Merge branches 'sh/pm-runtime' and 'common/clkfwk' into sh-fixes-for-linus

This commit is contained in:
Paul Mundt 2011-11-11 16:16:25 +09:00
commit 37bef8f989
3472 changed files with 65432 additions and 35740 deletions

View file

@ -0,0 +1,22 @@
What: /sys/firmware/acpi/pm_profile
Date: 03-Nov-2011
KernelVersion: v3.2
Contact: linux-acpi@vger.kernel.org
Description: The ACPI pm_profile sysfs interface exports the platform
power management (and performance) requirement expectations
as provided by BIOS. The integer value is directly passed as
retrieved from the FADT ACPI table.
Values: For possible values see ACPI specification:
5.2.9 Fixed ACPI Description Table (FADT)
Field: Preferred_PM_Profile
Currently these values are defined by spec:
0 Unspecified
1 Desktop
2 Mobile
3 Workstation
4 Enterprise Server
5 SOHO Server
6 Appliance PC
7 Performance Server
>7 Reserved

View file

@ -71,3 +71,10 @@ Description: Value of 1 indicates the controller can honor the reset_devices
a dump device, as kdump requires resetting the device in order a dump device, as kdump requires resetting the device in order
to work reliably. to work reliably.
Where: /sys/bus/pci/devices/<dev>/ccissX/transport_mode
Date: July 2011
Kernel Version: 3.0
Contact: iss_storagedev@hp.com
Description: Value of "simple" indicates that the controller has been placed
in "simple mode". Value of "performant" indicates that the
controller has been placed in "performant mode".

View file

@ -166,8 +166,8 @@ if (condition)
else else
do_that(); do_that();
This does not apply if one branch of a conditional statement is a single This does not apply if only one branch of a conditional statement is a single
statement. Use braces in both branches. statement; in the latter case use braces in both branches:
if (condition) { if (condition) {
do_this(); do_this();

