KVM: x86: accessors for guest registers

As suggested by Avi, introduce accessors to read/write guest registers.
This simplifies the ->cache_regs/->decache_regs interface, and improves
register caching which is important for VMX, where the cost of
vmcs_read/vmcs_write is significant.

[avi: fix warnings]

Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
This commit is contained in:
Marcelo Tosatti 2008-06-27 14:58:02 -03:00 committed by Avi Kivity
parent ca60dfbb69
commit 5fdbf9765b
7 changed files with 264 additions and 233 deletions

View file

@ -0,0 +1,32 @@
#ifndef ASM_KVM_CACHE_REGS_H
#define ASM_KVM_CACHE_REGS_H
static inline unsigned long kvm_register_read(struct kvm_vcpu *vcpu,
enum kvm_reg reg)
{
if (!test_bit(reg, (unsigned long *)&vcpu->arch.regs_avail))
kvm_x86_ops->cache_reg(vcpu, reg);
return vcpu->arch.regs[reg];
}
static inline void kvm_register_write(struct kvm_vcpu *vcpu,
enum kvm_reg reg,
unsigned long val)
{
vcpu->arch.regs[reg] = val;
__set_bit(reg, (unsigned long *)&vcpu->arch.regs_dirty);
__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
}
static inline unsigned long kvm_rip_read(struct kvm_vcpu *vcpu)
{
return kvm_register_read(vcpu, VCPU_REGS_RIP);
}
static inline void kvm_rip_write(struct kvm_vcpu *vcpu, unsigned long val)
{
kvm_register_write(vcpu, VCPU_REGS_RIP, val);
}
#endif

View file

@ -32,6 +32,7 @@
#include <asm/current.h>
#include <asm/apicdef.h>
#include <asm/atomic.h>
#include "kvm_cache_regs.h"
#include "irq.h"
#define PRId64 "d"
@ -558,8 +559,7 @@ static void __report_tpr_access(struct kvm_lapic *apic, bool write)
struct kvm_run *run = vcpu->run;
set_bit(KVM_REQ_REPORT_TPR_ACCESS, &vcpu->requests);
kvm_x86_ops->cache_regs(vcpu);
run->tpr_access.rip = vcpu->arch.rip;
run->tpr_access.rip = kvm_rip_read(vcpu);
run->tpr_access.is_write = write;
}

