ALSA: add LaCie FireWire Speakers/Griffin FireWave Surround driver

Add a driver for two playback-only FireWire devices based on the OXFW970
chip.

v2: better AMDTP API abstraction; fix fw_unit leak; small fixes
v3: cache the iPCR value
v4: FireWave constraints; fix fw_device reference counting;
    fix PCR caching; small changes and fixes
v5: volume/mute support; fix crashing due to pcm stop races
v6: fix build; one-channel volume for LaCie
v7: use signed values to make volume (range checks) work; fix function
    block IDs for volume/mute; always use channel 0 for LaCie volume

Signed-off-by: Clemens Ladisch <clemens@ladisch.de>
Acked-by: Stefan Richter <stefanr@s5r6.in-berlin.de>
Tested-by: Jay Fenlason <fenlason@redhat.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
This commit is contained in:
Clemens Ladisch 2011-03-15 07:53:21 +01:00 committed by Takashi Iwai
parent a5abba989d
commit 31ef9134eb
20 changed files with 2651 additions and 4 deletions

View file

@ -362,3 +362,4 @@ void fw_iso_resource_manage(struct fw_card *card, int generation,
*channel = ret;
}
}
EXPORT_SYMBOL(fw_iso_resource_manage);

View file

@ -147,9 +147,6 @@ void fw_node_event(struct fw_card *card, struct fw_node *node, int event);
/* -iso */
int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma);
void fw_iso_resource_manage(struct fw_card *card, int generation,
u64 channels_mask, int *channel, int *bandwidth,
bool allocate, __be32 buffer[2]);
/* -topology */

View file

@ -42,6 +42,10 @@
#define CSR_BROADCAST_CHANNEL 0x234
#define CSR_CONFIG_ROM 0x400
#define CSR_CONFIG_ROM_END 0x800
#define CSR_OMPR 0x900
#define CSR_OPCR(i) (0x904 + (i) * 4)
#define CSR_IMPR 0x980
#define CSR_IPCR(i) (0x984 + (i) * 4)
#define CSR_FCP_COMMAND 0xB00
#define CSR_FCP_RESPONSE 0xD00
#define CSR_FCP_END 0xF00
@ -441,5 +445,8 @@ int fw_iso_context_start(struct fw_iso_context *ctx,
int cycle, int sync, int tags);
int fw_iso_context_stop(struct fw_iso_context *ctx);
void fw_iso_context_destroy(struct fw_iso_context *ctx);
void fw_iso_resource_manage(struct fw_card *card, int generation,
u64 channels_mask, int *channel, int *bandwidth,
bool allocate, __be32 buffer[2]);
#endif /* _LINUX_FIREWIRE_H */

View file

@ -97,6 +97,8 @@ source "sound/sh/Kconfig"
# here assuming USB is defined before ALSA
source "sound/usb/Kconfig"
source "sound/firewire/Kconfig"
# the following will depend on the order of config.
# here assuming PCMCIA is defined before ALSA
source "sound/pcmcia/Kconfig"

View file

@ -6,7 +6,7 @@ obj-$(CONFIG_SOUND_PRIME) += sound_firmware.o
obj-$(CONFIG_SOUND_PRIME) += oss/
obj-$(CONFIG_DMASOUND) += oss/
obj-$(CONFIG_SND) += core/ i2c/ drivers/ isa/ pci/ ppc/ arm/ sh/ synth/ usb/ \
sparc/ spi/ parisc/ pcmcia/ mips/ soc/ atmel/
firewire/ sparc/ spi/ parisc/ pcmcia/ mips/ soc/ atmel/
obj-$(CONFIG_SND_AOA) += aoa/
# This one must be compilable even if sound is configured out

25
sound/firewire/Kconfig Normal file
View file

@ -0,0 +1,25 @@
menuconfig SND_FIREWIRE
bool "FireWire sound devices"
depends on FIREWIRE
default y
help
Support for IEEE-1394/FireWire/iLink sound devices.
if SND_FIREWIRE && FIREWIRE
config SND_FIREWIRE_LIB
tristate
depends on SND_PCM
config SND_FIREWIRE_SPEAKERS
tristate "FireWire speakers"
select SND_PCM
select SND_FIREWIRE_LIB
help
Say Y here to include support for the Griffin FireWave Surround
and the LaCie FireWire Speakers.
To compile this driver as a module, choose M here: the module
will be called snd-firewire-speakers.
endif # SND_FIREWIRE

6
sound/firewire/Makefile Normal file
View file

@ -0,0 +1,6 @@
snd-firewire-lib-objs := lib.o iso-resources.o packets-buffer.o \
fcp.o cmp.o amdtp.o
snd-firewire-speakers-objs := speakers.o
obj-$(CONFIG_SND_FIREWIRE_LIB) += snd-firewire-lib.o
obj-$(CONFIG_SND_FIREWIRE_SPEAKERS) += snd-firewire-speakers.o

