_gc_keytype(struct key_type *ktype)
|
||||
{
|
||||
kenter("%s", ktype->name);
|
||||
|
||||
key_gc_dead_keytype = ktype;
|
||||
set_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags);
|
||||
smp_mb();
|
||||
set_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags);
|
||||
|
||||
kdebug("schedule");
|
||||
queue_work(system_nrt_wq, &key_gc_work);
|
||||
|
||||
kdebug("sleep");
|
||||
wait_on_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE, key_gc_wait_bit,
|
||||
TASK_UNINTERRUPTIBLE);
|
||||
|
||||
key_gc_dead_keytype = NULL;
|
||||
kleave("");
|
||||
}
|
||||
|
||||
/*
|
||||
* Garbage collect pointers from a keyring.
|
||||
*
|
||||
* Return true if we altered the keyring.
|
||||
* Not called with any locks held. The keyring's key struct will not be
|
||||
* deallocated under us as only our caller may deallocate it.
|
||||
*/
|
||||
static bool key_gc_keyring(struct key *keyring, time_t limit)
|
||||
__releases(key_serial_lock)
|
||||
static void key_gc_keyring(struct key *keyring, time_t limit)
|
||||
{
|
||||
struct keyring_list *klist;
|
||||
struct key *key;
|
||||
|
@ -101,168 +155,21 @@ static bool key_gc_keyring(struct key *keyring, time_t limit)
|
|||
unlock_dont_gc:
|
||||
rcu_read_unlock();
|
||||
dont_gc:
|
||||
kleave(" = false");
|
||||
return false;
|
||||
kleave(" [no gc]");
|
||||
return;
|
||||
|
||||
do_gc:
|
||||
rcu_read_unlock();
|
||||
key_gc_cursor = keyring->serial;
|
||||
key_get(keyring);
|
||||
spin_unlock(&key_serial_lock);
|
||||
|
||||
keyring_gc(keyring, limit);
|
||||
key_put(keyring);
|
||||
kleave(" = true");
|
||||
return true;
|
||||
kleave(" [gc]");
|
||||
}
|
||||
|
||||
/*
|
||||
* Garbage collector for links to dead keys.
|
||||
*
|
||||
* This involves scanning the keyrings for dead, expired and revoked keys that
|
||||
* have overstayed their welcome
|
||||
* Garbage collect an unreferenced, detached key
|
||||
*/
|
||||
static void key_gc_dead_links(struct work_struct *work)
|
||||
static noinline void key_gc_unused_key(struct key *key)
|
||||
{
|
||||
struct rb_node *rb;
|
||||
key_serial_t cursor;
|
||||
struct key *key, *xkey;
|
||||
time_t new_timer = LONG_MAX, limit, now;
|
||||
|
||||
now = current_kernel_time().tv_sec;
|
||||
kenter("[%x,%ld]", key_gc_cursor, key_gc_new_timer - now);
|
||||
|
||||
if (test_and_set_bit(0, &key_gc_executing)) {
|
||||
key_schedule_gc(current_kernel_time().tv_sec + 1);
|
||||
kleave(" [busy; deferring]");
|
||||
return;
|
||||
}
|
||||
|
||||
limit = now;
|
||||
if (limit > key_gc_delay)
|
||||
limit -= key_gc_delay;
|
||||
else
|
||||
limit = key_gc_delay;
|
||||
|
||||
spin_lock(&key_serial_lock);
|
||||
|
||||
if (unlikely(RB_EMPTY_ROOT(&key_serial_tree))) {
|
||||
spin_unlock(&key_serial_lock);
|
||||
clear_bit(0, &key_gc_executing);
|
||||
return;
|
||||
}
|
||||
|
||||
cursor = key_gc_cursor;
|
||||
if (cursor < 0)
|
||||
cursor = 0;
|
||||
if (cursor > 0)
|
||||
new_timer = key_gc_new_timer;
|
||||
else
|
||||
key_gc_again = false;
|
||||
|
||||
/* find the first key above the cursor */
|
||||
key = NULL;
|
||||
rb = key_serial_tree.rb_node;
|
||||
while (rb) {
|
||||
xkey = rb_entry(rb, struct key, serial_node);
|
||||
if (cursor < xkey->serial) {
|
||||
key = xkey;
|
||||
rb = rb->rb_left;
|
||||
} else if (cursor > xkey->serial) {