View file

@ -18,6 +18,7 @@
#include "kvm_svm.h"
#include "irq.h"
#include "mmu.h"
#include "kvm_cache_regs.h"
#include <linux/module.h>
#include <linux/kernel.h>
@ -236,13 +237,11 @@ static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
printk(KERN_DEBUG "%s: NOP\n", __func__);
return;
}
if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE)
printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
__func__,
svm->vmcb->save.rip,
svm->next_rip);
if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
__func__, kvm_rip_read(vcpu), svm->next_rip);
vcpu->arch.rip = svm->vmcb->save.rip = svm->next_rip;
kvm_rip_write(vcpu, svm->next_rip);
svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
vcpu->arch.interrupt_window_open = 1;
@ -581,6 +580,7 @@ static void init_vmcb(struct vcpu_svm *svm)
save->dr7 = 0x400;
save->rflags = 2;
save->rip = 0x0000fff0;
svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
/*
* cr0 val on cpu init should be 0x60000010, we enable cpu
@ -615,10 +615,12 @@ static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
init_vmcb(svm);
if (vcpu->vcpu_id != 0) {
svm->vmcb->save.rip = 0;
kvm_rip_write(vcpu, 0);
svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
}
vcpu->arch.regs_avail = ~0;
vcpu->arch.regs_dirty = ~0;
return 0;
}
@ -721,23 +723,6 @@ static void svm_vcpu_put(struct kvm_vcpu *vcpu)
rdtscll(vcpu->arch.host_tsc);
}
static void svm_cache_regs(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
vcpu->arch.rip = svm->vmcb->save.rip;
}
static void svm_decache_regs(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
svm->vmcb->save.rip = vcpu->arch.rip;
}
static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
{
return to_svm(vcpu)->vmcb->save.rflags;
@ -1139,14 +1124,14 @@ static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
svm->next_rip = svm->vmcb->save.rip + 1;
svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
skip_emulated_instruction(&svm->vcpu);
return kvm_emulate_halt(&svm->vcpu);
}
static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
svm->next_rip = svm->vmcb->save.rip + 3;
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
skip_emulated_instruction(&svm->vcpu);
kvm_emulate_hypercall(&svm->vcpu);
return 1;
@ -1178,7 +1163,7 @@ static int task_switch_interception(struct vcpu_svm *svm,
static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
svm->next_rip = svm->vmcb->save.rip + 2;
svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
kvm_emulate_cpuid(&svm->vcpu);
return 1;
}
@ -1273,9 +1258,9 @@ static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
KVMTRACE_3D(MSR_READ, &svm->vcpu, ecx, (u32)data,
(u32)(data >> 32), handler);
svm->vmcb->save.rax = data & 0xffffffff;
svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
svm->next_rip = svm->vmcb->save.rip + 2;
svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
skip_emulated_instruction(&svm->vcpu);
}
return 1;
@ -1359,13 +1344,13 @@ static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
u64 data = (svm->vmcb->save.rax & -1u)
u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
| ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
KVMTRACE_3D(MSR_WRITE, &svm->vcpu, ecx, (u32)data, (u32)(data >> 32),
handler);
svm->next_rip = svm->vmcb->save.rip + 2;
svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
if (svm_set_msr(&svm->vcpu, ecx, data))
kvm_inject_gp(&svm->vcpu, 0);
else
@ -1723,6 +1708,10 @@ static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
u16 gs_selector;
u16 ldt_selector;
svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
pre_svm_run(svm);
sync_lapic_to_cr8(vcpu);
@ -1858,6 +1847,9 @@ static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
load_db_regs(svm->host_db_regs);
vcpu->arch.cr2 = svm->vmcb->save.cr2;
vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
write_dr6(svm->host_dr6);
write_dr7(svm->host_dr7);
@ -1977,8 +1969,6 @@ static struct kvm_x86_ops svm_x86_ops = {
.set_gdt = svm_set_gdt,
.get_dr = svm_get_dr,
.set_dr = svm_set_dr,
.cache_regs = svm_cache_regs,
.decache_regs = svm_decache_regs,
.get_rflags = svm_get_rflags,
.set_rflags = svm_set_rflags,