549
sound/firewire/amdtp.c Normal file
View file

@ -0,0 +1,549 @@
/*
* Audio and Music Data Transmission Protocol (IEC 61883-6) streams
* with Common Isochronous Packet (IEC 61883-1) headers
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
* Licensed under the terms of the GNU General Public License, version 2.
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/firewire.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <sound/pcm.h>
#include "amdtp.h"
#define TICKS_PER_CYCLE 3072
#define CYCLES_PER_SECOND 8000
#define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
#define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 µs */
#define TAG_CIP 1
#define CIP_EOH (1u << 31)
#define CIP_FMT_AM (0x10 << 24)
#define AMDTP_FDF_AM824 (0 << 19)
#define AMDTP_FDF_SFC_SHIFT 16
/* TODO: make these configurable */
#define INTERRUPT_INTERVAL 16
#define QUEUE_LENGTH 48
/**
* amdtp_out_stream_init - initialize an AMDTP output stream structure
* @s: the AMDTP output stream to initialize
* @unit: the target of the stream
* @flags: the packet transmission method to use
*/
int amdtp_out_stream_init(struct amdtp_out_stream *s, struct fw_unit *unit,
enum cip_out_flags flags)
{
if (flags != CIP_NONBLOCKING)
return -EINVAL;
s->unit = fw_unit_get(unit);
s->flags = flags;
s->context = ERR_PTR(-1);
mutex_init(&s->mutex);
return 0;
}
EXPORT_SYMBOL(amdtp_out_stream_init);
/**
* amdtp_out_stream_destroy - free stream resources
* @s: the AMDTP output stream to destroy
*/
void amdtp_out_stream_destroy(struct amdtp_out_stream *s)
{
WARN_ON(!IS_ERR(s->context));
mutex_destroy(&s->mutex);
fw_unit_put(s->unit);
}
EXPORT_SYMBOL(amdtp_out_stream_destroy);
/**
* amdtp_out_stream_set_rate - set the sample rate
* @s: the AMDTP output stream to configure
* @rate: the sample rate
*
* The sample rate must be set before the stream is started, and must not be
* changed while the stream is running.
*/
void amdtp_out_stream_set_rate(struct amdtp_out_stream *s, unsigned int rate)
{
static const struct {
unsigned int rate;
unsigned int syt_interval;
} rate_info[] = {
[CIP_SFC_32000] = { 32000, 8, },
[CIP_SFC_44100] = { 44100, 8, },
[CIP_SFC_48000] = { 48000, 8, },
[CIP_SFC_88200] = { 88200, 16, },
[CIP_SFC_96000] = { 96000, 16, },
[CIP_SFC_176400] = { 176400, 32, },
[CIP_SFC_192000] = { 192000, 32, },
};
unsigned int sfc;
if (WARN_ON(!IS_ERR(s->context)))
return;
for (sfc = 0; sfc < ARRAY_SIZE(rate_info); ++sfc)
if (rate_info[sfc].rate == rate) {
s->sfc = sfc;
s->syt_interval = rate_info[sfc].syt_interval;
return;
}
WARN_ON(1);
}
EXPORT_SYMBOL(amdtp_out_stream_set_rate);
/**
* amdtp_out_stream_get_max_payload - get the stream's packet size
* @s: the AMDTP output stream
*
* This function must not be called before the stream has been configured
* with amdtp_out_stream_set_hw_params(), amdtp_out_stream_set_pcm(), and
* amdtp_out_stream_set_midi().
*/
unsigned int amdtp_out_stream_get_max_payload(struct amdtp_out_stream *s)
{
static const unsigned int max_data_blocks[] = {
[CIP_SFC_32000] = 4,
[CIP_SFC_44100] = 6,
[CIP_SFC_48000] = 6,
[CIP_SFC_88200] = 12,
[CIP_SFC_96000] = 12,
[CIP_SFC_176400] = 23,
[CIP_SFC_192000] = 24,
};
s->data_block_quadlets = s->pcm_channels;
s->data_block_quadlets += DIV_ROUND_UP(s->midi_ports, 8);
return 8 + max_data_blocks[s->sfc] * 4 * s->data_block_quadlets;
}
EXPORT_SYMBOL(amdtp_out_stream_get_max_payload);
static void amdtp_write_s16(struct amdtp_out_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames);
static void amdtp_write_s32(struct amdtp_out_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames);
/**
* amdtp_out_stream_set_pcm_format - set the PCM format
* @s: the AMDTP output stream to configure
* @format: the format of the ALSA PCM device
*
* The sample format must be set before the stream is started, and must not be
* changed while the stream is running.
*/
void amdtp_out_stream_set_pcm_format(struct amdtp_out_stream *s,
snd_pcm_format_t format)
{
if (WARN_ON(!IS_ERR(s->context)))
return;
switch (format) {
default:
WARN_ON(1);
/* fall through */
case SNDRV_PCM_FORMAT_S16:
s->transfer_samples = amdtp_write_s16;
break;
case SNDRV_PCM_FORMAT_S32:
s->transfer_samples = amdtp_write_s32;
break;
}
}
EXPORT_SYMBOL(amdtp_out_stream_set_pcm_format);
static unsigned int calculate_data_blocks(struct amdtp_out_stream *s)
{
unsigned int phase, data_blocks;
if (!cip_sfc_is_base_44100(s->sfc)) {
/* Sample_rate / 8000 is an integer, and precomputed. */
data_blocks = s->data_block_state;
} else {
phase = s->data_block_state;
/*
* This calculates the number of data blocks per packet so that
* 1) the overall rate is correct and exactly synchronized to
* the bus clock, and
* 2) packets with a rounded-up number of blocks occur as early
* as possible in the sequence (to prevent underruns of the
* device's buffer).
*/
if (s->sfc == CIP_SFC_44100)
/* 6 6 5 6 5 6 5 ... */
data_blocks = 5 + ((phase & 1) ^
(phase == 0 || phase >= 40));
else
/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
if (++phase >= (80 >> (s->sfc >> 1)))
phase = 0;
s->data_block_state = phase;
}
return data_blocks;
}
static unsigned int calculate_syt(struct amdtp_out_stream *s,
unsigned int cycle)
{
unsigned int syt_offset, phase, index, syt;
if (s->last_syt_offset < TICKS_PER_CYCLE) {
if (!cip_sfc_is_base_44100(s->sfc))
syt_offset = s->last_syt_offset + s->syt_offset_state;
else {
/*
* The time, in ticks, of the n'th SYT_INTERVAL sample is:
* n * SYT_INTERVAL * 24576000 / sample_rate
* Modulo TICKS_PER_CYCLE, the difference between successive
* elements is about 1386.23. Rounding the results of this
* formula to the SYT precision results in a sequence of
* differences that begins with:
* 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
* This code generates _exactly_ the same sequence.
*/
phase = s->syt_offset_state;
index = phase % 13;
syt_offset = s->last_syt_offset;
syt_offset += 1386 + ((index && !(index & 3)) ||
phase == 146);
if (++phase >= 147)
phase = 0;
s->syt_offset_state = phase;
}
} else
syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
s->last_syt_offset = syt_offset;
syt_offset += TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
syt += syt_offset % TICKS_PER_CYCLE;
return syt & 0xffff;
}
static void amdtp_write_s32(struct amdtp_out_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames)
{
struct snd_pcm_runtime *runtime = pcm->runtime;
unsigned int channels, remaining_frames, frame_step, i, c;
const u32 *src;
channels = s->pcm_channels;
src = (void *)runtime->dma_area +
s->pcm_buffer_pointer * (runtime->frame_bits / 8);
remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
frame_step = s->data_block_quadlets - channels;
for (i = 0; i < frames; ++i) {
for (c = 0; c < channels; ++c) {
*buffer = cpu_to_be32((*src >> 8) | 0x40000000);
src++;
buffer++;
}
buffer += frame_step;
if (--remaining_frames == 0)
src = (void *)runtime->dma_area;
}
}
static void amdtp_write_s16(struct amdtp_out_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames)
{
struct snd_pcm_runtime *runtime = pcm->runtime;
unsigned int channels, remaining_frames, frame_step, i, c;
const u16 *src;
channels = s->pcm_channels;
src = (void *)runtime->dma_area +
s->pcm_buffer_pointer * (runtime->frame_bits / 8);
remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
frame_step = s->data_block_quadlets - channels;
for (i = 0; i < frames; ++i) {
for (c = 0; c < channels; ++c) {
*buffer = cpu_to_be32((*src << 8) | 0x40000000);
src++;
buffer++;
}
buffer += frame_step;
if (--remaining_frames == 0)
src = (void *)runtime->dma_area;
}
}
static void amdtp_fill_pcm_silence(struct amdtp_out_stream *s,
__be32 *buffer, unsigned int frames)
{
unsigned int i, c;
for (i = 0; i < frames; ++i) {
for (c = 0; c < s->pcm_channels; ++c)
buffer[c] = cpu_to_be32(0x40000000);
buffer += s->data_block_quadlets;
}
}
static void amdtp_fill_midi(struct amdtp_out_stream *s,
__be32 *buffer, unsigned int frames)
{
unsigned int i;
for (i = 0; i < frames; ++i)
buffer[s->pcm_channels + i * s->data_block_quadlets] =
cpu_to_be32(0x80000000);
}
static void queue_out_packet(struct amdtp_out_stream *s, unsigned int cycle)
{
__be32 *buffer;
unsigned int data_blocks, syt, ptr;
struct snd_pcm_substream *pcm;
struct fw_iso_packet packet;
int err;
data_blocks = calculate_data_blocks(s);
syt = calculate_syt(s, cycle);
buffer = s->buffer.packets[s->packet_counter].buffer;
buffer[0] = cpu_to_be32(ACCESS_ONCE(s->source_node_id_field) |
(s->data_block_quadlets << 16) |
s->data_block_counter);
buffer[1] = cpu_to_be32(CIP_EOH | CIP_FMT_AM | AMDTP_FDF_AM824 |
(s->sfc << AMDTP_FDF_SFC_SHIFT) | syt);
buffer += 2;
pcm = ACCESS_ONCE(s->pcm);
if (pcm)
s->transfer_samples(s, pcm, buffer, data_blocks);
else
amdtp_fill_pcm_silence(s, buffer, data_blocks);
if (s->midi_ports)
amdtp_fill_midi(s, buffer, data_blocks);
s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
packet.payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
packet.interrupt = IS_ALIGNED(s->packet_counter + 1,
INTERRUPT_INTERVAL);
packet.skip = 0;
packet.tag = TAG_CIP;
packet.sy = 0;
packet.header_length = 0;
err = fw_iso_context_queue(s->context, &packet, &s->buffer.iso_buffer,
s->buffer.packets[s->packet_counter].offset);
if (err < 0)
dev_err(&s->unit->device, "queueing error: %d\n", err);
if (++s->packet_counter >= QUEUE_LENGTH)
s->packet_counter = 0;
if (pcm) {
ptr = s->pcm_buffer_pointer + data_blocks;
if (ptr >= pcm->runtime->buffer_size)
ptr -= pcm->runtime->buffer_size;
ACCESS_ONCE(s->pcm_buffer_pointer) = ptr;
s->pcm_period_pointer += data_blocks;
if (s->pcm_period_pointer >= pcm->runtime->period_size) {
s->pcm_period_pointer -= pcm->runtime->period_size;
snd_pcm_period_elapsed(pcm);
}
}
}
static void out_packet_callback(struct fw_iso_context *context, u32 cycle,
size_t header_length, void *header, void *data)
{
struct amdtp_out_stream *s = data;
unsigned int i, packets = header_length / 4;
/*
* Compute the cycle of the last queued packet.
* (We need only the four lowest bits for the SYT, so we can ignore
* that bits 0-11 must wrap around at 3072.)
*/
cycle += QUEUE_LENGTH - packets;
for (i = 0; i < packets; ++i)
queue_out_packet(s, ++cycle);
}
static int queue_initial_skip_packets(struct amdtp_out_stream *s)
{
struct fw_iso_packet skip_packet = {
.skip = 1,
};
unsigned int i;
int err;
for (i = 0; i < QUEUE_LENGTH; ++i) {
skip_packet.interrupt = IS_ALIGNED(s->packet_counter + 1,
INTERRUPT_INTERVAL);
err = fw_iso_context_queue(s->context, &skip_packet, NULL, 0);
if (err < 0)
return err;
if (++s->packet_counter >= QUEUE_LENGTH)
s->packet_counter = 0;
}
return 0;
}
/**
* amdtp_out_stream_start - start sending packets
* @s: the AMDTP output stream to start
* @channel: the isochronous channel on the bus
* @speed: firewire speed code
*
* The stream cannot be started until it has been configured with
* amdtp_out_stream_set_hw_params(), amdtp_out_stream_set_pcm(), and
* amdtp_out_stream_set_midi(); and it must be started before any
* PCM or MIDI device can be started.
*/
int amdtp_out_stream_start(struct amdtp_out_stream *s, int channel, int speed)
{
static const struct {
unsigned int data_block;
unsigned int syt_offset;
} initial_state[] = {
[CIP_SFC_32000] = { 4, 3072 },
[CIP_SFC_48000] = { 6, 1024 },
[CIP_SFC_96000] = { 12, 1024 },
[CIP_SFC_192000] = { 24, 1024 },
[CIP_SFC_44100] = { 0, 67 },
[CIP_SFC_88200] = { 0, 67 },
[CIP_SFC_176400] = { 0, 67 },
};
int err;
mutex_lock(&s->mutex);
if (WARN_ON(!IS_ERR(s->context) ||
(!s->pcm_channels && !s->midi_ports))) {
err = -EBADFD;
goto err_unlock;
}
s->data_block_state = initial_state[s->sfc].data_block;
s->syt_offset_state = initial_state[s->sfc].syt_offset;
s->last_syt_offset = TICKS_PER_CYCLE;
err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
amdtp_out_stream_get_max_payload(s),
DMA_TO_DEVICE);
if (err < 0)
goto err_unlock;
s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
FW_ISO_CONTEXT_TRANSMIT,
channel, speed, 0,
out_packet_callback, s);
if (IS_ERR(s->context)) {
err = PTR_ERR(s->context);
if (err == -EBUSY)
dev_err(&s->unit->device,
"no free output stream on this controller\n");
goto err_buffer;
}
amdtp_out_stream_update(s);
s->packet_counter = 0;
s->data_block_counter = 0;
err = queue_initial_skip_packets(s);
if (err < 0)
goto err_context;
err = fw_iso_context_start(s->context, -1, 0, 0);
if (err < 0)
goto err_context;
mutex_unlock(&s->mutex);
return 0;
err_context:
fw_iso_context_destroy(s->context);
s->context = ERR_PTR(-1);
err_buffer:
iso_packets_buffer_destroy(&s->buffer, s->unit);
err_unlock:
mutex_unlock(&s->mutex);
return err;
}
EXPORT_SYMBOL(amdtp_out_stream_start);
/**
* amdtp_out_stream_update - update the stream after a bus reset
* @s: the AMDTP output stream
*/
void amdtp_out_stream_update(struct amdtp_out_stream *s)
{
ACCESS_ONCE(s->source_node_id_field) =
(fw_parent_device(s->unit)->card->node_id & 0x3f) << 24;
}
EXPORT_SYMBOL(amdtp_out_stream_update);
/**
* amdtp_out_stream_stop - stop sending packets
* @s: the AMDTP output stream to stop
*
* All PCM and MIDI devices of the stream must be stopped before the stream
* itself can be stopped.
*/
void amdtp_out_stream_stop(struct amdtp_out_stream *s)
{
mutex_lock(&s->mutex);
if (IS_ERR(s->context)) {
mutex_unlock(&s->mutex);
return;
}
fw_iso_context_stop(s->context);
fw_iso_context_destroy(s->context);
s->context = ERR_PTR(-1);
iso_packets_buffer_destroy(&s->buffer, s->unit);
mutex_unlock(&s->mutex);
}
EXPORT_SYMBOL(amdtp_out_stream_stop);
/**
* amdtp_out_stream_pcm_abort - abort the running PCM device
* @s: the AMDTP stream about to be stopped
*
* If the isochronous stream needs to be stopped asynchronously, call this
* function first to stop the PCM device.
*/
void amdtp_out_stream_pcm_abort(struct amdtp_out_stream *s)
{
struct snd_pcm_substream *pcm;
pcm = ACCESS_ONCE(s->pcm);
if (pcm) {
snd_pcm_stream_lock_irq(pcm);
if (snd_pcm_running(pcm))
snd_pcm_stop(pcm, SNDRV_PCM_STATE_XRUN);
snd_pcm_stream_unlock_irq(pcm);
}
}
EXPORT_SYMBOL(amdtp_out_stream_pcm_abort);

