Merge branch 'akpm' (Andrew's patch-bomb)

Merge third batch of patches from Andrew Morton:
 - Some MM stragglers
 - core SMP library cleanups (on_each_cpu_mask)
 - Some IPI optimisations
 - kexec
 - kdump
 - IPMI
 - the radix-tree iterator work
 - various other misc bits.

 "That'll do for -rc1.  I still have ~10 patches for 3.4, will send
  those along when they've baked a little more."

* emailed from Andrew Morton <akpm@linux-foundation.org>: (35 commits)
  backlight: fix typo in tosa_lcd.c
  crc32: add help text for the algorithm select option
  mm: move hugepage test examples to tools/testing/selftests/vm
  mm: move slabinfo.c to tools/vm
  mm: move page-types.c from Documentation to tools/vm
  selftests/Makefile: make `run_tests' depend on `all'
  selftests: launch individual selftests from the main Makefile
  radix-tree: use iterators in find_get_pages* functions
  radix-tree: rewrite gang lookup using iterator
  radix-tree: introduce bit-optimized iterator
  fs/proc/namespaces.c: prevent crash when ns_entries[] is empty
  nbd: rename the nbd_device variable from lo to nbd
  pidns: add reboot_pid_ns() to handle the reboot syscall
  sysctl: use bitmap library functions
  ipmi: use locks on watchdog timeout set on reboot
  ipmi: simplify locking
  ipmi: fix message handling during panics
  ipmi: use a tasklet for handling received messages
  ipmi: increase KCS timeouts
  ipmi: decrease the IPMI message transaction time in interrupt mode
  ...
This commit is contained in:
Linus Torvalds 2012-03-28 17:19:27 -07:00
commit 532bfc851a
55 changed files with 1225 additions and 768 deletions

View file

@ -1,3 +1,3 @@
obj-m := DocBook/ accounting/ auxdisplay/ connector/ \
filesystems/ filesystems/configfs/ ia64/ laptops/ networking/ \
pcmcia/ spi/ timers/ vm/ watchdog/src/
pcmcia/ spi/ timers/ watchdog/src/

View file

@ -1,8 +0,0 @@
# kbuild trick to avoid linker error. Can be omitted if a module is built.
obj- := dummy.o
# List of programs to build
hostprogs-y := page-types hugepage-mmap hugepage-shm map_hugetlb
# Tell kbuild to always build the programs
always := $(hostprogs-y)

View file

@ -13,18 +13,6 @@
#include <asm/smp_plat.h>
#include <asm/tlbflush.h>
static void on_each_cpu_mask(void (*func)(void *), void *info, int wait,
const struct cpumask *mask)
{
preempt_disable();
smp_call_function_many(mask, func, info, wait);
if (cpumask_test_cpu(smp_processor_id(), mask))
func(info);
preempt_enable();
}
/**********************************************************************/
/*
@ -87,7 +75,7 @@ void flush_tlb_all(void)
void flush_tlb_mm(struct mm_struct *mm)
{
if (tlb_ops_need_broadcast())
on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, mm_cpumask(mm));
on_each_cpu_mask(mm_cpumask(mm), ipi_flush_tlb_mm, mm, 1);
else
local_flush_tlb_mm(mm);
}
@ -98,7 +86,8 @@ void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
struct tlb_args ta;
ta.ta_vma = vma;
ta.ta_start = uaddr;
on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, mm_cpumask(vma->vm_mm));
on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page,
&ta, 1);
} else
local_flush_tlb_page(vma, uaddr);
}
@ -121,7 +110,8 @@ void flush_tlb_range(struct vm_area_struct *vma,
ta.ta_vma = vma;
ta.ta_start = start;
ta.ta_end = end;
on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, mm_cpumask(vma->vm_mm));
on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range,
&ta, 1);
} else
local_flush_tlb_range(vma, start, end);
}

View file

@ -843,7 +843,7 @@ early_param("additional_cpus", setup_additional_cpus);
* are onlined, or offlined. The reason is per-cpu data-structures
* are allocated by some modules at init time, and dont expect to
* do this dynamically on cpu arrival/departure.
* cpu_present_map on the other hand can change dynamically.
* cpu_present_mask on the other hand can change dynamically.
* In case when cpu_hotplug is not compiled, then we resort to current
* behaviour, which is cpu_possible == cpu_present.
* - Ashok Raj
@ -921,7 +921,7 @@ static int __cpuinit _acpi_map_lsapic(acpi_handle handle, int *pcpu)
acpi_map_cpu2node(handle, cpu, physid);
cpu_set(cpu, cpu_present_map);
set_cpu_present(cpu, true);
ia64_cpu_to_sapicid[cpu] = physid;
acpi_processor_set_pdc(handle);
@ -940,7 +940,7 @@ EXPORT_SYMBOL(acpi_map_lsapic);
int acpi_unmap_lsapic(int cpu)
{
ia64_cpu_to_sapicid[cpu] = -1;
cpu_clear(cpu, cpu_present_map);
set_cpu_present(cpu, false);
#ifdef CONFIG_ACPI_NUMA
/* NUMA specific cleanup's */

View file

@ -117,7 +117,7 @@ static inline int find_unassigned_vector(cpumask_t domain)
cpumask_t mask;
int pos, vector;
cpus_and(mask, domain, cpu_online_map);
cpumask_and(&mask, &domain, cpu_online_mask);
if (cpus_empty(mask))
return -EINVAL;
@ -140,7 +140,7 @@ static int __bind_irq_vector(int irq, int vector, cpumask_t domain)
BUG_ON((unsigned)irq >= NR_IRQS);
BUG_ON((unsigned)vector >= IA64_NUM_VECTORS);
cpus_and(mask, domain, cpu_online_map);
cpumask_and(&mask, &domain, cpu_online_mask);
if (cpus_empty(mask))
return -EINVAL;
if ((cfg->vector == vector) && cpus_equal(cfg->domain, domain))
@ -178,7 +178,7 @@ static void __clear_irq_vector(int irq)
BUG_ON(cfg->vector == IRQ_VECTOR_UNASSIGNED);
vector = cfg->vector;
domain = cfg->domain;
cpus_and(mask, cfg->domain, cpu_online_map);
cpumask_and(&mask, &cfg->domain, cpu_online_mask);
for_each_cpu_mask(cpu, mask)
per_cpu(vector_irq, cpu)[vector] = -1;
cfg->vector = IRQ_VECTOR_UNASSIGNED;
@ -321,7 +321,7 @@ void irq_complete_move(unsigned irq)
if (unlikely(cpu_isset(smp_processor_id(), cfg->old_domain)))
return;
cpus_and(cleanup_mask, cfg->old_domain, cpu_online_map);
cpumask_and(&cleanup_mask, &cfg->old_domain, cpu_online_mask);
cfg->move_cleanup_count = cpus_weight(cleanup_mask);
for_each_cpu_mask(i, cleanup_mask)
platform_send_ipi(i, IA64_IRQ_MOVE_VECTOR, IA64_IPI_DM_INT, 0);

View file

@ -1514,7 +1514,8 @@ static void
ia64_mca_cmc_poll (unsigned long dummy)
{
/* Trigger a CMC interrupt cascade */
platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
IA64_IPI_DM_INT, 0);
}
/*
@ -1590,7 +1591,8 @@ static void
ia64_mca_cpe_poll (unsigned long dummy)
{
/* Trigger a CPE interrupt cascade */
platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
IA64_IPI_DM_INT, 0);
}
#endif /* CONFIG_ACPI */

View file

@ -57,7 +57,7 @@ int ia64_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc)
return irq;
irq_set_msi_desc(irq, desc);
cpus_and(mask, irq_to_domain(irq), cpu_online_map);
cpumask_and(&mask, &(irq_to_domain(irq)), cpu_online_mask);
dest_phys_id = cpu_physical_id(first_cpu(mask));
vector = irq_to_vector(irq);
@ -179,7 +179,7 @@ msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg)
unsigned dest;
cpumask_t mask;
cpus_and(mask, irq_to_domain(irq), cpu_online_map);
cpumask_and(&mask, &(irq_to_domain(irq)), cpu_online_mask);
dest = cpu_physical_id(first_cpu(mask));
msg->address_hi = 0;

View file

@ -485,7 +485,7 @@ mark_bsp_online (void)
{
#ifdef CONFIG_SMP
/* If we register an early console, allow CPU 0 to printk */
cpu_set(smp_processor_id(), cpu_online_map);
set_cpu_online(smp_processor_id(), true);
#endif
}

View file

@ -76,7 +76,7 @@ stop_this_cpu(void)
/*
* Remove this CPU:
*/
cpu_clear(smp_processor_id(), cpu_online_map);
set_cpu_online(smp_processor_id(), false);
max_xtp();
local_irq_disable();
cpu_halt();

View file

@ -400,7 +400,7 @@ smp_callin (void)
/* Setup the per cpu irq handling data structures */
__setup_vector_irq(cpuid);
notify_cpu_starting(cpuid);
cpu_set(cpuid, cpu_online_map);
set_cpu_online(cpuid, true);
per_cpu(cpu_state, cpuid) = CPU_ONLINE;
spin_unlock(&vector_lock);
ipi_call_unlock_irq();
@ -547,7 +547,7 @@ do_rest:
if (!cpu_isset(cpu, cpu_callin_map)) {
printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
ia64_cpu_to_sapicid[cpu] = -1;
cpu_clear(cpu, cpu_online_map); /* was set in smp_callin() */
set_cpu_online(cpu, false); /* was set in smp_callin() */
return -EINVAL;
}
return 0;
@ -577,8 +577,7 @@ smp_build_cpu_map (void)
}
ia64_cpu_to_sapicid[0] = boot_cpu_id;
cpus_clear(cpu_present_map);
set_cpu_present(0, true);
init_cpu_present(cpumask_of(0));
set_cpu_possible(0, true);
for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
sapicid = smp_boot_data.cpu_phys_id[i];
@ -605,10 +604,6 @@ smp_prepare_cpus (unsigned int max_cpus)
smp_setup_percpu_timer();
/*
* We have the boot CPU online for sure.
*/
cpu_set(0, cpu_online_map);
cpu_set(0, cpu_callin_map);
local_cpu_data->loops_per_jiffy = loops_per_jiffy;
@ -632,7 +627,7 @@ smp_prepare_cpus (unsigned int max_cpus)
void __devinit smp_prepare_boot_cpu(void)
{
cpu_set(smp_processor_id(), cpu_online_map);
set_cpu_online(smp_processor_id(), true);
cpu_set(smp_processor_id(), cpu_callin_map);
set_numa_node(cpu_to_node_map[smp_processor_id()]);
per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
@ -689,7 +684,7 @@ int migrate_platform_irqs(unsigned int cpu)
/*
* Now re-target the CPEI to a different processor
*/
new_cpei_cpu = any_online_cpu(cpu_online_map);
new_cpei_cpu = cpumask_any(cpu_online_mask);
mask = cpumask_of(new_cpei_cpu);
set_cpei_target_cpu(new_cpei_cpu);
data = irq_get_irq_data(ia64_cpe_irq);
@ -731,10 +726,10 @@ int __cpu_disable(void)
return -EBUSY;
}
cpu_clear(cpu, cpu_online_map);
set_cpu_online(cpu, false);
if (migrate_platform_irqs(cpu)) {
cpu_set(cpu, cpu_online_map);
set_cpu_online(cpu, true);
return -EBUSY;
}

View file

@ -220,7 +220,8 @@ static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
ssize_t len;
cpumask_t shared_cpu_map;
cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
cpumask_and(&shared_cpu_map,
&this_leaf->shared_cpu_map, cpu_online_mask);
len = cpumask_scnprintf(buf, NR_CPUS+1, &shared_cpu_map);
len += sprintf(buf+len, "\n");
return len;

View file

@ -43,10 +43,6 @@ void evaluate_message(int tag);
/* Boot a secondary cpu */
void online_secondary(void);
/* Call a function on a specified set of CPUs (may include this one). */
extern void on_each_cpu_mask(const struct cpumask *mask,
void (*func)(void *), void *info, bool wait);
/* Topology of the supervisor tile grid, and coordinates of boot processor */
extern HV_Topology smp_topology;
@ -91,9 +87,6 @@ void print_disabled_cpus(void);
#else /* !CONFIG_SMP */
#define on_each_cpu_mask(mask, func, info, wait) \
do { if (cpumask_test_cpu(0, (mask))) func(info); } while (0)
#define smp_master_cpu 0
#define smp_height 1
#define smp_width 1

View file

@ -87,25 +87,6 @@ void send_IPI_allbutself(int tag)
send_IPI_many(&mask, tag);
}
/*
* Provide smp_call_function_mask, but also run function locally
* if specified in the mask.
*/
void on_each_cpu_mask(const struct cpumask *mask, void (*func)(void *),
void *info, bool wait)
{
int cpu = get_cpu();
smp_call_function_many(mask, func, info, wait);
if (cpumask_test_cpu(cpu, mask)) {
local_irq_disable();
func(info);
local_irq_enable();
}
put_cpu();
}
/*
* Functions related to starting/stopping cpus.
*/

View file

@ -508,15 +508,6 @@ static void __init memblock_x86_reserve_range_setup_data(void)
#ifdef CONFIG_KEXEC
static inline unsigned long long get_total_mem(void)
{
unsigned long long total;
total = max_pfn - min_low_pfn;
return total << PAGE_SHIFT;
}
/*
* Keep the crash kernel below this limit. On 32 bits earlier kernels
* would limit the kernel to the low 512 MiB due to mapping restrictions.
@ -535,7 +526,7 @@ static void __init reserve_crashkernel(void)
unsigned long long crash_size, crash_base;
int ret;
total_mem = get_total_mem();
total_mem = memblock_phys_mem_size();
ret = parse_crashkernel(boot_command_line, total_mem,
&crash_size, &crash_base);