View file

@ -26,6 +26,7 @@
#include <linux/highmem.h>
#include <linux/sched.h>
#include <linux/moduleparam.h>
#include "kvm_cache_regs.h"
#include <asm/io.h>
#include <asm/desc.h>
@ -715,9 +716,9 @@ static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
unsigned long rip;
u32 interruptibility;
rip = vmcs_readl(GUEST_RIP);
rip = kvm_rip_read(vcpu);
rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
vmcs_writel(GUEST_RIP, rip);
kvm_rip_write(vcpu, rip);
/*
* We emulated an instruction, so temporary interrupt blocking
@ -947,24 +948,19 @@ static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
return ret;
}
/*
* Sync the rsp and rip registers into the vcpu structure. This allows
* registers to be accessed by indexing vcpu->arch.regs.
*/
static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
{
vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
vcpu->arch.rip = vmcs_readl(GUEST_RIP);
}
/*
* Syncs rsp and rip back into the vmcs. Should be called after possible
* modification.
*/
static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
{
vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
vmcs_writel(GUEST_RIP, vcpu->arch.rip);
__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
switch (reg) {
case VCPU_REGS_RSP:
vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
break;
case VCPU_REGS_RIP:
vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
break;
default:
break;
}
}
static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
@ -2019,6 +2015,7 @@ static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
u64 msr;
int ret;
vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
down_read(&vcpu->kvm->slots_lock);
if (!init_rmode(vmx->vcpu.kvm)) {
ret = -ENOMEM;
@ -2072,10 +2069,10 @@ static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
vmcs_writel(GUEST_RFLAGS, 0x02);
if (vmx->vcpu.vcpu_id == 0)
vmcs_writel(GUEST_RIP, 0xfff0);
kvm_rip_write(vcpu, 0xfff0);
else
vmcs_writel(GUEST_RIP, 0);
vmcs_writel(GUEST_RSP, 0);
kvm_rip_write(vcpu, 0);
kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
/* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
vmcs_writel(GUEST_DR7, 0x400);
@ -2139,11 +2136,11 @@ static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
if (vcpu->arch.rmode.active) {
vmx->rmode.irq.pending = true;
vmx->rmode.irq.vector = irq;
vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
vmx->rmode.irq.rip = kvm_rip_read(vcpu);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
return;
}
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
@ -2288,7 +2285,7 @@ static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
}
error_code = 0;
rip = vmcs_readl(GUEST_RIP);
rip = kvm_rip_read(vcpu);
if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
if (is_page_fault(intr_info)) {
@ -2386,27 +2383,25 @@ static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
reg = (exit_qualification >> 8) & 15;
switch ((exit_qualification >> 4) & 3) {
case 0: /* mov to cr */
KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)vcpu->arch.regs[reg],
(u32)((u64)vcpu->arch.regs[reg] >> 32), handler);
KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
(u32)kvm_register_read(vcpu, reg),
(u32)((u64)kvm_register_read(vcpu, reg) >> 32),
handler);
switch (cr) {
case 0:
vcpu_load_rsp_rip(vcpu);
kvm_set_cr0(vcpu, vcpu->arch.regs[reg]);
kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
skip_emulated_instruction(vcpu);
return 1;
case 3:
vcpu_load_rsp_rip(vcpu);
kvm_set_cr3(vcpu, vcpu->arch.regs[reg]);
kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