157
sound/firewire/amdtp.h Normal file
View file

@ -0,0 +1,157 @@
#ifndef SOUND_FIREWIRE_AMDTP_H_INCLUDED
#define SOUND_FIREWIRE_AMDTP_H_INCLUDED
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include "packets-buffer.h"
/**
* enum cip_out_flags - describes details of the streaming protocol
* @CIP_NONBLOCKING: In non-blocking mode, each packet contains
* sample_rate/8000 samples, with rounding up or down to adjust
* for clock skew and left-over fractional samples. This should
* be used if supported by the device.
*/
enum cip_out_flags {
CIP_NONBLOCKING = 0,
};
/**
* enum cip_sfc - a stream's sample rate
*/
enum cip_sfc {
CIP_SFC_32000 = 0,
CIP_SFC_44100 = 1,
CIP_SFC_48000 = 2,
CIP_SFC_88200 = 3,
CIP_SFC_96000 = 4,
CIP_SFC_176400 = 5,
CIP_SFC_192000 = 6,
};
#define AMDTP_OUT_PCM_FORMAT_BITS (SNDRV_PCM_FMTBIT_S16 | \
SNDRV_PCM_FMTBIT_S32)
struct fw_unit;
struct fw_iso_context;
struct snd_pcm_substream;
struct amdtp_out_stream {
struct fw_unit *unit;
enum cip_out_flags flags;
struct fw_iso_context *context;
struct mutex mutex;
enum cip_sfc sfc;
unsigned int data_block_quadlets;
unsigned int pcm_channels;
unsigned int midi_ports;
void (*transfer_samples)(struct amdtp_out_stream *s,
struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int frames);
unsigned int syt_interval;
unsigned int source_node_id_field;
struct iso_packets_buffer buffer;
struct snd_pcm_substream *pcm;
unsigned int packet_counter;
unsigned int data_block_counter;
unsigned int data_block_state;
unsigned int last_syt_offset;
unsigned int syt_offset_state;
unsigned int pcm_buffer_pointer;
unsigned int pcm_period_pointer;
};
int amdtp_out_stream_init(struct amdtp_out_stream *s, struct fw_unit *unit,
enum cip_out_flags flags);
void amdtp_out_stream_destroy(struct amdtp_out_stream *s);
void amdtp_out_stream_set_rate(struct amdtp_out_stream *s, unsigned int rate);
unsigned int amdtp_out_stream_get_max_payload(struct amdtp_out_stream *s);
int amdtp_out_stream_start(struct amdtp_out_stream *s, int channel, int speed);
void amdtp_out_stream_update(struct amdtp_out_stream *s);
void amdtp_out_stream_stop(struct amdtp_out_stream *s);
void amdtp_out_stream_set_pcm_format(struct amdtp_out_stream *s,
snd_pcm_format_t format);
void amdtp_out_stream_pcm_abort(struct amdtp_out_stream *s);
/**
* amdtp_out_stream_set_pcm - configure format of PCM samples
* @s: the AMDTP output stream to be configured
* @pcm_channels: the number of PCM samples in each data block, to be encoded
* as AM824 multi-bit linear audio
*
* This function must not be called while the stream is running.
*/
static inline void amdtp_out_stream_set_pcm(struct amdtp_out_stream *s,
unsigned int pcm_channels)
{
s->pcm_channels = pcm_channels;
}
/**
* amdtp_out_stream_set_midi - configure format of MIDI data
* @s: the AMDTP output stream to be configured
* @midi_ports: the number of MIDI ports (i.e., MPX-MIDI Data Channels)
*
* This function must not be called while the stream is running.
*/
static inline void amdtp_out_stream_set_midi(struct amdtp_out_stream *s,
unsigned int midi_ports)
{
s->midi_ports = midi_ports;
}
/**
* amdtp_out_stream_pcm_prepare - prepare PCM device for running
* @s: the AMDTP output stream
*
* This function should be called from the PCM device's .prepare callback.
*/
static inline void amdtp_out_stream_pcm_prepare(struct amdtp_out_stream *s)
{
s->pcm_buffer_pointer = 0;
s->pcm_period_pointer = 0;
}
/**
* amdtp_out_stream_pcm_trigger - start/stop playback from a PCM device
* @s: the AMDTP output stream
* @pcm: the PCM device to be started, or %NULL to stop the current device
*
* Call this function on a running isochronous stream to enable the actual
* transmission of PCM data. This function should be called from the PCM
* device's .trigger callback.
*/
static inline void amdtp_out_stream_pcm_trigger(struct amdtp_out_stream *s,
struct snd_pcm_substream *pcm)
{
ACCESS_ONCE(s->pcm) = pcm;
}
/**
* amdtp_out_stream_pcm_pointer - get the PCM buffer position
* @s: the AMDTP output stream that transports the PCM data
*
* Returns the current buffer position, in frames.
*/
static inline unsigned long
amdtp_out_stream_pcm_pointer(struct amdtp_out_stream *s)
{
return ACCESS_ONCE(s->pcm_buffer_pointer);
}
static inline bool cip_sfc_is_base_44100(enum cip_sfc sfc)
{
return sfc & 1;
}
#endif