View file

@ -32,7 +32,7 @@
The Linux DRM layer contains code intended to support the needs The Linux DRM layer contains code intended to support the needs
of complex graphics devices, usually containing programmable of complex graphics devices, usually containing programmable
pipelines well suited to 3D graphics acceleration. Graphics pipelines well suited to 3D graphics acceleration. Graphics
drivers in the kernel can make use of DRM functions to make drivers in the kernel may make use of DRM functions to make
tasks like memory management, interrupt handling and DMA easier, tasks like memory management, interrupt handling and DMA easier,
and provide a uniform interface to applications. and provide a uniform interface to applications.
</para> </para>
@ -57,10 +57,10 @@
existing drivers. existing drivers.
</para> </para>
<para> <para>
First, we'll go over some typical driver initialization First, we go over some typical driver initialization
requirements, like setting up command buffers, creating an requirements, like setting up command buffers, creating an
initial output configuration, and initializing core services. initial output configuration, and initializing core services.
Subsequent sections will cover core internals in more detail, Subsequent sections cover core internals in more detail,
providing implementation notes and examples. providing implementation notes and examples.
</para> </para>
<para> <para>
@ -74,7 +74,7 @@
</para> </para>
<para> <para>
The core of every DRM driver is struct drm_driver. Drivers The core of every DRM driver is struct drm_driver. Drivers
will typically statically initialize a drm_driver structure, typically statically initialize a drm_driver structure,
then pass it to drm_init() at load time. then pass it to drm_init() at load time.
</para> </para>
@ -88,8 +88,8 @@
</para> </para>
<programlisting> <programlisting>
static struct drm_driver driver = { static struct drm_driver driver = {
/* don't use mtrr's here, the Xserver or user space app should /* Don't use MTRRs here; the Xserver or userspace app should
* deal with them for intel hardware. * deal with them for Intel hardware.
*/ */
.driver_features = .driver_features =
DRIVER_USE_AGP | DRIVER_REQUIRE_AGP | DRIVER_USE_AGP | DRIVER_REQUIRE_AGP |
@ -154,8 +154,8 @@
</programlisting> </programlisting>
<para> <para>
In the example above, taken from the i915 DRM driver, the driver In the example above, taken from the i915 DRM driver, the driver
sets several flags indicating what core features it supports. sets several flags indicating what core features it supports;
We'll go over the individual callbacks in later sections. Since we go over the individual callbacks in later sections. Since
flags indicate which features your driver supports to the DRM flags indicate which features your driver supports to the DRM
core, you need to set most of them prior to calling drm_init(). Some, core, you need to set most of them prior to calling drm_init(). Some,
like DRIVER_MODESET can be set later based on user supplied parameters, like DRIVER_MODESET can be set later based on user supplied parameters,
@ -203,8 +203,8 @@
<term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term> <term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term>
<listitem> <listitem>
<para> <para>
DRIVER_HAVE_IRQ indicates whether the driver has a IRQ DRIVER_HAVE_IRQ indicates whether the driver has an IRQ
handler, DRIVER_IRQ_SHARED indicates whether the device &amp; handler. DRIVER_IRQ_SHARED indicates whether the device &amp;
handler support shared IRQs (note that this is required of handler support shared IRQs (note that this is required of
PCI drivers). PCI drivers).
</para> </para>
@ -214,8 +214,8 @@
<term>DRIVER_DMA_QUEUE</term> <term>DRIVER_DMA_QUEUE</term>
<listitem> <listitem>
<para> <para>
If the driver queues DMA requests and completes them Should be set if the driver queues DMA requests and completes them
asynchronously, this flag should be set. Deprecated. asynchronously. Deprecated.
</para> </para>
</listitem> </listitem>
</varlistentry> </varlistentry>
@ -238,7 +238,7 @@
</variablelist> </variablelist>
<para> <para>
In this specific case, the driver requires AGP and supports In this specific case, the driver requires AGP and supports
IRQs. DMA, as we'll see, is handled by device specific ioctls IRQs. DMA, as discussed later, is handled by device-specific ioctls
in this case. It also supports the kernel mode setting APIs, though in this case. It also supports the kernel mode setting APIs, though
unlike in the actual i915 driver source, this example unconditionally unlike in the actual i915 driver source, this example unconditionally
exports KMS capability. exports KMS capability.
@ -269,36 +269,34 @@
initial output configuration. initial output configuration.
</para> </para>
<para> <para>
Note that the tasks performed at driver load time must not If compatibility is a concern (e.g. with drivers converted over
conflict with DRM client requirements. For instance, if user to the new interfaces from the old ones), care must be taken to
prevent device initialization and control that is incompatible with
currently active userspace drivers. For instance, if user
level mode setting drivers are in use, it would be problematic level mode setting drivers are in use, it would be problematic
to perform output discovery &amp; configuration at load time. to perform output discovery &amp; configuration at load time.
Likewise, if pre-memory management aware user level drivers are Likewise, if user-level drivers unaware of memory management are
in use, memory management and command buffer setup may need to in use, memory management and command buffer setup may need to
be omitted. These requirements are driver specific, and care be omitted. These requirements are driver-specific, and care
needs to be taken to keep both old and new applications and needs to be taken to keep both old and new applications and
libraries working. The i915 driver supports the "modeset" libraries working. The i915 driver supports the "modeset"
module parameter to control whether advanced features are module parameter to control whether advanced features are
enabled at load time or in legacy fashion. If compatibility is enabled at load time or in legacy fashion.
a concern (e.g. with drivers converted over to the new interfaces
from the old ones), care must be taken to prevent incompatible
device initialization and control with the currently active
userspace drivers.
</para> </para>
<sect2> <sect2>
<title>Driver private &amp; performance counters</title> <title>Driver private &amp; performance counters</title>
<para> <para>
The driver private hangs off the main drm_device structure and The driver private hangs off the main drm_device structure and
can be used for tracking various device specific bits of can be used for tracking various device-specific bits of
information, like register offsets, command buffer status, information, like register offsets, command buffer status,
register state for suspend/resume, etc. At load time, a register state for suspend/resume, etc. At load time, a
driver can simply allocate one and set drm_device.dev_priv driver may simply allocate one and set drm_device.dev_priv
appropriately; at unload the driver can free it and set appropriately; it should be freed and drm_device.dev_priv set
drm_device.dev_priv to NULL. to NULL when the driver is unloaded.
</para> </para>
<para> <para>
The DRM supports several counters which can be used for rough The DRM supports several counters which may be used for rough
performance characterization. Note that the DRM stat counter performance characterization. Note that the DRM stat counter
system is not often used by applications, and supporting system is not often used by applications, and supporting
additional counters is completely optional. additional counters is completely optional.
@ -307,15 +305,15 @@
These interfaces are deprecated and should not be used. If performance These interfaces are deprecated and should not be used. If performance
monitoring is desired, the developer should investigate and monitoring is desired, the developer should investigate and
potentially enhance the kernel perf and tracing infrastructure to export potentially enhance the kernel perf and tracing infrastructure to export
GPU related performance information to performance monitoring GPU related performance information for consumption by performance
tools and applications. monitoring tools and applications.
</para> </para>
</sect2> </sect2>
<sect2> <sect2>
<title>Configuring the device</title> <title>Configuring the device</title>
<para> <para>
Obviously, device configuration will be device specific. Obviously, device configuration is device-specific.
However, there are several common operations: finding a However, there are several common operations: finding a
device's PCI resources, mapping them, and potentially setting device's PCI resources, mapping them, and potentially setting
up an IRQ handler. up an IRQ handler.
@ -323,10 +321,10 @@
<para> <para>
Finding &amp; mapping resources is fairly straightforward. The Finding &amp; mapping resources is fairly straightforward. The
DRM wrapper functions, drm_get_resource_start() and DRM wrapper functions, drm_get_resource_start() and
drm_get_resource_len() can be used to find BARs on the given drm_get_resource_len(), may be used to find BARs on the given
drm_device struct. Once those values have been retrieved, the drm_device struct. Once those values have been retrieved, the
driver load function can call drm_addmap() to create a new driver load function can call drm_addmap() to create a new
mapping for the BAR in question. Note you'll probably want a mapping for the BAR in question. Note that you probably want a
drm_local_map_t in your driver private structure to track any drm_local_map_t in your driver private structure to track any
mappings you create. mappings you create.
<!-- !Fdrivers/gpu/drm/drm_bufs.c drm_get_resource_* --> <!-- !Fdrivers/gpu/drm/drm_bufs.c drm_get_resource_* -->
@ -335,20 +333,20 @@
<para> <para>
if compatibility with other operating systems isn't a concern if compatibility with other operating systems isn't a concern
(DRM drivers can run under various BSD variants and OpenSolaris), (DRM drivers can run under various BSD variants and OpenSolaris),
native Linux calls can be used for the above, e.g. pci_resource_* native Linux calls may be used for the above, e.g. pci_resource_*
and iomap*/iounmap. See the Linux device driver book for more and iomap*/iounmap. See the Linux device driver book for more
info. info.
</para> </para>
<para> <para>
Once you have a register map, you can use the DRM_READn() and Once you have a register map, you may use the DRM_READn() and
DRM_WRITEn() macros to access the registers on your device, or DRM_WRITEn() macros to access the registers on your device, or
use driver specific versions to offset into your MMIO space use driver-specific versions to offset into your MMIO space
relative to a driver specific base pointer (see I915_READ for relative to a driver-specific base pointer (see I915_READ for
example). an example).
</para> </para>
<para> <para>
If your device supports interrupt generation, you may want to If your device supports interrupt generation, you may want to
setup an interrupt handler at driver load time as well. This set up an interrupt handler when the driver is loaded. This
is done using the drm_irq_install() function. If your device is done using the drm_irq_install() function. If your device
supports vertical blank interrupts, it should call supports vertical blank interrupts, it should call
drm_vblank_init() to initialize the core vblank handling code before drm_vblank_init() to initialize the core vblank handling code before
@ -357,7 +355,7 @@
</para> </para>
<!--!Fdrivers/char/drm/drm_irq.c drm_irq_install--> <!--!Fdrivers/char/drm/drm_irq.c drm_irq_install-->
<para> <para>
Once your interrupt handler is registered (it'll use your Once your interrupt handler is registered (it uses your
drm_driver.irq_handler as the actual interrupt handling drm_driver.irq_handler as the actual interrupt handling
function), you can safely enable interrupts on your device, function), you can safely enable interrupts on your device,
assuming any other state your interrupt handler uses is also assuming any other state your interrupt handler uses is also
@ -371,10 +369,10 @@
using the pci_map_rom() call, a convenience function that using the pci_map_rom() call, a convenience function that
takes care of mapping the actual ROM, whether it has been takes care of mapping the actual ROM, whether it has been
shadowed into memory (typically at address 0xc0000) or exists shadowed into memory (typically at address 0xc0000) or exists
on the PCI device in the ROM BAR. Note that once you've on the PCI device in the ROM BAR. Note that after the ROM
mapped the ROM and extracted any necessary information, be has been mapped and any necessary information has been extracted,
sure to unmap it; on many devices the ROM address decoder is it should be unmapped; on many devices, the ROM address decoder is
shared with other BARs, so leaving it mapped can cause shared with other BARs, so leaving it mapped could cause
undesired behavior like hangs or memory corruption. undesired behavior like hangs or memory corruption.
<!--!Fdrivers/pci/rom.c pci_map_rom--> <!--!Fdrivers/pci/rom.c pci_map_rom-->
</para> </para>
@ -389,9 +387,9 @@
should support a memory manager. should support a memory manager.
</para> </para>
<para> <para>
If your driver supports memory management (it should!), you'll If your driver supports memory management (it should!), you
need to set that up at load time as well. How you initialize need to set that up at load time as well. How you initialize
it depends on which memory manager you're using, TTM or GEM. it depends on which memory manager you're using: TTM or GEM.
</para> </para>
<sect3> <sect3>
<title>TTM initialization</title> <title>TTM initialization</title>
@ -401,7 +399,7 @@
and devices with dedicated video RAM (VRAM), i.e. most discrete and devices with dedicated video RAM (VRAM), i.e. most discrete
graphics devices. If your device has dedicated RAM, supporting graphics devices. If your device has dedicated RAM, supporting
TTM is desirable. TTM also integrates tightly with your TTM is desirable. TTM also integrates tightly with your
driver specific buffer execution function. See the radeon driver-specific buffer execution function. See the radeon
driver for examples. driver for examples.
</para> </para>
<para> <para>
@ -429,21 +427,21 @@
created by the memory manager at runtime. Your global TTM should created by the memory manager at runtime. Your global TTM should
have a type of TTM_GLOBAL_TTM_MEM. The size field for the global have a type of TTM_GLOBAL_TTM_MEM. The size field for the global
object should be sizeof(struct ttm_mem_global), and the init and object should be sizeof(struct ttm_mem_global), and the init and
release hooks should point at your driver specific init and release hooks should point at your driver-specific init and
release routines, which will probably eventually call release routines, which probably eventually call
ttm_mem_global_init and ttm_mem_global_release respectively. ttm_mem_global_init and ttm_mem_global_release, respectively.
</para> </para>
<para> <para>
Once your global TTM accounting structure is set up and initialized Once your global TTM accounting structure is set up and initialized
(done by calling ttm_global_item_ref on the global object you by calling ttm_global_item_ref() on it,
just created), you'll need to create a buffer object TTM to you need to create a buffer object TTM to
provide a pool for buffer object allocation by clients and the provide a pool for buffer object allocation by clients and the
kernel itself. The type of this object should be TTM_GLOBAL_TTM_BO, kernel itself. The type of this object should be TTM_GLOBAL_TTM_BO,
and its size should be sizeof(struct ttm_bo_global). Again, and its size should be sizeof(struct ttm_bo_global). Again,
driver specific init and release functions can be provided, driver-specific init and release functions may be provided,
likely eventually calling ttm_bo_global_init and likely eventually calling ttm_bo_global_init() and
ttm_bo_global_release, respectively. Also like the previous ttm_bo_global_release(), respectively. Also, like the previous
object, ttm_global_item_ref is used to create an initial reference object, ttm_global_item_ref() is used to create an initial reference
count for the TTM, which will call your initialization function. count for the TTM, which will call your initialization function.
</para> </para>
</sect3> </sect3>
@ -453,27 +451,26 @@
GEM is an alternative to TTM, designed specifically for UMA GEM is an alternative to TTM, designed specifically for UMA
devices. It has simpler initialization and execution requirements devices. It has simpler initialization and execution requirements
than TTM, but has no VRAM management capability. Core GEM than TTM, but has no VRAM management capability. Core GEM
initialization is comprised of a basic drm_mm_init call to create is initialized by calling drm_mm_init() to create
a GTT DRM MM object, which provides an address space pool for a GTT DRM MM object, which provides an address space pool for
object allocation. In a KMS configuration, the driver will object allocation. In a KMS configuration, the driver
need to allocate and initialize a command ring buffer following needs to allocate and initialize a command ring buffer following
basic GEM initialization. Most UMA devices have a so-called core GEM initialization. A UMA device usually has what is called a
"stolen" memory region, which provides space for the initial "stolen" memory region, which provides space for the initial
framebuffer and large, contiguous memory regions required by the framebuffer and large, contiguous memory regions required by the
device. This space is not typically managed by GEM, and must device. This space is not typically managed by GEM, and it must
be initialized separately into its own DRM MM object. be initialized separately into its own DRM MM object.
</para> </para>
<para> <para>
Initialization will be driver specific, and will depend on Initialization is driver-specific. In the case of Intel
the architecture of the device. In the case of Intel
integrated graphics chips like 965GM, GEM initialization can integrated graphics chips like 965GM, GEM initialization can
be done by calling the internal GEM init function, be done by calling the internal GEM init function,
i915_gem_do_init(). Since the 965GM is a UMA device i915_gem_do_init(). Since the 965GM is a UMA device
(i.e. it doesn't have dedicated VRAM), GEM will manage (i.e. it doesn't have dedicated VRAM), GEM manages
making regular RAM available for GPU operations. Memory set making regular RAM available for GPU operations. Memory set
aside by the BIOS (called "stolen" memory by the i915 aside by the BIOS (called "stolen" memory by the i915
driver) will be managed by the DRM memrange allocator; the driver) is managed by the DRM memrange allocator; the
rest of the aperture will be managed by GEM. rest of the aperture is managed by GEM.
<programlisting> <programlisting>
/* Basic memrange allocator for stolen space (aka vram) */ /* Basic memrange allocator for stolen space (aka vram) */
drm_memrange_init(&amp;dev_priv->vram, 0, prealloc_size); drm_memrange_init(&amp;dev_priv->vram, 0, prealloc_size);
@ -483,7 +480,7 @@
<!--!Edrivers/char/drm/drm_memrange.c--> <!--!Edrivers/char/drm/drm_memrange.c-->
</para> </para>
<para> <para>
Once the memory manager has been set up, we can allocate the Once the memory manager has been set up, we may allocate the
command buffer. In the i915 case, this is also done with a command buffer. In the i915 case, this is also done with a
GEM function, i915_gem_init_ringbuffer(). GEM function, i915_gem_init_ringbuffer().
</para> </para>
@ -493,16 +490,25 @@
<sect2> <sect2>
<title>Output configuration</title> <title>Output configuration</title>
<para> <para>
The final initialization task is output configuration. This involves The final initialization task is output configuration. This involves:
finding and initializing the CRTCs, encoders and connectors <itemizedlist>
for your device, creating an initial configuration and <listitem>
registering a framebuffer console driver. Finding and initializing the CRTCs, encoders, and connectors
for the device.
</listitem>
<listitem>
Creating an initial configuration.
</listitem>
<listitem>
Registering a framebuffer console driver.
</listitem>
</itemizedlist>
</para> </para>
<sect3> <sect3>
<title>Output discovery and initialization</title> <title>Output discovery and initialization</title>
<para> <para>
Several core functions exist to create CRTCs, encoders and Several core functions exist to create CRTCs, encoders, and
connectors, namely drm_crtc_init(), drm_connector_init() and connectors, namely: drm_crtc_init(), drm_connector_init(), and
drm_encoder_init(), along with several "helper" functions to drm_encoder_init(), along with several "helper" functions to
perform common tasks. perform common tasks.
</para> </para>
@ -555,10 +561,10 @@ void intel_crt_init(struct drm_device *dev)
</programlisting> </programlisting>
<para> <para>
In the example above (again, taken from the i915 driver), a In the example above (again, taken from the i915 driver), a
CRT connector and encoder combination is created. A device CRT connector and encoder combination is created. A device-specific
specific i2c bus is also created, for fetching EDID data and i2c bus is also created for fetching EDID data and
performing monitor detection. Once the process is complete, performing monitor detection. Once the process is complete,
the new connector is registered with sysfs, to make its the new connector is registered with sysfs to make its
properties available to applications. properties available to applications.
</para> </para>
<sect4> <sect4>
@ -567,12 +573,12 @@ void intel_crt_init(struct drm_device *dev)
Since many PC-class graphics devices have similar display output Since many PC-class graphics devices have similar display output
designs, the DRM provides a set of helper functions to make designs, the DRM provides a set of helper functions to make
output management easier. The core helper routines handle output management easier. The core helper routines handle
encoder re-routing and disabling of unused functions following encoder re-routing and the disabling of unused functions following
mode set. Using the helpers is optional, but recommended for mode setting. Using the helpers is optional, but recommended for
devices with PC-style architectures (i.e. a set of display planes devices with PC-style architectures (i.e. a set of display planes
for feeding pixels to encoders which are in turn routed to for feeding pixels to encoders which are in turn routed to
connectors). Devices with more complex requirements needing connectors). Devices with more complex requirements needing
finer grained management can opt to use the core callbacks finer grained management may opt to use the core callbacks
directly. directly.
</para> </para>
<para> <para>
@ -580,17 +586,25 @@ void intel_crt_init(struct drm_device *dev)
</para> </para>
</sect4> </sect4>
<para> <para>
For each encoder, CRTC and connector, several functions must Each encoder object needs to provide:
be provided, depending on the object type. Encoder objects <itemizedlist>
need to provide a DPMS (basically on/off) function, mode fixup <listitem>
(for converting requested modes into native hardware timings), A DPMS (basically on/off) function.
and prepare, set and commit functions for use by the core DRM </listitem>
helper functions. Connector helpers need to provide mode fetch and <listitem>
validity functions as well as an encoder matching function for A mode-fixup function (for converting requested modes into
returning an ideal encoder for a given connector. The core native hardware timings).
connector functions include a DPMS callback, (deprecated) </listitem>
save/restore routines, detection, mode probing, property handling, <listitem>
and cleanup functions. Functions (prepare, set, and commit) for use by the core DRM
helper functions.
</listitem>
</itemizedlist>
Connector helpers need to provide functions (mode-fetch, validity,
and encoder-matching) for returning an ideal encoder for a given
connector. The core connector functions include a DPMS callback,
save/restore routines (deprecated), detection, mode probing,
property handling, and cleanup functions.
</para> </para>
<!--!Edrivers/char/drm/drm_crtc.h--> <!--!Edrivers/char/drm/drm_crtc.h-->
<!--!Edrivers/char/drm/drm_crtc.c--> <!--!Edrivers/char/drm/drm_crtc.c-->
@ -605,22 +619,33 @@ void intel_crt_init(struct drm_device *dev)
<title>VBlank event handling</title> <title>VBlank event handling</title>
<para> <para>
The DRM core exposes two vertical blank related ioctls: The DRM core exposes two vertical blank related ioctls:
DRM_IOCTL_WAIT_VBLANK and DRM_IOCTL_MODESET_CTL. <variablelist>
<varlistentry>
<term>DRM_IOCTL_WAIT_VBLANK</term>
<listitem>
<para>
This takes a struct drm_wait_vblank structure as its argument,
and it is used to block or request a signal when a specified
vblank event occurs.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>DRM_IOCTL_MODESET_CTL</term>
<listitem>
<para>
This should be called by application level drivers before and
after mode setting, since on many devices the vertical blank
counter is reset at that time. Internally, the DRM snapshots
the last vblank count when the ioctl is called with the
_DRM_PRE_MODESET command, so that the counter won't go backwards
(which is dealt with when _DRM_POST_MODESET is used).
</para>
</listitem>
</varlistentry>
</variablelist>
<!--!Edrivers/char/drm/drm_irq.c--> <!--!Edrivers/char/drm/drm_irq.c-->
</para> </para>
<para>
DRM_IOCTL_WAIT_VBLANK takes a struct drm_wait_vblank structure
as its argument, and is used to block or request a signal when a
specified vblank event occurs.
</para>
<para>
DRM_IOCTL_MODESET_CTL should be called by application level
drivers before and after mode setting, since on many devices the
vertical blank counter will be reset at that time. Internally,
the DRM snapshots the last vblank count when the ioctl is called
with the _DRM_PRE_MODESET command so that the counter won't go
backwards (which is dealt with when _DRM_POST_MODESET is used).
</para>
<para> <para>
To support the functions above, the DRM core provides several To support the functions above, the DRM core provides several
helper functions for tracking vertical blank counters, and helper functions for tracking vertical blank counters, and
@ -632,24 +657,24 @@ void intel_crt_init(struct drm_device *dev)
register. The enable and disable vblank callbacks should enable register. The enable and disable vblank callbacks should enable
and disable vertical blank interrupts, respectively. In the and disable vertical blank interrupts, respectively. In the
absence of DRM clients waiting on vblank events, the core DRM absence of DRM clients waiting on vblank events, the core DRM
code will use the disable_vblank() function to disable code uses the disable_vblank() function to disable
interrupts, which saves power. They'll be re-enabled again when interrupts, which saves power. They are re-enabled again when
a client calls the vblank wait ioctl above. a client calls the vblank wait ioctl above.
</para> </para>
<para> <para>
Devices that don't provide a count register can simply use an A device that doesn't provide a count register may simply use an
internal atomic counter incremented on every vertical blank internal atomic counter incremented on every vertical blank
interrupt, and can make their enable and disable vblank interrupt (and then treat the enable_vblank() and disable_vblank()
functions into no-ops. callbacks as no-ops).
</para> </para>
</sect1> </sect1>
<sect1> <sect1>
<title>Memory management</title> <title>Memory management</title>
<para> <para>
The memory manager lies at the heart of many DRM operations, and The memory manager lies at the heart of many DRM operations; it
is also required to support advanced client features like OpenGL is required to support advanced client features like OpenGL
pbuffers. The DRM currently contains two memory managers, TTM pbuffers. The DRM currently contains two memory managers: TTM
and GEM. and GEM.
</para> </para>
@ -679,41 +704,46 @@ void intel_crt_init(struct drm_device *dev)
<para> <para>
GEM-enabled drivers must provide gem_init_object() and GEM-enabled drivers must provide gem_init_object() and
gem_free_object() callbacks to support the core memory gem_free_object() callbacks to support the core memory
allocation routines. They should also provide several driver allocation routines. They should also provide several driver-specific
specific ioctls to support command execution, pinning, buffer ioctls to support command execution, pinning, buffer
read &amp; write, mapping, and domain ownership transfers. read &amp; write, mapping, and domain ownership transfers.
</para> </para>
<para> <para>
On a fundamental level, GEM involves several operations: memory On a fundamental level, GEM involves several operations:
allocation and freeing, command execution, and aperture management <itemizedlist>
at command execution time. Buffer object allocation is relatively <listitem>Memory allocation and freeing</listitem>
<listitem>Command execution</listitem>
<listitem>Aperture management at command execution time</listitem>
</itemizedlist>
Buffer object allocation is relatively
straightforward and largely provided by Linux's shmem layer, which straightforward and largely provided by Linux's shmem layer, which
provides memory to back each object. When mapped into the GTT provides memory to back each object. When mapped into the GTT
or used in a command buffer, the backing pages for an object are or used in a command buffer, the backing pages for an object are
flushed to memory and marked write combined so as to be coherent flushed to memory and marked write combined so as to be coherent
with the GPU. Likewise, when the GPU finishes rendering to an object, with the GPU. Likewise, if the CPU accesses an object after the GPU
if the CPU accesses it, it must be made coherent with the CPU's view has finished rendering to the object, then the object must be made
coherent with the CPU's view
of memory, usually involving GPU cache flushing of various kinds. of memory, usually involving GPU cache flushing of various kinds.
This core CPU&lt;-&gt;GPU coherency management is provided by the GEM This core CPU&lt;-&gt;GPU coherency management is provided by a
set domain function, which evaluates an object's current domain and device-specific ioctl, which evaluates an object's current domain and
performs any necessary flushing or synchronization to put the object performs any necessary flushing or synchronization to put the object
into the desired coherency domain (note that the object may be busy, into the desired coherency domain (note that the object may be busy,
i.e. an active render target; in that case the set domain function i.e. an active render target; in that case, setting the domain
will block the client and wait for rendering to complete before blocks the client and waits for rendering to complete before
performing any necessary flushing operations). performing any necessary flushing operations).
</para> </para>
<para> <para>
Perhaps the most important GEM function is providing a command Perhaps the most important GEM function is providing a command
execution interface to clients. Client programs construct command execution interface to clients. Client programs construct command
buffers containing references to previously allocated memory objects buffers containing references to previously allocated memory objects,
and submit them to GEM. At that point, GEM will take care to bind and then submit them to GEM. At that point, GEM takes care to bind
all the objects into the GTT, execute the buffer, and provide all the objects into the GTT, execute the buffer, and provide
necessary synchronization between clients accessing the same buffers. necessary synchronization between clients accessing the same buffers.
This often involves evicting some objects from the GTT and re-binding This often involves evicting some objects from the GTT and re-binding
others (a fairly expensive operation), and providing relocation others (a fairly expensive operation), and providing relocation
support which hides fixed GTT offsets from clients. Clients must support which hides fixed GTT offsets from clients. Clients must
take care not to submit command buffers that reference more objects take care not to submit command buffers that reference more objects
than can fit in the GTT or GEM will reject them and no rendering than can fit in the GTT; otherwise, GEM will reject them and no rendering
will occur. Similarly, if several objects in the buffer require will occur. Similarly, if several objects in the buffer require
fence registers to be allocated for correct rendering (e.g. 2D blits fence registers to be allocated for correct rendering (e.g. 2D blits
on pre-965 chips), care must be taken not to require more fence on pre-965 chips), care must be taken not to require more fence
@ -729,7 +759,7 @@ void intel_crt_init(struct drm_device *dev)
<title>Output management</title> <title>Output management</title>
<para> <para>
At the core of the DRM output management code is a set of At the core of the DRM output management code is a set of
structures representing CRTCs, encoders and connectors. structures representing CRTCs, encoders, and connectors.
</para> </para>
<para> <para>
A CRTC is an abstraction representing a part of the chip that A CRTC is an abstraction representing a part of the chip that
@ -765,21 +795,19 @@ void intel_crt_init(struct drm_device *dev)
<sect1> <sect1>
<title>Framebuffer management</title> <title>Framebuffer management</title>
<para> <para>
In order to set a mode on a given CRTC, encoder and connector Clients need to provide a framebuffer object which provides a source
configuration, clients need to provide a framebuffer object which of pixels for a CRTC to deliver to the encoder(s) and ultimately the
will provide a source of pixels for the CRTC to deliver to the encoder(s) connector(s). A framebuffer is fundamentally a driver-specific memory
and ultimately the connector(s) in the configuration. A framebuffer object, made into an opaque handle by the DRM's addfb() function.
is fundamentally a driver specific memory object, made into an opaque Once a framebuffer has been created this way, it may be passed to the
handle by the DRM addfb function. Once an fb has been created this KMS mode setting routines for use in a completed configuration.
way it can be passed to the KMS mode setting routines for use in
a configuration.
</para> </para>
</sect1> </sect1>
<sect1> <sect1>
<title>Command submission &amp; fencing</title> <title>Command submission &amp; fencing</title>
<para> <para>
This should cover a few device specific command submission This should cover a few device-specific command submission
implementations. implementations.
</para> </para>
</sect1> </sect1>
@ -789,7 +817,7 @@ void intel_crt_init(struct drm_device *dev)
<para> <para>
The DRM core provides some suspend/resume code, but drivers The DRM core provides some suspend/resume code, but drivers
wanting full suspend/resume support should provide save() and wanting full suspend/resume support should provide save() and
restore() functions. These will be called at suspend, restore() functions. These are called at suspend,
hibernate, or resume time, and should perform any state save or hibernate, or resume time, and should perform any state save or
restore required by your device across suspend or hibernate restore required by your device across suspend or hibernate
states. states.
@ -812,8 +840,8 @@ void intel_crt_init(struct drm_device *dev)
<para> <para>
The DRM core exports several interfaces to applications, The DRM core exports several interfaces to applications,
generally intended to be used through corresponding libdrm generally intended to be used through corresponding libdrm
wrapper functions. In addition, drivers export device specific wrapper functions. In addition, drivers export device-specific
interfaces for use by userspace drivers &amp; device aware interfaces for use by userspace drivers &amp; device-aware
applications through ioctls and sysfs files. applications through ioctls and sysfs files.
</para> </para>
<para> <para>
@ -822,8 +850,8 @@ void intel_crt_init(struct drm_device *dev)
management, memory management, and output management. management, memory management, and output management.
</para> </para>
<para> <para>
Cover generic ioctls and sysfs layout here. Only need high Cover generic ioctls and sysfs layout here. We only need high-level
level info, since man pages will cover the rest. info, since man pages should cover the rest.
</para> </para>
</chapter> </chapter>

View file

@ -2486,6 +2486,9 @@ ioctls.</para>
<listitem> <listitem>
<para>Flash API. <xref linkend="flash-controls" /></para> <para>Flash API. <xref linkend="flash-controls" /></para>
</listitem> </listitem>
<listitem>
<para>&VIDIOC-CREATE-BUFS; and &VIDIOC-PREPARE-BUF; ioctls.</para>
</listitem>
</itemizedlist> </itemizedlist>
</section> </section>