skip_emulated_instruction(vcpu);
return 1;
case 4:
vcpu_load_rsp_rip(vcpu);
kvm_set_cr4(vcpu, vcpu->arch.regs[reg]);
kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
skip_emulated_instruction(vcpu);
return 1;
case 8:
vcpu_load_rsp_rip(vcpu);
kvm_set_cr8(vcpu, vcpu->arch.regs[reg]);
kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
skip_emulated_instruction(vcpu);
if (irqchip_in_kernel(vcpu->kvm))
return 1;
@ -2415,7 +2410,6 @@ static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
};
break;
case 2: /* clts */
vcpu_load_rsp_rip(vcpu);
vmx_fpu_deactivate(vcpu);
vcpu->arch.cr0 &= ~X86_CR0_TS;
vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
@ -2426,21 +2420,17 @@ static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
case 1: /*mov from cr*/
switch (cr) {
case 3:
vcpu_load_rsp_rip(vcpu);
vcpu->arch.regs[reg] = vcpu->arch.cr3;
vcpu_put_rsp_rip(vcpu);
kvm_register_write(vcpu, reg, vcpu->arch.cr3);
KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
(u32)vcpu->arch.regs[reg],
(u32)((u64)vcpu->arch.regs[reg] >> 32),
(u32)kvm_register_read(vcpu, reg),
(u32)((u64)kvm_register_read(vcpu, reg) >> 32),
handler);
skip_emulated_instruction(vcpu);
return 1;
case 8:
vcpu_load_rsp_rip(vcpu);
vcpu->arch.regs[reg] = kvm_get_cr8(vcpu);
vcpu_put_rsp_rip(vcpu);
kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
(u32)vcpu->arch.regs[reg], handler);
(u32)kvm_register_read(vcpu, reg), handler);
skip_emulated_instruction(vcpu);
return 1;
}
@ -2472,7 +2462,6 @@ static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
dr = exit_qualification & 7;
reg = (exit_qualification >> 8) & 15;
vcpu_load_rsp_rip(vcpu);
if (exit_qualification & 16) {
/* mov from dr */
switch (dr) {
@ -2485,12 +2474,11 @@ static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
default:
val = 0;
}
vcpu->arch.regs[reg] = val;
kvm_register_write(vcpu, reg, val);
KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
} else {
/* mov to dr */
}
vcpu_put_rsp_rip(vcpu);
skip_emulated_instruction(vcpu);
return 1;
}
@ -2735,8 +2723,8 @@ static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 vectoring_info = vmx->idt_vectoring_info;
KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)vmcs_readl(GUEST_RIP),
(u32)((u64)vmcs_readl(GUEST_RIP) >> 32), entryexit);
KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
(u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
/* Access CR3 don't cause VMExit in paging mode, so we need
* to sync with guest real CR3. */
@ -2922,9 +2910,9 @@ static void vmx_intr_assist(struct kvm_vcpu *vcpu)
static void fixup_rmode_irq(struct vcpu_vmx *vmx)
{
vmx->rmode.irq.pending = 0;
if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
return;
vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
@ -2941,6 +2929,11 @@ static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 intr_info;
if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
/*
* Loading guest fpu may have cleared host cr0.ts
*/
@ -3061,6 +3054,9 @@ static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
#endif
);
vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
vcpu->arch.regs_dirty = 0;
vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
if (vmx->rmode.irq.pending)
fixup_rmode_irq(vmx);
@ -3224,8 +3220,7 @@ static struct kvm_x86_ops vmx_x86_ops = {
.set_idt = vmx_set_idt,
.get_gdt = vmx_get_gdt,
.set_gdt = vmx_set_gdt,
.cache_regs = vcpu_load_rsp_rip,
.decache_regs = vcpu_put_rsp_rip,
.cache_reg = vmx_cache_reg,
.get_rflags = vmx_get_rflags,
.set_rflags = vmx_set_rflags,