305
sound/firewire/cmp.c Normal file
View file

@ -0,0 +1,305 @@
/*
* Connection Management Procedures (IEC 61883-1) helper functions
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
* Licensed under the terms of the GNU General Public License, version 2.
*/
#include <linux/device.h>
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
#include <linux/module.h>
#include <linux/sched.h>
#include "lib.h"
#include "iso-resources.h"
#include "cmp.h"
#define IMPR_SPEED_MASK 0xc0000000
#define IMPR_SPEED_SHIFT 30
#define IMPR_XSPEED_MASK 0x00000060
#define IMPR_XSPEED_SHIFT 5
#define IMPR_PLUGS_MASK 0x0000001f
#define IPCR_ONLINE 0x80000000
#define IPCR_BCAST_CONN 0x40000000
#define IPCR_P2P_CONN_MASK 0x3f000000
#define IPCR_P2P_CONN_SHIFT 24
#define IPCR_CHANNEL_MASK 0x003f0000
#define IPCR_CHANNEL_SHIFT 16
enum bus_reset_handling {
ABORT_ON_BUS_RESET,
SUCCEED_ON_BUS_RESET,
};
static __attribute__((format(printf, 2, 3)))
void cmp_error(struct cmp_connection *c, const char *fmt, ...)
{
va_list va;
va_start(va, fmt);
dev_err(&c->resources.unit->device, "%cPCR%u: %pV",
'i', c->pcr_index, &(struct va_format){ fmt, &va });
va_end(va);
}
static int pcr_modify(struct cmp_connection *c,
__be32 (*modify)(struct cmp_connection *c, __be32 old),
int (*check)(struct cmp_connection *c, __be32 pcr),
enum bus_reset_handling bus_reset_handling)
{
struct fw_device *device = fw_parent_device(c->resources.unit);
__be32 *buffer = c->resources.buffer;
int generation = c->resources.generation;
int rcode, errors = 0;
__be32 old_arg;
int err;
buffer[0] = c->last_pcr_value;
for (;;) {
old_arg = buffer[0];
buffer[1] = modify(c, buffer[0]);
rcode = fw_run_transaction(
device->card, TCODE_LOCK_COMPARE_SWAP,
device->node_id, generation, device->max_speed,
CSR_REGISTER_BASE + CSR_IPCR(c->pcr_index),
buffer, 8);
if (rcode == RCODE_COMPLETE) {
if (buffer[0] == old_arg) /* success? */
break;
if (check) {
err = check(c, buffer[0]);
if (err < 0)
return err;
}
} else if (rcode == RCODE_GENERATION)
goto bus_reset;
else if (rcode_is_permanent_error(rcode) || ++errors >= 3)
goto io_error;
}
c->last_pcr_value = buffer[1];
return 0;
io_error:
cmp_error(c, "transaction failed: %s\n", rcode_string(rcode));
return -EIO;
bus_reset:
return bus_reset_handling == ABORT_ON_BUS_RESET ? -EAGAIN : 0;
}
/**
* cmp_connection_init - initializes a connection manager
* @c: the connection manager to initialize
* @unit: a unit of the target device
* @ipcr_index: the index of the iPCR on the target device
*/
int cmp_connection_init(struct cmp_connection *c,
struct fw_unit *unit,
unsigned int ipcr_index)
{
__be32 impr_be;
u32 impr;
int err;
err = snd_fw_transaction(unit, TCODE_READ_QUADLET_REQUEST,
CSR_REGISTER_BASE + CSR_IMPR,
&impr_be, 4);
if (err < 0)
return err;
impr = be32_to_cpu(impr_be);
if (ipcr_index >= (impr & IMPR_PLUGS_MASK))
return -EINVAL;
c->connected = false;
mutex_init(&c->mutex);
fw_iso_resources_init(&c->resources, unit);
c->last_pcr_value = cpu_to_be32(0x80000000);
c->pcr_index = ipcr_index;
c->max_speed = (impr & IMPR_SPEED_MASK) >> IMPR_SPEED_SHIFT;
if (c->max_speed == SCODE_BETA)
c->max_speed += (impr & IMPR_XSPEED_MASK) >> IMPR_XSPEED_SHIFT;
return 0;
}
EXPORT_SYMBOL(cmp_connection_init);
/**
* cmp_connection_destroy - free connection manager resources
* @c: the connection manager
*/
void cmp_connection_destroy(struct cmp_connection *c)
{
WARN_ON(c->connected);
mutex_destroy(&c->mutex);
fw_iso_resources_destroy(&c->resources);
}
EXPORT_SYMBOL(cmp_connection_destroy);
static __be32 ipcr_set_modify(struct cmp_connection *c, __be32 ipcr)
{
ipcr &= ~cpu_to_be32(IPCR_BCAST_CONN |
IPCR_P2P_CONN_MASK |
IPCR_CHANNEL_MASK);
ipcr |= cpu_to_be32(1 << IPCR_P2P_CONN_SHIFT);
ipcr |= cpu_to_be32(c->resources.channel << IPCR_CHANNEL_SHIFT);
return ipcr;
}
static int ipcr_set_check(struct cmp_connection *c, __be32 ipcr)
{
if (ipcr & cpu_to_be32(IPCR_BCAST_CONN |
IPCR_P2P_CONN_MASK)) {
cmp_error(c, "plug is already in use\n");
return -EBUSY;
}
if (!(ipcr & cpu_to_be32(IPCR_ONLINE))) {
cmp_error(c, "plug is not on-line\n");
return -ECONNREFUSED;
}
return 0;
}
/**
* cmp_connection_establish - establish a connection to the target
* @c: the connection manager
* @max_payload_bytes: the amount of data (including CIP headers) per packet
*
* This function establishes a point-to-point connection from the local
* computer to the target by allocating isochronous resources (channel and
* bandwidth) and setting the target's input plug control register. When this
* function succeeds, the caller is responsible for starting transmitting
* packets.
*/
int cmp_connection_establish(struct cmp_connection *c,
unsigned int max_payload_bytes)
{
int err;
if (WARN_ON(c->connected))
return -EISCONN;
c->speed = min(c->max_speed,
fw_parent_device(c->resources.unit)->max_speed);
mutex_lock(&c->mutex);
retry_after_bus_reset:
err = fw_iso_resources_allocate(&c->resources,
max_payload_bytes, c->speed);
if (err < 0)
goto err_mutex;
err = pcr_modify(c, ipcr_set_modify, ipcr_set_check,
ABORT_ON_BUS_RESET);
if (err == -EAGAIN) {
fw_iso_resources_free(&c->resources);
goto retry_after_bus_reset;
}
if (err < 0)
goto err_resources;
c->connected = true;
mutex_unlock(&c->mutex);
return 0;
err_resources:
fw_iso_resources_free(&c->resources);
err_mutex:
mutex_unlock(&c->mutex);
return err;
}
EXPORT_SYMBOL(cmp_connection_establish);
/**
* cmp_connection_update - update the connection after a bus reset
* @c: the connection manager
*
* This function must be called from the driver's .update handler to reestablish
* any connection that might have been active.
*
* Returns zero on success, or a negative error code. On an error, the
* connection is broken and the caller must stop transmitting iso packets.
*/
int cmp_connection_update(struct cmp_connection *c)
{
int err;
mutex_lock(&c->mutex);
if (!c->connected) {
mutex_unlock(&c->mutex);
return 0;
}
err = fw_iso_resources_update(&c->resources);
if (err < 0)
goto err_unconnect;
err = pcr_modify(c, ipcr_set_modify, ipcr_set_check,
SUCCEED_ON_BUS_RESET);
if (err < 0)
goto err_resources;
mutex_unlock(&c->mutex);
return 0;
err_resources:
fw_iso_resources_free(&c->resources);
err_unconnect:
c->connected = false;
mutex_unlock(&c->mutex);
return err;
}
EXPORT_SYMBOL(cmp_connection_update);
static __be32 ipcr_break_modify(struct cmp_connection *c, __be32 ipcr)
{
return ipcr & ~cpu_to_be32(IPCR_BCAST_CONN | IPCR_P2P_CONN_MASK);
}
/**
* cmp_connection_break - break the connection to the target
* @c: the connection manager
*
* This function deactives the connection in the target's input plug control
* register, and frees the isochronous resources of the connection. Before
* calling this function, the caller should cease transmitting packets.
*/
void cmp_connection_break(struct cmp_connection *c)
{
int err;
mutex_lock(&c->mutex);
if (!c->connected) {
mutex_unlock(&c->mutex);
return;
}
err = pcr_modify(c, ipcr_break_modify, NULL, SUCCEED_ON_BUS_RESET);
if (err < 0)
cmp_error(c, "plug is still connected\n");
fw_iso_resources_free(&c->resources);
c->connected = false;
mutex_unlock(&c->mutex);
}
EXPORT_SYMBOL(cmp_connection_break);

41
sound/firewire/cmp.h Normal file
View file

@ -0,0 +1,41 @@
#ifndef SOUND_FIREWIRE_CMP_H_INCLUDED
#define SOUND_FIREWIRE_CMP_H_INCLUDED
#include <linux/mutex.h>
#include <linux/types.h>
#include "iso-resources.h"
struct fw_unit;
/**
* struct cmp_connection - manages an isochronous connection to a device
* @speed: the connection's actual speed
*
* This structure manages (using CMP) an isochronous stream from the local
* computer to a device's input plug (iPCR).
*
* There is no corresponding oPCR created on the local computer, so it is not
* possible to overlay connections on top of this one.
*/
struct cmp_connection {
int speed;
/* private: */
bool connected;
struct mutex mutex;
struct fw_iso_resources resources;
__be32 last_pcr_value;
unsigned int pcr_index;
unsigned int max_speed;
};
int cmp_connection_init(struct cmp_connection *connection,
struct fw_unit *unit,
unsigned int ipcr_index);
void cmp_connection_destroy(struct cmp_connection *connection);
int cmp_connection_establish(struct cmp_connection *connection,
unsigned int max_payload);
int cmp_connection_update(struct cmp_connection *connection);
void cmp_connection_break(struct cmp_connection *connection);
#endif

223
sound/firewire/fcp.c Normal file
View file

@ -0,0 +1,223 @@
/*
* Function Control Protocol (IEC 61883-1) helper functions
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
* Licensed under the terms of the GNU General Public License, version 2.
*/
#include <linux/device.h>
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/wait.h>
#include "fcp.h"
#include "lib.h"
#define CTS_AVC 0x00
#define ERROR_RETRIES 3
#define ERROR_DELAY_MS 5
#define FCP_TIMEOUT_MS 125
static DEFINE_SPINLOCK(transactions_lock);
static LIST_HEAD(transactions);
enum fcp_state {
STATE_PENDING,
STATE_BUS_RESET,
STATE_COMPLETE,
};
struct fcp_transaction {
struct list_head list;
struct fw_unit *unit;
void *response_buffer;
unsigned int response_size;
unsigned int response_match_bytes;
enum fcp_state state;
wait_queue_head_t wait;
};
/**
* fcp_avc_transaction - send an AV/C command and wait for its response
* @unit: a unit on the target device
* @command: a buffer containing the command frame; must be DMA-able
* @command_size: the size of @command
* @response: a buffer for the response frame
* @response_size: the maximum size of @response
* @response_match_bytes: a bitmap specifying the bytes used to detect the
* correct response frame
*
* This function sends a FCP command frame to the target and waits for the
* corresponding response frame to be returned.
*
* Because it is possible for multiple FCP transactions to be active at the
* same time, the correct response frame is detected by the value of certain
* bytes. These bytes must be set in @response before calling this function,
* and the corresponding bits must be set in @response_match_bytes.
*
* @command and @response can point to the same buffer.
*
* Asynchronous operation (INTERIM, NOTIFY) is not supported at the moment.
*
* Returns the actual size of the response frame, or a negative error code.
*/
int fcp_avc_transaction(struct fw_unit *unit,
const void *command, unsigned int command_size,
void *response, unsigned int response_size,
unsigned int response_match_bytes)
{
struct fcp_transaction t;
int tcode, ret, tries = 0;
t.unit = unit;
t.response_buffer = response;
t.response_size = response_size;
t.response_match_bytes = response_match_bytes;
t.state = STATE_PENDING;
init_waitqueue_head(&t.wait);
spin_lock_irq(&transactions_lock);
list_add_tail(&t.list, &transactions);
spin_unlock_irq(&transactions_lock);
for (;;) {
tcode = command_size == 4 ? TCODE_WRITE_QUADLET_REQUEST
: TCODE_WRITE_BLOCK_REQUEST;
ret = snd_fw_transaction(t.unit, tcode,
CSR_REGISTER_BASE + CSR_FCP_COMMAND,
(void *)command, command_size);
if (ret < 0)
break;
wait_event_timeout(t.wait, t.state != STATE_PENDING,
msecs_to_jiffies(FCP_TIMEOUT_MS));
if (t.state == STATE_COMPLETE) {
ret = t.response_size;
break;
} else if (t.state == STATE_BUS_RESET) {
msleep(ERROR_DELAY_MS);
} else if (++tries >= ERROR_RETRIES) {
dev_err(&t.unit->device, "FCP command timed out\n");
ret = -EIO;
break;
}
}
spin_lock_irq(&transactions_lock);
list_del(&t.list);
spin_unlock_irq(&transactions_lock);
return ret;
}
EXPORT_SYMBOL(fcp_avc_transaction);
/**
* fcp_bus_reset - inform the target handler about a bus reset
* @unit: the unit that might be used by fcp_avc_transaction()
*
* This function must be called from the driver's .update handler to inform
* the FCP transaction handler that a bus reset has happened. Any pending FCP
* transactions are retried.
*/
void fcp_bus_reset(struct fw_unit *unit)
{
struct fcp_transaction *t;
spin_lock_irq(&transactions_lock);
list_for_each_entry(t, &transactions, list) {
if (t->unit == unit &&
t->state == STATE_PENDING) {
t->state = STATE_BUS_RESET;
wake_up(&t->wait);
}
}
spin_unlock_irq(&transactions_lock);
}
EXPORT_SYMBOL(fcp_bus_reset);
/* checks whether the response matches the masked bytes in response_buffer */
static bool is_matching_response(struct fcp_transaction *transaction,
const void *response, size_t length)
{
const u8 *p1, *p2;
unsigned int mask, i;
p1 = response;
p2 = transaction->response_buffer;
mask = transaction->response_match_bytes;
for (i = 0; ; ++i) {
if ((mask & 1) && p1[i] != p2[i])
return false;
mask >>= 1;
if (!mask)
return true;
if (--length == 0)
return false;
}
}
static void fcp_response(struct fw_card *card, struct fw_request *request,
int tcode, int destination, int source,
int generation, unsigned long long offset,
void *data, size_t length, void *callback_data)
{
struct fcp_transaction *t;
unsigned long flags;
if (length < 1 || (*(const u8 *)data & 0xf0) != CTS_AVC)
return;
spin_lock_irqsave(&transactions_lock, flags);
list_for_each_entry(t, &transactions, list) {
struct fw_device *device = fw_parent_device(t->unit);
if (device->card != card ||
device->generation != generation)
continue;
smp_rmb(); /* node_id vs. generation */
if (device->node_id != source)
continue;
if (t->state == STATE_PENDING &&
is_matching_response(t, data, length)) {
t->state = STATE_COMPLETE;
t->response_size = min((unsigned int)length,
t->response_size);
memcpy(t->response_buffer, data, t->response_size);
wake_up(&t->wait);
}
}
spin_unlock_irqrestore(&transactions_lock, flags);
}
static struct fw_address_handler response_register_handler = {
.length = 0x200,
.address_callback = fcp_response,
};
static int __init fcp_module_init(void)
{
static const struct fw_address_region response_register_region = {
.start = CSR_REGISTER_BASE + CSR_FCP_RESPONSE,
.end = CSR_REGISTER_BASE + CSR_FCP_END,
};
fw_core_add_address_handler(&response_register_handler,
&response_register_region);
return 0;
}
static void __exit fcp_module_exit(void)
{
WARN_ON(!list_empty(&transactions));
fw_core_remove_address_handler(&response_register_handler);
}
module_init(fcp_module_init);
module_exit(fcp_module_exit);