View file

@ -38,7 +38,7 @@
#include <linux/nbd.h>
#define LO_MAGIC 0x68797548
#define NBD_MAGIC 0x68797548
#ifdef NDEBUG
#define dprintk(flags, fmt...)
@ -115,7 +115,7 @@ static void nbd_end_request(struct request *req)
spin_unlock_irqrestore(q->queue_lock, flags);
}
static void sock_shutdown(struct nbd_device *lo, int lock)
static void sock_shutdown(struct nbd_device *nbd, int lock)
{
/* Forcibly shutdown the socket causing all listeners
* to error
@ -124,14 +124,14 @@ static void sock_shutdown(struct nbd_device *lo, int lock)
* there should be a more generic interface rather than
* calling socket ops directly here */
if (lock)
mutex_lock(&lo->tx_lock);
if (lo->sock) {
dev_warn(disk_to_dev(lo->disk), "shutting down socket\n");
kernel_sock_shutdown(lo->sock, SHUT_RDWR);
lo->sock = NULL;
mutex_lock(&nbd->tx_lock);
if (nbd->sock) {
dev_warn(disk_to_dev(nbd->disk), "shutting down socket\n");
kernel_sock_shutdown(nbd->sock, SHUT_RDWR);
nbd->sock = NULL;
}
if (lock)
mutex_unlock(&lo->tx_lock);
mutex_unlock(&nbd->tx_lock);
}
static void nbd_xmit_timeout(unsigned long arg)
@ -146,17 +146,17 @@ static void nbd_xmit_timeout(unsigned long arg)
/*
* Send or receive packet.
*/
static int sock_xmit(struct nbd_device *lo, int send, void *buf, int size,
static int sock_xmit(struct nbd_device *nbd, int send, void *buf, int size,
int msg_flags)
{
struct socket *sock = lo->sock;
struct socket *sock = nbd->sock;
int result;
struct msghdr msg;
struct kvec iov;
sigset_t blocked, oldset;
if (unlikely(!sock)) {
dev_err(disk_to_dev(lo->disk),
dev_err(disk_to_dev(nbd->disk),
"Attempted %s on closed socket in sock_xmit\n",
(send ? "send" : "recv"));
return -EINVAL;
@ -180,15 +180,15 @@ static int sock_xmit(struct nbd_device *lo, int send, void *buf, int size,
if (send) {
struct timer_list ti;
if (lo->xmit_timeout) {
if (nbd->xmit_timeout) {
init_timer(&ti);
ti.function = nbd_xmit_timeout;
ti.data = (unsigned long)current;
ti.expires = jiffies + lo->xmit_timeout;
ti.expires = jiffies + nbd->xmit_timeout;
add_timer(&ti);
}
result = kernel_sendmsg(sock, &msg, &iov, 1, size);
if (lo->xmit_timeout)
if (nbd->xmit_timeout)
del_timer_sync(&ti);
} else
result = kernel_recvmsg(sock, &msg, &iov, 1, size,
@ -200,7 +200,7 @@ static int sock_xmit(struct nbd_device *lo, int send, void *buf, int size,
task_pid_nr(current), current->comm,
dequeue_signal_lock(current, &current->blocked, &info));
result = -EINTR;
sock_shutdown(lo, !send);
sock_shutdown(nbd, !send);
break;
}
@ -218,18 +218,19 @@ static int sock_xmit(struct nbd_device *lo, int send, void *buf, int size,
return result;
}
static inline int sock_send_bvec(struct nbd_device *lo, struct bio_vec *bvec,
static inline int sock_send_bvec(struct nbd_device *nbd, struct bio_vec *bvec,
int flags)
{
int result;
void *kaddr = kmap(bvec->bv_page);
result = sock_xmit(lo, 1, kaddr + bvec->bv_offset, bvec->bv_len, flags);
result = sock_xmit(nbd, 1, kaddr + bvec->bv_offset,
bvec->bv_len, flags);
kunmap(bvec->bv_page);
return result;
}
/* always call with the tx_lock held */
static int nbd_send_req(struct nbd_device *lo, struct request *req)
static int nbd_send_req(struct nbd_device *nbd, struct request *req)
{
int result, flags;
struct nbd_request request;
@ -242,14 +243,14 @@ static int nbd_send_req(struct nbd_device *lo, struct request *req)
memcpy(request.handle, &req, sizeof(req));
dprintk(DBG_TX, "%s: request %p: sending control (%s@%llu,%uB)\n",
lo->disk->disk_name, req,
nbd->disk->disk_name, req,
nbdcmd_to_ascii(nbd_cmd(req)),
(unsigned long long)blk_rq_pos(req) << 9,
blk_rq_bytes(req));
result = sock_xmit(lo, 1, &request, sizeof(request),
result = sock_xmit(nbd, 1, &request, sizeof(request),
(nbd_cmd(req) == NBD_CMD_WRITE) ? MSG_MORE : 0);
if (result <= 0) {
dev_err(disk_to_dev(lo->disk),
dev_err(disk_to_dev(nbd->disk),
"Send control failed (result %d)\n", result);
goto error_out;
}
@ -266,10 +267,10 @@ static int nbd_send_req(struct nbd_device *lo, struct request *req)
if (!rq_iter_last(req, iter))
flags = MSG_MORE;
dprintk(DBG_TX, "%s: request %p: sending %d bytes data\n",
lo->disk->disk_name, req, bvec->bv_len);
result = sock_send_bvec(lo, bvec, flags);
nbd->disk->disk_name, req, bvec->bv_len);
result = sock_send_bvec(nbd, bvec, flags);
if (result <= 0) {
dev_err(disk_to_dev(lo->disk),
dev_err(disk_to_dev(nbd->disk),
"Send data failed (result %d)\n",
result);
goto error_out;
@ -282,25 +283,25 @@ error_out:
return -EIO;
}
static struct request *nbd_find_request(struct nbd_device *lo,
static struct request *nbd_find_request(struct nbd_device *nbd,
struct request *xreq)
{
struct request *req, *tmp;
int err;
err = wait_event_interruptible(lo->active_wq, lo->active_req != xreq);
err = wait_event_interruptible(nbd->active_wq, nbd->active_req != xreq);
if (unlikely(err))
goto out;
spin_lock(&lo->queue_lock);
list_for_each_entry_safe(req, tmp, &lo->queue_head, queuelist) {
spin_lock(&nbd->queue_lock);
list_for_each_entry_safe(req, tmp, &nbd->queue_head, queuelist) {
if (req != xreq)
continue;
list_del_init(&req->queuelist);
spin_unlock(&lo->queue_lock);
spin_unlock(&nbd->queue_lock);
return req;
}
spin_unlock(&lo->queue_lock);
spin_unlock(&nbd->queue_lock);
err = -ENOENT;
@ -308,78 +309,78 @@ out:
return ERR_PTR(err);
}
static inline int sock_recv_bvec(struct nbd_device *lo, struct bio_vec *bvec)
static inline int sock_recv_bvec(struct nbd_device *nbd, struct bio_vec *bvec)
{
int result;
void *kaddr = kmap(bvec->bv_page);
result = sock_xmit(lo, 0, kaddr + bvec->bv_offset, bvec->bv_len,
result = sock_xmit(nbd, 0, kaddr + bvec->bv_offset, bvec->bv_len,
MSG_WAITALL);
kunmap(bvec->bv_page);
return result;
}
/* NULL returned = something went wrong, inform userspace */
static struct request *nbd_read_stat(struct nbd_device *lo)
static struct request *nbd_read_stat(struct nbd_device *nbd)
{
int result;
struct nbd_reply reply;
struct request *req;
reply.magic = 0;
result = sock_xmit(lo, 0, &reply, sizeof(reply), MSG_WAITALL);
result = sock_xmit(nbd, 0, &reply, sizeof(reply), MSG_WAITALL);
if (result <= 0) {
dev_err(disk_to_dev(lo->disk),
dev_err(disk_to_dev(nbd->disk),
"Receive control failed (result %d)\n", result);
goto harderror;
}
if (ntohl(reply.magic) != NBD_REPLY_MAGIC) {
dev_err(disk_to_dev(lo->disk), "Wrong magic (0x%lx)\n",
dev_err(disk_to_dev(nbd->disk), "Wrong magic (0x%lx)\n",
(unsigned long)ntohl(reply.magic));
result = -EPROTO;
goto harderror;
}
req = nbd_find_request(lo, *(struct request **)reply.handle);
req = nbd_find_request(nbd, *(struct request **)reply.handle);
if (IS_ERR(req)) {
result = PTR_ERR(req);
if (result != -ENOENT)
goto harderror;
dev_err(disk_to_dev(lo->disk), "Unexpected reply (%p)\n",
dev_err(disk_to_dev(nbd->disk), "Unexpected reply (%p)\n",
reply.handle);
result = -EBADR;
goto harderror;
}
if (ntohl(reply.error)) {
dev_err(disk_to_dev(lo->disk), "Other side returned error (%d)\n",
dev_err(disk_to_dev(nbd->disk), "Other side returned error (%d)\n",
ntohl(reply.error));
req->errors++;
return req;
}
dprintk(DBG_RX, "%s: request %p: got reply\n",
lo->disk->disk_name, req);
nbd->disk->disk_name, req);
if (nbd_cmd(req) == NBD_CMD_READ) {
struct req_iterator iter;
struct bio_vec *bvec;
rq_for_each_segment(bvec, req, iter) {
result = sock_recv_bvec(lo, bvec);
result = sock_recv_bvec(nbd, bvec);
if (result <= 0) {
dev_err(disk_to_dev(lo->disk), "Receive data failed (result %d)\n",
dev_err(disk_to_dev(nbd->disk), "Receive data failed (result %d)\n",
result);
req->errors++;
return req;
}
dprintk(DBG_RX, "%s: request %p: got %d bytes data\n",
lo->disk->disk_name, req, bvec->bv_len);
nbd->disk->disk_name, req, bvec->bv_len);
}
}
return req;
harderror:
lo->harderror = result;
nbd->harderror = result;
return NULL;
}
@ -397,48 +398,48 @@ static struct device_attribute pid_attr = {
.show = pid_show,
};
static int nbd_do_it(struct nbd_device *lo)
static int nbd_do_it(struct nbd_device *nbd)
{
struct request *req;
int ret;
BUG_ON(lo->magic != LO_MAGIC);
BUG_ON(nbd->magic != NBD_MAGIC);
lo->pid = task_pid_nr(current);
ret = device_create_file(disk_to_dev(lo->disk), &pid_attr);
nbd->pid = task_pid_nr(current);
ret = device_create_file(disk_to_dev(nbd->disk), &pid_attr);
if (ret) {
dev_err(disk_to_dev(lo->disk), "device_create_file failed!\n");
lo->pid = 0;
dev_err(disk_to_dev(nbd->disk), "device_create_file failed!\n");
nbd->pid = 0;
return ret;
}
while ((req = nbd_read_stat(lo)) != NULL)
while ((req = nbd_read_stat(nbd)) != NULL)
nbd_end_request(req);
device_remove_file(disk_to_dev(lo->disk), &pid_attr);
lo->pid = 0;
device_remove_file(disk_to_dev(nbd->disk), &pid_attr);
nbd->pid = 0;
return 0;
}
static void nbd_clear_que(struct nbd_device *lo)
static void nbd_clear_que(struct nbd_device *nbd)
{
struct request *req;
BUG_ON(lo->magic != LO_MAGIC);
BUG_ON(nbd->magic != NBD_MAGIC);
/*
* Because we have set lo->sock to NULL under the tx_lock, all
* Because we have set nbd->sock to NULL under the tx_lock, all
* modifications to the list must have completed by now. For
* the same reason, the active_req must be NULL.
*
* As a consequence, we don't need to take the spin lock while
* purging the list here.
*/
BUG_ON(lo->sock);
BUG_ON(lo->active_req);
BUG_ON(nbd->sock);
BUG_ON(nbd->active_req);
while (!list_empty(&lo->queue_head)) {
req = list_entry(lo->queue_head.next, struct request,
while (!list_empty(&nbd->queue_head)) {
req = list_entry(nbd->queue_head.next, struct request,
queuelist);
list_del_init(&req->queuelist);
req->errors++;
@ -447,7 +448,7 @@ static void nbd_clear_que(struct nbd_device *lo)
}
static void nbd_handle_req(struct nbd_device *lo, struct request *req)