View file

@ -19,6 +19,7 @@
#include "mmu.h"
#include "i8254.h"
#include "tss.h"
#include "kvm_cache_regs.h"
#include <linux/clocksource.h>
#include <linux/kvm.h>
@ -61,6 +62,7 @@ static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
struct kvm_cpuid_entry2 __user *entries);
struct kvm_x86_ops *kvm_x86_ops;
EXPORT_SYMBOL_GPL(kvm_x86_ops);
struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "pf_fixed", VCPU_STAT(pf_fixed) },
@ -2080,7 +2082,7 @@ int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
{
u8 opcodes[4];
unsigned long rip = vcpu->arch.rip;
unsigned long rip = kvm_rip_read(vcpu);
unsigned long rip_linear;
if (!printk_ratelimit())
@ -2102,6 +2104,14 @@ static struct x86_emulate_ops emulate_ops = {
.cmpxchg_emulated = emulator_cmpxchg_emulated,
};
static void cache_all_regs(struct kvm_vcpu *vcpu)
{
kvm_register_read(vcpu, VCPU_REGS_RAX);
kvm_register_read(vcpu, VCPU_REGS_RSP);
kvm_register_read(vcpu, VCPU_REGS_RIP);
vcpu->arch.regs_dirty = ~0;
}
int emulate_instruction(struct kvm_vcpu *vcpu,
struct kvm_run *run,
unsigned long cr2,
@ -2112,7 +2122,13 @@ int emulate_instruction(struct kvm_vcpu *vcpu,
struct decode_cache *c;
vcpu->arch.mmio_fault_cr2 = cr2;
kvm_x86_ops->cache_regs(vcpu);
/*
* TODO: fix x86_emulate.c to use guest_read/write_register
* instead of direct ->regs accesses, can save hundred cycles
* on Intel for instructions that don't read/change RSP, for
* for example.
*/
cache_all_regs(vcpu);
vcpu->mmio_is_write = 0;
vcpu->arch.pio.string = 0;
@ -2172,7 +2188,6 @@ int emulate_instruction(struct kvm_vcpu *vcpu,
return EMULATE_DO_MMIO;
}
kvm_x86_ops->decache_regs(vcpu);
kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
if (vcpu->mmio_is_write) {
@ -2225,20 +2240,19 @@ int complete_pio(struct kvm_vcpu *vcpu)
struct kvm_pio_request *io = &vcpu->arch.pio;
long delta;
int r;
kvm_x86_ops->cache_regs(vcpu);
unsigned long val;
if (!io->string) {
if (io->in)
memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
io->size);
if (io->in) {
val = kvm_register_read(vcpu, VCPU_REGS_RAX);
memcpy(&val, vcpu->arch.pio_data, io->size);
kvm_register_write(vcpu, VCPU_REGS_RAX, val);
}
} else {
if (io->in) {
r = pio_copy_data(vcpu);
if (r) {
kvm_x86_ops->cache_regs(vcpu);
if (r)
return r;
}
}
delta = 1;
@ -2248,19 +2262,24 @@ int complete_pio(struct kvm_vcpu *vcpu)
* The size of the register should really depend on
* current address size.
*/
vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
val = kvm_register_read(vcpu, VCPU_REGS_RCX);
val -= delta;
kvm_register_write(vcpu, VCPU_REGS_RCX, val);
}
if (io->down)
delta = -delta;
delta *= io->size;
if (io->in)
vcpu->arch.regs[VCPU_REGS_RDI] += delta;
else
vcpu->arch.regs[VCPU_REGS_RSI] += delta;
if (io->in) {
val = kvm_register_read(vcpu, VCPU_REGS_RDI);
val += delta;
kvm_register_write(vcpu, VCPU_REGS_RDI, val);
} else {
val = kvm_register_read(vcpu, VCPU_REGS_RSI);
val += delta;
kvm_register_write(vcpu, VCPU_REGS_RSI, val);
}
}
kvm_x86_ops->decache_regs(vcpu);
io->count -= io->cur_count;
io->cur_count = 0;
@ -2313,6 +2332,7 @@ int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
int size, unsigned port)
{
struct kvm_io_device *pio_dev;
unsigned long val;
vcpu->run->exit_reason = KVM_EXIT_IO;
vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
@ -2333,8 +2353,8 @@ int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
handler);
kvm_x86_ops->cache_regs(vcpu);
memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
val = kvm_register_read(vcpu, VCPU_REGS_RAX);
memcpy(vcpu->arch.pio_data, &val, 4);
kvm_x86_ops->skip_emulated_instruction(vcpu);