12
sound/firewire/fcp.h Normal file
View file

@ -0,0 +1,12 @@
#ifndef SOUND_FIREWIRE_FCP_H_INCLUDED
#define SOUND_FIREWIRE_FCP_H_INCLUDED
struct fw_unit;
int fcp_avc_transaction(struct fw_unit *unit,
const void *command, unsigned int command_size,
void *response, unsigned int response_size,
unsigned int response_match_bytes);
void fcp_bus_reset(struct fw_unit *unit);
#endif

View file

@ -0,0 +1,224 @@
/*
* isochronous resources helper functions
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
* Licensed under the terms of the GNU General Public License, version 2.
*/
#include <linux/device.h>
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
#include <linux/jiffies.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include "iso-resources.h"
/**
* fw_iso_resources_init - initializes a &struct fw_iso_resources
* @r: the resource manager to initialize
* @unit: the device unit for which the resources will be needed
*
* If the device does not support all channel numbers, change @r->channels_mask
* after calling this function.
*/
void fw_iso_resources_init(struct fw_iso_resources *r, struct fw_unit *unit)
{
r->channels_mask = ~0uLL;
r->unit = fw_unit_get(unit);
mutex_init(&r->mutex);
r->allocated = false;
}
/**
* fw_iso_resources_destroy - destroy a resource manager
* @r: the resource manager that is no longer needed
*/
void fw_iso_resources_destroy(struct fw_iso_resources *r)
{
WARN_ON(r->allocated);
mutex_destroy(&r->mutex);
fw_unit_put(r->unit);
}
static unsigned int packet_bandwidth(unsigned int max_payload_bytes, int speed)
{
unsigned int bytes, s400_bytes;
/* iso packets have three header quadlets and quadlet-aligned payload */
bytes = 3 * 4 + ALIGN(max_payload_bytes, 4);
/* convert to bandwidth units (quadlets at S1600 = bytes at S400) */
if (speed <= SCODE_400)
s400_bytes = bytes * (1 << (SCODE_400 - speed));
else
s400_bytes = DIV_ROUND_UP(bytes, 1 << (speed - SCODE_400));
return s400_bytes;
}
static int current_bandwidth_overhead(struct fw_card *card)
{
/*
* Under the usual pessimistic assumption (cable length 4.5 m), the
* isochronous overhead for N cables is 1.797 µs + N * 0.494 µs, or
* 88.3 + N * 24.3 in bandwidth units.
*
* The calculation below tries to deduce N from the current gap count.
* If the gap count has been optimized by measuring the actual packet
* transmission time, this derived overhead should be near the actual
* overhead as well.
*/
return card->gap_count < 63 ? card->gap_count * 97 / 10 + 89 : 512;
}
static int wait_isoch_resource_delay_after_bus_reset(struct fw_card *card)
{
for (;;) {
s64 delay = (card->reset_jiffies + HZ) - get_jiffies_64();
if (delay <= 0)
return 0;
if (schedule_timeout_interruptible(delay) > 0)
return -ERESTARTSYS;
}
}
/**
* fw_iso_resources_allocate - allocate isochronous channel and bandwidth
* @r: the resource manager
* @max_payload_bytes: the amount of data (including CIP headers) per packet
* @speed: the speed (e.g., SCODE_400) at which the packets will be sent
*
* This function allocates one isochronous channel and enough bandwidth for the
* specified packet size.
*
* Returns the channel number that the caller must use for streaming, or
* a negative error code. Due to potentionally long delays, this function is
* interruptible and can return -ERESTARTSYS. On success, the caller is
* responsible for calling fw_iso_resources_update() on bus resets, and
* fw_iso_resources_free() when the resources are not longer needed.
*/
int fw_iso_resources_allocate(struct fw_iso_resources *r,
unsigned int max_payload_bytes, int speed)
{
struct fw_card *card = fw_parent_device(r->unit)->card;
int bandwidth, channel, err;
if (WARN_ON(r->allocated))
return -EBADFD;
r->bandwidth = packet_bandwidth(max_payload_bytes, speed);
retry_after_bus_reset:
spin_lock_irq(&card->lock);
r->generation = card->generation;
r->bandwidth_overhead = current_bandwidth_overhead(card);
spin_unlock_irq(&card->lock);
err = wait_isoch_resource_delay_after_bus_reset(card);
if (err < 0)
return err;
mutex_lock(&r->mutex);
bandwidth = r->bandwidth + r->bandwidth_overhead;
fw_iso_resource_manage(card, r->generation, r->channels_mask,
&channel, &bandwidth, true, r->buffer);
if (channel == -EAGAIN) {
mutex_unlock(&r->mutex);
goto retry_after_bus_reset;
}
if (channel >= 0) {
r->channel = channel;
r->allocated = true;
} else {
if (channel == -EBUSY)
dev_err(&r->unit->device,
"isochronous resources exhausted\n");
else
dev_err(&r->unit->device,
"isochronous resource allocation failed\n");
}
mutex_unlock(&r->mutex);
return channel;
}
/**
* fw_iso_resources_update - update resource allocations after a bus reset
* @r: the resource manager
*
* This function must be called from the driver's .update handler to reallocate
* any resources that were allocated before the bus reset. It is safe to call
* this function if no resources are currently allocated.
*
* Returns a negative error code on failure. If this happens, the caller must
* stop streaming.
*/
int fw_iso_resources_update(struct fw_iso_resources *r)
{
struct fw_card *card = fw_parent_device(r->unit)->card;
int bandwidth, channel;
mutex_lock(&r->mutex);
if (!r->allocated) {
mutex_unlock(&r->mutex);
return 0;
}
spin_lock_irq(&card->lock);
r->generation = card->generation;
r->bandwidth_overhead = current_bandwidth_overhead(card);
spin_unlock_irq(&card->lock);
bandwidth = r->bandwidth + r->bandwidth_overhead;
fw_iso_resource_manage(card, r->generation, 1uLL << r->channel,
&channel, &bandwidth, true, r->buffer);
/*
* When another bus reset happens, pretend that the allocation
* succeeded; we will try again for the new generation later.
*/
if (channel < 0 && channel != -EAGAIN) {
r->allocated = false;
if (channel == -EBUSY)
dev_err(&r->unit->device,
"isochronous resources exhausted\n");
else
dev_err(&r->unit->device,
"isochronous resource allocation failed\n");
}
mutex_unlock(&r->mutex);
return channel;
}
/**
* fw_iso_resources_free - frees allocated resources
* @r: the resource manager
*
* This function deallocates the channel and bandwidth, if allocated.
*/
void fw_iso_resources_free(struct fw_iso_resources *r)
{
struct fw_card *card = fw_parent_device(r->unit)->card;
int bandwidth, channel;
mutex_lock(&r->mutex);
if (r->allocated) {
bandwidth = r->bandwidth + r->bandwidth_overhead;
fw_iso_resource_manage(card, r->generation, 1uLL << r->channel,
&channel, &bandwidth, false, r->buffer);
if (channel < 0)
dev_err(&r->unit->device,
"isochronous resource deallocation failed\n");
r->allocated = false;
}
mutex_unlock(&r->mutex);
}

View file

@ -0,0 +1,39 @@
#ifndef SOUND_FIREWIRE_ISO_RESOURCES_H_INCLUDED
#define SOUND_FIREWIRE_ISO_RESOURCES_H_INCLUDED
#include <linux/mutex.h>
#include <linux/types.h>
struct fw_unit;
/**
* struct fw_iso_resources - manages channel/bandwidth allocation
* @channels_mask: if the device does not support all channel numbers, set this
* bit mask to something else than the default (all ones)
*
* This structure manages (de)allocation of isochronous resources (channel and
* bandwidth) for one isochronous stream.
*/
struct fw_iso_resources {
u64 channels_mask;
/* private: */
struct fw_unit *unit;
struct mutex mutex;
unsigned int channel;
unsigned int bandwidth; /* in bandwidth units, without overhead */
unsigned int bandwidth_overhead;
int generation; /* in which allocation is valid */
bool allocated;
__be32 buffer[2];
};
void fw_iso_resources_init(struct fw_iso_resources *r,
struct fw_unit *unit);
void fw_iso_resources_destroy(struct fw_iso_resources *r);
int fw_iso_resources_allocate(struct fw_iso_resources *r,
unsigned int max_payload_bytes, int speed);
int fw_iso_resources_update(struct fw_iso_resources *r);
void fw_iso_resources_free(struct fw_iso_resources *r);
#endif