View file

@ -232,8 +232,9 @@ control is deprecated. New drivers and applications should use the
<entry>Enables a power line frequency filter to avoid <entry>Enables a power line frequency filter to avoid
flicker. Possible values for <constant>enum v4l2_power_line_frequency</constant> are: flicker. Possible values for <constant>enum v4l2_power_line_frequency</constant> are:
<constant>V4L2_CID_POWER_LINE_FREQUENCY_DISABLED</constant> (0), <constant>V4L2_CID_POWER_LINE_FREQUENCY_DISABLED</constant> (0),
<constant>V4L2_CID_POWER_LINE_FREQUENCY_50HZ</constant> (1) and <constant>V4L2_CID_POWER_LINE_FREQUENCY_50HZ</constant> (1),
<constant>V4L2_CID_POWER_LINE_FREQUENCY_60HZ</constant> (2).</entry> <constant>V4L2_CID_POWER_LINE_FREQUENCY_60HZ</constant> (2) and
<constant>V4L2_CID_POWER_LINE_FREQUENCY_AUTO</constant> (3).</entry>
</row> </row>
<row> <row>
<entry><constant>V4L2_CID_HUE_AUTO</constant></entry> <entry><constant>V4L2_CID_HUE_AUTO</constant></entry>

View file

@ -927,6 +927,33 @@ ioctl is called.</entry>
Applications set or clear this flag before calling the Applications set or clear this flag before calling the
<constant>VIDIOC_QBUF</constant> ioctl.</entry> <constant>VIDIOC_QBUF</constant> ioctl.</entry>
</row> </row>
<row>
<entry><constant>V4L2_BUF_FLAG_PREPARED</constant></entry>
<entry>0x0400</entry>
<entry>The buffer has been prepared for I/O and can be queued by the
application. Drivers set or clear this flag when the
<link linkend="vidioc-querybuf">VIDIOC_QUERYBUF</link>, <link
linkend="vidioc-qbuf">VIDIOC_PREPARE_BUF</link>, <link
linkend="vidioc-qbuf">VIDIOC_QBUF</link> or <link
linkend="vidioc-qbuf">VIDIOC_DQBUF</link> ioctl is called.</entry>
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_NO_CACHE_INVALIDATE</constant></entry>
<entry>0x0400</entry>
<entry>Caches do not have to be invalidated for this buffer.
Typically applications shall use this flag if the data captured in the buffer
is not going to be touched by the CPU, instead the buffer will, probably, be
passed on to a DMA-capable hardware unit for further processing or output.
</entry>
</row>
<row>
<entry><constant>V4L2_BUF_FLAG_NO_CACHE_CLEAN</constant></entry>
<entry>0x0800</entry>
<entry>Caches do not have to be cleaned for this buffer.
Typically applications shall use this flag for output buffers if the data
in this buffer has not been created by the CPU but by some DMA-capable unit,
in which case caches have not been used.</entry>
</row>
</tbody> </tbody>
</tgroup> </tgroup>
</table> </table>

View file

@ -469,6 +469,7 @@ and discussions on the V4L mailing list.</revremark>
&sub-close; &sub-close;
&sub-ioctl; &sub-ioctl;
<!-- All ioctls go here. --> <!-- All ioctls go here. -->
&sub-create-bufs;
&sub-cropcap; &sub-cropcap;
&sub-dbg-g-chip-ident; &sub-dbg-g-chip-ident;
&sub-dbg-g-register; &sub-dbg-g-register;
@ -511,6 +512,7 @@ and discussions on the V4L mailing list.</revremark>
&sub-queryctrl; &sub-queryctrl;
&sub-query-dv-preset; &sub-query-dv-preset;
&sub-querystd; &sub-querystd;
&sub-prepare-buf;
&sub-reqbufs; &sub-reqbufs;
&sub-s-hw-freq-seek; &sub-s-hw-freq-seek;
&sub-streamon; &sub-streamon;

View file

@ -0,0 +1,139 @@
<refentry id="vidioc-create-bufs">
<refmeta>
<refentrytitle>ioctl VIDIOC_CREATE_BUFS</refentrytitle>
&manvol;
</refmeta>
<refnamediv>
<refname>VIDIOC_CREATE_BUFS</refname>
<refpurpose>Create buffers for Memory Mapped or User Pointer I/O</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>int <function>ioctl</function></funcdef>
<paramdef>int <parameter>fd</parameter></paramdef>
<paramdef>int <parameter>request</parameter></paramdef>
<paramdef>struct v4l2_create_buffers *<parameter>argp</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsect1>
<title>Arguments</title>
<variablelist>
<varlistentry>
<term><parameter>fd</parameter></term>
<listitem>
<para>&fd;</para>
</listitem>
</varlistentry>
<varlistentry>
<term><parameter>request</parameter></term>
<listitem>
<para>VIDIOC_CREATE_BUFS</para>
</listitem>
</varlistentry>
<varlistentry>
<term><parameter>argp</parameter></term>
<listitem>
<para></para>
</listitem>
</varlistentry>
</variablelist>
</refsect1>
<refsect1>
<title>Description</title>
<para>This ioctl is used to create buffers for <link linkend="mmap">memory
mapped</link> or <link linkend="userp">user pointer</link>
I/O. It can be used as an alternative or in addition to the
<constant>VIDIOC_REQBUFS</constant> ioctl, when a tighter control over buffers
is required. This ioctl can be called multiple times to create buffers of
different sizes.</para>
<para>To allocate device buffers applications initialize relevant fields of
the <structname>v4l2_create_buffers</structname> structure. They set the
<structfield>type</structfield> field in the
<structname>v4l2_format</structname> structure, embedded in this
structure, to the respective stream or buffer type.
<structfield>count</structfield> must be set to the number of required buffers.
<structfield>memory</structfield> specifies the required I/O method. The
<structfield>format</structfield> field shall typically be filled in using
either the <constant>VIDIOC_TRY_FMT</constant> or
<constant>VIDIOC_G_FMT</constant> ioctl(). Additionally, applications can adjust
<structfield>sizeimage</structfield> fields to fit their specific needs. The
<structfield>reserved</structfield> array must be zeroed.</para>
<para>When the ioctl is called with a pointer to this structure the driver
will attempt to allocate up to the requested number of buffers and store the
actual number allocated and the starting index in the
<structfield>count</structfield> and the <structfield>index</structfield> fields
respectively. On return <structfield>count</structfield> can be smaller than
the number requested. The driver may also increase buffer sizes if required,
however, it will not update <structfield>sizeimage</structfield> field values.
The user has to use <constant>VIDIOC_QUERYBUF</constant> to retrieve that
information.</para>
<table pgwide="1" frame="none" id="v4l2-create-buffers">
<title>struct <structname>v4l2_create_buffers</structname></title>
<tgroup cols="3">
&cs-str;
<tbody valign="top">
<row>
<entry>__u32</entry>
<entry><structfield>index</structfield></entry>
<entry>The starting buffer index, returned by the driver.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>count</structfield></entry>
<entry>The number of buffers requested or granted.</entry>
</row>
<row>
<entry>&v4l2-memory;</entry>
<entry><structfield>memory</structfield></entry>
<entry>Applications set this field to
<constant>V4L2_MEMORY_MMAP</constant> or
<constant>V4L2_MEMORY_USERPTR</constant>.</entry>
</row>
<row>
<entry>&v4l2-format;</entry>
<entry><structfield>format</structfield></entry>
<entry>Filled in by the application, preserved by the driver.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>reserved</structfield>[8]</entry>
<entry>A place holder for future extensions.</entry>
</row>
</tbody>
</tgroup>
</table>
</refsect1>
<refsect1>
&return-value;
<variablelist>
<varlistentry>
<term><errorcode>ENOMEM</errorcode></term>
<listitem>
<para>No memory to allocate buffers for <link linkend="mmap">memory
mapped</link> I/O.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><errorcode>EINVAL</errorcode></term>
<listitem>
<para>The buffer type (<structfield>type</structfield> field) or the
requested I/O method (<structfield>memory</structfield>) is not
supported.</para>
</listitem>
</varlistentry>
</variablelist>
</refsect1>
</refentry>

View file

@ -0,0 +1,88 @@
<refentry id="vidioc-prepare-buf">
<refmeta>
<refentrytitle>ioctl VIDIOC_PREPARE_BUF</refentrytitle>
&manvol;
</refmeta>
<refnamediv>
<refname>VIDIOC_PREPARE_BUF</refname>
<refpurpose>Prepare a buffer for I/O</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>int <function>ioctl</function></funcdef>
<paramdef>int <parameter>fd</parameter></paramdef>
<paramdef>int <parameter>request</parameter></paramdef>
<paramdef>struct v4l2_buffer *<parameter>argp</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsect1>
<title>Arguments</title>
<variablelist>
<varlistentry>
<term><parameter>fd</parameter></term>
<listitem>
<para>&fd;</para>
</listitem>
</varlistentry>
<varlistentry>
<term><parameter>request</parameter></term>
<listitem>
<para>VIDIOC_PREPARE_BUF</para>
</listitem>
</varlistentry>
<varlistentry>
<term><parameter>argp</parameter></term>
<listitem>
<para></para>
</listitem>
</varlistentry>
</variablelist>
</refsect1>
<refsect1>
<title>Description</title>
<para>Applications can optionally call the
<constant>VIDIOC_PREPARE_BUF</constant> ioctl to pass ownership of the buffer
to the driver before actually enqueuing it, using the
<constant>VIDIOC_QBUF</constant> ioctl, and to prepare it for future I/O.
Such preparations may include cache invalidation or cleaning. Performing them
in advance saves time during the actual I/O. In case such cache operations are
not required, the application can use one of
<constant>V4L2_BUF_FLAG_NO_CACHE_INVALIDATE</constant> and
<constant>V4L2_BUF_FLAG_NO_CACHE_CLEAN</constant> flags to skip the respective
step.</para>
<para>The <structname>v4l2_buffer</structname> structure is
specified in <xref linkend="buffer" />.</para>
</refsect1>
<refsect1>
&return-value;
<variablelist>
<varlistentry>
<term><errorcode>EBUSY</errorcode></term>
<listitem>
<para>File I/O is in progress.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><errorcode>EINVAL</errorcode></term>
<listitem>
<para>The buffer <structfield>type</structfield> is not
supported, or the <structfield>index</structfield> is out of bounds,
or no buffers have been allocated yet, or the
<structfield>userptr</structfield> or
<structfield>length</structfield> are invalid.</para>
</listitem>
</varlistentry>
</variablelist>
</refsect1>
</refentry>

View file

@ -572,7 +572,7 @@ static void board_select_chip (struct mtd_info *mtd, int chip)
</para> </para>
<para> <para>
The simplest way to activate the FLASH based bad block table support The simplest way to activate the FLASH based bad block table support
is to set the option NAND_USE_FLASH_BBT in the option field of is to set the option NAND_BBT_USE_FLASH in the bbt_option field of
the nand chip structure before calling nand_scan(). For AG-AND the nand chip structure before calling nand_scan(). For AG-AND
chips is this done by default. chips is this done by default.
This activates the default FLASH based bad block table functionality This activates the default FLASH based bad block table functionality
@ -773,20 +773,6 @@ struct nand_oobinfo {
done according to the default builtin scheme. done according to the default builtin scheme.
</para> </para>
</sect2> </sect2>
<sect2 id="User_space_placement_selection">
<title>User space placement selection</title>
<para>
All non ecc functions like mtd->read and mtd->write use an internal
structure, which can be set by an ioctl. This structure is preset
to the autoplacement default.
<programlisting>
ioctl (fd, MEMSETOOBSEL, oobsel);
</programlisting>
oobsel is a pointer to a user supplied structure of type
nand_oobconfig. The contents of this structure must match the
criteria of the filesystem, which will be used. See an example in utils/nandwrite.c.
</para>
</sect2>
</sect1> </sect1>
<sect1 id="Spare_area_autoplacement_default"> <sect1 id="Spare_area_autoplacement_default">
<title>Spare area autoplacement default schemes</title> <title>Spare area autoplacement default schemes</title>
@ -1158,9 +1144,6 @@ in this page</entry>
These constants are defined in nand.h. They are ored together to describe These constants are defined in nand.h. They are ored together to describe
the functionality. the functionality.
<programlisting> <programlisting>
/* Use a flash based bad block table. This option is parsed by the
* default bad block table function (nand_default_bbt). */
#define NAND_USE_FLASH_BBT 0x00010000
/* The hw ecc generator provides a syndrome instead a ecc value on read /* The hw ecc generator provides a syndrome instead a ecc value on read
* This can only work if we have the ecc bytes directly behind the * This can only work if we have the ecc bytes directly behind the
* data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */ * data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */

View file

@ -1,6 +1,6 @@
To choose IO schedulers at boot time, use the argument 'elevator=deadline'. To choose IO schedulers at boot time, use the argument 'elevator=deadline'.
'noop', 'as' and 'cfq' (the default) are also available. IO schedulers are 'noop' and 'cfq' (the default) are also available. IO schedulers are assigned
assigned globally at boot time only presently. globally at boot time only presently.
Each io queue has a set of io scheduler tunables associated with it. These Each io queue has a set of io scheduler tunables associated with it. These
tunables control how the io scheduler works. You can find these entries tunables control how the io scheduler works. You can find these entries

View file

@ -78,6 +78,16 @@ The device naming scheme is:
/dev/cciss/c1d1p2 Controller 1, disk 1, partition 2 /dev/cciss/c1d1p2 Controller 1, disk 1, partition 2
/dev/cciss/c1d1p3 Controller 1, disk 1, partition 3 /dev/cciss/c1d1p3 Controller 1, disk 1, partition 3
CCISS simple mode support
-------------------------
The "cciss_simple_mode=1" boot parameter may be used to prevent the driver
from putting the controller into "performant" mode. The difference is that
with simple mode, each command completion requires an interrupt, while with
"performant mode" (the default, and ordinarily better performing) it is
possible to have multiple command completions indicated by a single
interrupt.
SCSI tape drive and medium changer support SCSI tape drive and medium changer support
------------------------------------------ ------------------------------------------

View file

@ -454,8 +454,8 @@ mounted hierarchy, to remove a task from its current cgroup you must
move it into a new cgroup (possibly the root cgroup) by writing to the move it into a new cgroup (possibly the root cgroup) by writing to the
new cgroup's tasks file. new cgroup's tasks file.
Note: If the ns cgroup is active, moving a process to another cgroup can Note: Due to some restrictions enforced by some cgroup subsystems, moving
fail. a process to another cgroup can fail.
2.3 Mounting hierarchies by name 2.3 Mounting hierarchies by name
-------------------------------- --------------------------------

View file

@ -33,9 +33,9 @@ demonstrate this problem using nested bash shells:
From a second, unrelated bash shell: From a second, unrelated bash shell:
$ kill -SIGSTOP 16690 $ kill -SIGSTOP 16690
$ kill -SIGCONT 16990 $ kill -SIGCONT 16690
<at this point 16990 exits and causes 16644 to exit too> <at this point 16690 exits and causes 16644 to exit too>
This happens because bash can observe both signals and choose how it This happens because bash can observe both signals and choose how it
responds to them. responds to them.