static void nbd_handle_req(struct nbd_device *nbd, struct request *req)
{
if (req->cmd_type != REQ_TYPE_FS)
goto error_out;
@ -455,8 +456,8 @@ static void nbd_handle_req(struct nbd_device *lo, struct request *req)
nbd_cmd(req) = NBD_CMD_READ;
if (rq_data_dir(req) == WRITE) {
nbd_cmd(req) = NBD_CMD_WRITE;
if (lo->flags & NBD_READ_ONLY) {
dev_err(disk_to_dev(lo->disk),
if (nbd->flags & NBD_READ_ONLY) {
dev_err(disk_to_dev(nbd->disk),
"Write on read-only\n");
goto error_out;
}
@ -464,29 +465,29 @@ static void nbd_handle_req(struct nbd_device *lo, struct request *req)
req->errors = 0;
mutex_lock(&lo->tx_lock);
if (unlikely(!lo->sock)) {
mutex_unlock(&lo->tx_lock);
dev_err(disk_to_dev(lo->disk),
mutex_lock(&nbd->tx_lock);
if (unlikely(!nbd->sock)) {
mutex_unlock(&nbd->tx_lock);
dev_err(disk_to_dev(nbd->disk),
"Attempted send on closed socket\n");
goto error_out;
}
lo->active_req = req;
nbd->active_req = req;
if (nbd_send_req(lo, req) != 0) {
dev_err(disk_to_dev(lo->disk), "Request send failed\n");
if (nbd_send_req(nbd, req) != 0) {
dev_err(disk_to_dev(nbd->disk), "Request send failed\n");
req->errors++;
nbd_end_request(req);
} else {
spin_lock(&lo->queue_lock);
list_add(&req->queuelist, &lo->queue_head);
spin_unlock(&lo->queue_lock);
spin_lock(&nbd->queue_lock);
list_add(&req->queuelist, &nbd->queue_head);
spin_unlock(&nbd->queue_lock);
}
lo->active_req = NULL;
mutex_unlock(&lo->tx_lock);
wake_up_all(&lo->active_wq);
nbd->active_req = NULL;
mutex_unlock(&nbd->tx_lock);
wake_up_all(&nbd->active_wq);
return;
@ -497,28 +498,28 @@ error_out:
static int nbd_thread(void *data)
{
struct nbd_device *lo = data;
struct nbd_device *nbd = data;
struct request *req;
set_user_nice(current, -20);
while (!kthread_should_stop() || !list_empty(&lo->waiting_queue)) {
while (!kthread_should_stop() || !list_empty(&nbd->waiting_queue)) {
/* wait for something to do */
wait_event_interruptible(lo->waiting_wq,
wait_event_interruptible(nbd->waiting_wq,
kthread_should_stop() ||
!list_empty(&lo->waiting_queue));
!list_empty(&nbd->waiting_queue));
/* extract request */
if (list_empty(&lo->waiting_queue))
if (list_empty(&nbd->waiting_queue))
continue;
spin_lock_irq(&lo->queue_lock);
req = list_entry(lo->waiting_queue.next, struct request,
spin_lock_irq(&nbd->queue_lock);
req = list_entry(nbd->waiting_queue.next, struct request,
queuelist);
list_del_init(&req->queuelist);
spin_unlock_irq(&lo->queue_lock);
spin_unlock_irq(&nbd->queue_lock);
/* handle request */
nbd_handle_req(lo, req);
nbd_handle_req(nbd, req);
}
return 0;
}
@ -526,7 +527,7 @@ static int nbd_thread(void *data)
/*
* We always wait for result of write, for now. It would be nice to make it optional
* in future
* if ((rq_data_dir(req) == WRITE) && (lo->flags & NBD_WRITE_NOCHK))
* if ((rq_data_dir(req) == WRITE) && (nbd->flags & NBD_WRITE_NOCHK))
* { printk( "Warning: Ignoring result!\n"); nbd_end_request( req ); }
*/
@ -535,19 +536,19 @@ static void do_nbd_request(struct request_queue *q)
struct request *req;
while ((req = blk_fetch_request(q)) != NULL) {
struct nbd_device *lo;
struct nbd_device *nbd;
spin_unlock_irq(q->queue_lock);
dprintk(DBG_BLKDEV, "%s: request %p: dequeued (flags=%x)\n",
req->rq_disk->disk_name, req, req->cmd_type);
lo = req->rq_disk->private_data;
nbd = req->rq_disk->private_data;
BUG_ON(lo->magic != LO_MAGIC);
BUG_ON(nbd->magic != NBD_MAGIC);
if (unlikely(!lo->sock)) {
dev_err(disk_to_dev(lo->disk),
if (unlikely(!nbd->sock)) {
dev_err(disk_to_dev(nbd->disk),
"Attempted send on closed socket\n");
req->errors++;
nbd_end_request(req);
@ -555,11 +556,11 @@ static void do_nbd_request(struct request_queue *q)
continue;
}
spin_lock_irq(&lo->queue_lock);
list_add_tail(&req->queuelist, &lo->waiting_queue);
spin_unlock_irq(&lo->queue_lock);
spin_lock_irq(&nbd->queue_lock);
list_add_tail(&req->queuelist, &nbd->waiting_queue);
spin_unlock_irq(&nbd->queue_lock);
wake_up(&lo->waiting_wq);
wake_up(&nbd->waiting_wq);
spin_lock_irq(q->queue_lock);
}
@ -567,32 +568,32 @@ static void do_nbd_request(struct request_queue *q)
/* Must be called with tx_lock held */
static int __nbd_ioctl(struct block_device *bdev, struct nbd_device *lo,
static int __nbd_ioctl(struct block_device *bdev, struct nbd_device *nbd,
unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case NBD_DISCONNECT: {
struct request sreq;
dev_info(disk_to_dev(lo->disk), "NBD_DISCONNECT\n");
dev_info(disk_to_dev(nbd->disk), "NBD_DISCONNECT\n");
blk_rq_init(NULL, &sreq);
sreq.cmd_type = REQ_TYPE_SPECIAL;
nbd_cmd(&sreq) = NBD_CMD_DISC;
if (!lo->sock)
if (!nbd->sock)
return -EINVAL;
nbd_send_req(lo, &sreq);
nbd_send_req(nbd, &sreq);
return 0;
}
case NBD_CLEAR_SOCK: {
struct file *file;
lo->sock = NULL;
file = lo->file;
lo->file = NULL;
nbd_clear_que(lo);
BUG_ON(!list_empty(&lo->queue_head));
nbd->sock = NULL;
file = nbd->file;
nbd->file = NULL;
nbd_clear_que(nbd);
BUG_ON(!list_empty(&nbd->queue_head));
if (file)
fput(file);
return 0;
@ -600,14 +601,14 @@ static int __nbd_ioctl(struct block_device *bdev, struct nbd_device *lo,
case NBD_SET_SOCK: {
struct file *file;
if (lo->file)
if (nbd->file)
return -EBUSY;
file = fget(arg);
if (file) {
struct inode *inode = file->f_path.dentry->d_inode;
if (S_ISSOCK(inode->i_mode)) {
lo->file = file;
lo->sock = SOCKET_I(inode);
nbd->file = file;
nbd->sock = SOCKET_I(inode);
if (max_part > 0)
bdev->bd_invalidated = 1;
return 0;
@ -619,29 +620,29 @@ static int __nbd_ioctl(struct block_device *bdev, struct nbd_device *lo,
}
case NBD_SET_BLKSIZE:
lo->blksize = arg;
lo->bytesize &= ~(lo->blksize-1);
bdev->bd_inode->i_size = lo->bytesize;
set_blocksize(bdev, lo->blksize);
set_capacity(lo->disk, lo->bytesize >> 9);
nbd->blksize = arg;
nbd->bytesize &= ~(nbd->blksize-1);
bdev->bd_inode->i_size = nbd->bytesize;
set_blocksize(bdev, nbd->blksize);
set_capacity(nbd->disk, nbd->bytesize >> 9);
return 0;
case NBD_SET_SIZE:
lo->bytesize = arg & ~(lo->blksize-1);
bdev->bd_inode->i_size = lo->bytesize;
set_blocksize(bdev, lo->blksize);
set_capacity(lo->disk, lo->bytesize >> 9);
nbd->bytesize = arg & ~(nbd->blksize-1);
bdev->bd_inode->i_size = nbd->bytesize;
set_blocksize(bdev, nbd->blksize);
set_capacity(nbd->disk, nbd->bytesize >> 9);
return 0;
case NBD_SET_TIMEOUT:
lo->xmit_timeout = arg * HZ;
nbd->xmit_timeout = arg * HZ;
return 0;
case NBD_SET_SIZE_BLOCKS:
lo->bytesize = ((u64) arg) * lo->blksize;
bdev->bd_inode->i_size = lo->bytesize;
set_blocksize(bdev, lo->blksize);
set_capacity(lo->disk, lo->bytesize >> 9);
nbd->bytesize = ((u64) arg) * nbd->blksize;
bdev->bd_inode->i_size = nbd->bytesize;
set_blocksize(bdev, nbd->blksize);
set_capacity(nbd->disk, nbd->bytesize >> 9);
return 0;
case NBD_DO_IT: {
@ -649,38 +650,38 @@ static int __nbd_ioctl(struct block_device *bdev, struct nbd_device *lo,
struct file *file;
int error;
if (lo->pid)
if (nbd->pid)
return -EBUSY;
if (!lo->file)
if (!nbd->file)
return -EINVAL;
mutex_unlock(&lo->tx_lock);
mutex_unlock(&nbd->tx_lock);
thread = kthread_create(nbd_thread, lo, lo->disk->disk_name);
thread = kthread_create(nbd_thread, nbd, nbd->disk->disk_name);
if (IS_ERR(thread)) {
mutex_lock(&lo->tx_lock);
mutex_lock(&nbd->tx_lock);
return PTR_ERR(thread);
}
wake_up_process(thread);
error = nbd_do_it(lo);
error = nbd_do_it(nbd);
kthread_stop(thread);
mutex_lock(&lo->tx_lock);
mutex_lock(&nbd->tx_lock);
if (error)
return error;
sock_shutdown(lo, 0);
file = lo->file;
lo->file = NULL;
nbd_clear_que(lo);
dev_warn(disk_to_dev(lo->disk), "queue cleared\n");
sock_shutdown(nbd, 0);
file = nbd->file;
nbd->file = NULL;
nbd_clear_que(nbd);
dev_warn(disk_to_dev(nbd->disk), "queue cleared\n");
if (file)
fput(file);
lo->bytesize = 0;
nbd->bytesize = 0;
bdev->bd_inode->i_size = 0;
set_capacity(lo->disk, 0);
set_capacity(nbd->disk, 0);
if (max_part > 0)
ioctl_by_bdev(bdev, BLKRRPART, 0);
return lo->harderror;
return nbd->harderror;
}
case NBD_CLEAR_QUE:
@ -688,14 +689,14 @@ static int __nbd_ioctl(struct block_device *bdev, struct nbd_device *lo,
* This is for compatibility only. The queue is always cleared
* by NBD_DO_IT or NBD_CLEAR_SOCK.
*/
BUG_ON(!lo->sock && !list_empty(&lo->queue_head));
BUG_ON(!nbd->sock && !list_empty(&nbd->queue_head));
return 0;
case NBD_PRINT_DEBUG:
dev_info(disk_to_dev(lo->disk),
dev_info(disk_to_dev(nbd->disk),
"next = %p, prev = %p, head = %p\n",
lo->queue_head.next, lo->queue_head.prev,
&lo->queue_head);
nbd->queue_head.next, nbd->queue_head.prev,
&nbd->queue_head);
return 0;
}
return -ENOTTY;
@ -704,21 +705,21 @@ static int __nbd_ioctl(struct block_device *bdev, struct nbd_device *lo,
static int nbd_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
struct nbd_device *lo = bdev->bd_disk->private_data;
struct nbd_device *nbd = bdev->bd_disk->private_data;
int error;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
BUG_ON(lo->magic != LO_MAGIC);
BUG_ON(nbd->magic != NBD_MAGIC);
/* Anyone capable of this syscall can do *real bad* things */
dprintk(DBG_IOCTL, "%s: nbd_ioctl cmd=%s(0x%x) arg=%lu\n",
lo->disk->disk_name, ioctl_cmd_to_ascii(cmd), cmd, arg);
nbd->disk->disk_name, ioctl_cmd_to_ascii(cmd), cmd, arg);
mutex_lock(&lo->tx_lock);
error = __nbd_ioctl(bdev, lo, cmd, arg);
mutex_unlock(&lo->tx_lock);
mutex_lock(&nbd->tx_lock);
error = __nbd_ioctl(bdev, nbd, cmd, arg);
mutex_unlock(&nbd->tx_lock);
return error;
}
@ -804,7 +805,7 @@ static int __init nbd_init(void)
for (i = 0; i < nbds_max; i++) {
struct gendisk *disk = nbd_dev[i].disk;
nbd_dev[i].file = NULL;
nbd_dev[i].magic = LO_MAGIC;
nbd_dev[i].magic = NBD_MAGIC;
nbd_dev[i].flags = 0;
INIT_LIST_HEAD(&nbd_dev[i].waiting_queue);
spin_lock_init(&nbd_dev[i].queue_lock);