85
sound/firewire/lib.c Normal file
View file

@ -0,0 +1,85 @@
/*
* miscellaneous helper functions
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
* Licensed under the terms of the GNU General Public License, version 2.
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/firewire.h>
#include <linux/module.h>
#include "lib.h"
#define ERROR_RETRY_DELAY_MS 5
/**
* rcode_string - convert a firewire result code to a string
* @rcode: the result
*/
const char *rcode_string(unsigned int rcode)
{
static const char *const names[] = {
[RCODE_COMPLETE] = "complete",
[RCODE_CONFLICT_ERROR] = "conflict error",
[RCODE_DATA_ERROR] = "data error",
[RCODE_TYPE_ERROR] = "type error",
[RCODE_ADDRESS_ERROR] = "address error",
[RCODE_SEND_ERROR] = "send error",
[RCODE_CANCELLED] = "cancelled",
[RCODE_BUSY] = "busy",
[RCODE_GENERATION] = "generation",
[RCODE_NO_ACK] = "no ack",
};
if (rcode < ARRAY_SIZE(names) && names[rcode])
return names[rcode];
else
return "unknown";
}
EXPORT_SYMBOL(rcode_string);
/**
* snd_fw_transaction - send a request and wait for its completion
* @unit: the driver's unit on the target device
* @tcode: the transaction code
* @offset: the address in the target's address space
* @buffer: input/output data
* @length: length of @buffer
*
* Submits an asynchronous request to the target device, and waits for the
* response. The node ID and the current generation are derived from @unit.
* On a bus reset or an error, the transaction is retried a few times.
* Returns zero on success, or a negative error code.
*/
int snd_fw_transaction(struct fw_unit *unit, int tcode,
u64 offset, void *buffer, size_t length)
{
struct fw_device *device = fw_parent_device(unit);
int generation, rcode, tries = 0;
for (;;) {
generation = device->generation;
smp_rmb(); /* node_id vs. generation */
rcode = fw_run_transaction(device->card, tcode,
device->node_id, generation,
device->max_speed, offset,
buffer, length);
if (rcode == RCODE_COMPLETE)
return 0;
if (rcode_is_permanent_error(rcode) || ++tries >= 3) {
dev_err(&unit->device, "transaction failed: %s\n",
rcode_string(rcode));
return -EIO;
}
msleep(ERROR_RETRY_DELAY_MS);
}
}
EXPORT_SYMBOL(snd_fw_transaction);
MODULE_DESCRIPTION("FireWire audio helper functions");
MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
MODULE_LICENSE("GPL v2");

19
sound/firewire/lib.h Normal file
View file

@ -0,0 +1,19 @@
#ifndef SOUND_FIREWIRE_LIB_H_INCLUDED
#define SOUND_FIREWIRE_LIB_H_INCLUDED
#include <linux/firewire-constants.h>
#include <linux/types.h>
struct fw_unit;
int snd_fw_transaction(struct fw_unit *unit, int tcode,
u64 offset, void *buffer, size_t length);
const char *rcode_string(unsigned int rcode);
/* returns true if retrying the transaction would not make sense */
static inline bool rcode_is_permanent_error(int rcode)
{
return rcode == RCODE_TYPE_ERROR || rcode == RCODE_ADDRESS_ERROR;
}
#endif

View file

@ -0,0 +1,74 @@
/*
* helpers for managing a buffer for many packets
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
* Licensed under the terms of the GNU General Public License, version 2.
*/
#include <linux/firewire.h>
#include <linux/slab.h>
#include "packets-buffer.h"
/**
* iso_packets_buffer_init - allocates the memory for packets
* @b: the buffer structure to initialize
* @unit: the device at the other end of the stream
* @count: the number of packets
* @packet_size: the (maximum) size of a packet, in bytes
* @direction: %DMA_TO_DEVICE or %DMA_FROM_DEVICE
*/
int iso_packets_buffer_init(struct iso_packets_buffer *b, struct fw_unit *unit,
unsigned int count, unsigned int packet_size,
enum dma_data_direction direction)
{
unsigned int packets_per_page, pages;
unsigned int i, page_index, offset_in_page;
void *p;
int err;
b->packets = kmalloc(count * sizeof(*b->packets), GFP_KERNEL);
if (!b->packets) {
err = -ENOMEM;
goto error;
}
packet_size = L1_CACHE_ALIGN(packet_size);
packets_per_page = PAGE_SIZE / packet_size;
if (WARN_ON(!packets_per_page)) {
err = -EINVAL;
goto error;
}
pages = DIV_ROUND_UP(count, packets_per_page);
err = fw_iso_buffer_init(&b->iso_buffer, fw_parent_device(unit)->card,
pages, direction);
if (err < 0)
goto err_packets;
for (i = 0; i < count; ++i) {
page_index = i / packets_per_page;
p = page_address(b->iso_buffer.pages[page_index]);
offset_in_page = (i % packets_per_page) * packet_size;
b->packets[i].buffer = p + offset_in_page;
b->packets[i].offset = page_index * PAGE_SIZE + offset_in_page;
}
return 0;
err_packets:
kfree(b->packets);
error:
return err;
}
/**
* iso_packets_buffer_destroy - frees packet buffer resources
* @b: the buffer structure to free
* @unit: the device at the other end of the stream
*/
void iso_packets_buffer_destroy(struct iso_packets_buffer *b,
struct fw_unit *unit)
{
fw_iso_buffer_destroy(&b->iso_buffer, fw_parent_device(unit)->card);
kfree(b->packets);
}

View file

@ -0,0 +1,26 @@
#ifndef SOUND_FIREWIRE_PACKETS_BUFFER_H_INCLUDED
#define SOUND_FIREWIRE_PACKETS_BUFFER_H_INCLUDED
#include <linux/dma-mapping.h>
#include <linux/firewire.h>
/**
* struct iso_packets_buffer - manages a buffer for many packets
* @iso_buffer: the memory containing the packets
* @packets: an array, with each element pointing to one packet
*/
struct iso_packets_buffer {
struct fw_iso_buffer iso_buffer;
struct {
void *buffer;
unsigned int offset;
} *packets;
};
int iso_packets_buffer_init(struct iso_packets_buffer *b, struct fw_unit *unit,
unsigned int count, unsigned int packet_size,
enum dma_data_direction direction);
void iso_packets_buffer_destroy(struct iso_packets_buffer *b,
struct fw_unit *unit);
#endif