View file

@ -0,0 +1,17 @@
* Calxeda SATA Controller
SATA nodes are defined to describe on-chip Serial ATA controllers.
Each SATA controller should have its own node.
Required properties:
- compatible : compatible list, contains "calxeda,hb-ahci"
- interrupts : <interrupt mapping for SATA IRQ>
- reg : <registers mapping>
Example:
sata@ffe08000 {
compatible = "calxeda,hb-ahci";
reg = <0xffe08000 0x1000>;
interrupts = <115>;
};

View file

@ -0,0 +1,14 @@
* Atmel Data Flash
Required properties:
- compatible : "atmel,<model>", "atmel,<series>", "atmel,dataflash".
Example:
flash@1 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "atmel,at45db321d", "atmel,at45", "atmel,dataflash";
spi-max-frequency = <25000000>;
reg = <1>;
};

View file

@ -1,3 +1,8 @@
Freescale Reference Board Bindings
This document describes device tree bindings for various devices that
exist on some Freescale reference boards.
* Board Control and Status (BCSR) * Board Control and Status (BCSR)
Required properties: Required properties:
@ -12,25 +17,26 @@ Example:
reg = <f8000000 8000>; reg = <f8000000 8000>;
}; };
* Freescale on board FPGA * Freescale on-board FPGA
This is the memory-mapped registers for on board FPGA. This is the memory-mapped registers for on board FPGA.
Required properities: Required properities:
- compatible : should be "fsl,fpga-pixis". - compatible: should be a board-specific string followed by a string
- reg : should contain the address and the length of the FPPGA register indicating the type of FPGA. Example:
set. "fsl,<board>-fpga", "fsl,fpga-pixis"
- reg: should contain the address and the length of the FPGA register set.
- interrupt-parent: should specify phandle for the interrupt controller. - interrupt-parent: should specify phandle for the interrupt controller.
- interrupts : should specify event (wakeup) IRQ. - interrupts: should specify event (wakeup) IRQ.
Example (MPC8610HPCD): Example (P1022DS):
board-control@e8000000 { board-control@3,0 {
compatible = "fsl,fpga-pixis"; compatible = "fsl,p1022ds-fpga", "fsl,fpga-ngpixis";
reg = <0xe8000000 32>; reg = <3 0 0x30>;
interrupt-parent = <&mpic>; interrupt-parent = <&mpic>;
interrupts = <8 8>; interrupts = <8 8 0 0>;
}; };
* Freescale BCSR GPIO banks * Freescale BCSR GPIO banks

View file

@ -0,0 +1,395 @@
===================================================================
Debug Control and Status Register (DCSR) Binding
Copyright 2011 Freescale Semiconductor Inc.
NOTE: The bindings described in this document are preliminary and subject
to change. Some of the compatible strings that contain only generic names
may turn out to be inappropriate, or need additional properties to describe
the integration of the block with the rest of the chip.
=====================================================================
Debug Control and Status Register Memory Map
Description
This node defines the base address and range for the
defined DCSR Memory Map. Child nodes will describe the individual
debug blocks defined within this memory space.
PROPERTIES
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,dcsr" and "simple-bus".
The DCSR space exists in the memory-mapped bus.
- #address-cells
Usage: required
Value type: <u32>
Definition: A standard property. Defines the number of cells
or representing physical addresses in child nodes.
- #size-cells
Usage: required
Value type: <u32>
Definition: A standard property. Defines the number of cells
or representing the size of physical addresses in
child nodes.
- ranges
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical address
range of the DCSR space.
EXAMPLE
dcsr: dcsr@f00000000 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "fsl,dcsr", "simple-bus";
ranges = <0x00000000 0xf 0x00000000 0x01008000>;
};
=====================================================================
Event Processing Unit
This node represents the region of DCSR space allocated to the EPU
PROPERTIES
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,dcsr-epu"
- interrupts
Usage: required
Value type: <prop_encoded-array>
Definition: Specifies the interrupts generated by the EPU.
The value of the interrupts property consists of three
interrupt specifiers. The format of the specifier is defined
by the binding document describing the node's interrupt parent.
The EPU counters can be configured to assert the performance
monitor interrupt signal based on either counter overflow or value
match. Which counter asserted the interrupt is captured in an EPU
Counter Interrupt Status Register (EPCPUISR).
The EPU unit can also be configured to assert either or both of
two interrupt signals based on debug event sources within the SoC.
The interrupt signals are epu_xt_int0 and epu_xt_int1.
Which event source asserted the interrupt is captured in an EPU
Interrupt Status Register (EPISR0,EPISR1).
Interrupt numbers are lised in order (perfmon, event0, event1).
- interrupt-parent
Usage: required
Value type: <phandle>
Definition: A single <phandle> value that points
to the interrupt parent to which the child domain
is being mapped. Value must be "&mpic"
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical address
offset and length of the DCSR space registers of the device
configuration block.
EXAMPLE
dcsr-epu@0 {
compatible = "fsl,dcsr-epu";
interrupts = <52 2 0 0
84 2 0 0
85 2 0 0>;
interrupt-parent = <&mpic>;
reg = <0x0 0x1000>;
};
=======================================================================
Nexus Port Controller
This node represents the region of DCSR space allocated to the NPC
PROPERTIES
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,dcsr-npc"
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical address
offset and length of the DCSR space registers of the device
configuration block.
The Nexus Port controller occupies two regions in the DCSR space
with distinct functionality.
The first register range describes the Nexus Port Controller
control and status registers.
The second register range describes the Nexus Port Controller
internal trace buffer. The NPC trace buffer is a small memory buffer
which stages the nexus trace data for transmission via the Aurora port
or to a DDR based trace buffer. In some configurations the NPC trace
buffer can be the only trace buffer used.
EXAMPLE
dcsr-npc {
compatible = "fsl,dcsr-npc";
reg = <0x1000 0x1000 0x1000000 0x8000>;
};
=======================================================================
Nexus Concentrator
This node represents the region of DCSR space allocated to the NXC
PROPERTIES
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,dcsr-nxc"
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical address
offset and length of the DCSR space registers of the device
configuration block.
EXAMPLE
dcsr-nxc@2000 {
compatible = "fsl,dcsr-nxc";
reg = <0x2000 0x1000>;
};
=======================================================================
CoreNet Debug Controller
This node represents the region of DCSR space allocated to
the CoreNet Debug controller.
PROPERTIES
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,dcsr-corenet"
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical address
offset and length of the DCSR space registers of the device
configuration block.
The CoreNet Debug controller occupies two regions in the DCSR space
with distinct functionality.
The first register range describes the CoreNet Debug Controller
functionalty to perform transaction and transaction attribute matches.
The second register range describes the CoreNet Debug Controller
functionalty to trigger event notifications and debug traces.
EXAMPLE
dcsr-corenet {
compatible = "fsl,dcsr-corenet";
reg = <0x8000 0x1000 0xB0000 0x1000>;
};
=======================================================================
Data Path Debug controller
This node represents the region of DCSR space allocated to
the DPAA Debug Controller. This controller controls debug configuration
for the QMAN and FMAN blocks.
PROPERTIES
- compatible
Usage: required
Value type: <string>
Definition: Must include both an identifier specific to the SoC
or Debug IP of the form "fsl,<soc>-dcsr-dpaa" in addition to the
generic compatible string "fsl,dcsr-dpaa".
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical address
offset and length of the DCSR space registers of the device
configuration block.
EXAMPLE
dcsr-dpaa@9000 {
compatible = "fsl,p4080-dcsr-dpaa", "fsl,dcsr-dpaa";
reg = <0x9000 0x1000>;
};
=======================================================================
OCeaN Debug controller
This node represents the region of DCSR space allocated to
the OCN Debug Controller.
PROPERTIES
- compatible
Usage: required
Value type: <string>
Definition: Must include both an identifier specific to the SoC
or Debug IP of the form "fsl,<soc>-dcsr-ocn" in addition to the
generic compatible string "fsl,dcsr-ocn".
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical address
offset and length of the DCSR space registers of the device
configuration block.
EXAMPLE
dcsr-ocn@11000 {
compatible = "fsl,p4080-dcsr-ocn", "fsl,dcsr-ocn";
reg = <0x11000 0x1000>;
};
=======================================================================
DDR Controller Debug controller
This node represents the region of DCSR space allocated to
the OCN Debug Controller.
PROPERTIES
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,dcsr-ddr"
- dev-handle
Usage: required
Definition: A phandle to associate this debug node with its
component controller.
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical address
offset and length of the DCSR space registers of the device
configuration block.
EXAMPLE
dcsr-ddr@12000 {
compatible = "fsl,dcsr-ddr";
dev-handle = <&ddr1>;
reg = <0x12000 0x1000>;
};
=======================================================================
Nexus Aurora Link Controller
This node represents the region of DCSR space allocated to
the NAL Controller.
PROPERTIES
- compatible
Usage: required
Value type: <string>
Definition: Must include both an identifier specific to the SoC
or Debug IP of the form "fsl,<soc>-dcsr-nal" in addition to the
generic compatible string "fsl,dcsr-nal".
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical address
offset and length of the DCSR space registers of the device
configuration block.
EXAMPLE
dcsr-nal@18000 {
compatible = "fsl,p4080-dcsr-nal", "fsl,dcsr-nal";
reg = <0x18000 0x1000>;
};
=======================================================================
Run Control and Power Management
This node represents the region of DCSR space allocated to
the RCPM Debug Controller. This functionlity is limited to the
control the debug operations of the SoC and cores.
PROPERTIES
- compatible
Usage: required
Value type: <string>
Definition: Must include both an identifier specific to the SoC
or Debug IP of the form "fsl,<soc>-dcsr-rcpm" in addition to the
generic compatible string "fsl,dcsr-rcpm".
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical address
offset and length of the DCSR space registers of the device
configuration block.
EXAMPLE
dcsr-rcpm@22000 {
compatible = "fsl,p4080-dcsr-rcpm", "fsl,dcsr-rcpm";
reg = <0x22000 0x1000>;
};
=======================================================================
Core Service Bridge Proxy
This node represents the region of DCSR space allocated to
the Core Service Bridge Proxies.
There is one Core Service Bridge Proxy device for each CPU in the system.
This functionlity provides access to the debug operations of the CPU.
PROPERTIES
- compatible
Usage: required
Value type: <string>
Definition: Must include both an identifier specific to the cpu
of the form "fsl,dcsr-<cpu>-sb-proxy" in addition to the
generic compatible string "fsl,dcsr-cpu-sb-proxy".
- cpu-handle
Usage: required
Definition: A phandle to associate this debug node with its cpu.
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical address
offset and length of the DCSR space registers of the device
configuration block.
EXAMPLE
dcsr-cpu-sb-proxy@40000 {
compatible = "fsl,dcsr-e500mc-sb-proxy",
"fsl,dcsr-cpu-sb-proxy";
cpu-handle = <&cpu0>;
reg = <0x40000 0x1000>;
};
dcsr-cpu-sb-proxy@41000 {
compatible = "fsl,dcsr-e500mc-sb-proxy",
"fsl,dcsr-cpu-sb-proxy";
cpu-handle = <&cpu1>;
reg = <0x41000 0x1000>;
};
=======================================================================

View file

@ -25,6 +25,16 @@ Required properties:
are routed to IPIC, and for 85xx/86xx cpu the interrupts are routed are routed to IPIC, and for 85xx/86xx cpu the interrupts are routed
to MPIC. to MPIC.
Optional properties:
- msi-address-64: 64-bit PCI address of the MSIIR register. The MSIIR register
is used for MSI messaging. The address of MSIIR in PCI address space is
the MSI message address.
This property may be used in virtualized environments where the hypervisor
has created an alternate mapping for the MSIR block. See below for an
explanation.
Example: Example:
msi@41600 { msi@41600 {
compatible = "fsl,mpc8610-msi", "fsl,mpic-msi"; compatible = "fsl,mpc8610-msi", "fsl,mpic-msi";
@ -41,3 +51,35 @@ Example:
0xe7 0>; 0xe7 0>;
interrupt-parent = <&mpic>; interrupt-parent = <&mpic>;
}; };
The Freescale hypervisor and msi-address-64
-------------------------------------------
Normally, PCI devices have access to all of CCSR via an ATMU mapping. The
Freescale MSI driver calculates the address of MSIIR (in the MSI register
block) and sets that address as the MSI message address.
In a virtualized environment, the hypervisor may need to create an IOMMU
mapping for MSIIR. The Freescale ePAPR hypervisor has this requirement
because of hardware limitations of the Peripheral Access Management Unit
(PAMU), which is currently the only IOMMU that the hypervisor supports.
The ATMU is programmed with the guest physical address, and the PAMU
intercepts transactions and reroutes them to the true physical address.
In the PAMU, each PCI controller is given only one primary window. The
PAMU restricts DMA operations so that they can only occur within a window.
Because PCI devices must be able to DMA to memory, the primary window must
be used to cover all of the guest's memory space.
PAMU primary windows can be divided into 256 subwindows, and each
subwindow can have its own address mapping ("guest physical" to "true
physical"). However, each subwindow has to have the same alignment, which
means they cannot be located at just any address. Because of these
restrictions, it is usually impossible to create a 4KB subwindow that
covers MSIIR where it's normally located.
Therefore, the hypervisor has to create a subwindow inside the same
primary window used for memory, but mapped to the MSIR block (where MSIIR
lives). The first subwindow after the end of guest memory is used for
this. The address specified in the msi-address-64 property is the PCI
address of MSIIR. The hypervisor configures the PAMU to map that address to
the true physical address of MSIIR.

View file

@ -1,3 +1,4 @@
Note: This filesystem doesn't have a maintainer.
Macintosh HFS Filesystem for Linux Macintosh HFS Filesystem for Linux
================================== ==================================
@ -76,8 +77,6 @@ hformat that can be used to create HFS filesystem. See
Credits Credits
======= =======
The HFS drivers was written by Paul H. Hargrovea (hargrove@sccm.Stanford.EDU) The HFS drivers was written by Paul H. Hargrovea (hargrove@sccm.Stanford.EDU).
and is now maintained by Roman Zippel (roman@ardistech.com) at Ardis Roman Zippel (roman@ardistech.com) rewrote large parts of the code and brought
Technologies. in btree routines derived from Brad Boyer's hfsplus driver.
Roman rewrote large parts of the code and brought in btree routines derived
from Brad Boyer's hfsplus driver (also maintained by Roman now).

View file

@ -194,7 +194,8 @@ associated with the inotify_handle, and on which events are queued.
Each watch is associated with an inotify_watch structure. Watches are chained Each watch is associated with an inotify_watch structure. Watches are chained
off of each associated inotify_handle and each associated inode. off of each associated inotify_handle and each associated inode.
See fs/inotify.c and fs/inotify_user.c for the locking and lifetime rules. See fs/notify/inotify/inotify_fsnotify.c and fs/notify/inotify/inotify_user.c
for the locking and lifetime rules.
(vi) Rationale (vi) Rationale

View file

@ -14,6 +14,10 @@ Supported chips:
Prefix: 'w83627dhg' Prefix: 'w83627dhg'
Addresses scanned: ISA address retrieved from Super I/O registers Addresses scanned: ISA address retrieved from Super I/O registers
Datasheet: not available Datasheet: not available
* Winbond W83627UHG
Prefix: 'w83627uhg'
Addresses scanned: ISA address retrieved from Super I/O registers
Datasheet: available from www.nuvoton.com
* Winbond W83667HG * Winbond W83667HG
Prefix: 'w83667hg' Prefix: 'w83667hg'
Addresses scanned: ISA address retrieved from Super I/O registers Addresses scanned: ISA address retrieved from Super I/O registers
@ -42,14 +46,13 @@ Description
----------- -----------
This driver implements support for the Winbond W83627EHF, W83627EHG, This driver implements support for the Winbond W83627EHF, W83627EHG,
W83627DHG, W83627DHG-P, W83667HG, W83667HG-B, W83667HG-I (NCT6775F), W83627DHG, W83627DHG-P, W83627UHG, W83667HG, W83667HG-B, W83667HG-I
and NCT6776F super I/O chips. We will refer to them collectively as (NCT6775F), and NCT6776F super I/O chips. We will refer to them collectively
Winbond chips. as Winbond chips.
The chips implement three temperature sensors (up to four for 667HG-B, and nine The chips implement 2 to 4 temperature sensors (9 for NCT6775F and NCT6776F),
for NCT6775F and NCT6776F), five fan rotation speed sensors, ten analog voltage 2 to 5 fan rotation speed sensors, 8 to 10 analog voltage sensors, one VID
sensors (only nine for the 627DHG), one VID (6 pins for the 627EHF/EHG, 8 pins (except for 627UHG), alarms with beep warnings (control unimplemented),
for the 627DHG and 667HG), alarms with beep warnings (control unimplemented),
and some automatic fan regulation strategies (plus manual fan control mode). and some automatic fan regulation strategies (plus manual fan control mode).
The temperature sensor sources on W82677HG-B, NCT6775F, and NCT6776F are The temperature sensor sources on W82677HG-B, NCT6775F, and NCT6776F are
@ -86,17 +89,16 @@ follows:
temp1 -> pwm1 temp1 -> pwm1
temp2 -> pwm2 temp2 -> pwm2
temp3 -> pwm3 temp3 -> pwm3 (not on 627UHG)
prog -> pwm4 (not on 667HG and 667HG-B; the programmable setting is not prog -> pwm4 (not on 667HG and 667HG-B; the programmable setting is not
supported by the driver) supported by the driver)
/sys files /sys files
---------- ----------
name - this is a standard hwmon device entry. For the W83627EHF and W83627EHG, name - this is a standard hwmon device entry, it contains the name of
it is set to "w83627ehf", for the W83627DHG it is set to "w83627dhg", the device (see the prefix in the list of supported devices at
for the W83667HG and W83667HG-B it is set to "w83667hg", for NCT6775F it the top of this file)
is set to "nct6775", and for NCT6776F it is set to "nct6776".
pwm[1-4] - this file stores PWM duty cycle or DC value (fan speed) in range: pwm[1-4] - this file stores PWM duty cycle or DC value (fan speed) in range:
0 (stop) to 255 (full) 0 (stop) to 255 (full)

View file

@ -411,9 +411,9 @@ event code Key Notes
0x1004 0x03 FN+F4 Sleep button (ACPI sleep button 0x1004 0x03 FN+F4 Sleep button (ACPI sleep button
semantics, i.e. sleep-to-RAM). semantics, i.e. sleep-to-RAM).
It is always generate some kind It always generates some kind
of event, either the hot key of event, either the hot key
event or a ACPI sleep button event or an ACPI sleep button
event. The firmware may event. The firmware may
refuse to generate further FN+F4 refuse to generate further FN+F4
key presses until a S3 or S4 ACPI key presses until a S3 or S4 ACPI

View file

@ -61,8 +61,8 @@ Hardware accelerated blink of LEDs
Some LEDs can be programmed to blink without any CPU interaction. To Some LEDs can be programmed to blink without any CPU interaction. To
support this feature, a LED driver can optionally implement the support this feature, a LED driver can optionally implement the
blink_set() function (see <linux/leds.h>). To set an LED to blinking, blink_set() function (see <linux/leds.h>). To set an LED to blinking,
however, it is better to use use the API function led_blink_set(), however, it is better to use the API function led_blink_set(), as it
as it will check and implement software fallback if necessary. will check and implement software fallback if necessary.
To turn off blinking again, use the API function led_brightness_set() To turn off blinking again, use the API function led_brightness_set()
as that will not just set the LED brightness but also stop any software as that will not just set the LED brightness but also stop any software