|
||||
rb = rb->rb_right;
|
||||
} else {
|
||||
rb = rb_next(rb);
|
||||
if (!rb)
|
||||
goto reached_the_end;
|
||||
key = rb_entry(rb, struct key, serial_node);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!key)
|
||||
goto reached_the_end;
|
||||
|
||||
/* trawl through the keys looking for keyrings */
|
||||
for (;;) {
|
||||
if (key->expiry > limit && key->expiry < new_timer) {
|
||||
kdebug("will expire %x in %ld",
|
||||
key_serial(key), key->expiry - limit);
|
||||
new_timer = key->expiry;
|
||||
}
|
||||
|
||||
if (key->type == &key_type_keyring &&
|
||||
key_gc_keyring(key, limit))
|
||||
/* the gc had to release our lock so that the keyring
|
||||
* could be modified, so we have to get it again */
|
||||
goto gc_released_our_lock;
|
||||
|
||||
rb = rb_next(&key->serial_node);
|
||||
if (!rb)
|
||||
goto reached_the_end;
|
||||
key = rb_entry(rb, struct key, serial_node);
|
||||
}
|
||||
|
||||
gc_released_our_lock:
|
||||
kdebug("gc_released_our_lock");
|
||||
key_gc_new_timer = new_timer;
|
||||
key_gc_again = true;
|
||||
clear_bit(0, &key_gc_executing);
|
||||
queue_work(system_nrt_wq, &key_gc_work);
|
||||
kleave(" [continue]");
|
||||
return;
|
||||
|
||||
/* when we reach the end of the run, we set the timer for the next one */
|
||||
reached_the_end:
|
||||
kdebug("reached_the_end");
|
||||
spin_unlock(&key_serial_lock);
|
||||
key_gc_new_timer = new_timer;
|
||||
key_gc_cursor = 0;
|
||||
clear_bit(0, &key_gc_executing);
|
||||
|
||||
if (key_gc_again) {
|
||||
/* there may have been a key that expired whilst we were
|
||||
* scanning, so if we discarded any links we should do another
|
||||
* scan */
|
||||
new_timer = now + 1;
|
||||
key_schedule_gc(new_timer);
|
||||
} else if (new_timer < LONG_MAX) {
|
||||
new_timer += key_gc_delay;
|
||||
key_schedule_gc(new_timer);
|
||||
}
|
||||
kleave(" [end]");
|
||||
}
|
||||
|
||||
/*
|
||||
* Garbage collector for unused keys.
|
||||
*
|
||||
* This is done in process context so that we don't have to disable interrupts
|
||||
* all over the place. key_put() schedules this rather than trying to do the
|
||||
* cleanup itself, which means key_put() doesn't have to sleep.
|
||||
*/
|
||||
static void key_gc_unused_keys(struct work_struct *work)
|
||||
{
|
||||
struct rb_node *_n;
|
||||
struct key *key;
|
||||
|
||||
go_again:
|
||||
/* look for a dead key in the tree */
|
||||
spin_lock(&key_serial_lock);
|
||||
|
||||
for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
|
||||
key = rb_entry(_n, struct key, serial_node);
|
||||
|
||||
if (atomic_read(&key->usage) == 0)
|
||||
goto found_dead_key;
|
||||
}
|
||||
|
||||
spin_unlock(&key_serial_lock);
|
||||
return;
|
||||
|
||||
found_dead_key:
|
||||
/* we found a dead key - once we've removed it from the tree, we can
|
||||
* drop the lock */
|
||||
rb_erase(&key->serial_node, &key_serial_tree);
|
||||
spin_unlock(&key_serial_lock);
|
||||
|
||||
key_check(key);
|
||||
|
||||
security_key_free(key);
|
||||
|
@ -291,7 +198,191 @@ found_dead_key:
|
|||
key->magic = KEY_DEBUG_MAGIC_X;
|
||||
#endif
|
||||
kmem_cache_free(key_jar, key);
|
||||
|
||||
/* there may, of course, be more than one key to destroy */
|
||||
goto go_again;
|
||||
}
|
||||
|
||||
/*
|
||||
* Garbage collector for unused keys.