855
sound/firewire/speakers.c Normal file
View file

@ -0,0 +1,855 @@
/*
* OXFW970-based speakers driver
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
* Licensed under the terms of the GNU General Public License, version 2.
*/
#include <linux/device.h>
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <sound/control.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include "cmp.h"
#include "fcp.h"
#include "amdtp.h"
#include "lib.h"
#define OXFORD_FIRMWARE_ID_ADDRESS (CSR_REGISTER_BASE + 0x50000)
/* 0x970?vvvv or 0x971?vvvv, where vvvv = firmware version */
#define OXFORD_HARDWARE_ID_ADDRESS (CSR_REGISTER_BASE + 0x90020)
#define OXFORD_HARDWARE_ID_OXFW970 0x39443841
#define OXFORD_HARDWARE_ID_OXFW971 0x39373100
#define VENDOR_GRIFFIN 0x001292
#define VENDOR_LACIE 0x00d04b
#define SPECIFIER_1394TA 0x00a02d
#define VERSION_AVC 0x010001
struct device_info {
const char *driver_name;
const char *short_name;
const char *long_name;
int (*pcm_constraints)(struct snd_pcm_runtime *runtime);
unsigned int mixer_channels;
u8 mute_fb_id;
u8 volume_fb_id;
};
struct fwspk {
struct snd_card *card;
struct fw_unit *unit;
const struct device_info *device_info;
struct snd_pcm_substream *pcm;
struct mutex mutex;
struct cmp_connection connection;
struct amdtp_out_stream stream;
bool stream_running;
bool mute;
s16 volume[6];
s16 volume_min;
s16 volume_max;
};
MODULE_DESCRIPTION("FireWire speakers driver");
MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
MODULE_LICENSE("GPL v2");
static int firewave_rate_constraint(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
static unsigned int stereo_rates[] = { 48000, 96000 };
struct snd_interval *channels =
hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
struct snd_interval *rate =
hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
/* two channels work only at 48/96 kHz */
if (snd_interval_max(channels) < 6)
return snd_interval_list(rate, 2, stereo_rates, 0);
return 0;
}
static int firewave_channels_constraint(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
static const struct snd_interval all_channels = { .min = 6, .max = 6 };
struct snd_interval *rate =
hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
struct snd_interval *channels =
hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
/* 32/44.1 kHz work only with all six channels */
if (snd_interval_max(rate) < 48000)
return snd_interval_refine(channels, &all_channels);
return 0;
}
static int firewave_constraints(struct snd_pcm_runtime *runtime)
{
static unsigned int channels_list[] = { 2, 6 };
static struct snd_pcm_hw_constraint_list channels_list_constraint = {
.count = 2,
.list = channels_list,
};
int err;
runtime->hw.rates = SNDRV_PCM_RATE_32000 |
SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000 |
SNDRV_PCM_RATE_96000;
runtime->hw.channels_max = 6;
err = snd_pcm_hw_constraint_list(runtime, 0,
SNDRV_PCM_HW_PARAM_CHANNELS,
&channels_list_constraint);
if (err < 0)
return err;
err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
firewave_rate_constraint, NULL,
SNDRV_PCM_HW_PARAM_CHANNELS, -1);
if (err < 0)
return err;
err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
firewave_channels_constraint, NULL,
SNDRV_PCM_HW_PARAM_RATE, -1);
if (err < 0)
return err;
return 0;
}
static int lacie_speakers_constraints(struct snd_pcm_runtime *runtime)
{
runtime->hw.rates = SNDRV_PCM_RATE_32000 |
SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000 |
SNDRV_PCM_RATE_88200 |
SNDRV_PCM_RATE_96000;
return 0;
}
static int fwspk_open(struct snd_pcm_substream *substream)
{
static const struct snd_pcm_hardware hardware = {
.info = SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_BATCH |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER,
.formats = AMDTP_OUT_PCM_FORMAT_BITS,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = 4 * 1024 * 1024,
.period_bytes_min = 1,
.period_bytes_max = UINT_MAX,
.periods_min = 1,
.periods_max = UINT_MAX,
};
struct fwspk *fwspk = substream->private_data;
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
runtime->hw = hardware;
err = fwspk->device_info->pcm_constraints(runtime);
if (err < 0)
return err;
err = snd_pcm_limit_hw_rates(runtime);
if (err < 0)
return err;
err = snd_pcm_hw_constraint_minmax(runtime,
SNDRV_PCM_HW_PARAM_PERIOD_TIME,
5000, 8192000);
if (err < 0)
return err;
err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
if (err < 0)
return err;
return 0;
}
static int fwspk_close(struct snd_pcm_substream *substream)
{
return 0;
}
static void fwspk_stop_stream(struct fwspk *fwspk)
{
if (fwspk->stream_running) {
amdtp_out_stream_stop(&fwspk->stream);
cmp_connection_break(&fwspk->connection);
fwspk->stream_running = false;
}
}
static int fwspk_set_rate(struct fwspk *fwspk, unsigned int sfc)
{
u8 *buf;
int err;
buf = kmalloc(8, GFP_KERNEL);
if (!buf)
return -ENOMEM;
buf[0] = 0x00; /* AV/C, CONTROL */
buf[1] = 0xff; /* unit */
buf[2] = 0x19; /* INPUT PLUG SIGNAL FORMAT */
buf[3] = 0x00; /* plug 0 */
buf[4] = 0x90; /* format: audio */
buf[5] = 0x00 | sfc; /* AM824, frequency */
buf[6] = 0xff; /* SYT (not used) */
buf[7] = 0xff;
err = fcp_avc_transaction(fwspk->unit, buf, 8, buf, 8,
BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(5));
if (err < 0)
goto error;
if (err < 6 || buf[0] != 0x09 /* ACCEPTED */) {
dev_err(&fwspk->unit->device, "failed to set sample rate\n");
err = -EIO;
goto error;
}
err = 0;
error:
kfree(buf);
return err;
}
static int fwspk_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct fwspk *fwspk = substream->private_data;
int err;
mutex_lock(&fwspk->mutex);
fwspk_stop_stream(fwspk);
mutex_unlock(&fwspk->mutex);
err = snd_pcm_lib_alloc_vmalloc_buffer(substream,
params_buffer_bytes(hw_params));
if (err < 0)
goto error;
amdtp_out_stream_set_rate(&fwspk->stream, params_rate(hw_params));
amdtp_out_stream_set_pcm(&fwspk->stream, params_channels(hw_params));
amdtp_out_stream_set_pcm_format(&fwspk->stream,
params_format(hw_params));
err = fwspk_set_rate(fwspk, fwspk->stream.sfc);
if (err < 0)
goto err_buffer;
return 0;
err_buffer:
snd_pcm_lib_free_vmalloc_buffer(substream);
error:
return err;
}
static int fwspk_hw_free(struct snd_pcm_substream *substream)
{
struct fwspk *fwspk = substream->private_data;
mutex_lock(&fwspk->mutex);
fwspk_stop_stream(fwspk);
mutex_unlock(&fwspk->mutex);
return snd_pcm_lib_free_vmalloc_buffer(substream);
}
static int fwspk_prepare(struct snd_pcm_substream *substream)
{
struct fwspk *fwspk = substream->private_data;
int err;
mutex_lock(&fwspk->mutex);
if (!fwspk->stream_running) {
err = cmp_connection_establish(&fwspk->connection,
amdtp_out_stream_get_max_payload(&fwspk->stream));
if (err < 0)
goto err_mutex;
err = amdtp_out_stream_start(&fwspk->stream,
fwspk->connection.resources.channel,
fwspk->connection.speed);
if (err < 0)
goto err_connection;
fwspk->stream_running = true;
}
mutex_unlock(&fwspk->mutex);
amdtp_out_stream_pcm_prepare(&fwspk->stream);
return 0;
err_connection:
cmp_connection_break(&fwspk->connection);
err_mutex:
mutex_unlock(&fwspk->mutex);
return err;
}
static int fwspk_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct fwspk *fwspk = substream->private_data;
struct snd_pcm_substream *pcm;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
pcm = substream;
break;
case SNDRV_PCM_TRIGGER_STOP:
pcm = NULL;
break;
default:
return -EINVAL;
}
amdtp_out_stream_pcm_trigger(&fwspk->stream, pcm);
return 0;
}
static snd_pcm_uframes_t fwspk_pointer(struct snd_pcm_substream *substream)
{
struct fwspk *fwspk = substream->private_data;
return amdtp_out_stream_pcm_pointer(&fwspk->stream);
}
static int fwspk_create_pcm(struct fwspk *fwspk)
{
static struct snd_pcm_ops ops = {
.open = fwspk_open,
.close = fwspk_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = fwspk_hw_params,
.hw_free = fwspk_hw_free,
.prepare = fwspk_prepare,
.trigger = fwspk_trigger,
.pointer = fwspk_pointer,
.page = snd_pcm_lib_get_vmalloc_page,
.mmap = snd_pcm_lib_mmap_vmalloc,
};
struct snd_pcm *pcm;
int err;
err = snd_pcm_new(fwspk->card, "OXFW970", 0, 1, 0, &pcm);
if (err < 0)
return err;
pcm->private_data = fwspk;
strcpy(pcm->name, fwspk->device_info->short_name);
fwspk->pcm = pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
fwspk->pcm->ops = &ops;
return 0;
}
enum control_action { CTL_READ, CTL_WRITE };
enum control_attribute {
CTL_MIN = 0x02,
CTL_MAX = 0x03,
CTL_CURRENT = 0x10,
};
static int fwspk_mute_command(struct fwspk *fwspk, bool *value,
enum control_action action)
{
u8 *buf;
u8 response_ok;
int err;
buf = kmalloc(11, GFP_KERNEL);
if (!buf)
return -ENOMEM;
if (action == CTL_READ) {
buf[0] = 0x01; /* AV/C, STATUS */
response_ok = 0x0c; /* STABLE */
} else {
buf[0] = 0x00; /* AV/C, CONTROL */
response_ok = 0x09; /* ACCEPTED */
}
buf[1] = 0x08; /* audio unit 0 */
buf[2] = 0xb8; /* FUNCTION BLOCK */
buf[3] = 0x81; /* function block type: feature */
buf[4] = fwspk->device_info->mute_fb_id; /* function block ID */
buf[5] = 0x10; /* control attribute: current */
buf[6] = 0x02; /* selector length */
buf[7] = 0x00; /* audio channel number */
buf[8] = 0x01; /* control selector: mute */
buf[9] = 0x01; /* control data length */
if (action == CTL_READ)
buf[10] = 0xff;
else
buf[10] = *value ? 0x70 : 0x60;
err = fcp_avc_transaction(fwspk->unit, buf, 11, buf, 11, 0x3fe);
if (err < 0)
goto error;
if (err < 11) {
dev_err(&fwspk->unit->device, "short FCP response\n");
err = -EIO;
goto error;
}
if (buf[0] != response_ok) {
dev_err(&fwspk->unit->device, "mute command failed\n");
err = -EIO;
goto error;
}
if (action == CTL_READ)
*value = buf[10] == 0x70;
err = 0;
error:
kfree(buf);