View file

@ -118,8 +118,8 @@ enum kcs_states {
#define MAX_KCS_WRITE_SIZE IPMI_MAX_MSG_LENGTH
/* Timeouts in microseconds. */
#define IBF_RETRY_TIMEOUT 1000000
#define OBF_RETRY_TIMEOUT 1000000
#define IBF_RETRY_TIMEOUT 5000000
#define OBF_RETRY_TIMEOUT 5000000
#define MAX_ERROR_RETRIES 10
#define ERROR0_OBF_WAIT_JIFFIES (2*HZ)

View file

@ -45,6 +45,7 @@
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#define PFX "IPMI message handler: "
@ -52,6 +53,8 @@
static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
static int ipmi_init_msghandler(void);
static void smi_recv_tasklet(unsigned long);
static void handle_new_recv_msgs(ipmi_smi_t intf);
static int initialized;
@ -354,12 +357,15 @@ struct ipmi_smi {
int curr_seq;
/*
* Messages that were delayed for some reason (out of memory,
* for instance), will go in here to be processed later in a
* periodic timer interrupt.
* Messages queued for delivery. If delivery fails (out of memory
* for instance), They will stay in here to be processed later in a
* periodic timer interrupt. The tasklet is for handling received
* messages directly from the handler.
*/
spinlock_t waiting_msgs_lock;
struct list_head waiting_msgs;
atomic_t watchdog_pretimeouts_to_deliver;
struct tasklet_struct recv_tasklet;
/*
* The list of command receivers that are registered for commands
@ -492,6 +498,8 @@ static void clean_up_interface_data(ipmi_smi_t intf)
struct cmd_rcvr *rcvr, *rcvr2;
struct list_head list;
tasklet_kill(&intf->recv_tasklet);
free_smi_msg_list(&intf->waiting_msgs);
free_recv_msg_list(&intf->waiting_events);
@ -2785,12 +2793,17 @@ channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
return;
}
void ipmi_poll_interface(ipmi_user_t user)
static void ipmi_poll(ipmi_smi_t intf)
{
ipmi_smi_t intf = user->intf;
if (intf->handlers->poll)
intf->handlers->poll(intf->send_info);
/* In case something came in */
handle_new_recv_msgs(intf);
}
void ipmi_poll_interface(ipmi_user_t user)
{
ipmi_poll(user->intf);
}
EXPORT_SYMBOL(ipmi_poll_interface);
@ -2859,6 +2872,10 @@ int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
#endif
spin_lock_init(&intf->waiting_msgs_lock);
INIT_LIST_HEAD(&intf->waiting_msgs);
tasklet_init(&intf->recv_tasklet,
smi_recv_tasklet,
(unsigned long) intf);
atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
spin_lock_init(&intf->events_lock);
INIT_LIST_HEAD(&intf->waiting_events);
intf->waiting_events_count = 0;
@ -3621,11 +3638,11 @@ static int handle_bmc_rsp(ipmi_smi_t intf,
}
/*
* Handle a new message. Return 1 if the message should be requeued,
* Handle a received message. Return 1 if the message should be requeued,
* 0 if the message should be freed, or -1 if the message should not
* be freed or requeued.
*/
static int handle_new_recv_msg(ipmi_smi_t intf,
static int handle_one_recv_msg(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
int requeue;
@ -3783,12 +3800,72 @@ static int handle_new_recv_msg(ipmi_smi_t intf,
return requeue;
}
/*
* If there are messages in the queue or pretimeouts, handle them.
*/
static void handle_new_recv_msgs(ipmi_smi_t intf)
{
struct ipmi_smi_msg *smi_msg;
unsigned long flags = 0;
int rv;
int run_to_completion = intf->run_to_completion;
/* See if any waiting messages need to be processed. */
if (!run_to_completion)
spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
while (!list_empty(&intf->waiting_msgs)) {
smi_msg = list_entry(intf->waiting_msgs.next,
struct ipmi_smi_msg, link);
list_del(&smi_msg->link);
if (!run_to_completion)
spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
rv = handle_one_recv_msg(intf, smi_msg);
if (!run_to_completion)
spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
if (rv == 0) {
/* Message handled */
ipmi_free_smi_msg(smi_msg);
} else if (rv < 0) {
/* Fatal error on the message, del but don't free. */
} else {
/*
* To preserve message order, quit if we
* can't handle a message.
*/
list_add(&smi_msg->link, &intf->waiting_msgs);
break;
}
}
if (!run_to_completion)
spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
/*
* If the pretimout count is non-zero, decrement one from it and
* deliver pretimeouts to all the users.
*/
if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
ipmi_user_t user;
rcu_read_lock();
list_for_each_entry_rcu(user, &intf->users, link) {
if (user->handler->ipmi_watchdog_pretimeout)
user->handler->ipmi_watchdog_pretimeout(
user->handler_data);
}
rcu_read_unlock();
}
}
static void smi_recv_tasklet(unsigned long val)
{
handle_new_recv_msgs((ipmi_smi_t) val);
}
/* Handle a new message from the lower layer. */
void ipmi_smi_msg_received(ipmi_smi_t intf,
struct ipmi_smi_msg *msg)
{
unsigned long flags = 0; /* keep us warning-free. */
int rv;
int run_to_completion;
@ -3842,31 +3919,11 @@ void ipmi_smi_msg_received(ipmi_smi_t intf,
run_to_completion = intf->run_to_completion;
if (!run_to_completion)
spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
if (!list_empty(&intf->waiting_msgs)) {
list_add_tail(&msg->link, &intf->waiting_msgs);
if (!run_to_completion)
spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
goto out;
}
if (!run_to_completion)
spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
rv = handle_new_recv_msg(intf, msg);
if (rv > 0) {
/*
* Could not handle the message now, just add it to a
* list to handle later.
*/
run_to_completion = intf->run_to_completion;
if (!run_to_completion)
spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
list_add_tail(&msg->link, &intf->waiting_msgs);
if (!run_to_completion)
spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
} else if (rv == 0) {
ipmi_free_smi_msg(msg);
}
tasklet_schedule(&intf->recv_tasklet);
out:
return;
}
@ -3874,16 +3931,8 @@ EXPORT_SYMBOL(ipmi_smi_msg_received);
void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
{
ipmi_user_t user;
rcu_read_lock();
list_for_each_entry_rcu(user, &intf->users, link) {
if (!user->handler->ipmi_watchdog_pretimeout)
continue;
user->handler->ipmi_watchdog_pretimeout(user->handler_data);
}
rcu_read_unlock();
atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
tasklet_schedule(&intf->recv_tasklet);
}
EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
@ -3997,28 +4046,12 @@ static void ipmi_timeout_handler(long timeout_period)
ipmi_smi_t intf;
struct list_head timeouts;
struct ipmi_recv_msg *msg, *msg2;
struct ipmi_smi_msg *smi_msg, *smi_msg2;
unsigned long flags;
int i;
rcu_read_lock();
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
/* See if any waiting messages need to be processed. */
spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
list_for_each_entry_safe(smi_msg, smi_msg2,
&intf->waiting_msgs, link) {
if (!handle_new_recv_msg(intf, smi_msg)) {
list_del(&smi_msg->link);
ipmi_free_smi_msg(smi_msg);
} else {
/*
* To preserve message order, quit if we
* can't handle a message.
*/
break;
}
}
spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
tasklet_schedule(&intf->recv_tasklet);
/*
* Go through the seq table and find any messages that
@ -4172,12 +4205,48 @@ EXPORT_SYMBOL(ipmi_free_recv_msg);
#ifdef CONFIG_IPMI_PANIC_EVENT
static atomic_t panic_done_count = ATOMIC_INIT(0);
static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
{
atomic_dec(&panic_done_count);
}
static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
{
atomic_dec(&panic_done_count);
}
/*
* Inside a panic, send a message and wait for a response.
*/
static void ipmi_panic_request_and_wait(ipmi_smi_t intf,
struct ipmi_addr *addr,
struct kernel_ipmi_msg *msg)
{
struct ipmi_smi_msg smi_msg;
struct ipmi_recv_msg recv_msg;
int rv;
smi_msg.done = dummy_smi_done_handler;
recv_msg.done = dummy_recv_done_handler;
atomic_add(2, &panic_done_count);
rv = i_ipmi_request(NULL,
intf,
addr,
0,
msg,
intf,
&smi_msg,
&recv_msg,
0,
intf->channels[0].address,
intf->channels[0].lun,
0, 1); /* Don't retry, and don't wait. */
if (rv)
atomic_sub(2, &panic_done_count);
while (atomic_read(&panic_done_count) != 0)
ipmi_poll(intf);
}
#ifdef CONFIG_IPMI_PANIC_STRING
@ -4216,8 +4285,6 @@ static void send_panic_events(char *str)
unsigned char data[16];
struct ipmi_system_interface_addr *si;
struct ipmi_addr addr;
struct ipmi_smi_msg smi_msg;
struct ipmi_recv_msg recv_msg;
si = (struct ipmi_system_interface_addr *) &addr;
si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
@ -4245,9 +4312,6 @@ static void send_panic_events(char *str)
data[7] = str[2];
}
smi_msg.done = dummy_smi_done_handler;
recv_msg.done = dummy_recv_done_handler;
/* For every registered interface, send the event. */
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
if (!intf->handlers)
@ -4257,18 +4321,7 @@ static void send_panic_events(char *str)
intf->run_to_completion = 1;
/* Send the event announcing the panic. */
intf->handlers->set_run_to_completion(intf->send_info, 1);
i_ipmi_request(NULL,
intf,
&addr,
0,
&msg,
intf,
&smi_msg,
&recv_msg,
0,
intf->channels[0].address,
intf->channels[0].lun,
0, 1); /* Don't retry, and don't wait. */
ipmi_panic_request_and_wait(intf, &addr, &msg);
}
#ifdef CONFIG_IPMI_PANIC_STRING
@ -4316,18 +4369,7 @@ static void send_panic_events(char *str)
msg.data = NULL;
msg.data_len = 0;
intf->null_user_handler = device_id_fetcher;
i_ipmi_request(NULL,
intf,
&addr,
0,
&msg,
intf,
&smi_msg,
&recv_msg,
0,
intf->channels[0].address,
intf->channels[0].lun,
0, 1); /* Don't retry, and don't wait. */
ipmi_panic_request_and_wait(intf, &addr, &msg);
if (intf->local_event_generator) {
/* Request the event receiver from the local MC. */
@ -4336,18 +4378,7 @@ static void send_panic_events(char *str)
msg.data = NULL;
msg.data_len = 0;
intf->null_user_handler = event_receiver_fetcher;
i_ipmi_request(NULL,
intf,
&addr,
0,
&msg,
intf,
&smi_msg,
&recv_msg,
0,
intf->channels[0].address,
intf->channels[0].lun,
0, 1); /* no retry, and no wait. */
ipmi_panic_request_and_wait(intf, &addr, &msg);
}
intf->null_user_handler = NULL;
@ -4404,18 +4435,7 @@ static void send_panic_events(char *str)
strncpy(data+5, p, 11);
p += size;
i_ipmi_request(NULL,
intf,
&addr,
0,
&msg,
intf,
&smi_msg,
&recv_msg,
0,
intf->channels[0].address,
intf->channels[0].lun,
0, 1); /* no retry, and no wait. */
ipmi_panic_request_and_wait(intf, &addr, &msg);
}
}
#endif /* CONFIG_IPMI_PANIC_STRING */

View file

@ -170,7 +170,6 @@ struct smi_info {
struct si_sm_handlers *handlers;
enum si_type si_type;
spinlock_t si_lock;
spinlock_t msg_lock;
struct list_head xmit_msgs;
struct list_head hp_xmit_msgs;
struct ipmi_smi_msg *curr_msg;
@ -319,16 +318,8 @@ static int register_xaction_notifier(struct notifier_block *nb)
static void deliver_recv_msg(struct smi_info *smi_info,
struct ipmi_smi_msg *msg)
{
/* Deliver the message to the upper layer with the lock
released. */
if (smi_info->run_to_completion) {
/* Deliver the message to the upper layer. */
ipmi_smi_msg_received(smi_info->intf, msg);
} else {
spin_unlock(&(smi_info->si_lock));
ipmi_smi_msg_received(smi_info->intf, msg);
spin_lock(&(smi_info->si_lock));
}
}
static void return_hosed_msg(struct smi_info *smi_info, int cCode)
@ -357,13 +348,6 @@ static enum si_sm_result start_next_msg(struct smi_info *smi_info)
struct timeval t;
#endif
/*
* No need to save flags, we aleady have interrupts off and we
* already hold the SMI lock.
*/
if (!smi_info->run_to_completion)
spin_lock(&(smi_info->msg_lock));
/* Pick the high priority queue first. */
if (!list_empty(&(smi_info->hp_xmit_msgs))) {
entry = smi_info->hp_xmit_msgs.next;
@ -401,9 +385,6 @@ static enum si_sm_result start_next_msg(struct smi_info *smi_info)
rv = SI_SM_CALL_WITHOUT_DELAY;
}
out:
if (!smi_info->run_to_completion)
spin_unlock(&(smi_info->msg_lock));
return rv;
}
@ -480,9 +461,7 @@ static void handle_flags(struct smi_info *smi_info)
start_clear_flags(smi_info);
smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
spin_unlock(&(smi_info->si_lock));
ipmi_smi_watchdog_pretimeout(smi_info->intf);
spin_lock(&(smi_info->si_lock));
} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
/* Messages available. */
smi_info->curr_msg = ipmi_alloc_smi_msg();
@ -888,19 +867,6 @@ static void sender(void *send_info,
printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
/*
* last_timeout_jiffies is updated here to avoid
* smi_timeout() handler passing very large time_diff
* value to smi_event_handler() that causes
* the send command to abort.
*/
smi_info->last_timeout_jiffies = jiffies;
mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
if (smi_info->thread)
wake_up_process(smi_info->thread);
if (smi_info->run_to_completion) {
/*
* If we are running to completion, then throw it in
@ -923,16 +889,29 @@ static void sender(void *send_info,
return;
}
spin_lock_irqsave(&smi_info->msg_lock, flags);
spin_lock_irqsave(&smi_info->si_lock, flags);
if (priority > 0)
list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
else
list_add_tail(&msg->link, &smi_info->xmit_msgs);
spin_unlock_irqrestore(&smi_info->msg_lock, flags);
spin_lock_irqsave(&smi_info->si_lock, flags);
if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
/*
* last_timeout_jiffies is updated here to avoid
* smi_timeout() handler passing very large time_diff
* value to smi_event_handler() that causes
* the send command to abort.
*/
smi_info->last_timeout_jiffies = jiffies;
mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
if (smi_info->thread)
wake_up_process(smi_info->thread);
start_next_msg(smi_info);
smi_event_handler(smi_info, 0);
}
spin_unlock_irqrestore(&smi_info->si_lock, flags);
}
@ -1033,15 +1012,18 @@ static int ipmi_thread(void *data)
static void poll(void *send_info)
{
struct smi_info *smi_info = send_info;
unsigned long flags;
unsigned long flags = 0;
int run_to_completion = smi_info->run_to_completion;
/*
* Make sure there is some delay in the poll loop so we can
* drive time forward and timeout things.
*/
udelay(10);
if (!run_to_completion)
spin_lock_irqsave(&smi_info->si_lock, flags);
smi_event_handler(smi_info, 10);
if (!run_to_completion)
spin_unlock_irqrestore(&smi_info->si_lock, flags);
}
@ -1679,10 +1661,8 @@ static struct smi_info *smi_info_alloc(void)
{
struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
if (info) {
if (info)
spin_lock_init(&info->si_lock);
spin_lock_init(&info->msg_lock);
}
return info;
}