|
||||
*
|
||||
* This is done in process context so that we don't have to disable interrupts
|
||||
* all over the place. key_put() schedules this rather than trying to do the
|
||||
* cleanup itself, which means key_put() doesn't have to sleep.
|
||||
*/
|
||||
static void key_garbage_collector(struct work_struct *work)
|
||||
{
|
||||
static u8 gc_state; /* Internal persistent state */
|
||||
#define KEY_GC_REAP_AGAIN 0x01 /* - Need another cycle */
|
||||
#define KEY_GC_REAPING_LINKS 0x02 /* - We need to reap links */
|
||||
#define KEY_GC_SET_TIMER 0x04 /* - We need to restart the timer */
|
||||
#define KEY_GC_REAPING_DEAD_1 0x10 /* - We need to mark dead keys */
|
||||
#define KEY_GC_REAPING_DEAD_2 0x20 /* - We need to reap dead key links */
|
||||
#define KEY_GC_REAPING_DEAD_3 0x40 /* - We need to reap dead keys */
|
||||
#define KEY_GC_FOUND_DEAD_KEY 0x80 /* - We found at least one dead key */
|
||||
|
||||
struct rb_node *cursor;
|
||||
struct key *key;
|
||||
time_t new_timer, limit;
|
||||
|
||||
kenter("[%lx,%x]", key_gc_flags, gc_state);
|
||||
|
||||
limit = current_kernel_time().tv_sec;
|
||||
if (limit > key_gc_delay)
|
||||
limit -= key_gc_delay;
|
||||
else
|
||||
limit = key_gc_delay;
|
||||
|
||||
/* Work out what we're going to be doing in this pass */
|
||||
gc_state &= KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2;
|
||||
gc_state <<= 1;
|
||||
if (test_and_clear_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags))
|
||||
gc_state |= KEY_GC_REAPING_LINKS | KEY_GC_SET_TIMER;
|
||||
|
||||
if (test_and_clear_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags))
|
||||
gc_state |= KEY_GC_REAPING_DEAD_1;
|
||||
kdebug("new pass %x", gc_state);
|
||||
|
||||
new_timer = LONG_MAX;
|
||||
|
||||
/* As only this function is permitted to remove things from the key
|
||||
* serial tree, if cursor is non-NULL then it will always point to a
|
||||
* valid node in the tree - even if lock got dropped.
|
||||
*/
|
||||
spin_lock(&key_serial_lock);
|
||||
cursor = rb_first(&key_serial_tree);
|
||||
|
||||
continue_scanning:
|
||||
while (cursor) {
|
||||
key = rb_entry(cursor, struct key, serial_node);
|
||||
cursor = rb_next(cursor);
|
||||
|
||||
if (atomic_read(&key->usage) == 0)
|
||||
goto found_unreferenced_key;
|
||||
|
||||
if (unlikely(gc_state & KEY_GC_REAPING_DEAD_1)) {
|
||||
if (key->type == key_gc_dead_keytype) {
|
||||
gc_state |= KEY_GC_FOUND_DEAD_KEY;
|
||||
set_bit(KEY_FLAG_DEAD, &key->flags);
|
||||
key->perm = 0;
|
||||
goto skip_dead_key;
|
||||
}
|
||||
}
|
||||
|
||||
if (gc_state & KEY_GC_SET_TIMER) {
|
||||
if (key->expiry > limit && key->expiry < new_timer) {
|
||||
kdebug("will expire %x in %ld",
|
||||
key_serial(key), key->expiry - limit);
|
||||
new_timer = key->expiry;
|
||||
}
|
||||
}
|
||||
|
||||
if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2))
|
||||
if (key->type == key_gc_dead_keytype)
|
||||
gc_state |= KEY_GC_FOUND_DEAD_KEY;
|
||||
|
||||
if ((gc_state & KEY_GC_REAPING_LINKS) ||
|
||||
unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) {
|
||||
if (key->type == &key_type_keyring)
|
||||
goto found_keyring;
|
||||
}
|
||||
|
||||
if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3))
|
||||
if (key->type == key_gc_dead_keytype)
|
||||
goto destroy_dead_key;
|
||||
|
||||
skip_dead_key:
|
||||
if (spin_is_contended(&key_serial_lock) || need_resched())
|
||||
goto contended;
|
||||
}
|
||||
|
||||
contended:
|
||||
spin_unlock(&key_serial_lock);
|
||||
|
||||
maybe_resched:
|
||||
if (cursor) {
|
||||
cond_resched();
|
||||
spin_lock(&key_serial_lock);
|
||||
goto continue_scanning;
|
||||
}
|
||||
|
||||
/* We've completed the pass. Set the timer if we need to and queue a
|
||||
* new cycle if necessary. We keep executing cycles until we find one
|
||||
* where we didn't reap any keys.