@ -2519,13 +2539,11 @@ int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
unsigned long nr, a0, a1, a2, a3, ret;
int r = 1;
kvm_x86_ops->cache_regs(vcpu);
nr = vcpu->arch.regs[VCPU_REGS_RAX];
a0 = vcpu->arch.regs[VCPU_REGS_RBX];
a1 = vcpu->arch.regs[VCPU_REGS_RCX];
a2 = vcpu->arch.regs[VCPU_REGS_RDX];
a3 = vcpu->arch.regs[VCPU_REGS_RSI];
nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
@ -2548,8 +2566,7 @@ int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
ret = -KVM_ENOSYS;
break;
}
vcpu->arch.regs[VCPU_REGS_RAX] = ret;
kvm_x86_ops->decache_regs(vcpu);
kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
++vcpu->stat.hypercalls;
return r;
}
@ -2559,6 +2576,7 @@ int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
{
char instruction[3];
int ret = 0;
unsigned long rip = kvm_rip_read(vcpu);
/*
@ -2568,9 +2586,8 @@ int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
*/
kvm_mmu_zap_all(vcpu->kvm);
kvm_x86_ops->cache_regs(vcpu);
kvm_x86_ops->patch_hypercall(vcpu, instruction);
if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
if (emulator_write_emulated(rip, instruction, 3, vcpu)
!= X86EMUL_CONTINUE)
ret = -EFAULT;
@ -2700,13 +2717,12 @@ void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
u32 function, index;
struct kvm_cpuid_entry2 *e, *best;
kvm_x86_ops->cache_regs(vcpu);
function = vcpu->arch.regs[VCPU_REGS_RAX];
index = vcpu->arch.regs[VCPU_REGS_RCX];
vcpu->arch.regs[VCPU_REGS_RAX] = 0;
vcpu->arch.regs[VCPU_REGS_RBX] = 0;
vcpu->arch.regs[VCPU_REGS_RCX] = 0;
vcpu->arch.regs[VCPU_REGS_RDX] = 0;
function = kvm_register_read(vcpu, VCPU_REGS_RAX);
index = kvm_register_read(vcpu, VCPU_REGS_RCX);
kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
best = NULL;
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
e = &vcpu->arch.cpuid_entries[i];
@ -2724,18 +2740,17 @@ void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
best = e;
}
if (best) {
vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
}
kvm_x86_ops->decache_regs(vcpu);
kvm_x86_ops->skip_emulated_instruction(vcpu);
KVMTRACE_5D(CPUID, vcpu, function,
(u32)vcpu->arch.regs[VCPU_REGS_RAX],
(u32)vcpu->arch.regs[VCPU_REGS_RBX],
(u32)vcpu->arch.regs[VCPU_REGS_RCX],
(u32)vcpu->arch.regs[VCPU_REGS_RDX], handler);
(u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
(u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
(u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
(u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
}
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
@ -2917,8 +2932,8 @@ again:
* Profile KVM exit RIPs:
*/
if (unlikely(prof_on == KVM_PROFILING)) {
kvm_x86_ops->cache_regs(vcpu);
profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
unsigned long rip = kvm_rip_read(vcpu);
profile_hit(KVM_PROFILING, (void *)rip);
}
if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
@ -2999,11 +3014,9 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
}
}
#endif
if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
kvm_x86_ops->cache_regs(vcpu);
vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
kvm_x86_ops->decache_regs(vcpu);
}
if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
kvm_register_write(vcpu, VCPU_REGS_RAX,
kvm_run->hypercall.ret);
r = __vcpu_run(vcpu, kvm_run);
@ -3019,28 +3032,26 @@ int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
vcpu_load(vcpu);
kvm_x86_ops->cache_regs(vcpu);
regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
#ifdef CONFIG_X86_64
regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
#endif
regs->rip = vcpu->arch.rip;
regs->rip = kvm_rip_read(vcpu);