View file

@ -263,6 +263,8 @@ characters, each representing a particular tainted value.
12: 'I' if the kernel is working around a severe bug in the platform 12: 'I' if the kernel is working around a severe bug in the platform
firmware (BIOS or similar). firmware (BIOS or similar).
13: 'O' if an externally-built ("out-of-tree") module has been loaded.
The primary reason for the 'Tainted: ' string is to tell kernel The primary reason for the 'Tainted: ' string is to tell kernel
debuggers if this is a clean kernel or if anything unusual has debuggers if this is a clean kernel or if anything unusual has
occurred. Tainting is permanent: even if an offending module is occurred. Tainting is permanent: even if an offending module is

View file

@ -22,12 +22,12 @@ try_to_freeze_tasks() that sets TIF_FREEZE for all of the freezable tasks and
either wakes them up, if they are kernel threads, or sends fake signals to them, either wakes them up, if they are kernel threads, or sends fake signals to them,
if they are user space processes. A task that has TIF_FREEZE set, should react if they are user space processes. A task that has TIF_FREEZE set, should react
to it by calling the function called refrigerator() (defined in to it by calling the function called refrigerator() (defined in
kernel/power/process.c), which sets the task's PF_FROZEN flag, changes its state kernel/freezer.c), which sets the task's PF_FROZEN flag, changes its state
to TASK_UNINTERRUPTIBLE and makes it loop until PF_FROZEN is cleared for it. to TASK_UNINTERRUPTIBLE and makes it loop until PF_FROZEN is cleared for it.
Then, we say that the task is 'frozen' and therefore the set of functions Then, we say that the task is 'frozen' and therefore the set of functions
handling this mechanism is referred to as 'the freezer' (these functions are handling this mechanism is referred to as 'the freezer' (these functions are
defined in kernel/power/process.c and include/linux/freezer.h). User space defined in kernel/power/process.c, kernel/freezer.c & include/linux/freezer.h).
processes are generally frozen before kernel threads. User space processes are generally frozen before kernel threads.
It is not recommended to call refrigerator() directly. Instead, it is It is not recommended to call refrigerator() directly. Instead, it is
recommended to use the try_to_freeze() function (defined in recommended to use the try_to_freeze() function (defined in
@ -95,7 +95,7 @@ after the memory for the image has been freed, we don't want tasks to allocate
additional memory and we prevent them from doing that by freezing them earlier. additional memory and we prevent them from doing that by freezing them earlier.
[Of course, this also means that device drivers should not allocate substantial [Of course, this also means that device drivers should not allocate substantial
amounts of memory from their .suspend() callbacks before hibernation, but this amounts of memory from their .suspend() callbacks before hibernation, but this
is e separate issue.] is a separate issue.]
3. The third reason is to prevent user space processes and some kernel threads 3. The third reason is to prevent user space processes and some kernel threads
from interfering with the suspending and resuming of devices. A user space from interfering with the suspending and resuming of devices. A user space

View file

@ -789,6 +789,16 @@ will behave normally, not taking the autosuspend delay into account.
Similarly, if the power.use_autosuspend field isn't set then the autosuspend Similarly, if the power.use_autosuspend field isn't set then the autosuspend
helper functions will behave just like the non-autosuspend counterparts. helper functions will behave just like the non-autosuspend counterparts.
Under some circumstances a driver or subsystem may want to prevent a device
from autosuspending immediately, even though the usage counter is zero and the
autosuspend delay time has expired. If the ->runtime_suspend() callback
returns -EAGAIN or -EBUSY, and if the next autosuspend delay expiration time is
in the future (as it normally would be if the callback invoked
pm_runtime_mark_last_busy()), the PM core will automatically reschedule the
autosuspend. The ->runtime_suspend() callback can't do this rescheduling
itself because no suspend requests of any kind are accepted while the device is
suspending (i.e., while the callback is running).
The implementation is well suited for asynchronous use in interrupt contexts. The implementation is well suited for asynchronous use in interrupt contexts.
However such use inevitably involves races, because the PM core can't However such use inevitably involves races, because the PM core can't
synchronize ->runtime_suspend() callbacks with the arrival of I/O requests. synchronize ->runtime_suspend() callbacks with the arrival of I/O requests.

View file

@ -20,8 +20,6 @@ Version: 1.2.14
Date: 11/01/2001 Date: 11/01/2001
Historical Author: Andrew Manison <amanison@america.net> Historical Author: Andrew Manison <amanison@america.net>
Primary Author: Doug McNash Primary Author: Doug McNash
Support: support@computone.com
Fixes and Updates: Mike Warfield <mhw@wittsend.com>
This file assumes that you are using the Computone drivers which are This file assumes that you are using the Computone drivers which are
integrated into the kernel sources. For updating the drivers or installing integrated into the kernel sources. For updating the drivers or installing

View file

@ -0,0 +1,195 @@
Converting old watchdog drivers to the watchdog framework
by Wolfram Sang <w.sang@pengutronix.de>
=========================================================
Before the watchdog framework came into the kernel, every driver had to
implement the API on its own. Now, as the framework factored out the common
components, those drivers can be lightened making it a user of the framework.
This document shall guide you for this task. The necessary steps are described
as well as things to look out for.
Remove the file_operations struct
---------------------------------
Old drivers define their own file_operations for actions like open(), write(),
etc... These are now handled by the framework and just call the driver when
needed. So, in general, the 'file_operations' struct and assorted functions can
go. Only very few driver-specific details have to be moved to other functions.
Here is a overview of the functions and probably needed actions:
- open: Everything dealing with resource management (file-open checks, magic
close preparations) can simply go. Device specific stuff needs to go to the
driver specific start-function. Note that for some drivers, the start-function
also serves as the ping-function. If that is the case and you need start/stop
to be balanced (clocks!), you are better off refactoring a separate start-function.
- close: Same hints as for open apply.
- write: Can simply go, all defined behaviour is taken care of by the framework,
i.e. ping on write and magic char ('V') handling.
- ioctl: While the driver is allowed to have extensions to the IOCTL interface,
the most common ones are handled by the framework, supported by some assistance
from the driver:
WDIOC_GETSUPPORT:
Returns the mandatory watchdog_info struct from the driver
WDIOC_GETSTATUS:
Needs the status-callback defined, otherwise returns 0
WDIOC_GETBOOTSTATUS:
Needs the bootstatus member properly set. Make sure it is 0 if you
don't have further support!
WDIOC_SETOPTIONS:
No preparations needed
WDIOC_KEEPALIVE:
If wanted, options in watchdog_info need to have WDIOF_KEEPALIVEPING
set
WDIOC_SETTIMEOUT:
Options in watchdog_info need to have WDIOF_SETTIMEOUT set
and a set_timeout-callback has to be defined. The core will also
do limit-checking, if min_timeout and max_timeout in the watchdog
device are set. All is optional.
WDIOC_GETTIMEOUT:
No preparations needed
Other IOCTLs can be served using the ioctl-callback. Note that this is mainly
intended for porting old drivers; new drivers should not invent private IOCTLs.
Private IOCTLs are processed first. When the callback returns with
-ENOIOCTLCMD, the IOCTLs of the framework will be tried, too. Any other error
is directly given to the user.
Example conversion:
-static const struct file_operations s3c2410wdt_fops = {
- .owner = THIS_MODULE,
- .llseek = no_llseek,
- .write = s3c2410wdt_write,
- .unlocked_ioctl = s3c2410wdt_ioctl,
- .open = s3c2410wdt_open,
- .release = s3c2410wdt_release,
-};
Check the functions for device-specific stuff and keep it for later
refactoring. The rest can go.
Remove the miscdevice
---------------------
Since the file_operations are gone now, you can also remove the 'struct
miscdevice'. The framework will create it on watchdog_dev_register() called by
watchdog_register_device().
-static struct miscdevice s3c2410wdt_miscdev = {
- .minor = WATCHDOG_MINOR,
- .name = "watchdog",
- .fops = &s3c2410wdt_fops,
-};
Remove obsolete includes and defines
------------------------------------
Because of the simplifications, a few defines are probably unused now. Remove
them. Includes can be removed, too. For example:
- #include <linux/fs.h>
- #include <linux/miscdevice.h> (if MODULE_ALIAS_MISCDEV is not used)
- #include <linux/uaccess.h> (if no custom IOCTLs are used)
Add the watchdog operations
---------------------------
All possible callbacks are defined in 'struct watchdog_ops'. You can find it
explained in 'watchdog-kernel-api.txt' in this directory. start(), stop() and
owner must be set, the rest are optional. You will easily find corresponding
functions in the old driver. Note that you will now get a pointer to the
watchdog_device as a parameter to these functions, so you probably have to
change the function header. Other changes are most likely not needed, because
here simply happens the direct hardware access. If you have device-specific
code left from the above steps, it should be refactored into these callbacks.
Here is a simple example:
+static struct watchdog_ops s3c2410wdt_ops = {
+ .owner = THIS_MODULE,
+ .start = s3c2410wdt_start,
+ .stop = s3c2410wdt_stop,
+ .ping = s3c2410wdt_keepalive,
+ .set_timeout = s3c2410wdt_set_heartbeat,
+};
A typical function-header change looks like:
-static void s3c2410wdt_keepalive(void)
+static int s3c2410wdt_keepalive(struct watchdog_device *wdd)
{
...
+
+ return 0;
}
...
- s3c2410wdt_keepalive();
+ s3c2410wdt_keepalive(&s3c2410_wdd);
Add the watchdog device
-----------------------
Now we need to create a 'struct watchdog_device' and populate it with the
necessary information for the framework. The struct is also explained in detail
in 'watchdog-kernel-api.txt' in this directory. We pass it the mandatory
watchdog_info struct and the newly created watchdog_ops. Often, old drivers
have their own record-keeping for things like bootstatus and timeout using
static variables. Those have to be converted to use the members in
watchdog_device. Note that the timeout values are unsigned int. Some drivers
use signed int, so this has to be converted, too.
Here is a simple example for a watchdog device:
+static struct watchdog_device s3c2410_wdd = {
+ .info = &s3c2410_wdt_ident,
+ .ops = &s3c2410wdt_ops,
+};
Register the watchdog device
----------------------------
Replace misc_register(&miscdev) with watchdog_register_device(&watchdog_dev).
Make sure the return value gets checked and the error message, if present,
still fits. Also convert the unregister case.
- ret = misc_register(&s3c2410wdt_miscdev);
+ ret = watchdog_register_device(&s3c2410_wdd);
...
- misc_deregister(&s3c2410wdt_miscdev);
+ watchdog_unregister_device(&s3c2410_wdd);
Update the Kconfig-entry
------------------------
The entry for the driver now needs to select WATCHDOG_CORE:
+ select WATCHDOG_CORE
Create a patch and send it to upstream
--------------------------------------
Make sure you understood Documentation/SubmittingPatches and send your patch to
linux-watchdog@vger.kernel.org. We are looking forward to it :)

6
Kbuild
View file

@ -88,11 +88,13 @@ $(obj)/$(offsets-file): arch/$(SRCARCH)/kernel/asm-offsets.s Kbuild
# 3) Check for missing system calls # 3) Check for missing system calls
# #
always += missing-syscalls
targets += missing-syscalls
quiet_cmd_syscalls = CALL $< quiet_cmd_syscalls = CALL $<
cmd_syscalls = $(CONFIG_SHELL) $< $(CC) $(c_flags) cmd_syscalls = $(CONFIG_SHELL) $< $(CC) $(c_flags)
PHONY += missing-syscalls missing-syscalls: scripts/checksyscalls.sh $(offsets-file) FORCE
missing-syscalls: scripts/checksyscalls.sh FORCE
$(call cmd,syscalls) $(call cmd,syscalls)
# Keep these two files during make clean # Keep these two files during make clean

View file

@ -1032,6 +1032,7 @@ F: arch/arm/include/asm/hardware/ioc.h
F: arch/arm/include/asm/hardware/iomd.h F: arch/arm/include/asm/hardware/iomd.h
F: arch/arm/include/asm/hardware/memc.h F: arch/arm/include/asm/hardware/memc.h
F: arch/arm/mach-rpc/ F: arch/arm/mach-rpc/
F: drivers/net/ethernet/8390/etherh.c
F: drivers/net/ethernet/i825xx/ether1* F: drivers/net/ethernet/i825xx/ether1*
F: drivers/net/ethernet/seeq/ether3* F: drivers/net/ethernet/seeq/ether3*
F: drivers/scsi/arm/ F: drivers/scsi/arm/
@ -2387,7 +2388,7 @@ F: include/linux/netfilter_bridge/ebt_*.h
F: net/bridge/netfilter/ebt*.c F: net/bridge/netfilter/ebt*.c
ECRYPT FILE SYSTEM ECRYPT FILE SYSTEM
M: Tyler Hicks <tyhicks@linux.vnet.ibm.com> M: Tyler Hicks <tyhicks@canonical.com>
M: Dustin Kirkland <kirkland@canonical.com> M: Dustin Kirkland <kirkland@canonical.com>
L: ecryptfs@vger.kernel.org L: ecryptfs@vger.kernel.org
W: https://launchpad.net/ecryptfs W: https://launchpad.net/ecryptfs
@ -4672,7 +4673,7 @@ L: linux-omap@vger.kernel.org
W: http://www.muru.com/linux/omap/ W: http://www.muru.com/linux/omap/
W: http://linux.omap.com/ W: http://linux.omap.com/
Q: http://patchwork.kernel.org/project/linux-omap/list/ Q: http://patchwork.kernel.org/project/linux-omap/list/
T: git git://git.kernel.org/pub/scm/linux/kernel/git/tmlind/linux-omap-2.6.git T: git git://git.kernel.org/pub/scm/linux/kernel/git/tmlind/linux-omap.git
S: Maintained S: Maintained
F: arch/arm/*omap*/ F: arch/arm/*omap*/
@ -5470,7 +5471,7 @@ S: Maintained
F: drivers/net/ethernet/rdc/r6040.c F: drivers/net/ethernet/rdc/r6040.c
RDS - RELIABLE DATAGRAM SOCKETS RDS - RELIABLE DATAGRAM SOCKETS
M: Andy Grover <andy.grover@oracle.com> M: Venkat Venkatsubra <venkat.x.venkatsubra@oracle.com>
L: rds-devel@oss.oracle.com (moderated for non-subscribers) L: rds-devel@oss.oracle.com (moderated for non-subscribers)
S: Supported S: Supported
F: net/rds/ F: net/rds/

View file

@ -1,8 +1,8 @@
VERSION = 3 VERSION = 3
PATCHLEVEL = 1 PATCHLEVEL = 2
SUBLEVEL = 0 SUBLEVEL = 0
EXTRAVERSION = EXTRAVERSION = -rc1
NAME = "Divemaster Edition" NAME = Saber-toothed Squirrel
# *DOCUMENTATION* # *DOCUMENTATION*
# To see a list of typical targets execute "make help" # To see a list of typical targets execute "make help"
@ -983,7 +983,6 @@ archprepare: prepare1 scripts_basic
prepare0: archprepare FORCE prepare0: archprepare FORCE
$(Q)$(MAKE) $(build)=. $(Q)$(MAKE) $(build)=.
$(Q)$(MAKE) $(build)=. missing-syscalls
# All the preparing.. # All the preparing..
prepare: prepare0 prepare: prepare0
@ -1198,7 +1197,7 @@ distclean: mrproper
@find $(srctree) $(RCS_FIND_IGNORE) \ @find $(srctree) $(RCS_FIND_IGNORE) \
\( -name '*.orig' -o -name '*.rej' -o -name '*~' \ \( -name '*.orig' -o -name '*.rej' -o -name '*~' \
-o -name '*.bak' -o -name '#*#' -o -name '.*.orig' \ -o -name '*.bak' -o -name '#*#' -o -name '.*.orig' \
-o -name '.*.rej' -o -size 0 \ -o -name '.*.rej' \
-o -name '*%' -o -name '.*.cmd' -o -name 'core' \) \ -o -name '*%' -o -name '.*.cmd' -o -name 'core' \) \
-type f -print | xargs rm -f -type f -print | xargs rm -f
@ -1296,7 +1295,6 @@ help:
@echo ' 2: warnings which occur quite often but may still be relevant' @echo ' 2: warnings which occur quite often but may still be relevant'
@echo ' 3: more obscure warnings, can most likely be ignored' @echo ' 3: more obscure warnings, can most likely be ignored'
@echo ' Multiple levels can be combined with W=12 or W=123' @echo ' Multiple levels can be combined with W=12 or W=123'
@echo ' make RECORDMCOUNT_WARN=1 [targets] Warn about ignored mcount sections'
@echo '' @echo ''
@echo 'Execute "make" or "make all" to build all targets marked with [*] ' @echo 'Execute "make" or "make all" to build all targets marked with [*] '
@echo 'For further info see the ./README file' @echo 'For further info see the ./README file'

View file

@ -445,11 +445,6 @@ config ALPHA_EV67
Is this a machine based on the EV67 core? If in doubt, select N here Is this a machine based on the EV67 core? If in doubt, select N here
and the machine will be treated as an EV6. and the machine will be treated as an EV6.
config ALPHA_EV7
bool
depends on ALPHA_MARVEL
default y
config ALPHA_MCPCIA config ALPHA_MCPCIA
bool bool
depends on ALPHA_RAWHIDE depends on ALPHA_RAWHIDE