View file

@ -520,6 +520,7 @@ static void panic_halt_ipmi_heartbeat(void)
msg.cmd = IPMI_WDOG_RESET_TIMER;
msg.data = NULL;
msg.data_len = 0;
atomic_add(2, &panic_done_count);
rv = ipmi_request_supply_msgs(watchdog_user,
(struct ipmi_addr *) &addr,
0,
@ -528,8 +529,8 @@ static void panic_halt_ipmi_heartbeat(void)
&panic_halt_heartbeat_smi_msg,
&panic_halt_heartbeat_recv_msg,
1);
if (!rv)
atomic_add(2, &panic_done_count);
if (rv)
atomic_sub(2, &panic_done_count);
}
static struct ipmi_smi_msg panic_halt_smi_msg = {
@ -553,16 +554,18 @@ static void panic_halt_ipmi_set_timeout(void)
/* Wait for the messages to be free. */
while (atomic_read(&panic_done_count) != 0)
ipmi_poll_interface(watchdog_user);
atomic_add(2, &panic_done_count);
rv = i_ipmi_set_timeout(&panic_halt_smi_msg,
&panic_halt_recv_msg,
&send_heartbeat_now);
if (!rv) {
atomic_add(2, &panic_done_count);
if (send_heartbeat_now)
panic_halt_ipmi_heartbeat();
} else
if (rv) {
atomic_sub(2, &panic_done_count);
printk(KERN_WARNING PFX
"Unable to extend the watchdog timeout.");
} else {
if (send_heartbeat_now)
panic_halt_ipmi_heartbeat();
}
while (atomic_read(&panic_done_count) != 0)
ipmi_poll_interface(watchdog_user);
}
@ -1164,7 +1167,7 @@ static int wdog_reboot_handler(struct notifier_block *this,
if (code == SYS_POWER_OFF || code == SYS_HALT) {
/* Disable the WDT if we are shutting down. */
ipmi_watchdog_state = WDOG_TIMEOUT_NONE;
panic_halt_ipmi_set_timeout();
ipmi_set_timeout(IPMI_SET_TIMEOUT_NO_HB);
} else if (ipmi_watchdog_state != WDOG_TIMEOUT_NONE) {
/* Set a long timer to let the reboot happens, but
reboot if it hangs, but only if the watchdog
@ -1172,7 +1175,7 @@ static int wdog_reboot_handler(struct notifier_block *this,
timeout = 120;
pretimeout = 0;
ipmi_watchdog_state = WDOG_TIMEOUT_RESET;
panic_halt_ipmi_set_timeout();
ipmi_set_timeout(IPMI_SET_TIMEOUT_NO_HB);
}
}
return NOTIFY_OK;

View file

@ -271,7 +271,7 @@ static int tosa_lcd_resume(struct spi_device *spi)
}
#else
#define tosa_lcd_suspend NULL
#define tosa_lcd_reume NULL
#define tosa_lcd_resume NULL
#endif
static struct spi_driver tosa_lcd_driver = {

View file

@ -1385,9 +1385,22 @@ static void invalidate_bh_lru(void *arg)
put_cpu_var(bh_lrus);
}
static bool has_bh_in_lru(int cpu, void *dummy)
{
struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
int i;
for (i = 0; i < BH_LRU_SIZE; i++) {
if (b->bhs[i])
return 1;
}
return 0;
}
void invalidate_bh_lrus(void)
{
on_each_cpu(invalidate_bh_lru, NULL, 1);
on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
}
EXPORT_SYMBOL_GPL(invalidate_bh_lrus);

View file

@ -550,7 +550,7 @@ int proc_pid_statm(struct seq_file *m, struct pid_namespace *ns,
seq_put_decimal_ull(m, ' ', shared);
seq_put_decimal_ull(m, ' ', text);
seq_put_decimal_ull(m, ' ', 0);
seq_put_decimal_ull(m, ' ', text);
seq_put_decimal_ull(m, ' ', data);
seq_put_decimal_ull(m, ' ', 0);
seq_putc(m, '\n');

View file

@ -156,15 +156,15 @@ static struct dentry *proc_ns_dir_lookup(struct inode *dir,
if (!ptrace_may_access(task, PTRACE_MODE_READ))
goto out;
last = &ns_entries[ARRAY_SIZE(ns_entries) - 1];
for (entry = ns_entries; entry <= last; entry++) {
last = &ns_entries[ARRAY_SIZE(ns_entries)];
for (entry = ns_entries; entry < last; entry++) {
if (strlen((*entry)->name) != len)
continue;
if (!memcmp(dentry->d_name.name, (*entry)->name, len))
break;
}
error = ERR_PTR(-ENOENT);
if (entry > last)
if (entry == last)
goto out;
error = proc_ns_instantiate(dir, dentry, task, *entry);

View file

@ -781,9 +781,6 @@ static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
int err = 0;
pagemap_entry_t pme = make_pme(PM_NOT_PRESENT);
if (pmd_trans_unstable(pmd))
return 0;
/* find the first VMA at or above 'addr' */
vma = find_vma(walk->mm, addr);
spin_lock(&walk->mm->page_table_lock);
@ -802,6 +799,8 @@ static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
return err;
}
if (pmd_trans_unstable(pmd))
return 0;
for (; addr != end; addr += PAGE_SIZE) {
/* check to see if we've left 'vma' behind

View file

@ -810,11 +810,10 @@ static inline const struct cpumask *get_cpu_mask(unsigned int cpu)
#else /* NR_CPUS > 1 */
int __first_cpu(const cpumask_t *srcp);
int __next_cpu(int n, const cpumask_t *srcp);
int __any_online_cpu(const cpumask_t *mask);
#define first_cpu(src) __first_cpu(&(src))
#define next_cpu(n, src) __next_cpu((n), &(src))
#define any_online_cpu(mask) __any_online_cpu(&(mask))
#define any_online_cpu(mask) cpumask_any_and(&mask, cpu_online_mask)
#define for_each_cpu_mask(cpu, mask) \
for ((cpu) = -1; \
(cpu) = next_cpu((cpu), (mask)), \

View file

@ -954,7 +954,7 @@ extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
extern void truncate_setsize(struct inode *inode, loff_t newsize);
extern int vmtruncate(struct inode *inode, loff_t offset);
extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
int truncate_inode_page(struct address_space *mapping, struct page *page);
int generic_error_remove_page(struct address_space *mapping, struct page *page);

View file

@ -33,6 +33,7 @@ struct pid_namespace {
#endif
gid_t pid_gid;
int hide_pid;
int reboot; /* group exit code if this pidns was rebooted */
};
extern struct pid_namespace init_pid_ns;
@ -48,6 +49,7 @@ static inline struct pid_namespace *get_pid_ns(struct pid_namespace *ns)
extern struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *ns);
extern void free_pid_ns(struct kref *kref);
extern void zap_pid_ns_processes(struct pid_namespace *pid_ns);
extern int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd);
static inline void put_pid_ns(struct pid_namespace *ns)
{
@ -75,11 +77,15 @@ static inline void put_pid_ns(struct pid_namespace *ns)
{
}
static inline void zap_pid_ns_processes(struct pid_namespace *ns)
{
BUG();
}
static inline int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
{
return 0;
}
#endif /* CONFIG_PID_NS */
extern struct pid_namespace *task_active_pid_ns(struct task_struct *tsk);

View file

@ -2,6 +2,7 @@
* Copyright (C) 2001 Momchil Velikov
* Portions Copyright (C) 2001 Christoph Hellwig
* Copyright (C) 2006 Nick Piggin
* Copyright (C) 2012 Konstantin Khlebnikov
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
@ -257,4 +258,199 @@ static inline void radix_tree_preload_end(void)
preempt_enable();
}
/**
* struct radix_tree_iter - radix tree iterator state
*
* @index: index of current slot
* @next_index: next-to-last index for this chunk
* @tags: bit-mask for tag-iterating
*
* This radix tree iterator works in terms of "chunks" of slots. A chunk is a
* subinterval of slots contained within one radix tree leaf node. It is
* described by a pointer to its first slot and a struct radix_tree_iter
* which holds the chunk's position in the tree and its size. For tagged
* iteration radix_tree_iter also holds the slots' bit-mask for one chosen
* radix tree tag.
*/
struct radix_tree_iter {
unsigned long index;
unsigned long next_index;
unsigned long tags;
};
#define RADIX_TREE_ITER_TAG_MASK 0x00FF /* tag index in lower byte */
#define RADIX_TREE_ITER_TAGGED 0x0100 /* lookup tagged slots */
#define RADIX_TREE_ITER_CONTIG 0x0200 /* stop at first hole */
/**
* radix_tree_iter_init - initialize radix tree iterator
*
* @iter: pointer to iterator state
* @start: iteration starting index
* Returns: NULL
*/
static __always_inline void **
radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
{
/*
* Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
* in the case of a successful tagged chunk lookup. If the lookup was
* unsuccessful or non-tagged then nobody cares about ->tags.
*
* Set index to zero to bypass next_index overflow protection.
* See the comment in radix_tree_next_chunk() for details.
*/
iter->index = 0;
iter->next_index = start;
return NULL;
}
/**
* radix_tree_next_chunk - find next chunk of slots for iteration
*
* @root: radix tree root
* @iter: iterator state
* @flags: RADIX_TREE_ITER_* flags and tag index
* Returns: pointer to chunk first slot, or NULL if there no more left
*
* This function looks up the next chunk in the radix tree starting from
* @iter->next_index. It returns a pointer to the chunk's first slot.
* Also it fills @iter with data about chunk: position in the tree (index),
* its end (next_index), and constructs a bit mask for tagged iterating (tags).
*/
void **radix_tree_next_chunk(struct radix_tree_root *root,
struct radix_tree_iter *iter, unsigned flags);
/**
* radix_tree_chunk_size - get current chunk size
*
* @iter: pointer to radix tree iterator
* Returns: current chunk size
*/
static __always_inline unsigned
radix_tree_chunk_size(struct radix_tree_iter *iter)
{
return iter->next_index - iter->index;
}
/**
* radix_tree_next_slot - find next slot in chunk
*
* @slot: pointer to current slot
* @iter: pointer to interator state
* @flags: RADIX_TREE_ITER_*, should be constant
* Returns: pointer to next slot, or NULL if there no more left
*
* This function updates @iter->index in the case of a successful lookup.
* For tagged lookup it also eats @iter->tags.
*/
static __always_inline void **
radix_tree_next_slot(void **slot, struct radix_tree_iter *iter, unsigned flags)
{
if (flags & RADIX_TREE_ITER_TAGGED) {
iter->tags >>= 1;
if (likely(iter->tags & 1ul)) {
iter->index++;
return slot + 1;
}
if (!(flags & RADIX_TREE_ITER_CONTIG) && likely(iter->tags)) {
unsigned offset = __ffs(iter->tags);
iter->tags >>= offset;
iter->index += offset + 1;
return slot + offset + 1;
}
} else {
unsigned size = radix_tree_chunk_size(iter) - 1;
while (size--) {
slot++;
iter->index++;
if (likely(*slot))
return slot;
if (flags & RADIX_TREE_ITER_CONTIG)
break;
}
}
return NULL;
}
/**
* radix_tree_for_each_chunk - iterate over chunks
*
* @slot: the void** variable for pointer to chunk first slot
* @root: the struct radix_tree_root pointer
* @iter: the struct radix_tree_iter pointer
* @start: iteration starting index
* @flags: RADIX_TREE_ITER_* and tag index
*
* Locks can be released and reacquired between iterations.
*/
#define radix_tree_for_each_chunk(slot, root, iter, start, flags) \
for (slot = radix_tree_iter_init(iter, start) ; \
(slot = radix_tree_next_chunk(root, iter, flags)) ;)
/**
* radix_tree_for_each_chunk_slot - iterate over slots in one chunk
*
* @slot: the void** variable, at the beginning points to chunk first slot
* @iter: the struct radix_tree_iter pointer
* @flags: RADIX_TREE_ITER_*, should be constant
*
* This macro is designed to be nested inside radix_tree_for_each_chunk().
* @slot points to the radix tree slot, @iter->index contains its index.
*/
#define radix_tree_for_each_chunk_slot(slot, iter, flags) \
for (; slot ; slot = radix_tree_next_slot(slot, iter, flags))
/**
* radix_tree_for_each_slot - iterate over non-empty slots
*
* @slot: the void** variable for pointer to slot
* @root: the struct radix_tree_root pointer
* @iter: the struct radix_tree_iter pointer
* @start: iteration starting index
*
* @slot points to radix tree slot, @iter->index contains its index.
*/
#define radix_tree_for_each_slot(slot, root, iter, start) \
for (slot = radix_tree_iter_init(iter, start) ; \
slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \
slot = radix_tree_next_slot(slot, iter, 0))
/**
* radix_tree_for_each_contig - iterate over contiguous slots
*
* @slot: the void** variable for pointer to slot
* @root: the struct radix_tree_root pointer
* @iter: the struct radix_tree_iter pointer
* @start: iteration starting index
*
* @slot points to radix tree slot, @iter->index contains its index.
*/
#define radix_tree_for_each_contig(slot, root, iter, start) \
for (slot = radix_tree_iter_init(iter, start) ; \
slot || (slot = radix_tree_next_chunk(root, iter, \
RADIX_TREE_ITER_CONTIG)) ; \
slot = radix_tree_next_slot(slot, iter, \
RADIX_TREE_ITER_CONTIG))
/**
* radix_tree_for_each_tagged - iterate over tagged slots
*
* @slot: the void** variable for pointer to slot
* @root: the struct radix_tree_root pointer
* @iter: the struct radix_tree_iter pointer
* @start: iteration starting index
* @tag: tag index
*
* @slot points to radix tree slot, @iter->index contains its index.
*/
#define radix_tree_for_each_tagged(slot, root, iter, start, tag) \
for (slot = radix_tree_iter_init(iter, start) ; \
slot || (slot = radix_tree_next_chunk(root, iter, \
RADIX_TREE_ITER_TAGGED | tag)) ; \
slot = radix_tree_next_slot(slot, iter, \
RADIX_TREE_ITER_TAGGED))
#endif /* _LINUX_RADIX_TREE_H */