regs->rflags = kvm_x86_ops->get_rflags(vcpu);
/*
@ -3058,29 +3069,29 @@ int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
vcpu_load(vcpu);
vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
#ifdef CONFIG_X86_64
vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
#endif
vcpu->arch.rip = regs->rip;
kvm_rip_write(vcpu, regs->rip);
kvm_x86_ops->set_rflags(vcpu, regs->rflags);
kvm_x86_ops->decache_regs(vcpu);
vcpu->arch.exception.pending = false;
@ -3316,17 +3327,16 @@ static void save_state_to_tss32(struct kvm_vcpu *vcpu,
struct tss_segment_32 *tss)
{
tss->cr3 = vcpu->arch.cr3;
tss->eip = vcpu->arch.rip;
tss->eip = kvm_rip_read(vcpu);
tss->eflags = kvm_x86_ops->get_rflags(vcpu);
tss->eax = vcpu->arch.regs[VCPU_REGS_RAX];
tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX];
tss->edx = vcpu->arch.regs[VCPU_REGS_RDX];
tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX];
tss->esp = vcpu->arch.regs[VCPU_REGS_RSP];
tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP];
tss->esi = vcpu->arch.regs[VCPU_REGS_RSI];
tss->edi = vcpu->arch.regs[VCPU_REGS_RDI];
tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
@ -3342,17 +3352,17 @@ static int load_state_from_tss32(struct kvm_vcpu *vcpu,
{
kvm_set_cr3(vcpu, tss->cr3);
vcpu->arch.rip = tss->eip;
kvm_rip_write(vcpu, tss->eip);
kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax;
vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx;
vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx;
vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx;
vcpu->arch.regs[VCPU_REGS_RSP] = tss->esp;
vcpu->arch.regs[VCPU_REGS_RBP] = tss->ebp;
vcpu->arch.regs[VCPU_REGS_RSI] = tss->esi;
vcpu->arch.regs[VCPU_REGS_RDI] = tss->edi;
kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
return 1;
@ -3380,16 +3390,16 @@ static int load_state_from_tss32(struct kvm_vcpu *vcpu,
static void save_state_to_tss16(struct kvm_vcpu *vcpu,
struct tss_segment_16 *tss)
{
tss->ip = vcpu->arch.rip;
tss->ip = kvm_rip_read(vcpu);
tss->flag = kvm_x86_ops->get_rflags(vcpu);
tss->ax = vcpu->arch.regs[VCPU_REGS_RAX];
tss->cx = vcpu->arch.regs[VCPU_REGS_RCX];
tss->dx = vcpu->arch.regs[VCPU_REGS_RDX];
tss->bx = vcpu->arch.regs[VCPU_REGS_RBX];
tss->sp = vcpu->arch.regs[VCPU_REGS_RSP];
tss->bp = vcpu->arch.regs[VCPU_REGS_RBP];
tss->si = vcpu->arch.regs[VCPU_REGS_RSI];
tss->di = vcpu->arch.regs[VCPU_REGS_RDI];
tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
@ -3402,16 +3412,16 @@ static void save_state_to_tss16(struct kvm_vcpu *vcpu,
static int load_state_from_tss16(struct kvm_vcpu *vcpu,
struct tss_segment_16 *tss)
{
vcpu->arch.rip = tss->ip;
kvm_rip_write(vcpu, tss->ip);
kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
vcpu->arch.regs[VCPU_REGS_RAX] = tss->ax;
vcpu->arch.regs[VCPU_REGS_RCX] = tss->cx;
vcpu->arch.regs[VCPU_REGS_RDX] = tss->dx;
vcpu->arch.regs[VCPU_REGS_RBX] = tss->bx;
vcpu->arch.regs[VCPU_REGS_RSP] = tss->sp;
vcpu->arch.regs[VCPU_REGS_RBP] = tss->bp;
vcpu->arch.regs[VCPU_REGS_RSI] = tss->si;
vcpu->arch.regs[VCPU_REGS_RDI] = tss->di;
kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
return 1;
@ -3534,7 +3544,6 @@ int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
}
kvm_x86_ops->skip_emulated_instruction(vcpu);
kvm_x86_ops->cache_regs(vcpu);
if (nseg_desc.type & 8)
ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
@ -3559,7 +3568,6 @@ int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
tr_seg.type = 11;
kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
out:
kvm_x86_ops->decache_regs(vcpu);
return ret;
}
EXPORT_SYMBOL_GPL(kvm_task_switch);