View file

@ -303,6 +303,7 @@ irongate_init_arch(void)
#include <linux/vmalloc.h> #include <linux/vmalloc.h>
#include <linux/agp_backend.h> #include <linux/agp_backend.h>
#include <linux/agpgart.h> #include <linux/agpgart.h>
#include <linux/export.h>
#include <asm/pgalloc.h> #include <asm/pgalloc.h>
#define GET_PAGE_DIR_OFF(addr) (addr >> 22) #define GET_PAGE_DIR_OFF(addr) (addr >> 22)

View file

@ -10,6 +10,7 @@
*/ */
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/stat.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/pci.h> #include <linux/pci.h>

View file

@ -7,6 +7,7 @@
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/gfp.h> #include <linux/gfp.h>
#include <linux/bootmem.h> #include <linux/bootmem.h>
#include <linux/export.h>
#include <linux/scatterlist.h> #include <linux/scatterlist.h>
#include <linux/log2.h> #include <linux/log2.h>
#include <linux/dma-mapping.h> #include <linux/dma-mapping.h>

View file

@ -43,6 +43,7 @@
#include <asm/setup.h> #include <asm/setup.h>
#include <asm/io.h> #include <asm/io.h>
#include <linux/log2.h> #include <linux/log2.h>
#include <linux/export.h>
extern struct atomic_notifier_head panic_notifier_list; extern struct atomic_notifier_head panic_notifier_list;
static int alpha_panic_event(struct notifier_block *, unsigned long, void *); static int alpha_panic_event(struct notifier_block *, unsigned long, void *);

View file

@ -595,6 +595,7 @@ config ARCH_MMP
select TICK_ONESHOT select TICK_ONESHOT
select PLAT_PXA select PLAT_PXA
select SPARSE_IRQ select SPARSE_IRQ
select GENERIC_ALLOCATOR
help help
Support for Marvell's PXA168/PXA910(MMP) and MMP2 processor line. Support for Marvell's PXA168/PXA910(MMP) and MMP2 processor line.
@ -769,6 +770,7 @@ config ARCH_S3C64XX
select CPU_V6 select CPU_V6
select ARM_VIC select ARM_VIC
select HAVE_CLK select HAVE_CLK
select HAVE_TCM
select CLKDEV_LOOKUP select CLKDEV_LOOKUP
select NO_IOPORT select NO_IOPORT
select ARCH_USES_GETTIMEOFFSET select ARCH_USES_GETTIMEOFFSET
@ -777,9 +779,6 @@ config ARCH_S3C64XX
select SAMSUNG_CLKSRC select SAMSUNG_CLKSRC
select SAMSUNG_IRQ_VIC_TIMER select SAMSUNG_IRQ_VIC_TIMER
select S3C_GPIO_TRACK select S3C_GPIO_TRACK
select S3C_GPIO_PULL_UPDOWN
select S3C_GPIO_CFG_S3C24XX
select S3C_GPIO_CFG_S3C64XX
select S3C_DEV_NAND select S3C_DEV_NAND
select USB_ARCH_HAS_OHCI select USB_ARCH_HAS_OHCI
select SAMSUNG_GPIOLIB_4BIT select SAMSUNG_GPIOLIB_4BIT
@ -838,8 +837,8 @@ config ARCH_S5PV210
help help
Samsung S5PV210/S5PC110 series based systems Samsung S5PV210/S5PC110 series based systems
config ARCH_EXYNOS4 config ARCH_EXYNOS
bool "Samsung EXYNOS4" bool "SAMSUNG EXYNOS"
select CPU_V7 select CPU_V7
select ARCH_SPARSEMEM_ENABLE select ARCH_SPARSEMEM_ENABLE
select ARCH_HAS_HOLES_MEMORYMODEL select ARCH_HAS_HOLES_MEMORYMODEL
@ -853,7 +852,7 @@ config ARCH_EXYNOS4
select HAVE_S3C2410_WATCHDOG if WATCHDOG select HAVE_S3C2410_WATCHDOG if WATCHDOG
select NEED_MACH_MEMORY_H select NEED_MACH_MEMORY_H
help help
Samsung EXYNOS4 series based systems Support for SAMSUNG's EXYNOS SoCs (EXYNOS4/5)
config ARCH_SHARK config ARCH_SHARK
bool "Shark" bool "Shark"
@ -1080,7 +1079,7 @@ source "arch/arm/mach-s5pc100/Kconfig"
source "arch/arm/mach-s5pv210/Kconfig" source "arch/arm/mach-s5pv210/Kconfig"
source "arch/arm/mach-exynos4/Kconfig" source "arch/arm/mach-exynos/Kconfig"
source "arch/arm/mach-shmobile/Kconfig" source "arch/arm/mach-shmobile/Kconfig"
@ -2212,7 +2211,7 @@ menu "Power management options"
source "kernel/power/Kconfig" source "kernel/power/Kconfig"
config ARCH_SUSPEND_POSSIBLE config ARCH_SUSPEND_POSSIBLE
depends on !ARCH_S5P64X0 && !ARCH_S5PC100 depends on !ARCH_S5PC100
depends on CPU_ARM920T || CPU_ARM926T || CPU_SA1100 || \ depends on CPU_ARM920T || CPU_ARM926T || CPU_SA1100 || \
CPU_V6 || CPU_V6K || CPU_V7 || CPU_XSC3 || CPU_XSCALE CPU_V6 || CPU_V6K || CPU_V7 || CPU_XSC3 || CPU_XSCALE
def_bool y def_bool y

View file

@ -180,7 +180,7 @@ machine-$(CONFIG_ARCH_S3C64XX) := s3c64xx
machine-$(CONFIG_ARCH_S5P64X0) := s5p64x0 machine-$(CONFIG_ARCH_S5P64X0) := s5p64x0
machine-$(CONFIG_ARCH_S5PC100) := s5pc100 machine-$(CONFIG_ARCH_S5PC100) := s5pc100
machine-$(CONFIG_ARCH_S5PV210) := s5pv210 machine-$(CONFIG_ARCH_S5PV210) := s5pv210
machine-$(CONFIG_ARCH_EXYNOS4) := exynos4 machine-$(CONFIG_ARCH_EXYNOS4) := exynos
machine-$(CONFIG_ARCH_SA1100) := sa1100 machine-$(CONFIG_ARCH_SA1100) := sa1100
machine-$(CONFIG_ARCH_SHARK) := shark machine-$(CONFIG_ARCH_SHARK) := shark
machine-$(CONFIG_ARCH_SHMOBILE) := shmobile machine-$(CONFIG_ARCH_SHMOBILE) := shmobile

View file

@ -25,6 +25,7 @@
#include <linux/ioport.h> #include <linux/ioport.h>
#include <linux/irq.h> #include <linux/irq.h>
#include <linux/io.h> #include <linux/io.h>
#include <linux/export.h>
#include <asm/mach/pci.h> #include <asm/mach/pci.h>
#include <asm/hardware/it8152.h> #include <asm/hardware/it8152.h>

View file

@ -16,6 +16,7 @@
#include <linux/string.h> #include <linux/string.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/export.h>
#include <linux/io.h> #include <linux/io.h>
#include <asm/hardware/scoop.h> #include <asm/hardware/scoop.h>

View file

@ -4,19 +4,18 @@ CONFIG_KALLSYMS_ALL=y
CONFIG_MODULES=y CONFIG_MODULES=y
CONFIG_MODULE_UNLOAD=y CONFIG_MODULE_UNLOAD=y
# CONFIG_BLK_DEV_BSG is not set # CONFIG_BLK_DEV_BSG is not set
CONFIG_ARCH_EXYNOS4=y CONFIG_ARCH_EXYNOS=y
CONFIG_S3C_LOWLEVEL_UART_PORT=1 CONFIG_S3C_LOWLEVEL_UART_PORT=1
CONFIG_MACH_SMDKC210=y CONFIG_MACH_SMDKC210=y
CONFIG_MACH_SMDKV310=y
CONFIG_MACH_ARMLEX4210=y CONFIG_MACH_ARMLEX4210=y
CONFIG_MACH_UNIVERSAL_C210=y CONFIG_MACH_UNIVERSAL_C210=y
CONFIG_MACH_NURI=y CONFIG_MACH_NURI=y
CONFIG_MACH_ORIGEN=y CONFIG_MACH_ORIGEN=y
CONFIG_MACH_SMDK4412=y
CONFIG_NO_HZ=y CONFIG_NO_HZ=y
CONFIG_HIGH_RES_TIMERS=y CONFIG_HIGH_RES_TIMERS=y
CONFIG_SMP=y CONFIG_SMP=y
CONFIG_NR_CPUS=2 CONFIG_NR_CPUS=2
CONFIG_HOTPLUG_CPU=y
CONFIG_PREEMPT=y CONFIG_PREEMPT=y
CONFIG_AEABI=y CONFIG_AEABI=y
CONFIG_CMDLINE="root=/dev/ram0 rw ramdisk=8192 initrd=0x41000000,8M console=ttySAC1,115200 init=/linuxrc mem=256M" CONFIG_CMDLINE="root=/dev/ram0 rw ramdisk=8192 initrd=0x41000000,8M console=ttySAC1,115200 init=/linuxrc mem=256M"
@ -61,13 +60,9 @@ CONFIG_DETECT_HUNG_TASK=y
CONFIG_DEBUG_RT_MUTEXES=y CONFIG_DEBUG_RT_MUTEXES=y
CONFIG_DEBUG_SPINLOCK=y CONFIG_DEBUG_SPINLOCK=y
CONFIG_DEBUG_MUTEXES=y CONFIG_DEBUG_MUTEXES=y
CONFIG_DEBUG_SPINLOCK_SLEEP=y
CONFIG_DEBUG_INFO=y CONFIG_DEBUG_INFO=y
# CONFIG_RCU_CPU_STALL_DETECTOR is not set
CONFIG_SYSCTL_SYSCALL_CHECK=y CONFIG_SYSCTL_SYSCALL_CHECK=y
CONFIG_DEBUG_USER=y CONFIG_DEBUG_USER=y
CONFIG_DEBUG_ERRORS=y
CONFIG_DEBUG_LL=y CONFIG_DEBUG_LL=y
CONFIG_EARLY_PRINTK=y CONFIG_EARLY_PRINTK=y
CONFIG_DEBUG_S3C_UART=1
CONFIG_CRC_CCITT=y CONFIG_CRC_CCITT=y

View file

@ -21,6 +21,9 @@
* OneNAND features. * OneNAND features.
*/ */
#ifndef ASM_PL080_H
#define ASM_PL080_H
#define PL080_INT_STATUS (0x00) #define PL080_INT_STATUS (0x00)
#define PL080_TC_STATUS (0x04) #define PL080_TC_STATUS (0x04)
#define PL080_TC_CLEAR (0x08) #define PL080_TC_CLEAR (0x08)
@ -138,3 +141,4 @@ struct pl080s_lli {
u32 control1; u32 control1;
}; };
#endif /* ASM_PL080_H */

View file

@ -7,7 +7,7 @@
* it under the terms of the GNU General Public License version 2 as * it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation. * published by the Free Software Foundation.
*/ */
#include <linux/module.h> #include <linux/export.h>
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/string.h> #include <linux/string.h>
#include <linux/cryptohash.h> #include <linux/cryptohash.h>

View file

@ -5,7 +5,7 @@
* *
* Bits taken from various places. * Bits taken from various places.
*/ */
#include <linux/module.h> #include <linux/export.h>
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/slab.h> #include <linux/slab.h>

View file

@ -9,7 +9,7 @@
*/ */
#include <linux/init.h> #include <linux/init.h>
#include <linux/module.h> #include <linux/export.h>
#include <linux/errno.h> #include <linux/errno.h>
#include <linux/types.h> #include <linux/types.h>
#include <linux/bootmem.h> #include <linux/bootmem.h>

View file

@ -1,4 +1,4 @@
#include <linux/module.h> #include <linux/export.h>
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/personality.h> #include <linux/personality.h>
#include <linux/binfmts.h> #include <linux/binfmts.h>

View file

@ -24,6 +24,7 @@
#include <linux/miscdevice.h> #include <linux/miscdevice.h>
#include <linux/vmalloc.h> #include <linux/vmalloc.h>
#include <linux/mutex.h> #include <linux/mutex.h>
#include <linux/module.h>
#include <asm/hardware/coresight.h> #include <asm/hardware/coresight.h>
#include <asm/sections.h> #include <asm/sections.h>

View file

@ -1,4 +1,4 @@
#include <linux/module.h> #include <linux/export.h>
#include <linux/types.h> #include <linux/types.h>
#include <linux/io.h> #include <linux/io.h>

View file

@ -22,7 +22,6 @@
* Naturally it's not a 1:1 relation, but there are similarities. * Naturally it's not a 1:1 relation, but there are similarities.
*/ */
#include <linux/kernel_stat.h> #include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/signal.h> #include <linux/signal.h>
#include <linux/ioport.h> #include <linux/ioport.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>

View file

@ -7,10 +7,11 @@
* it under the terms of the GNU General Public License version 2 as * it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation. * published by the Free Software Foundation.
*/ */
#include <linux/module.h> #include <linux/export.h>
#include <linux/init.h> #include <linux/init.h>
#include <linux/sysdev.h> #include <linux/sysdev.h>
#include <linux/syscore_ops.h> #include <linux/syscore_ops.h>
#include <linux/string.h>
#include <asm/leds.h> #include <asm/leds.h>

View file

@ -15,7 +15,7 @@
#include <linux/bitmap.h> #include <linux/bitmap.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/module.h> #include <linux/export.h>
#include <linux/perf_event.h> #include <linux/perf_event.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/spinlock.h> #include <linux/spinlock.h>

View file

@ -10,7 +10,6 @@
* published by the Free Software Foundation. * published by the Free Software Foundation.
*/ */
#include <linux/module.h>
#include <linux/types.h> #include <linux/types.h>
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/signal.h> #include <linux/signal.h>

View file

@ -10,7 +10,7 @@
*/ */
#include <stdarg.h> #include <stdarg.h>
#include <linux/module.h> #include <linux/export.h>
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/mm.h> #include <linux/mm.h>

View file

@ -12,6 +12,7 @@
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/mm.h> #include <linux/mm.h>
#include <linux/elf.h>
#include <linux/smp.h> #include <linux/smp.h>
#include <linux/ptrace.h> #include <linux/ptrace.h>
#include <linux/user.h> #include <linux/user.h>

View file

@ -8,7 +8,7 @@
* under the terms of the GNU General Public License version 2 as published by * under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation. * the Free Software Foundation.
*/ */
#include <linux/module.h> #include <linux/export.h>
#include <linux/ftrace.h> #include <linux/ftrace.h>
#if defined(CONFIG_FRAME_POINTER) && !defined(CONFIG_ARM_UNWIND) #if defined(CONFIG_FRAME_POINTER) && !defined(CONFIG_ARM_UNWIND)

View file

@ -7,7 +7,7 @@
* it under the terms of the GNU General Public License version 2 as * it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation. * published by the Free Software Foundation.
*/ */
#include <linux/module.h> #include <linux/export.h>
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/stddef.h> #include <linux/stddef.h>
#include <linux/ioport.h> #include <linux/ioport.h>

View file

@ -1,4 +1,4 @@
#include <linux/module.h> #include <linux/export.h>
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/stacktrace.h> #include <linux/stacktrace.h>

View file

@ -12,7 +12,7 @@
* have a non-standard calling sequence on the Linux/arm * have a non-standard calling sequence on the Linux/arm
* platform. * platform.
*/ */
#include <linux/module.h> #include <linux/export.h>
#include <linux/errno.h> #include <linux/errno.h>
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/mm.h> #include <linux/mm.h>

View file

@ -11,7 +11,7 @@
* This file contains the ARM-specific time handling details: * This file contains the ARM-specific time handling details:
* reading the RTC at bootup, etc... * reading the RTC at bootup, etc...
*/ */
#include <linux/module.h> #include <linux/export.h>
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/time.h> #include <linux/time.h>

View file

@ -39,7 +39,7 @@
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/init.h> #include <linux/init.h>
#include <linux/module.h> #include <linux/export.h>
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/spinlock.h> #include <linux/spinlock.h>

View file

@ -8,7 +8,6 @@
* published by the Free Software Foundation. * published by the Free Software Foundation.
*/ */
#include <linux/module.h>
#include <linux/types.h> #include <linux/types.h>
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/signal.h> #include <linux/signal.h>

View file

@ -195,12 +195,6 @@ if ARCH_AT91SAM9260
comment "AT91SAM9260 Variants" comment "AT91SAM9260 Variants"
config ARCH_AT91SAM9260_SAM9XE
bool "AT91SAM9XE"
help
Select this if you are using Atmel's AT91SAM9XE System-on-Chip.
They are basically AT91SAM9260s with various sizes of embedded Flash.
comment "AT91SAM9260 / AT91SAM9XE Board Type" comment "AT91SAM9260 / AT91SAM9XE Board Type"
config MACH_AT91SAM9260EK config MACH_AT91SAM9260EK