View file

@ -101,6 +101,22 @@ static inline void call_function_init(void) { }
*/
int on_each_cpu(smp_call_func_t func, void *info, int wait);
/*
* Call a function on processors specified by mask, which might include
* the local one.
*/
void on_each_cpu_mask(const struct cpumask *mask, smp_call_func_t func,
void *info, bool wait);
/*
* Call a function on each processor for which the supplied function
* cond_func returns a positive value. This may include the local
* processor.
*/
void on_each_cpu_cond(bool (*cond_func)(int cpu, void *info),
smp_call_func_t func, void *info, bool wait,
gfp_t gfp_flags);
/*
* Mark the boot cpu "online" so that it can call console drivers in
* printk() and can access its per-cpu storage.
@ -132,6 +148,36 @@ static inline int up_smp_call_function(smp_call_func_t func, void *info)
local_irq_enable(); \
0; \
})
/*
* Note we still need to test the mask even for UP
* because we actually can get an empty mask from
* code that on SMP might call us without the local
* CPU in the mask.
*/
#define on_each_cpu_mask(mask, func, info, wait) \
do { \
if (cpumask_test_cpu(0, (mask))) { \
local_irq_disable(); \
(func)(info); \
local_irq_enable(); \
} \
} while (0)
/*
* Preemption is disabled here to make sure the cond_func is called under the
* same condtions in UP and SMP.
*/
#define on_each_cpu_cond(cond_func, func, info, wait, gfp_flags)\
do { \
void *__info = (info); \
preempt_disable(); \
if ((cond_func)(0, __info)) { \
local_irq_disable(); \
(func)(__info); \
local_irq_enable(); \
} \
preempt_enable(); \
} while (0)
static inline void smp_send_reschedule(int cpu) { }
#define num_booting_cpus() 1
#define smp_prepare_boot_cpu() do {} while (0)

View file

@ -21,6 +21,9 @@ struct bio;
#define SWAP_FLAG_PRIO_SHIFT 0
#define SWAP_FLAG_DISCARD 0x10000 /* discard swap cluster after use */
#define SWAP_FLAGS_VALID (SWAP_FLAG_PRIO_MASK | SWAP_FLAG_PREFER | \
SWAP_FLAG_DISCARD)
static inline int current_is_kswapd(void)
{
return current->flags & PF_KSWAPD;

View file

@ -1358,6 +1358,10 @@ static int __init parse_crashkernel_simple(char *cmdline,
if (*cur == '@')
*crash_base = memparse(cur+1, &cur);
else if (*cur != ' ' && *cur != '\0') {
pr_warning("crashkernel: unrecognized char\n");
return -EINVAL;
}
return 0;
}
@ -1461,7 +1465,9 @@ static int __init crash_save_vmcoreinfo_init(void)
VMCOREINFO_SYMBOL(init_uts_ns);
VMCOREINFO_SYMBOL(node_online_map);
#ifdef CONFIG_MMU
VMCOREINFO_SYMBOL(swapper_pg_dir);
#endif
VMCOREINFO_SYMBOL(_stext);
VMCOREINFO_SYMBOL(vmlist);

View file

@ -15,6 +15,7 @@
#include <linux/acct.h>
#include <linux/slab.h>
#include <linux/proc_fs.h>
#include <linux/reboot.h>
#define BITS_PER_PAGE (PAGE_SIZE*8)
@ -183,6 +184,9 @@ void zap_pid_ns_processes(struct pid_namespace *pid_ns)
rc = sys_wait4(-1, NULL, __WALL, NULL);
} while (rc != -ECHILD);
if (pid_ns->reboot)
current->signal->group_exit_code = pid_ns->reboot;
acct_exit_ns(pid_ns);
return;
}
@ -217,6 +221,35 @@ static struct ctl_table pid_ns_ctl_table[] = {
static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
{
if (pid_ns == &init_pid_ns)
return 0;
switch (cmd) {
case LINUX_REBOOT_CMD_RESTART2:
case LINUX_REBOOT_CMD_RESTART:
pid_ns->reboot = SIGHUP;
break;
case LINUX_REBOOT_CMD_POWER_OFF:
case LINUX_REBOOT_CMD_HALT:
pid_ns->reboot = SIGINT;
break;
default:
return -EINVAL;
}
read_lock(&tasklist_lock);
force_sig(SIGKILL, pid_ns->child_reaper);
read_unlock(&tasklist_lock);
do_exit(0);
/* Not reached */
return 0;
}
static __init int pid_namespaces_init(void)
{
pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);

View file

@ -701,3 +701,93 @@ int on_each_cpu(void (*func) (void *info), void *info, int wait)
return ret;
}
EXPORT_SYMBOL(on_each_cpu);
/**
* on_each_cpu_mask(): Run a function on processors specified by
* cpumask, which may include the local processor.
* @mask: The set of cpus to run on (only runs on online subset).
* @func: The function to run. This must be fast and non-blocking.
* @info: An arbitrary pointer to pass to the function.
* @wait: If true, wait (atomically) until function has completed
* on other CPUs.
*
* If @wait is true, then returns once @func has returned.
*
* You must not call this function with disabled interrupts or
* from a hardware interrupt handler or from a bottom half handler.
*/
void on_each_cpu_mask(const struct cpumask *mask, smp_call_func_t func,
void *info, bool wait)
{
int cpu = get_cpu();
smp_call_function_many(mask, func, info, wait);
if (cpumask_test_cpu(cpu, mask)) {
local_irq_disable();
func(info);
local_irq_enable();
}
put_cpu();
}
EXPORT_SYMBOL(on_each_cpu_mask);
/*
* on_each_cpu_cond(): Call a function on each processor for which
* the supplied function cond_func returns true, optionally waiting
* for all the required CPUs to finish. This may include the local
* processor.
* @cond_func: A callback function that is passed a cpu id and
* the the info parameter. The function is called
* with preemption disabled. The function should
* return a blooean value indicating whether to IPI
* the specified CPU.
* @func: The function to run on all applicable CPUs.
* This must be fast and non-blocking.
* @info: An arbitrary pointer to pass to both functions.
* @wait: If true, wait (atomically) until function has
* completed on other CPUs.
* @gfp_flags: GFP flags to use when allocating the cpumask
* used internally by the function.
*
* The function might sleep if the GFP flags indicates a non
* atomic allocation is allowed.
*
* Preemption is disabled to protect against CPUs going offline but not online.
* CPUs going online during the call will not be seen or sent an IPI.
*
* You must not call this function with disabled interrupts or
* from a hardware interrupt handler or from a bottom half handler.
*/
void on_each_cpu_cond(bool (*cond_func)(int cpu, void *info),
smp_call_func_t func, void *info, bool wait,
gfp_t gfp_flags)
{
cpumask_var_t cpus;
int cpu, ret;
might_sleep_if(gfp_flags & __GFP_WAIT);
if (likely(zalloc_cpumask_var(&cpus, (gfp_flags|__GFP_NOWARN)))) {
preempt_disable();
for_each_online_cpu(cpu)
if (cond_func(cpu, info))
cpumask_set_cpu(cpu, cpus);
on_each_cpu_mask(cpus, func, info, wait);
preempt_enable();
free_cpumask_var(cpus);
} else {
/*
* No free cpumask, bother. No matter, we'll
* just have to IPI them one by one.
*/
preempt_disable();
for_each_online_cpu(cpu)
if (cond_func(cpu, info)) {
ret = smp_call_function_single(cpu, func,
info, wait);
WARN_ON_ONCE(!ret);
}
preempt_enable();
}
}
EXPORT_SYMBOL(on_each_cpu_cond);

View file

@ -444,6 +444,15 @@ SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
magic2 != LINUX_REBOOT_MAGIC2C))
return -EINVAL;
/*
* If pid namespaces are enabled and the current task is in a child
* pid_namespace, the command is handled by reboot_pid_ns() which will
* call do_exit().
*/
ret = reboot_pid_ns(task_active_pid_ns(current), cmd);
if (ret)
return ret;
/* Instead of trying to make the power_off code look like
* halt when pm_power_off is not set do it the easy way.
*/

View file

@ -23,6 +23,7 @@
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/sysctl.h>
#include <linux/bitmap.h>
#include <linux/signal.h>
#include <linux/printk.h>
#include <linux/proc_fs.h>
@ -2395,9 +2396,7 @@ int proc_do_large_bitmap(struct ctl_table *table, int write,
}
}
while (val_a <= val_b)
set_bit(val_a++, tmp_bitmap);
bitmap_set(tmp_bitmap, val_a, val_b - val_a + 1);
first = 0;
proc_skip_char(&kbuf, &left, '\n');
}
@ -2440,8 +2439,7 @@ int proc_do_large_bitmap(struct ctl_table *table, int write,
if (*ppos)
bitmap_or(bitmap, bitmap, tmp_bitmap, bitmap_len);
else
memcpy(bitmap, tmp_bitmap,
BITS_TO_LONGS(bitmap_len) * sizeof(unsigned long));
bitmap_copy(bitmap, tmp_bitmap, bitmap_len);
}
kfree(tmp_bitmap);
*lenp -= left;

View file

@ -88,6 +88,10 @@ choice
prompt "CRC32 implementation"
depends on CRC32
default CRC32_SLICEBY8
help
This option allows a kernel builder to override the default choice
of CRC32 algorithm. Choose the default ("slice by 8") unless you
know that you need one of the others.
config CRC32_SLICEBY8
bool "Slice by 8 bytes"

View file

@ -26,18 +26,6 @@ int __next_cpu_nr(int n, const cpumask_t *srcp)
EXPORT_SYMBOL(__next_cpu_nr);
#endif
int __any_online_cpu(const cpumask_t *mask)
{
int cpu;
for_each_cpu(cpu, mask) {
if (cpu_online(cpu))
break;
}
return cpu;
}
EXPORT_SYMBOL(__any_online_cpu);
/**
* cpumask_next_and - get the next cpu in *src1p & *src2p
* @n: the cpu prior to the place to search (ie. return will be > @n)