return err;
}
static int fwspk_volume_command(struct fwspk *fwspk, s16 *value,
unsigned int channel,
enum control_attribute attribute,
enum control_action action)
{
u8 *buf;
u8 response_ok;
int err;
buf = kmalloc(12, GFP_KERNEL);
if (!buf)
return -ENOMEM;
if (action == CTL_READ) {
buf[0] = 0x01; /* AV/C, STATUS */
response_ok = 0x0c; /* STABLE */
} else {
buf[0] = 0x00; /* AV/C, CONTROL */
response_ok = 0x09; /* ACCEPTED */
}
buf[1] = 0x08; /* audio unit 0 */
buf[2] = 0xb8; /* FUNCTION BLOCK */
buf[3] = 0x81; /* function block type: feature */
buf[4] = fwspk->device_info->volume_fb_id; /* function block ID */
buf[5] = attribute; /* control attribute */
buf[6] = 0x02; /* selector length */
buf[7] = channel; /* audio channel number */
buf[8] = 0x02; /* control selector: volume */
buf[9] = 0x02; /* control data length */
if (action == CTL_READ) {
buf[10] = 0xff;
buf[11] = 0xff;
} else {
buf[10] = *value >> 8;
buf[11] = *value;
}
err = fcp_avc_transaction(fwspk->unit, buf, 12, buf, 12, 0x3fe);
if (err < 0)
goto error;
if (err < 12) {
dev_err(&fwspk->unit->device, "short FCP response\n");
err = -EIO;
goto error;
}
if (buf[0] != response_ok) {
dev_err(&fwspk->unit->device, "volume command failed\n");
err = -EIO;
goto error;
}
if (action == CTL_READ)
*value = (buf[10] << 8) | buf[11];
err = 0;
error:
kfree(buf);
return err;
}
static int fwspk_mute_get(struct snd_kcontrol *control,
struct snd_ctl_elem_value *value)
{
struct fwspk *fwspk = control->private_data;
value->value.integer.value[0] = !fwspk->mute;
return 0;
}
static int fwspk_mute_put(struct snd_kcontrol *control,
struct snd_ctl_elem_value *value)
{
struct fwspk *fwspk = control->private_data;
bool mute;
int err;
mute = !value->value.integer.value[0];
if (mute == fwspk->mute)
return 0;
err = fwspk_mute_command(fwspk, &mute, CTL_WRITE);
if (err < 0)
return err;
fwspk->mute = mute;
return 1;
}
static int fwspk_volume_info(struct snd_kcontrol *control,
struct snd_ctl_elem_info *info)
{
struct fwspk *fwspk = control->private_data;
info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
info->count = fwspk->device_info->mixer_channels;
info->value.integer.min = fwspk->volume_min;
info->value.integer.max = fwspk->volume_max;
return 0;
}
static const u8 channel_map[6] = { 0, 1, 4, 5, 2, 3 };
static int fwspk_volume_get(struct snd_kcontrol *control,
struct snd_ctl_elem_value *value)
{
struct fwspk *fwspk = control->private_data;
unsigned int i;
for (i = 0; i < fwspk->device_info->mixer_channels; ++i)
value->value.integer.value[channel_map[i]] = fwspk->volume[i];
return 0;
}
static int fwspk_volume_put(struct snd_kcontrol *control,
struct snd_ctl_elem_value *value)
{
struct fwspk *fwspk = control->private_data;
unsigned int i, changed_channels;
bool equal_values = true;
s16 volume;
int err;
for (i = 0; i < fwspk->device_info->mixer_channels; ++i) {
if (value->value.integer.value[i] < fwspk->volume_min ||
value->value.integer.value[i] > fwspk->volume_max)
return -EINVAL;
if (value->value.integer.value[i] !=
value->value.integer.value[0])
equal_values = false;
}
changed_channels = 0;
for (i = 0; i < fwspk->device_info->mixer_channels; ++i)
if (value->value.integer.value[channel_map[i]] !=
fwspk->volume[i])
changed_channels |= 1 << (i + 1);
if (equal_values && changed_channels != 0)
changed_channels = 1 << 0;
for (i = 0; i <= fwspk->device_info->mixer_channels; ++i) {
volume = value->value.integer.value[channel_map[i ? i - 1 : 0]];
if (changed_channels & (1 << i)) {
err = fwspk_volume_command(fwspk, &volume, i,
CTL_CURRENT, CTL_WRITE);
if (err < 0)
return err;
}
if (i > 0)
fwspk->volume[i - 1] = volume;
}
return changed_channels != 0;
}
static int fwspk_create_mixer(struct fwspk *fwspk)
{
static const struct snd_kcontrol_new controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "PCM Playback Switch",
.info = snd_ctl_boolean_mono_info,
.get = fwspk_mute_get,
.put = fwspk_mute_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "PCM Playback Volume",
.info = fwspk_volume_info,
.get = fwspk_volume_get,
.put = fwspk_volume_put,
},
};
unsigned int i, first_ch;
int err;
err = fwspk_volume_command(fwspk, &fwspk->volume_min,
0, CTL_MIN, CTL_READ);
if (err < 0)
return err;
err = fwspk_volume_command(fwspk, &fwspk->volume_max,
0, CTL_MAX, CTL_READ);
if (err < 0)
return err;
err = fwspk_mute_command(fwspk, &fwspk->mute, CTL_READ);
if (err < 0)
return err;
first_ch = fwspk->device_info->mixer_channels == 1 ? 0 : 1;
for (i = 0; i < fwspk->device_info->mixer_channels; ++i) {
err = fwspk_volume_command(fwspk, &fwspk->volume[i],
first_ch + i, CTL_CURRENT, CTL_READ);
if (err < 0)
return err;
}
for (i = 0; i < ARRAY_SIZE(controls); ++i) {
err = snd_ctl_add(fwspk->card,
snd_ctl_new1(&controls[i], fwspk));
if (err < 0)
return err;
}
return 0;
}
static u32 fwspk_read_firmware_version(struct fw_unit *unit)
{
__be32 data;
int err;
err = snd_fw_transaction(unit, TCODE_READ_QUADLET_REQUEST,
OXFORD_FIRMWARE_ID_ADDRESS, &data, 4);
return err >= 0 ? be32_to_cpu(data) : 0;
}
static void fwspk_card_free(struct snd_card *card)
{
struct fwspk *fwspk = card->private_data;
struct fw_device *dev = fw_parent_device(fwspk->unit);
amdtp_out_stream_destroy(&fwspk->stream);
cmp_connection_destroy(&fwspk->connection);
fw_unit_put(fwspk->unit);
fw_device_put(dev);
mutex_destroy(&fwspk->mutex);
}
static const struct device_info *__devinit fwspk_detect(struct fw_device *dev)
{
static const struct device_info griffin_firewave = {
.driver_name = "FireWave",
.short_name = "FireWave",
.long_name = "Griffin FireWave Surround",
.pcm_constraints = firewave_constraints,
.mixer_channels = 6,
.mute_fb_id = 0x01,
.volume_fb_id = 0x02,
};
static const struct device_info lacie_speakers = {
.driver_name = "FWSpeakers",
.short_name = "FireWire Speakers",
.long_name = "LaCie FireWire Speakers",
.pcm_constraints = lacie_speakers_constraints,
.mixer_channels = 1,
.mute_fb_id = 0x01,
.volume_fb_id = 0x01,
};
struct fw_csr_iterator i;
int key, value;
fw_csr_iterator_init(&i, dev->config_rom);
while (fw_csr_iterator_next(&i, &key, &value))
if (key == CSR_VENDOR)
switch (value) {
case VENDOR_GRIFFIN:
return &griffin_firewave;
case VENDOR_LACIE:
return &lacie_speakers;
}
return NULL;
}
static int __devinit fwspk_probe(struct device *unit_dev)
{
struct fw_unit *unit = fw_unit(unit_dev);
struct fw_device *fw_dev = fw_parent_device(unit);
struct snd_card *card;
struct fwspk *fwspk;
u32 firmware;
int err;
err = snd_card_create(-1, NULL, THIS_MODULE, sizeof(*fwspk), &card);
if (err < 0)
return err;
snd_card_set_dev(card, unit_dev);
fwspk = card->private_data;
fwspk->card = card;
mutex_init(&fwspk->mutex);
fw_device_get(fw_dev);
fwspk->unit = fw_unit_get(unit);
fwspk->device_info = fwspk_detect(fw_dev);
if (!fwspk->device_info) {
err = -ENODEV;
goto err_unit;
}
err = cmp_connection_init(&fwspk->connection, unit, 0);
if (err < 0)
goto err_unit;
err = amdtp_out_stream_init(&fwspk->stream, unit, CIP_NONBLOCKING);
if (err < 0)
goto err_connection;
card->private_free = fwspk_card_free;
strcpy(card->driver, fwspk->device_info->driver_name);
strcpy(card->shortname, fwspk->device_info->short_name);
firmware = fwspk_read_firmware_version(unit);
snprintf(card->longname, sizeof(card->longname),
"%s (OXFW%x %04x), GUID %08x%08x at %s, S%d",
fwspk->device_info->long_name,
firmware >> 20, firmware & 0xffff,
fw_dev->config_rom[3], fw_dev->config_rom[4],
dev_name(&unit->device), 100 << fw_dev->max_speed);
strcpy(card->mixername, "OXFW970");
err = fwspk_create_pcm(fwspk);
if (err < 0)
goto error;
err = fwspk_create_mixer(fwspk);
if (err < 0)
goto error;
err = snd_card_register(card);
if (err < 0)
goto error;
dev_set_drvdata(unit_dev, fwspk);
return 0;
err_connection:
cmp_connection_destroy(&fwspk->connection);
err_unit:
fw_unit_put(fwspk->unit);
fw_device_put(fw_dev);
mutex_destroy(&fwspk->mutex);
error:
snd_card_free(card);
return err;
}
static int __devexit fwspk_remove(struct device *dev)
{
struct fwspk *fwspk = dev_get_drvdata(dev);
snd_card_disconnect(fwspk->card);
mutex_lock(&fwspk->mutex);
amdtp_out_stream_pcm_abort(&fwspk->stream);
fwspk_stop_stream(fwspk);
mutex_unlock(&fwspk->mutex);
snd_card_free_when_closed(fwspk->card);
return 0;
}
static void fwspk_bus_reset(struct fw_unit *unit)
{
struct fwspk *fwspk = dev_get_drvdata(&unit->device);
fcp_bus_reset(fwspk->unit);
if (cmp_connection_update(&fwspk->connection) < 0) {
mutex_lock(&fwspk->mutex);
amdtp_out_stream_pcm_abort(&fwspk->stream);
fwspk_stop_stream(fwspk);
mutex_unlock(&fwspk->mutex);
return;
}
amdtp_out_stream_update(&fwspk->stream);
}
static const struct ieee1394_device_id fwspk_id_table[] = {
{
.match_flags = IEEE1394_MATCH_VENDOR_ID |
IEEE1394_MATCH_MODEL_ID |
IEEE1394_MATCH_SPECIFIER_ID |
IEEE1394_MATCH_VERSION,
.vendor_id = VENDOR_GRIFFIN,
.model_id = 0x00f970,
.specifier_id = SPECIFIER_1394TA,
.version = VERSION_AVC,
},
{
.match_flags = IEEE1394_MATCH_VENDOR_ID |
IEEE1394_MATCH_MODEL_ID |
IEEE1394_MATCH_SPECIFIER_ID |
IEEE1394_MATCH_VERSION,
.vendor_id = VENDOR_LACIE,
.model_id = 0x00f970,
.specifier_id = SPECIFIER_1394TA,
.version = VERSION_AVC,
},
{ }
};
MODULE_DEVICE_TABLE(ieee1394, fwspk_id_table);
static struct fw_driver fwspk_driver = {
.driver = {
.owner = THIS_MODULE,
.name = KBUILD_MODNAME,
.bus = &fw_bus_type,
.probe = fwspk_probe,
.remove = __devexit_p(fwspk_remove),
},
.update = fwspk_bus_reset,
.id_table = fwspk_id_table,
};
static int __init alsa_fwspk_init(void)
{
return driver_register(&fwspk_driver.driver);
}
static void __exit alsa_fwspk_exit(void)
{
driver_unregister(&fwspk_driver.driver);
}
module_init(alsa_fwspk_init);
module_exit(alsa_fwspk_exit);