View file

@ -26,6 +26,7 @@
#define DPRINTF(_f, _a ...) printf(_f , ## _a)
#else
#include <linux/kvm_host.h>
#include "kvm_cache_regs.h"
#define DPRINTF(x...) do {} while (0)
#endif
#include <linux/module.h>
@ -839,7 +840,7 @@ x86_decode_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
/* Shadow copy of register state. Committed on successful emulation. */
memset(c, 0, sizeof(struct decode_cache));
c->eip = ctxt->vcpu->arch.rip;
c->eip = kvm_rip_read(ctxt->vcpu);
ctxt->cs_base = seg_base(ctxt, VCPU_SREG_CS);
memcpy(c->regs, ctxt->vcpu->arch.regs, sizeof c->regs);
@ -1267,7 +1268,7 @@ x86_emulate_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
if (c->rep_prefix && (c->d & String)) {
/* All REP prefixes have the same first termination condition */
if (c->regs[VCPU_REGS_RCX] == 0) {
ctxt->vcpu->arch.rip = c->eip;
kvm_rip_write(ctxt->vcpu, c->eip);
goto done;
}
/* The second termination condition only applies for REPE
@ -1281,17 +1282,17 @@ x86_emulate_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops)
(c->b == 0xae) || (c->b == 0xaf)) {
if ((c->rep_prefix == REPE_PREFIX) &&
((ctxt->eflags & EFLG_ZF) == 0)) {
ctxt->vcpu->arch.rip = c->eip;
kvm_rip_write(ctxt->vcpu, c->eip);
goto done;
}
if ((c->rep_prefix == REPNE_PREFIX) &&
((ctxt->eflags & EFLG_ZF) == EFLG_ZF)) {
ctxt->vcpu->arch.rip = c->eip;
kvm_rip_write(ctxt->vcpu, c->eip);
goto done;
}
}
c->regs[VCPU_REGS_RCX]--;
c->eip = ctxt->vcpu->arch.rip;
c->eip = kvm_rip_read(ctxt->vcpu);
}
if (c->src.type == OP_MEM) {
@ -1768,7 +1769,7 @@ writeback:
/* Commit shadow register state. */
memcpy(ctxt->vcpu->arch.regs, c->regs, sizeof c->regs);
ctxt->vcpu->arch.rip = c->eip;
kvm_rip_write(ctxt->vcpu, c->eip);
done:
if (rc == X86EMUL_UNHANDLEABLE) {
@ -1793,7 +1794,7 @@ twobyte_insn:
goto done;
/* Let the processor re-execute the fixed hypercall */
c->eip = ctxt->vcpu->arch.rip;
c->eip = kvm_rip_read(ctxt->vcpu);
/* Disable writeback. */
c->dst.type = OP_NONE;
break;
@ -1889,7 +1890,7 @@ twobyte_insn:
rc = kvm_set_msr(ctxt->vcpu, c->regs[VCPU_REGS_RCX], msr_data);
if (rc) {
kvm_inject_gp(ctxt->vcpu, 0);
c->eip = ctxt->vcpu->arch.rip;
c->eip = kvm_rip_read(ctxt->vcpu);
}
rc = X86EMUL_CONTINUE;
c->dst.type = OP_NONE;
@ -1899,7 +1900,7 @@ twobyte_insn:
rc = kvm_get_msr(ctxt->vcpu, c->regs[VCPU_REGS_RCX], &msr_data);
if (rc) {
kvm_inject_gp(ctxt->vcpu, 0);
c->eip = ctxt->vcpu->arch.rip;
c->eip = kvm_rip_read(ctxt->vcpu);
} else {
c->regs[VCPU_REGS_RAX] = (u32)msr_data;
c->regs[VCPU_REGS_RDX] = msr_data >> 32;

View file

@ -89,7 +89,7 @@ extern struct list_head vm_list;
struct kvm_vcpu;
struct kvm;
enum {
enum kvm_reg {
VCPU_REGS_RAX = 0,
VCPU_REGS_RCX = 1,
VCPU_REGS_RDX = 2,
@ -108,6 +108,7 @@ enum {
VCPU_REGS_R14 = 14,
VCPU_REGS_R15 = 15,
#endif
VCPU_REGS_RIP,
NR_VCPU_REGS
};
@ -219,8 +220,13 @@ struct kvm_vcpu_arch {
int interrupt_window_open;
unsigned long irq_summary; /* bit vector: 1 per word in irq_pending */
DECLARE_BITMAP(irq_pending, KVM_NR_INTERRUPTS);
unsigned long regs[NR_VCPU_REGS]; /* for rsp: vcpu_load_rsp_rip() */
unsigned long rip; /* needs vcpu_load_rsp_rip() */
/*
* rip and regs accesses must go through
* kvm_{register,rip}_{read,write} functions.
*/
unsigned long regs[NR_VCPU_REGS];
u32 regs_avail;
u32 regs_dirty;
unsigned long cr0;
unsigned long cr2;
@ -414,8 +420,7 @@ struct kvm_x86_ops {
unsigned long (*get_dr)(struct kvm_vcpu *vcpu, int dr);
void (*set_dr)(struct kvm_vcpu *vcpu, int dr, unsigned long value,
int *exception);
void (*cache_regs)(struct kvm_vcpu *vcpu);
void (*decache_regs)(struct kvm_vcpu *vcpu);
void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);