View file

@ -3,6 +3,7 @@
* Portions Copyright (C) 2001 Christoph Hellwig
* Copyright (C) 2005 SGI, Christoph Lameter
* Copyright (C) 2006 Nick Piggin
* Copyright (C) 2012 Konstantin Khlebnikov
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
@ -146,6 +147,43 @@ static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
}
return 0;
}
/**
* radix_tree_find_next_bit - find the next set bit in a memory region
*
* @addr: The address to base the search on
* @size: The bitmap size in bits
* @offset: The bitnumber to start searching at
*
* Unrollable variant of find_next_bit() for constant size arrays.
* Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
* Returns next bit offset, or size if nothing found.
*/
static __always_inline unsigned long
radix_tree_find_next_bit(const unsigned long *addr,
unsigned long size, unsigned long offset)
{
if (!__builtin_constant_p(size))
return find_next_bit(addr, size, offset);
if (offset < size) {
unsigned long tmp;
addr += offset / BITS_PER_LONG;
tmp = *addr >> (offset % BITS_PER_LONG);
if (tmp)
return __ffs(tmp) + offset;
offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
while (offset < size) {
tmp = *++addr;
if (tmp)
return __ffs(tmp) + offset;
offset += BITS_PER_LONG;
}
}
return size;
}
/*
* This assumes that the caller has performed appropriate preallocation, and
* that the caller has pinned this thread of control to the current CPU.
@ -612,6 +650,119 @@ int radix_tree_tag_get(struct radix_tree_root *root,
}
EXPORT_SYMBOL(radix_tree_tag_get);
/**
* radix_tree_next_chunk - find next chunk of slots for iteration
*
* @root: radix tree root
* @iter: iterator state
* @flags: RADIX_TREE_ITER_* flags and tag index
* Returns: pointer to chunk first slot, or NULL if iteration is over
*/
void **radix_tree_next_chunk(struct radix_tree_root *root,
struct radix_tree_iter *iter, unsigned flags)
{
unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
struct radix_tree_node *rnode, *node;
unsigned long index, offset;
if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
return NULL;
/*
* Catch next_index overflow after ~0UL. iter->index never overflows
* during iterating; it can be zero only at the beginning.
* And we cannot overflow iter->next_index in a single step,
* because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
*/
index = iter->next_index;
if (!index && iter->index)
return NULL;
rnode = rcu_dereference_raw(root->rnode);
if (radix_tree_is_indirect_ptr(rnode)) {
rnode = indirect_to_ptr(rnode);
} else if (rnode && !index) {
/* Single-slot tree */
iter->index = 0;
iter->next_index = 1;
iter->tags = 1;
return (void **)&root->rnode;
} else
return NULL;
restart:
shift = (rnode->height - 1) * RADIX_TREE_MAP_SHIFT;
offset = index >> shift;
/* Index outside of the tree */
if (offset >= RADIX_TREE_MAP_SIZE)
return NULL;
node = rnode;
while (1) {
if ((flags & RADIX_TREE_ITER_TAGGED) ?
!test_bit(offset, node->tags[tag]) :
!node->slots[offset]) {
/* Hole detected */
if (flags & RADIX_TREE_ITER_CONTIG)
return NULL;
if (flags & RADIX_TREE_ITER_TAGGED)
offset = radix_tree_find_next_bit(
node->tags[tag],
RADIX_TREE_MAP_SIZE,
offset + 1);
else
while (++offset < RADIX_TREE_MAP_SIZE) {
if (node->slots[offset])
break;
}
index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
index += offset << shift;
/* Overflow after ~0UL */
if (!index)
return NULL;
if (offset == RADIX_TREE_MAP_SIZE)
goto restart;
}
/* This is leaf-node */
if (!shift)
break;
node = rcu_dereference_raw(node->slots[offset]);
if (node == NULL)
goto restart;
shift -= RADIX_TREE_MAP_SHIFT;
offset = (index >> shift) & RADIX_TREE_MAP_MASK;
}
/* Update the iterator state */
iter->index = index;
iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1;
/* Construct iter->tags bit-mask from node->tags[tag] array */
if (flags & RADIX_TREE_ITER_TAGGED) {
unsigned tag_long, tag_bit;
tag_long = offset / BITS_PER_LONG;
tag_bit = offset % BITS_PER_LONG;
iter->tags = node->tags[tag][tag_long] >> tag_bit;
/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
/* Pick tags from next element */
if (tag_bit)
iter->tags |= node->tags[tag][tag_long + 1] <<
(BITS_PER_LONG - tag_bit);
/* Clip chunk size, here only BITS_PER_LONG tags */
iter->next_index = index + BITS_PER_LONG;
}
}
return node->slots + offset;
}
EXPORT_SYMBOL(radix_tree_next_chunk);
/**
* radix_tree_range_tag_if_tagged - for each item in given range set given
* tag if item has another tag set
@ -817,57 +968,6 @@ unsigned long radix_tree_prev_hole(struct radix_tree_root *root,
}
EXPORT_SYMBOL(radix_tree_prev_hole);
static unsigned int
__lookup(struct radix_tree_node *slot, void ***results, unsigned long *indices,
unsigned long index, unsigned int max_items, unsigned long *next_index)
{
unsigned int nr_found = 0;
unsigned int shift, height;
unsigned long i;
height = slot->height;
if (height == 0)
goto out;
shift = (height-1) * RADIX_TREE_MAP_SHIFT;
for ( ; height > 1; height--) {
i = (index >> shift) & RADIX_TREE_MAP_MASK;
for (;;) {
if (slot->slots[i] != NULL)
break;
index &= ~((1UL << shift) - 1);
index += 1UL << shift;
if (index == 0)
goto out; /* 32-bit wraparound */
i++;
if (i == RADIX_TREE_MAP_SIZE)
goto out;
}
shift -= RADIX_TREE_MAP_SHIFT;
slot = rcu_dereference_raw(slot->slots[i]);
if (slot == NULL)
goto out;
}
/* Bottom level: grab some items */
for (i = index & RADIX_TREE_MAP_MASK; i < RADIX_TREE_MAP_SIZE; i++) {
if (slot->slots[i]) {
results[nr_found] = &(slot->slots[i]);
if (indices)
indices[nr_found] = index;
if (++nr_found == max_items) {
index++;
goto out;
}
}
index++;
}
out:
*next_index = index;
return nr_found;
}
/**
* radix_tree_gang_lookup - perform multiple lookup on a radix tree
* @root: radix tree root
@ -891,48 +991,19 @@ unsigned int
radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
unsigned long first_index, unsigned int max_items)
{
unsigned long max_index;
struct radix_tree_node *node;
unsigned long cur_index = first_index;
unsigned int ret;
struct radix_tree_iter iter;
void **slot;
unsigned int ret = 0;
node = rcu_dereference_raw(root->rnode);
if (!node)
if (unlikely(!max_items))
return 0;
if (!radix_tree_is_indirect_ptr(node)) {
if (first_index > 0)
return 0;
results[0] = node;
return 1;
}
node = indirect_to_ptr(node);
max_index = radix_tree_maxindex(node->height);
ret = 0;
while (ret < max_items) {
unsigned int nr_found, slots_found, i;
unsigned long next_index; /* Index of next search */
if (cur_index > max_index)
break;
slots_found = __lookup(node, (void ***)results + ret, NULL,
cur_index, max_items - ret, &next_index);
nr_found = 0;
for (i = 0; i < slots_found; i++) {
struct radix_tree_node *slot;
slot = *(((void ***)results)[ret + i]);
if (!slot)
radix_tree_for_each_slot(slot, root, &iter, first_index) {
results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
if (!results[ret])
continue;
results[ret + nr_found] =
indirect_to_ptr(rcu_dereference_raw(slot));
nr_found++;
}
ret += nr_found;
if (next_index == 0)
if (++ret == max_items)
break;
cur_index = next_index;
}
return ret;
@ -962,112 +1033,25 @@ radix_tree_gang_lookup_slot(struct radix_tree_root *root,
void ***results, unsigned long *indices,
unsigned long first_index, unsigned int max_items)
{
unsigned long max_index;
struct radix_tree_node *node;
unsigned long cur_index = first_index;
unsigned int ret;
struct radix_tree_iter iter;
void **slot;
unsigned int ret = 0;
node = rcu_dereference_raw(root->rnode);
if (!node)
if (unlikely(!max_items))
return 0;
if (!radix_tree_is_indirect_ptr(node)) {
if (first_index > 0)
return 0;
results[0] = (void **)&root->rnode;
radix_tree_for_each_slot(slot, root, &iter, first_index) {
results[ret] = slot;
if (indices)
indices[0] = 0;
return 1;
}
node = indirect_to_ptr(node);
max_index = radix_tree_maxindex(node->height);
ret = 0;
while (ret < max_items) {
unsigned int slots_found;
unsigned long next_index; /* Index of next search */
if (cur_index > max_index)
indices[ret] = iter.index;
if (++ret == max_items)
break;
slots_found = __lookup(node, results + ret,
indices ? indices + ret : NULL,
cur_index, max_items - ret, &next_index);
ret += slots_found;
if (next_index == 0)
break;
cur_index = next_index;
}
return ret;
}
EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
/*
* FIXME: the two tag_get()s here should use find_next_bit() instead of
* open-coding the search.
*/
static unsigned int
__lookup_tag(struct radix_tree_node *slot, void ***results, unsigned long index,
unsigned int max_items, unsigned long *next_index, unsigned int tag)
{
unsigned int nr_found = 0;
unsigned int shift, height;
height = slot->height;
if (height == 0)
goto out;
shift = (height-1) * RADIX_TREE_MAP_SHIFT;
while (height > 0) {
unsigned long i = (index >> shift) & RADIX_TREE_MAP_MASK ;
for (;;) {
if (tag_get(slot, tag, i))
break;
index &= ~((1UL << shift) - 1);
index += 1UL << shift;
if (index == 0)
goto out; /* 32-bit wraparound */
i++;
if (i == RADIX_TREE_MAP_SIZE)
goto out;
}
height--;
if (height == 0) { /* Bottom level: grab some items */
unsigned long j = index & RADIX_TREE_MAP_MASK;
for ( ; j < RADIX_TREE_MAP_SIZE; j++) {
index++;
if (!tag_get(slot, tag, j))
continue;
/*
* Even though the tag was found set, we need to
* recheck that we have a non-NULL node, because
* if this lookup is lockless, it may have been
* subsequently deleted.
*
* Similar care must be taken in any place that
* lookup ->slots[x] without a lock (ie. can't
* rely on its value remaining the same).
*/
if (slot->slots[j]) {
results[nr_found++] = &(slot->slots[j]);
if (nr_found == max_items)
goto out;
}
}
}
shift -= RADIX_TREE_MAP_SHIFT;
slot = rcu_dereference_raw(slot->slots[i]);
if (slot == NULL)
break;
}
out:
*next_index = index;
return nr_found;
}
/**
* radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
* based on a tag
@ -1086,52 +1070,19 @@ radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
unsigned long first_index, unsigned int max_items,
unsigned int tag)
{
struct radix_tree_node *node;
unsigned long max_index;
unsigned long cur_index = first_index;
unsigned int ret;
struct radix_tree_iter iter;
void **slot;
unsigned int ret = 0;
/* check the root's tag bit */
if (!root_tag_get(root, tag))
if (unlikely(!max_items))
return 0;
node = rcu_dereference_raw(root->rnode);
if (!node)
return 0;
if (!radix_tree_is_indirect_ptr(node)) {
if (first_index > 0)
return 0;
results[0] = node;
return 1;
}
node = indirect_to_ptr(node);
max_index = radix_tree_maxindex(node->height);
ret = 0;
while (ret < max_items) {
unsigned int nr_found, slots_found, i;
unsigned long next_index; /* Index of next search */
if (cur_index > max_index)
break;
slots_found = __lookup_tag(node, (void ***)results + ret,
cur_index, max_items - ret, &next_index, tag);
nr_found = 0;
for (i = 0; i < slots_found; i++) {
struct radix_tree_node *slot;
slot = *(((void ***)results)[ret + i]);
if (!slot)
radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
if (!results[ret])
continue;
results[ret + nr_found] =
indirect_to_ptr(rcu_dereference_raw(slot));
nr_found++;
}
ret += nr_found;
if (next_index == 0)
if (++ret == max_items)
break;
cur_index = next_index;
}
return ret;
@ -1156,42 +1107,17 @@ radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
unsigned long first_index, unsigned int max_items,
unsigned int tag)
{
struct radix_tree_node *node;
unsigned long max_index;
unsigned long cur_index = first_index;
unsigned int ret;
struct radix_tree_iter iter;
void **slot;
unsigned int ret = 0;
/* check the root's tag bit */
if (!root_tag_get(root, tag))
if (unlikely(!max_items))
return 0;
node = rcu_dereference_raw(root->rnode);
if (!node)
return 0;
if (!radix_tree_is_indirect_ptr(node)) {
if (first_index > 0)
return 0;
results[0] = (void **)&root->rnode;
return 1;
}
node = indirect_to_ptr(node);
max_index = radix_tree_maxindex(node->height);
ret = 0;
while (ret < max_items) {
unsigned int slots_found;
unsigned long next_index; /* Index of next search */
if (cur_index > max_index)
radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
results[ret] = slot;
if (++ret == max_items)
break;
slots_found = __lookup_tag(node, results + ret,
cur_index, max_items - ret, &next_index, tag);
ret += slots_found;
if (next_index == 0)
break;
cur_index = next_index;
}
return ret;

View file

@ -813,20 +813,19 @@ EXPORT_SYMBOL(find_or_create_page);
unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
unsigned int nr_pages, struct page **pages)
{
unsigned int i;
unsigned int ret;
unsigned int nr_found, nr_skip;
struct radix_tree_iter iter;
void **slot;
unsigned ret = 0;
if (unlikely(!nr_pages))
return 0;
rcu_read_lock();
restart:
nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
(void ***)pages, NULL, start, nr_pages);
ret = 0;
nr_skip = 0;
for (i = 0; i < nr_found; i++) {
radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
struct page *page;
repeat:
page = radix_tree_deref_slot((void **)pages[i]);
page = radix_tree_deref_slot(slot);
if (unlikely(!page))
continue;
@ -837,7 +836,7 @@ repeat:
* when entry at index 0 moves out of or back
* to root: none yet gotten, safe to restart.
*/
WARN_ON(start | i);
WARN_ON(iter.index);
goto restart;
}
/*
@ -845,7 +844,6 @@ repeat:
* here as an exceptional entry: so skip over it -
* we only reach this from invalidate_mapping_pages().
*/
nr_skip++;
continue;
}
@ -853,21 +851,16 @@ repeat:
goto repeat;
/* Has the page moved? */
if (unlikely(page != *((void **)pages[i]))) {
if (unlikely(page != *slot)) {
page_cache_release(page);
goto repeat;
}
pages[ret] = page;
ret++;
if (++ret == nr_pages)
break;
}
/*
* If all entries were removed before we could secure them,
* try again, because callers stop trying once 0 is returned.
*/
if (unlikely(!ret && nr_found > nr_skip))
goto restart;
rcu_read_unlock();
return ret;
}
@ -887,21 +880,22 @@ repeat:
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
unsigned int nr_pages, struct page **pages)
{
unsigned int i;
unsigned int ret;
unsigned int nr_found;
struct radix_tree_iter iter;
void **slot;
unsigned int ret = 0;
if (unlikely(!nr_pages))
return 0;
rcu_read_lock();
restart:
nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
(void ***)pages, NULL, index, nr_pages);
ret = 0;
for (i = 0; i < nr_found; i++) {
radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
struct page *page;
repeat:
page = radix_tree_deref_slot((void **)pages[i]);
page = radix_tree_deref_slot(slot);
/* The hole, there no reason to continue */
if (unlikely(!page))
continue;
break;
if (radix_tree_exception(page)) {
if (radix_tree_deref_retry(page)) {
@ -924,7 +918,7 @@ repeat:
goto repeat;
/* Has the page moved? */
if (unlikely(page != *((void **)pages[i]))) {
if (unlikely(page != *slot)) {
page_cache_release(page);
goto repeat;
}
@ -934,14 +928,14 @@ repeat:
* otherwise we can get both false positives and false
* negatives, which is just confusing to the caller.
*/
if (page->mapping == NULL || page->index != index) {
if (page->mapping == NULL || page->index != iter.index) {
page_cache_release(page);
break;
}
pages[ret] = page;
ret++;
index++;
if (++ret == nr_pages)
break;
}
rcu_read_unlock();
return ret;
@ -962,19 +956,20 @@ EXPORT_SYMBOL(find_get_pages_contig);
unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
int tag, unsigned int nr_pages, struct page **pages)
{
unsigned int i;
unsigned int ret;
unsigned int nr_found;
struct radix_tree_iter iter;
void **slot;
unsigned ret = 0;
if (unlikely(!nr_pages))
return 0;
rcu_read_lock();
restart:
nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
(void ***)pages, *index, nr_pages, tag);
ret = 0;
for (i = 0; i < nr_found; i++) {
radix_tree_for_each_tagged(slot, &mapping->page_tree,
&iter, *index, tag) {
struct page *page;
repeat:
page = radix_tree_deref_slot((void **)pages[i]);
page = radix_tree_deref_slot(slot);
if (unlikely(!page))
continue;
@ -998,21 +993,16 @@ repeat:
goto repeat;
/* Has the page moved? */
if (unlikely(page != *((void **)pages[i]))) {
if (unlikely(page != *slot)) {
page_cache_release(page);
goto repeat;
}
pages[ret] = page;
ret++;
if (++ret == nr_pages)
break;
}
/*
* If all entries were removed before we could secure them,
* try again, because callers stop trying once 0 is returned.
*/
if (unlikely(!ret && nr_found))
goto restart;
rcu_read_unlock();
if (ret)