|
||||
*/
|
||||
kdebug("pass complete");
|
||||
|
||||
if (gc_state & KEY_GC_SET_TIMER && new_timer != (time_t)LONG_MAX) {
|
||||
new_timer += key_gc_delay;
|
||||
key_schedule_gc(new_timer);
|
||||
}
|
||||
|
||||
if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) {
|
||||
/* Make sure everyone revalidates their keys if we marked a
|
||||
* bunch as being dead and make sure all keyring ex-payloads
|
||||
* are destroyed.
|
||||
*/
|
||||
kdebug("dead sync");
|
||||
synchronize_rcu();
|
||||
}
|
||||
|
||||
if (unlikely(gc_state & (KEY_GC_REAPING_DEAD_1 |
|
||||
KEY_GC_REAPING_DEAD_2))) {
|
||||
if (!(gc_state & KEY_GC_FOUND_DEAD_KEY)) {
|
||||
/* No remaining dead keys: short circuit the remaining
|
||||
* keytype reap cycles.
|
||||
*/
|
||||
kdebug("dead short");
|
||||
gc_state &= ~(KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2);
|
||||
gc_state |= KEY_GC_REAPING_DEAD_3;
|
||||
} else {
|
||||
gc_state |= KEY_GC_REAP_AGAIN;
|
||||
}
|
||||
}
|
||||
|
||||
if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3)) {
|
||||
kdebug("dead wake");
|
||||
smp_mb();
|
||||
clear_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags);
|
||||
wake_up_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE);
|
||||
}
|
||||
|
||||
if (gc_state & KEY_GC_REAP_AGAIN)
|
||||
queue_work(system_nrt_wq, &key_gc_work);
|
||||
kleave(" [end %x]", gc_state);
|
||||
return;
|
||||
|
||||
/* We found an unreferenced key - once we've removed it from the tree,
|
||||
* we can safely drop the lock.
|
||||
*/
|
||||
found_unreferenced_key:
|
||||
kdebug("unrefd key %d", key->serial);
|
||||
rb_erase(&key->serial_node, &key_serial_tree);
|
||||
spin_unlock(&key_serial_lock);
|
||||
|
||||
key_gc_unused_key(key);
|
||||
gc_state |= KEY_GC_REAP_AGAIN;
|
||||
goto maybe_resched;
|
||||
|
||||
/* We found a keyring and we need to check the payload for links to
|
||||
* dead or expired keys. We don't flag another reap immediately as we
|
||||
* have to wait for the old payload to be destroyed by RCU before we
|
||||
* can reap the keys to which it refers.
|
||||
*/
|
||||
found_keyring:
|
||||
spin_unlock(&key_serial_lock);
|
||||
kdebug("scan keyring %d", key->serial);
|
||||
key_gc_keyring(key, limit);
|
||||
goto maybe_resched;
|
||||
|
||||
/* We found a dead key that is still referenced. Reset its type and
|
||||
* destroy its payload with its semaphore held.