View file

@ -130,19 +130,14 @@ static struct mtd_partition __initdata afeb9260_nand_partition[] = {
}, },
}; };
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(afeb9260_nand_partition);
return afeb9260_nand_partition;
}
static struct atmel_nand_data __initdata afeb9260_nand_data = { static struct atmel_nand_data __initdata afeb9260_nand_data = {
.ale = 21, .ale = 21,
.cle = 22, .cle = 22,
.rdy_pin = AT91_PIN_PC13, .rdy_pin = AT91_PIN_PC13,
.enable_pin = AT91_PIN_PC14, .enable_pin = AT91_PIN_PC14,
.partition_info = nand_partitions,
.bus_width_16 = 0, .bus_width_16 = 0,
.parts = afeb9260_nand_partition,
.num_parts = ARRAY_SIZE(afeb9260_nand_partition),
}; };

View file

@ -132,19 +132,14 @@ static struct mtd_partition __initdata cam60_nand_partition[] = {
}, },
}; };
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(cam60_nand_partition);
return cam60_nand_partition;
}
static struct atmel_nand_data __initdata cam60_nand_data = { static struct atmel_nand_data __initdata cam60_nand_data = {
.ale = 21, .ale = 21,
.cle = 22, .cle = 22,
// .det_pin = ... not there // .det_pin = ... not there
.rdy_pin = AT91_PIN_PA9, .rdy_pin = AT91_PIN_PA9,
.enable_pin = AT91_PIN_PA7, .enable_pin = AT91_PIN_PA7,
.partition_info = nand_partitions, .parts = cam60_nand_partition,
.num_parts = ARRAY_SIZE(cam60_nand_partition),
}; };
static struct sam9_smc_config __initdata cam60_nand_smc_config = { static struct sam9_smc_config __initdata cam60_nand_smc_config = {

View file

@ -169,19 +169,14 @@ static struct mtd_partition __initdata cap9adk_nand_partitions[] = {
}, },
}; };
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(cap9adk_nand_partitions);
return cap9adk_nand_partitions;
}
static struct atmel_nand_data __initdata cap9adk_nand_data = { static struct atmel_nand_data __initdata cap9adk_nand_data = {
.ale = 21, .ale = 21,
.cle = 22, .cle = 22,
// .det_pin = ... not connected // .det_pin = ... not connected
// .rdy_pin = ... not connected // .rdy_pin = ... not connected
.enable_pin = AT91_PIN_PD15, .enable_pin = AT91_PIN_PD15,
.partition_info = nand_partitions, .parts = cap9adk_nand_partitions,
.num_parts = ARRAY_SIZE(cap9adk_nand_partitions),
}; };
static struct sam9_smc_config __initdata cap9adk_nand_smc_config = { static struct sam9_smc_config __initdata cap9adk_nand_smc_config = {

View file

@ -97,19 +97,14 @@ static struct mtd_partition __initdata kb9202_nand_partition[] = {
}, },
}; };
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(kb9202_nand_partition);
return kb9202_nand_partition;
}
static struct atmel_nand_data __initdata kb9202_nand_data = { static struct atmel_nand_data __initdata kb9202_nand_data = {
.ale = 22, .ale = 22,
.cle = 21, .cle = 21,
// .det_pin = ... not there // .det_pin = ... not there
.rdy_pin = AT91_PIN_PC29, .rdy_pin = AT91_PIN_PC29,
.enable_pin = AT91_PIN_PC28, .enable_pin = AT91_PIN_PC28,
.partition_info = nand_partitions, .parts = kb9202_nand_partition,
.num_parts = ARRAY_SIZE(kb9202_nand_partition),
}; };
static void __init kb9202_board_init(void) static void __init kb9202_board_init(void)

View file

@ -182,19 +182,14 @@ static struct mtd_partition __initdata neocore926_nand_partition[] = {
}, },
}; };
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(neocore926_nand_partition);
return neocore926_nand_partition;
}
static struct atmel_nand_data __initdata neocore926_nand_data = { static struct atmel_nand_data __initdata neocore926_nand_data = {
.ale = 21, .ale = 21,
.cle = 22, .cle = 22,
.rdy_pin = AT91_PIN_PB19, .rdy_pin = AT91_PIN_PB19,
.rdy_pin_active_low = 1, .rdy_pin_active_low = 1,
.enable_pin = AT91_PIN_PD15, .enable_pin = AT91_PIN_PD15,
.partition_info = nand_partitions, .parts = neocore926_nand_partition,
.num_parts = ARRAY_SIZE(neocore926_nand_partition),
}; };
static struct sam9_smc_config __initdata neocore926_nand_smc_config = { static struct sam9_smc_config __initdata neocore926_nand_smc_config = {

View file

@ -130,19 +130,14 @@ static struct mtd_partition __initdata ek_nand_partition[] = {
}, },
}; };
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(ek_nand_partition);
return ek_nand_partition;
}
static struct atmel_nand_data __initdata ek_nand_data = { static struct atmel_nand_data __initdata ek_nand_data = {
.ale = 21, .ale = 21,
.cle = 22, .cle = 22,
// .det_pin = ... not connected // .det_pin = ... not connected
.rdy_pin = AT91_PIN_PC13, .rdy_pin = AT91_PIN_PC13,
.enable_pin = AT91_PIN_PC14, .enable_pin = AT91_PIN_PC14,
.partition_info = nand_partitions, .parts = ek_nand_partition,
.num_parts = ARRAY_SIZE(ek_nand_partition),
}; };
static struct sam9_smc_config __initdata ek_nand_smc_config = { static struct sam9_smc_config __initdata ek_nand_smc_config = {

View file

@ -138,19 +138,14 @@ static struct mtd_partition __initdata dk_nand_partition[] = {
}, },
}; };
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(dk_nand_partition);
return dk_nand_partition;
}
static struct atmel_nand_data __initdata dk_nand_data = { static struct atmel_nand_data __initdata dk_nand_data = {
.ale = 22, .ale = 22,
.cle = 21, .cle = 21,
.det_pin = AT91_PIN_PB1, .det_pin = AT91_PIN_PB1,
.rdy_pin = AT91_PIN_PC2, .rdy_pin = AT91_PIN_PC2,
// .enable_pin = ... not there // .enable_pin = ... not there
.partition_info = nand_partitions, .parts = dk_nand_partition,
.num_parts = ARRAY_SIZE(dk_nand_partition),
}; };
#define DK_FLASH_BASE AT91_CHIPSELECT_0 #define DK_FLASH_BASE AT91_CHIPSELECT_0

View file

@ -131,19 +131,14 @@ static struct mtd_partition __initdata ek_nand_partition[] = {
}, },
}; };
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(ek_nand_partition);
return ek_nand_partition;
}
static struct atmel_nand_data __initdata ek_nand_data = { static struct atmel_nand_data __initdata ek_nand_data = {
.ale = 21, .ale = 21,
.cle = 22, .cle = 22,
// .det_pin = ... not connected // .det_pin = ... not connected
.rdy_pin = AT91_PIN_PC13, .rdy_pin = AT91_PIN_PC13,
.enable_pin = AT91_PIN_PC14, .enable_pin = AT91_PIN_PC14,
.partition_info = nand_partitions, .parts = ek_nand_partition,
.num_parts = ARRAY_SIZE(ek_nand_partition),
}; };
static struct sam9_smc_config __initdata ek_nand_smc_config = { static struct sam9_smc_config __initdata ek_nand_smc_config = {

View file

@ -173,19 +173,14 @@ static struct mtd_partition __initdata ek_nand_partition[] = {
}, },
}; };
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(ek_nand_partition);
return ek_nand_partition;
}
static struct atmel_nand_data __initdata ek_nand_data = { static struct atmel_nand_data __initdata ek_nand_data = {
.ale = 21, .ale = 21,
.cle = 22, .cle = 22,
// .det_pin = ... not connected // .det_pin = ... not connected
.rdy_pin = AT91_PIN_PC13, .rdy_pin = AT91_PIN_PC13,
.enable_pin = AT91_PIN_PC14, .enable_pin = AT91_PIN_PC14,
.partition_info = nand_partitions, .parts = ek_nand_partition,
.num_parts = ARRAY_SIZE(ek_nand_partition),
}; };
static struct sam9_smc_config __initdata ek_nand_smc_config = { static struct sam9_smc_config __initdata ek_nand_smc_config = {

View file

@ -179,19 +179,14 @@ static struct mtd_partition __initdata ek_nand_partition[] = {
}, },
}; };
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(ek_nand_partition);
return ek_nand_partition;
}
static struct atmel_nand_data __initdata ek_nand_data = { static struct atmel_nand_data __initdata ek_nand_data = {
.ale = 22, .ale = 22,
.cle = 21, .cle = 21,
// .det_pin = ... not connected // .det_pin = ... not connected
.rdy_pin = AT91_PIN_PC15, .rdy_pin = AT91_PIN_PC15,
.enable_pin = AT91_PIN_PC14, .enable_pin = AT91_PIN_PC14,
.partition_info = nand_partitions, .parts = ek_nand_partition,
.num_parts = ARRAY_SIZE(ek_nand_partition),
}; };
static struct sam9_smc_config __initdata ek_nand_smc_config = { static struct sam9_smc_config __initdata ek_nand_smc_config = {

View file

@ -180,19 +180,14 @@ static struct mtd_partition __initdata ek_nand_partition[] = {
}, },
}; };
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(ek_nand_partition);
return ek_nand_partition;
}
static struct atmel_nand_data __initdata ek_nand_data = { static struct atmel_nand_data __initdata ek_nand_data = {
.ale = 21, .ale = 21,
.cle = 22, .cle = 22,
// .det_pin = ... not connected // .det_pin = ... not connected
.rdy_pin = AT91_PIN_PA22, .rdy_pin = AT91_PIN_PA22,
.enable_pin = AT91_PIN_PD15, .enable_pin = AT91_PIN_PD15,
.partition_info = nand_partitions, .parts = ek_nand_partition,
.num_parts = ARRAY_SIZE(ek_nand_partition),
}; };
static struct sam9_smc_config __initdata ek_nand_smc_config = { static struct sam9_smc_config __initdata ek_nand_smc_config = {

View file

@ -157,19 +157,14 @@ static struct mtd_partition __initdata ek_nand_partition[] = {
}, },
}; };
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(ek_nand_partition);
return ek_nand_partition;
}
/* det_pin is not connected */ /* det_pin is not connected */
static struct atmel_nand_data __initdata ek_nand_data = { static struct atmel_nand_data __initdata ek_nand_data = {
.ale = 21, .ale = 21,
.cle = 22, .cle = 22,
.rdy_pin = AT91_PIN_PC13, .rdy_pin = AT91_PIN_PC13,
.enable_pin = AT91_PIN_PC14, .enable_pin = AT91_PIN_PC14,
.partition_info = nand_partitions, .parts = ek_nand_partition,
.num_parts = ARRAY_SIZE(ek_nand_partition),
}; };
static struct sam9_smc_config __initdata ek_nand_smc_config = { static struct sam9_smc_config __initdata ek_nand_smc_config = {

View file

@ -137,19 +137,14 @@ static struct mtd_partition __initdata ek_nand_partition[] = {
}, },
}; };
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(ek_nand_partition);
return ek_nand_partition;
}
/* det_pin is not connected */ /* det_pin is not connected */
static struct atmel_nand_data __initdata ek_nand_data = { static struct atmel_nand_data __initdata ek_nand_data = {
.ale = 21, .ale = 21,
.cle = 22, .cle = 22,
.rdy_pin = AT91_PIN_PC8, .rdy_pin = AT91_PIN_PC8,
.enable_pin = AT91_PIN_PC14, .enable_pin = AT91_PIN_PC14,
.partition_info = nand_partitions, .parts = ek_nand_partition,
.num_parts = ARRAY_SIZE(ek_nand_partition),
}; };
static struct sam9_smc_config __initdata ek_nand_smc_config = { static struct sam9_smc_config __initdata ek_nand_smc_config = {

View file

@ -88,19 +88,14 @@ static struct mtd_partition __initdata ek_nand_partition[] = {
}, },
}; };
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(ek_nand_partition);
return ek_nand_partition;
}
static struct atmel_nand_data __initdata ek_nand_data = { static struct atmel_nand_data __initdata ek_nand_data = {
.ale = 21, .ale = 21,
.cle = 22, .cle = 22,
// .det_pin = ... not connected // .det_pin = ... not connected
.rdy_pin = AT91_PIN_PD17, .rdy_pin = AT91_PIN_PD17,
.enable_pin = AT91_PIN_PB6, .enable_pin = AT91_PIN_PB6,
.partition_info = nand_partitions, .parts = ek_nand_partition,
.num_parts = ARRAY_SIZE(ek_nand_partition),
}; };
static struct sam9_smc_config __initdata ek_nand_smc_config = { static struct sam9_smc_config __initdata ek_nand_smc_config = {

View file

@ -97,18 +97,12 @@ static struct mtd_partition __initdata snapper9260_nand_partitions[] = {
}, },
}; };
static struct mtd_partition * __init
snapper9260_nand_partition_info(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(snapper9260_nand_partitions);
return snapper9260_nand_partitions;
}
static struct atmel_nand_data __initdata snapper9260_nand_data = { static struct atmel_nand_data __initdata snapper9260_nand_data = {
.ale = 21, .ale = 21,
.cle = 22, .cle = 22,
.rdy_pin = AT91_PIN_PC13, .rdy_pin = AT91_PIN_PC13,
.partition_info = snapper9260_nand_partition_info, .parts = snapper9260_nand_partitions,
.num_parts = ARRAY_SIZE(snapper9260_nand_partitions),
.bus_width_16 = 0, .bus_width_16 = 0,
}; };

View file

@ -190,19 +190,14 @@ static struct mtd_partition __initdata ek_nand_partition[] = {
} }
}; };
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(ek_nand_partition);
return ek_nand_partition;
}
static struct atmel_nand_data __initdata ek_nand_data = { static struct atmel_nand_data __initdata ek_nand_data = {
.ale = 21, .ale = 21,
.cle = 22, .cle = 22,
// .det_pin = ... not connected // .det_pin = ... not connected
.rdy_pin = AT91_PIN_PA22, .rdy_pin = AT91_PIN_PA22,
.enable_pin = AT91_PIN_PD15, .enable_pin = AT91_PIN_PD15,
.partition_info = nand_partitions, .parts = ek_nand_partition,
.num_parts = ARRAY_SIZE(ek_nand_partition),
}; };
static struct sam9_smc_config __initdata usb_a9260_nand_smc_config = { static struct sam9_smc_config __initdata usb_a9260_nand_smc_config = {

View file

@ -172,19 +172,14 @@ static struct mtd_partition __initdata yl9200_nand_partition[] = {
} }
}; };
static struct mtd_partition * __init nand_partitions(int size, int *num_partitions)
{
*num_partitions = ARRAY_SIZE(yl9200_nand_partition);
return yl9200_nand_partition;
}
static struct atmel_nand_data __initdata yl9200_nand_data = { static struct atmel_nand_data __initdata yl9200_nand_data = {
.ale = 6, .ale = 6,
.cle = 7, .cle = 7,
// .det_pin = ... not connected // .det_pin = ... not connected
.rdy_pin = AT91_PIN_PC14, /* R/!B (Sheet10) */ .rdy_pin = AT91_PIN_PC14, /* R/!B (Sheet10) */
.enable_pin = AT91_PIN_PC15, /* !CE (Sheet10) */ .enable_pin = AT91_PIN_PC15, /* !CE (Sheet10) */
.partition_info = nand_partitions, .parts = yl9200_nand_partition,
.num_parts = ARRAY_SIZE(yl9200_nand_partition),
}; };
/* /*