View file

@ -5306,6 +5306,8 @@ static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
return 0;
}
if (pmd_trans_unstable(pmd))
return 0;
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
for (; addr != end; pte++, addr += PAGE_SIZE)
if (get_mctgt_type(vma, addr, *pte, NULL))
@ -5502,6 +5504,8 @@ static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
return 0;
}
if (pmd_trans_unstable(pmd))
return 0;
retry:
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
for (; addr != end; addr += PAGE_SIZE) {

View file

@ -1161,11 +1161,47 @@ void drain_local_pages(void *arg)
}
/*
* Spill all the per-cpu pages from all CPUs back into the buddy allocator
* Spill all the per-cpu pages from all CPUs back into the buddy allocator.
*
* Note that this code is protected against sending an IPI to an offline
* CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
* on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
* nothing keeps CPUs from showing up after we populated the cpumask and
* before the call to on_each_cpu_mask().
*/
void drain_all_pages(void)
{
on_each_cpu(drain_local_pages, NULL, 1);
int cpu;
struct per_cpu_pageset *pcp;
struct zone *zone;
/*
* Allocate in the BSS so we wont require allocation in
* direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
*/
static cpumask_t cpus_with_pcps;
/*
* We don't care about racing with CPU hotplug event
* as offline notification will cause the notified
* cpu to drain that CPU pcps and on_each_cpu_mask
* disables preemption as part of its processing
*/
for_each_online_cpu(cpu) {
bool has_pcps = false;
for_each_populated_zone(zone) {
pcp = per_cpu_ptr(zone->pageset, cpu);
if (pcp->pcp.count) {
has_pcps = true;
break;
}
}
if (has_pcps)
cpumask_set_cpu(cpu, &cpus_with_pcps);
else
cpumask_clear_cpu(cpu, &cpus_with_pcps);
}
on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
}
#ifdef CONFIG_HIBERNATION
@ -2308,6 +2344,10 @@ rebalance:
if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
if (oom_killer_disabled)
goto nopage;
/* Coredumps can quickly deplete all memory reserves */
if ((current->flags & PF_DUMPCORE) &&
!(gfp_mask & __GFP_NOFAIL))
goto nopage;
page = __alloc_pages_may_oom(gfp_mask, order,
zonelist, high_zoneidx,
nodemask, preferred_zone,

View file

@ -2035,9 +2035,17 @@ static void flush_cpu_slab(void *d)
__flush_cpu_slab(s, smp_processor_id());
}
static bool has_cpu_slab(int cpu, void *info)
{
struct kmem_cache *s = info;
struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
return !!(c->page);
}
static void flush_all(struct kmem_cache *s)
{
on_each_cpu(flush_cpu_slab, s, 1);
on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
}
/*

View file

@ -2022,6 +2022,9 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
struct page *page = NULL;
struct inode *inode = NULL;
if (swap_flags & ~SWAP_FLAGS_VALID)
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;

View file

@ -626,3 +626,43 @@ int vmtruncate_range(struct inode *inode, loff_t lstart, loff_t lend)
return 0;
}
/**
* truncate_pagecache_range - unmap and remove pagecache that is hole-punched
* @inode: inode
* @lstart: offset of beginning of hole
* @lend: offset of last byte of hole
*
* This function should typically be called before the filesystem
* releases resources associated with the freed range (eg. deallocates
* blocks). This way, pagecache will always stay logically coherent
* with on-disk format, and the filesystem would not have to deal with
* situations such as writepage being called for a page that has already
* had its underlying blocks deallocated.
*/
void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
{
struct address_space *mapping = inode->i_mapping;
loff_t unmap_start = round_up(lstart, PAGE_SIZE);
loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
/*
* This rounding is currently just for example: unmap_mapping_range
* expands its hole outwards, whereas we want it to contract the hole
* inwards. However, existing callers of truncate_pagecache_range are
* doing their own page rounding first; and truncate_inode_pages_range
* currently BUGs if lend is not pagealigned-1 (it handles partial
* page at start of hole, but not partial page at end of hole). Note
* unmap_mapping_range allows holelen 0 for all, and we allow lend -1.
*/
/*
* Unlike in truncate_pagecache, unmap_mapping_range is called only
* once (before truncating pagecache), and without "even_cows" flag:
* hole-punching should not remove private COWed pages from the hole.
*/
if ((u64)unmap_end > (u64)unmap_start)
unmap_mapping_range(mapping, unmap_start,
1 + unmap_end - unmap_start, 0);
truncate_inode_pages_range(mapping, lstart, lend);
}
EXPORT_SYMBOL(truncate_pagecache_range);

View file

@ -1,10 +1,15 @@
TARGETS = breakpoints
TARGETS = breakpoints vm
all:
for TARGET in $(TARGETS); do \
make -C $$TARGET; \
done;
run_tests: all
for TARGET in $(TARGETS); do \
make -C $$TARGET run_tests; \
done;
clean:
for TARGET in $(TARGETS); do \
make -C $$TARGET clean; \

View file

@ -11,10 +11,13 @@ endif
all:
ifeq ($(ARCH),x86)
gcc breakpoint_test.c -o run_test
gcc breakpoint_test.c -o breakpoint_test
else
echo "Not an x86 target, can't build breakpoints selftests"
endif
run_tests:
./breakpoint_test
clean:
rm -fr run_test
rm -fr breakpoint_test

View file

@ -1,8 +0,0 @@
#!/bin/bash
TARGETS=breakpoints
for TARGET in $TARGETS
do
$TARGET/run_test
done

View file

@ -0,0 +1,14 @@
# Makefile for vm selftests
CC = $(CROSS_COMPILE)gcc
CFLAGS = -Wall -Wextra
all: hugepage-mmap hugepage-shm map_hugetlb
%: %.c
$(CC) $(CFLAGS) -o $@ $^
run_tests: all
/bin/sh ./run_vmtests
clean:
$(RM) hugepage-mmap hugepage-shm map_hugetlb

View file

@ -22,7 +22,7 @@
#include <sys/mman.h>
#include <fcntl.h>
#define FILE_NAME "/mnt/hugepagefile"
#define FILE_NAME "huge/hugepagefile"
#define LENGTH (256UL*1024*1024)
#define PROTECTION (PROT_READ | PROT_WRITE)
@ -48,7 +48,7 @@ static void write_bytes(char *addr)
*(addr + i) = (char)i;
}
static void read_bytes(char *addr)
static int read_bytes(char *addr)
{
unsigned long i;
@ -56,14 +56,15 @@ static void read_bytes(char *addr)
for (i = 0; i < LENGTH; i++)
if (*(addr + i) != (char)i) {
printf("Mismatch at %lu\n", i);
break;
return 1;
}
return 0;
}
int main(void)
{
void *addr;
int fd;
int fd, ret;
fd = open(FILE_NAME, O_CREAT | O_RDWR, 0755);
if (fd < 0) {
@ -81,11 +82,11 @@ int main(void)
printf("Returned address is %p\n", addr);
check_bytes(addr);
write_bytes(addr);
read_bytes(addr);
ret = read_bytes(addr);
munmap(addr, LENGTH);
close(fd);
unlink(FILE_NAME);
return 0;
return ret;
}

View file

@ -57,8 +57,8 @@ int main(void)
unsigned long i;
char *shmaddr;
if ((shmid = shmget(2, LENGTH,
SHM_HUGETLB | IPC_CREAT | SHM_R | SHM_W)) < 0) {
shmid = shmget(2, LENGTH, SHM_HUGETLB | IPC_CREAT | SHM_R | SHM_W);
if (shmid < 0) {
perror("shmget");
exit(1);
}
@ -82,14 +82,16 @@ int main(void)
dprintf("Starting the Check...");
for (i = 0; i < LENGTH; i++)
if (shmaddr[i] != (char)i)
if (shmaddr[i] != (char)i) {
printf("\nIndex %lu mismatched\n", i);
exit(3);
}
dprintf("Done.\n");
if (shmdt((const void *)shmaddr) != 0) {
perror("Detach failure");
shmctl(shmid, IPC_RMID, NULL);
exit(3);
exit(4);
}
shmctl(shmid, IPC_RMID, NULL);

View file

@ -44,7 +44,7 @@ static void write_bytes(char *addr)
*(addr + i) = (char)i;
}
static void read_bytes(char *addr)
static int read_bytes(char *addr)
{
unsigned long i;
@ -52,13 +52,15 @@ static void read_bytes(char *addr)
for (i = 0; i < LENGTH; i++)
if (*(addr + i) != (char)i) {
printf("Mismatch at %lu\n", i);
break;
return 1;
}
return 0;
}
int main(void)
{
void *addr;
int ret;
addr = mmap(ADDR, LENGTH, PROTECTION, FLAGS, 0, 0);
if (addr == MAP_FAILED) {
@ -69,9 +71,9 @@ int main(void)
printf("Returned address is %p\n", addr);
check_bytes(addr);
write_bytes(addr);
read_bytes(addr);
ret = read_bytes(addr);
munmap(addr, LENGTH);
return 0;
return ret;
}

View file

@ -0,0 +1,77 @@
#!/bin/bash
#please run as root
#we need 256M, below is the size in kB
needmem=262144
mnt=./huge
#get pagesize and freepages from /proc/meminfo
while read name size unit; do
if [ "$name" = "HugePages_Free:" ]; then
freepgs=$size
fi
if [ "$name" = "Hugepagesize:" ]; then
pgsize=$size
fi
done < /proc/meminfo
#set proper nr_hugepages
if [ -n "$freepgs" ] && [ -n "$pgsize" ]; then
nr_hugepgs=`cat /proc/sys/vm/nr_hugepages`
needpgs=`expr $needmem / $pgsize`
if [ $freepgs -lt $needpgs ]; then
lackpgs=$(( $needpgs - $freepgs ))
echo $(( $lackpgs + $nr_hugepgs )) > /proc/sys/vm/nr_hugepages
if [ $? -ne 0 ]; then
echo "Please run this test as root"
exit 1
fi
fi
else
echo "no hugetlbfs support in kernel?"
exit 1
fi
mkdir $mnt
mount -t hugetlbfs none $mnt
echo "--------------------"
echo "runing hugepage-mmap"
echo "--------------------"
./hugepage-mmap
if [ $? -ne 0 ]; then
echo "[FAIL]"
else
echo "[PASS]"
fi
shmmax=`cat /proc/sys/kernel/shmmax`
shmall=`cat /proc/sys/kernel/shmall`
echo 268435456 > /proc/sys/kernel/shmmax
echo 4194304 > /proc/sys/kernel/shmall
echo "--------------------"
echo "runing hugepage-shm"
echo "--------------------"
./hugepage-shm
if [ $? -ne 0 ]; then
echo "[FAIL]"
else
echo "[PASS]"
fi
echo $shmmax > /proc/sys/kernel/shmmax
echo $shmall > /proc/sys/kernel/shmall
echo "--------------------"
echo "runing map_hugetlb"
echo "--------------------"
./map_hugetlb
if [ $? -ne 0 ]; then
echo "[FAIL]"
else
echo "[PASS]"
fi
#cleanup
umount $mnt
rm -rf $mnt
echo $nr_hugepgs > /proc/sys/vm/nr_hugepages

11
tools/vm/Makefile Normal file
View file

@ -0,0 +1,11 @@
# Makefile for vm tools
CC = $(CROSS_COMPILE)gcc
CFLAGS = -Wall -Wextra
all: page-types slabinfo
%: %.c
$(CC) $(CFLAGS) -o $@ $^
clean:
$(RM) page-types slabinfo

View file

@ -124,7 +124,7 @@
#define BIT(name) (1ULL << KPF_##name)
#define BITS_COMPOUND (BIT(COMPOUND_HEAD) | BIT(COMPOUND_TAIL))
static const char *page_flag_names[] = {
static const char * const page_flag_names[] = {
[KPF_LOCKED] = "L:locked",
[KPF_ERROR] = "E:error",
[KPF_REFERENCED] = "R:referenced",
@ -166,7 +166,7 @@ static const char *page_flag_names[] = {
};
static const char *debugfs_known_mountpoints[] = {
static const char * const debugfs_known_mountpoints[] = {
"/sys/kernel/debug",
"/debug",
0,