|
||||
*/
|
||||
destroy_dead_key:
|
||||
spin_unlock(&key_serial_lock);
|
||||
kdebug("destroy key %d", key->serial);
|
||||
down_write(&key->sem);
|
||||
key->type = &key_type_dead;
|
||||
if (key_gc_dead_keytype->destroy)
|
||||
key_gc_dead_keytype->destroy(key);
|
||||
memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
|
||||
up_write(&key->sem);
|
||||
goto maybe_resched;
|
||||
}
|
||||
|
|
|
@ -31,6 +31,7 @@
|
|||
no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
|
||||
#endif
|
||||
|
||||
extern struct key_type key_type_dead;
|
||||
extern struct key_type key_type_user;
|
||||
|
||||
/*****************************************************************************/
|
||||
|
@ -147,10 +148,11 @@ extern key_ref_t lookup_user_key(key_serial_t id, unsigned long flags,
|
|||
|
||||
extern long join_session_keyring(const char *name);
|
||||
|
||||
extern struct work_struct key_gc_unused_work;
|
||||
extern struct work_struct key_gc_work;
|
||||
extern unsigned key_gc_delay;
|
||||
extern void keyring_gc(struct key *keyring, time_t limit);
|
||||
extern void key_schedule_gc(time_t expiry_at);
|
||||
extern void key_gc_keytype(struct key_type *ktype);
|
||||
|
||||
extern int key_task_permission(const key_ref_t key_ref,
|
||||
const struct cred *cred,
|
||||
|
|
|
@ -39,11 +39,6 @@ static DECLARE_RWSEM(key_types_sem);
|
|||
/* We serialise key instantiation and link */
|
||||
DEFINE_MUTEX(key_construction_mutex);
|
||||
|
||||
/* Any key who's type gets unegistered will be re-typed to this */
|
||||
static struct key_type key_type_dead = {
|
||||
.name = "dead",
|
||||
};
|
||||
|
||||
#ifdef KEY_DEBUGGING
|
||||
void __key_check(const struct key *key)
|
||||
{
|
||||
|
@ -602,7 +597,7 @@ void key_put(struct key *key)
|
|||
key_check(key);
|
||||
|
||||
if (atomic_dec_and_test(&key->usage))
|
||||
queue_work(system_nrt_wq, &key_gc_unused_work);
|
||||
queue_work(system_nrt_wq, &key_gc_work);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL(key_put);
|
||||
|
@ -980,49 +975,11 @@ EXPORT_SYMBOL(register_key_type);
|
|||
*/
|
||||
void unregister_key_type(struct key_type *ktype)
|
||||
{
|
||||
struct rb_node *_n;
|
||||
struct key *key;
|
||||
|
||||
down_write(&key_types_sem);
|
||||
|
||||
/* withdraw the key type */
|
||||
list_del_init(&ktype->link);
|
||||
|
||||
/* mark all the keys of this type dead */
|
||||
spin_lock(&key_serial_lock);
|
||||
|
||||
for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
|
||||
key = rb_entry(_n, struct key, serial_node);
|
||||
|
||||
if (key->type == ktype) {
|
||||
key->type = &key_type_dead;
|
||||
set_bit(KEY_FLAG_DEAD, &key->flags);
|
||||
}
|
||||
}
|
||||
|
||||
spin_unlock(&key_serial_lock);
|
||||
|
||||
/* make sure everyone revalidates their keys */
|
||||
synchronize_rcu();
|
||||
|
||||
/* we should now be able to destroy the payloads of all the keys of
|
||||
* this type with impunity */
|
||||
spin_lock(&key_serial_lock);
|
||||
|
||||
for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
|
||||
key = rb_entry(_n, struct key, serial_node);
|
||||
|
||||
if (key->type == ktype) {
|
||||
if (ktype->destroy)
|
||||
ktype->destroy(key);
|
||||
memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
|
||||
}
|
||||
}
|
||||
|
||||
spin_unlock(&key_serial_lock);
|
||||
up_write(&key_types_sem);
|
||||
|
||||
key_schedule_gc(0);
|
||||
downgrade_write(&key_types_sem);
|
||||
key_gc_keytype(ktype);
|
||||
up_read(&key_types_sem);
|
||||
}
|
||||
EXPORT_SYMBOL(unregister_key_type);
|
||||
|
||||
|
|
Loading…
Reference in a new issue