View file

@ -19,6 +19,7 @@
#include <linux/cpuidle.h> #include <linux/cpuidle.h>
#include <asm/proc-fns.h> #include <asm/proc-fns.h>
#include <linux/io.h> #include <linux/io.h>
#include <linux/export.h>
#include "pm.h" #include "pm.h"
@ -33,7 +34,8 @@ static struct cpuidle_driver at91_idle_driver = {
/* Actual code that puts the SoC in different idle states */ /* Actual code that puts the SoC in different idle states */
static int at91_enter_idle(struct cpuidle_device *dev, static int at91_enter_idle(struct cpuidle_device *dev,
struct cpuidle_state *state) struct cpuidle_driver *drv,
int index)
{ {
struct timeval before, after; struct timeval before, after;
int idle_time; int idle_time;
@ -41,10 +43,10 @@ static int at91_enter_idle(struct cpuidle_device *dev,
local_irq_disable(); local_irq_disable();
do_gettimeofday(&before); do_gettimeofday(&before);
if (state == &dev->states[0]) if (index == 0)
/* Wait for interrupt state */ /* Wait for interrupt state */
cpu_do_idle(); cpu_do_idle();
else if (state == &dev->states[1]) { else if (index == 1) {
asm("b 1f; .align 5; 1:"); asm("b 1f; .align 5; 1:");
asm("mcr p15, 0, r0, c7, c10, 4"); /* drain write buffer */ asm("mcr p15, 0, r0, c7, c10, 4"); /* drain write buffer */
saved_lpr = sdram_selfrefresh_enable(); saved_lpr = sdram_selfrefresh_enable();
@ -55,34 +57,38 @@ static int at91_enter_idle(struct cpuidle_device *dev,
local_irq_enable(); local_irq_enable();
idle_time = (after.tv_sec - before.tv_sec) * USEC_PER_SEC + idle_time = (after.tv_sec - before.tv_sec) * USEC_PER_SEC +
(after.tv_usec - before.tv_usec); (after.tv_usec - before.tv_usec);
return idle_time;
dev->last_residency = idle_time;
return index;
} }
/* Initialize CPU idle by registering the idle states */ /* Initialize CPU idle by registering the idle states */
static int at91_init_cpuidle(void) static int at91_init_cpuidle(void)
{ {
struct cpuidle_device *device; struct cpuidle_device *device;
struct cpuidle_driver *driver = &at91_idle_driver;
cpuidle_register_driver(&at91_idle_driver);
device = &per_cpu(at91_cpuidle_device, smp_processor_id()); device = &per_cpu(at91_cpuidle_device, smp_processor_id());
device->state_count = AT91_MAX_STATES; device->state_count = AT91_MAX_STATES;
driver->state_count = AT91_MAX_STATES;
/* Wait for interrupt state */ /* Wait for interrupt state */
device->states[0].enter = at91_enter_idle; driver->states[0].enter = at91_enter_idle;
device->states[0].exit_latency = 1; driver->states[0].exit_latency = 1;
device->states[0].target_residency = 10000; driver->states[0].target_residency = 10000;
device->states[0].flags = CPUIDLE_FLAG_TIME_VALID; driver->states[0].flags = CPUIDLE_FLAG_TIME_VALID;
strcpy(device->states[0].name, "WFI"); strcpy(driver->states[0].name, "WFI");
strcpy(device->states[0].desc, "Wait for interrupt"); strcpy(driver->states[0].desc, "Wait for interrupt");
/* Wait for interrupt and RAM self refresh state */ /* Wait for interrupt and RAM self refresh state */
device->states[1].enter = at91_enter_idle; driver->states[1].enter = at91_enter_idle;
device->states[1].exit_latency = 10; driver->states[1].exit_latency = 10;
device->states[1].target_residency = 10000; driver->states[1].target_residency = 10000;
device->states[1].flags = CPUIDLE_FLAG_TIME_VALID; driver->states[1].flags = CPUIDLE_FLAG_TIME_VALID;
strcpy(device->states[1].name, "RAM_SR"); strcpy(driver->states[1].name, "RAM_SR");
strcpy(device->states[1].desc, "WFI and RAM Self Refresh"); strcpy(driver->states[1].desc, "WFI and RAM Self Refresh");
cpuidle_register_driver(&at91_idle_driver);
if (cpuidle_register_device(device)) { if (cpuidle_register_device(device)) {
printk(KERN_ERR "at91_init_cpuidle: Failed registering\n"); printk(KERN_ERR "at91_init_cpuidle: Failed registering\n");

View file

@ -117,7 +117,8 @@ struct atmel_nand_data {
u8 ale; /* address line number connected to ALE */ u8 ale; /* address line number connected to ALE */
u8 cle; /* address line number connected to CLE */ u8 cle; /* address line number connected to CLE */
u8 bus_width_16; /* buswidth is 16 bit */ u8 bus_width_16; /* buswidth is 16 bit */
struct mtd_partition* (*partition_info)(int, int*); struct mtd_partition *parts;
unsigned int num_parts;
}; };
extern void __init at91_add_device_nand(struct atmel_nand_data *data); extern void __init at91_add_device_nand(struct atmel_nand_data *data);

View file

@ -26,6 +26,7 @@
#include <linux/device.h> #include <linux/device.h>
#include <linux/dma-mapping.h> #include <linux/dma-mapping.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/irqreturn.h> #include <linux/irqreturn.h>
#include <linux/proc_fs.h> #include <linux/proc_fs.h>
#include <linux/slab.h> #include <linux/slab.h>

View file

@ -14,6 +14,7 @@
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/dma-mapping.h> #include <linux/dma-mapping.h>
#include <asm/page.h>
#include <asm/mach/map.h> #include <asm/mach/map.h>
#include <mach/hardware.h> #include <mach/hardware.h>

View file

@ -377,7 +377,7 @@ static struct davinci_nand_pdata da830_evm_nand_pdata = {
.nr_parts = ARRAY_SIZE(da830_evm_nand_partitions), .nr_parts = ARRAY_SIZE(da830_evm_nand_partitions),
.ecc_mode = NAND_ECC_HW, .ecc_mode = NAND_ECC_HW,
.ecc_bits = 4, .ecc_bits = 4,
.options = NAND_USE_FLASH_BBT, .bbt_options = NAND_BBT_USE_FLASH,
.bbt_td = &da830_evm_nand_bbt_main_descr, .bbt_td = &da830_evm_nand_bbt_main_descr,
.bbt_md = &da830_evm_nand_bbt_mirror_descr, .bbt_md = &da830_evm_nand_bbt_mirror_descr,
.timing = &da830_evm_nandflash_timing, .timing = &da830_evm_nandflash_timing,

View file

@ -256,7 +256,7 @@ static struct davinci_nand_pdata da850_evm_nandflash_data = {
.nr_parts = ARRAY_SIZE(da850_evm_nandflash_partition), .nr_parts = ARRAY_SIZE(da850_evm_nandflash_partition),
.ecc_mode = NAND_ECC_HW, .ecc_mode = NAND_ECC_HW,
.ecc_bits = 4, .ecc_bits = 4,
.options = NAND_USE_FLASH_BBT, .bbt_options = NAND_BBT_USE_FLASH,
.timing = &da850_evm_nandflash_timing, .timing = &da850_evm_nandflash_timing,
}; };

View file

@ -77,7 +77,7 @@ static struct davinci_nand_pdata davinci_nand_data = {
.parts = davinci_nand_partitions, .parts = davinci_nand_partitions,
.nr_parts = ARRAY_SIZE(davinci_nand_partitions), .nr_parts = ARRAY_SIZE(davinci_nand_partitions),
.ecc_mode = NAND_ECC_HW, .ecc_mode = NAND_ECC_HW,
.options = NAND_USE_FLASH_BBT, .bbt_options = NAND_BBT_USE_FLASH,
.ecc_bits = 4, .ecc_bits = 4,
}; };

View file

@ -74,7 +74,7 @@ static struct davinci_nand_pdata davinci_nand_data = {
.parts = davinci_nand_partitions, .parts = davinci_nand_partitions,
.nr_parts = ARRAY_SIZE(davinci_nand_partitions), .nr_parts = ARRAY_SIZE(davinci_nand_partitions),
.ecc_mode = NAND_ECC_HW_SYNDROME, .ecc_mode = NAND_ECC_HW_SYNDROME,
.options = NAND_USE_FLASH_BBT, .bbt_options = NAND_BBT_USE_FLASH,
}; };
static struct resource davinci_nand_resources[] = { static struct resource davinci_nand_resources[] = {

View file

@ -139,7 +139,7 @@ static struct davinci_nand_pdata davinci_nand_data = {
.parts = davinci_nand_partitions, .parts = davinci_nand_partitions,
.nr_parts = ARRAY_SIZE(davinci_nand_partitions), .nr_parts = ARRAY_SIZE(davinci_nand_partitions),
.ecc_mode = NAND_ECC_HW, .ecc_mode = NAND_ECC_HW,
.options = NAND_USE_FLASH_BBT, .bbt_options = NAND_BBT_USE_FLASH,
.ecc_bits = 4, .ecc_bits = 4,
}; };

View file

@ -23,6 +23,7 @@
#include <linux/phy.h> #include <linux/phy.h>
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/videodev2.h> #include <linux/videodev2.h>
#include <linux/export.h>
#include <media/tvp514x.h> #include <media/tvp514x.h>
@ -150,7 +151,7 @@ static struct davinci_nand_pdata davinci_evm_nandflash_data = {
.parts = davinci_evm_nandflash_partition, .parts = davinci_evm_nandflash_partition,
.nr_parts = ARRAY_SIZE(davinci_evm_nandflash_partition), .nr_parts = ARRAY_SIZE(davinci_evm_nandflash_partition),
.ecc_mode = NAND_ECC_HW, .ecc_mode = NAND_ECC_HW,
.options = NAND_USE_FLASH_BBT, .bbt_options = NAND_BBT_USE_FLASH,
.timing = &davinci_evm_nandflash_timing, .timing = &davinci_evm_nandflash_timing,
}; };

View file

@ -31,6 +31,7 @@
#include <linux/mtd/nand.h> #include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h> #include <linux/mtd/partitions.h>
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/export.h>
#include <asm/mach-types.h> #include <asm/mach-types.h>
#include <asm/mach/arch.h> #include <asm/mach/arch.h>

View file

@ -396,7 +396,8 @@ static struct davinci_nand_pdata mityomapl138_nandflash_data = {
.parts = mityomapl138_nandflash_partition, .parts = mityomapl138_nandflash_partition,
.nr_parts = ARRAY_SIZE(mityomapl138_nandflash_partition), .nr_parts = ARRAY_SIZE(mityomapl138_nandflash_partition),
.ecc_mode = NAND_ECC_HW, .ecc_mode = NAND_ECC_HW,
.options = NAND_USE_FLASH_BBT | NAND_BUSWIDTH_16, .bbt_options = NAND_BBT_USE_FLASH,
.options = NAND_BUSWIDTH_16,
.ecc_bits = 1, /* 4 bit mode is not supported with 16 bit NAND */ .ecc_bits = 1, /* 4 bit mode is not supported with 16 bit NAND */
}; };

View file

@ -87,7 +87,7 @@ static struct davinci_nand_pdata davinci_ntosd2_nandflash_data = {
.parts = davinci_ntosd2_nandflash_partition, .parts = davinci_ntosd2_nandflash_partition,
.nr_parts = ARRAY_SIZE(davinci_ntosd2_nandflash_partition), .nr_parts = ARRAY_SIZE(davinci_ntosd2_nandflash_partition),
.ecc_mode = NAND_ECC_HW, .ecc_mode = NAND_ECC_HW,
.options = NAND_USE_FLASH_BBT, .bbt_options = NAND_BBT_USE_FLASH,
}; };
static struct resource davinci_ntosd2_nandflash_resource[] = { static struct resource davinci_ntosd2_nandflash_resource[] = {

View file

@ -144,7 +144,7 @@ static struct davinci_nand_pdata nand_config = {
.parts = nand_partitions, .parts = nand_partitions,
.nr_parts = ARRAY_SIZE(nand_partitions), .nr_parts = ARRAY_SIZE(nand_partitions),
.ecc_mode = NAND_ECC_HW, .ecc_mode = NAND_ECC_HW,
.options = NAND_USE_FLASH_BBT, .bbt_options = NAND_BBT_USE_FLASH,
.ecc_bits = 1, .ecc_bits = 1,
}; };

View file

@ -17,6 +17,7 @@
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/i2c.h> #include <linux/i2c.h>
#include <linux/module.h>
#include <mach/clock.h> #include <mach/clock.h>
#include <mach/cdce949.h> #include <mach/cdce949.h>

View file

@ -24,6 +24,7 @@
#include <linux/err.h> #include <linux/err.h>
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/export.h>
#include <mach/hardware.h> #include <mach/hardware.h>
#include <mach/cpufreq.h> #include <mach/cpufreq.h>

View file

@ -16,6 +16,7 @@
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/cpuidle.h> #include <linux/cpuidle.h>
#include <linux/io.h> #include <linux/io.h>
#include <linux/export.h>
#include <asm/proc-fns.h> #include <asm/proc-fns.h>
#include <mach/cpuidle.h> #include <mach/cpuidle.h>
@ -78,9 +79,11 @@ static struct davinci_ops davinci_states[DAVINCI_CPUIDLE_MAX_STATES] = {
/* Actual code that puts the SoC in different idle states */ /* Actual code that puts the SoC in different idle states */
static int davinci_enter_idle(struct cpuidle_device *dev, static int davinci_enter_idle(struct cpuidle_device *dev,
struct cpuidle_state *state) struct cpuidle_driver *drv,
int index)
{ {
struct davinci_ops *ops = cpuidle_get_statedata(state); struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
struct davinci_ops *ops = cpuidle_get_statedata(state_usage);
struct timeval before, after; struct timeval before, after;
int idle_time; int idle_time;
@ -98,13 +101,17 @@ static int davinci_enter_idle(struct cpuidle_device *dev,
local_irq_enable(); local_irq_enable();
idle_time = (after.tv_sec - before.tv_sec) * USEC_PER_SEC + idle_time = (after.tv_sec - before.tv_sec) * USEC_PER_SEC +
(after.tv_usec - before.tv_usec); (after.tv_usec - before.tv_usec);
return idle_time;
dev->last_residency = idle_time;
return index;
} }
static int __init davinci_cpuidle_probe(struct platform_device *pdev) static int __init davinci_cpuidle_probe(struct platform_device *pdev)
{ {
int ret; int ret;
struct cpuidle_device *device; struct cpuidle_device *device;
struct cpuidle_driver *driver = &davinci_idle_driver;
struct davinci_cpuidle_config *pdata = pdev->dev.platform_data; struct davinci_cpuidle_config *pdata = pdev->dev.platform_data;
device = &per_cpu(davinci_cpuidle_device, smp_processor_id()); device = &per_cpu(davinci_cpuidle_device, smp_processor_id());
@ -116,33 +123,34 @@ static int __init davinci_cpuidle_probe(struct platform_device *pdev)
ddr2_reg_base = pdata->ddr2_ctlr_base; ddr2_reg_base = pdata->ddr2_ctlr_base;
/* Wait for interrupt state */
driver->states[0].enter = davinci_enter_idle;
driver->states[0].exit_latency = 1;
driver->states[0].target_residency = 10000;
driver->states[0].flags = CPUIDLE_FLAG_TIME_VALID;
strcpy(driver->states[0].name, "WFI");
strcpy(driver->states[0].desc, "Wait for interrupt");
/* Wait for interrupt and DDR self refresh state */
driver->states[1].enter = davinci_enter_idle;
driver->states[1].exit_latency = 10;
driver->states[1].target_residency = 10000;
driver->states[1].flags = CPUIDLE_FLAG_TIME_VALID;
strcpy(driver->states[1].name, "DDR SR");
strcpy(driver->states[1].desc, "WFI and DDR Self Refresh");
if (pdata->ddr2_pdown)
davinci_states[1].flags |= DAVINCI_CPUIDLE_FLAGS_DDR2_PWDN;
cpuidle_set_statedata(&device->states_usage[1], &davinci_states[1]);
device->state_count = DAVINCI_CPUIDLE_MAX_STATES;
driver->state_count = DAVINCI_CPUIDLE_MAX_STATES;
ret = cpuidle_register_driver(&davinci_idle_driver); ret = cpuidle_register_driver(&davinci_idle_driver);
if (ret) { if (ret) {
dev_err(&pdev->dev, "failed to register driver\n"); dev_err(&pdev->dev, "failed to register driver\n");
return ret; return ret;
} }
/* Wait for interrupt state */
device->states[0].enter = davinci_enter_idle;
device->states[0].exit_latency = 1;
device->states[0].target_residency = 10000;
device->states[0].flags = CPUIDLE_FLAG_TIME_VALID;
strcpy(device->states[0].name, "WFI");
strcpy(device->states[0].desc, "Wait for interrupt");
/* Wait for interrupt and DDR self refresh state */
device->states[1].enter = davinci_enter_idle;
device->states[1].exit_latency = 10;
device->states[1].target_residency = 10000;
device->states[1].flags = CPUIDLE_FLAG_TIME_VALID;
strcpy(device->states[1].name, "DDR SR");
strcpy(device->states[1].desc, "WFI and DDR Self Refresh");
if (pdata->ddr2_pdown)
davinci_states[1].flags |= DAVINCI_CPUIDLE_FLAGS_DDR2_PWDN;
cpuidle_set_statedata(&device->states[1], &davinci_states[1]);
device->state_count = DAVINCI_CPUIDLE_MAX_STATES;
ret = cpuidle_register_device(device); ret = cpuidle_register_device(device);
if (ret) { if (ret) {
dev_err(&pdev->dev, "failed to register device\n"); dev_err(&pdev->dev, "failed to register device\n");

View file

@ -15,6 +15,8 @@
#include <asm-generic/gpio.h> #include <asm-generic/gpio.h>
#define __ARM_GPIOLIB_COMPLEX
/* The inline versions use the static inlines in the driver header */ /* The inline versions use the static inlines in the driver header */
#include "gpio-davinci.h" #include "gpio-davinci.h"

View file

@ -74,8 +74,10 @@ struct davinci_nand_pdata { /* platform_data */
nand_ecc_modes_t ecc_mode; nand_ecc_modes_t ecc_mode;
u8 ecc_bits; u8 ecc_bits;
/* e.g. NAND_BUSWIDTH_16 or NAND_USE_FLASH_BBT */ /* e.g. NAND_BUSWIDTH_16 */
unsigned options; unsigned options;
/* e.g. NAND_BBT_USE_FLASH */
unsigned bbt_options;
/* Main and mirror bbt descriptor overrides */ /* Main and mirror bbt descriptor overrides */
struct nand_bbt_descr *bbt_td; struct nand_bbt_descr *bbt_td;

Some files were not shown because too many files have changed in this diff Show more