RTC: sa1100: support sa1100, pxa and mmp soc families

Since the regmap of rtc on sa1100, pxa and mmp Marvell soc families are
almost the same, so re-arch the rtc-sa1100 to support them.

Signed-off-by: Jett.Zhou <jtzhou@marvell.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Haojian Zhuang <haojian.zhuang@gmail.com>
Acked-by: Robert Jarzmik <robert.jarzmik@free.fr>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
This commit is contained in:
Jett.Zhou 2011-11-30 12:26:23 +08:00 committed by Arnd Bergmann
parent 42874759d7
commit 7cea00657d
4 changed files with 216 additions and 78 deletions

View file

@ -415,9 +415,29 @@ static struct resource pxa_rtc_resources[] = {
}, },
}; };
static struct resource sa1100_rtc_resources[] = {
[0] = {
.start = 0x40900000,
.end = 0x409000ff,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_RTC1Hz,
.end = IRQ_RTC1Hz,
.flags = IORESOURCE_IRQ,
},
[2] = {
.start = IRQ_RTCAlrm,
.end = IRQ_RTCAlrm,
.flags = IORESOURCE_IRQ,
},
};
struct platform_device sa1100_device_rtc = { struct platform_device sa1100_device_rtc = {
.name = "sa1100-rtc", .name = "sa1100-rtc",
.id = -1, .id = -1,
.num_resources = ARRAY_SIZE(sa1100_rtc_resources),
.resource = sa1100_rtc_resources,
}; };
struct platform_device pxa_device_rtc = { struct platform_device pxa_device_rtc = {

View file

@ -334,9 +334,29 @@ void sa11x0_register_irda(struct irda_platform_data *irda)
sa11x0_register_device(&sa11x0ir_device, irda); sa11x0_register_device(&sa11x0ir_device, irda);
} }
static struct resource sa11x0rtc_resources[] = {
[0] = {
.start = 0x90010000,
.end = 0x900100ff,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_RTC1Hz,
.end = IRQ_RTC1Hz,
.flags = IORESOURCE_IRQ,
},
[2] = {
.start = IRQ_RTCAlrm,
.end = IRQ_RTCAlrm,
.flags = IORESOURCE_IRQ,
},
};
static struct platform_device sa11x0rtc_device = { static struct platform_device sa11x0rtc_device = {
.name = "sa1100-rtc", .name = "sa1100-rtc",
.id = -1, .id = -1,
.resource = sa11x0rtc_resources,
.num_resources = ARRAY_SIZE(sa11x0rtc_resources),
}; };
static struct platform_device *sa11x0_devices[] __initdata = { static struct platform_device *sa11x0_devices[] __initdata = {

View file

@ -774,7 +774,7 @@ config RTC_DRV_EP93XX
config RTC_DRV_SA1100 config RTC_DRV_SA1100
tristate "SA11x0/PXA2xx" tristate "SA11x0/PXA2xx"
depends on ARCH_SA1100 || ARCH_PXA depends on ARCH_SA1100 || ARCH_PXA || ARCH_MMP
help help
If you say Y here you will get access to the real time clock If you say Y here you will get access to the real time clock
built into your SA11x0 or PXA2xx CPU. built into your SA11x0 or PXA2xx CPU.

View file

@ -27,24 +27,42 @@
#include <linux/init.h> #include <linux/init.h>
#include <linux/fs.h> #include <linux/fs.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/pm.h> #include <linux/pm.h>
#include <linux/bitops.h> #include <linux/slab.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <mach/hardware.h> #include <mach/hardware.h>
#include <asm/irq.h> #include <asm/irq.h>
#ifdef CONFIG_ARCH_PXA
#include <mach/regs-rtc.h>
#endif
#define RTC_DEF_DIVIDER (32768 - 1) #define RTC_DEF_DIVIDER (32768 - 1)
#define RTC_DEF_TRIM 0 #define RTC_DEF_TRIM 0
#define RTC_FREQ 1024
static const unsigned long RTC_FREQ = 1024; #define RCNR 0x00 /* RTC Count Register */
static struct rtc_time rtc_alarm; #define RTAR 0x04 /* RTC Alarm Register */
static DEFINE_SPINLOCK(sa1100_rtc_lock); #define RTSR 0x08 /* RTC Status Register */
#define RTTR 0x0c /* RTC Timer Trim Register */
#define RTSR_HZE (1 << 3) /* HZ interrupt enable */
#define RTSR_ALE (1 << 2) /* RTC alarm interrupt enable */
#define RTSR_HZ (1 << 1) /* HZ rising-edge detected */
#define RTSR_AL (1 << 0) /* RTC alarm detected */
#define rtc_readl(sa1100_rtc, reg) \
readl_relaxed((sa1100_rtc)->base + (reg))
#define rtc_writel(sa1100_rtc, reg, value) \
writel_relaxed((value), (sa1100_rtc)->base + (reg))
struct sa1100_rtc {
struct resource *ress;
void __iomem *base;
struct clk *clk;
int irq_1Hz;
int irq_Alrm;
struct rtc_device *rtc;
spinlock_t lock; /* Protects this structure */
};
/* /*
* Calculate the next alarm time given the requested alarm time mask * Calculate the next alarm time given the requested alarm time mask
* and the current time. * and the current time.
@ -75,22 +93,23 @@ static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now,
static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id) static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
{ {
struct platform_device *pdev = to_platform_device(dev_id); struct platform_device *pdev = to_platform_device(dev_id);
struct rtc_device *rtc = platform_get_drvdata(pdev); struct sa1100_rtc *sa1100_rtc = platform_get_drvdata(pdev);
unsigned int rtsr; unsigned int rtsr;
unsigned long events = 0; unsigned long events = 0;
spin_lock(&sa1100_rtc_lock); spin_lock(&sa1100_rtc->lock);
rtsr = RTSR;
/* clear interrupt sources */ /* clear interrupt sources */
RTSR = 0; rtsr = rtc_readl(sa1100_rtc, RTSR);
rtc_writel(sa1100_rtc, RTSR, 0);
/* Fix for a nasty initialization problem the in SA11xx RTSR register. /* Fix for a nasty initialization problem the in SA11xx RTSR register.
* See also the comments in sa1100_rtc_probe(). */ * See also the comments in sa1100_rtc_probe(). */
if (rtsr & (RTSR_ALE | RTSR_HZE)) { if (rtsr & (RTSR_ALE | RTSR_HZE)) {
/* This is the original code, before there was the if test /* This is the original code, before there was the if test
* above. This code does not clear interrupts that were not * above. This code does not clear interrupts that were not
* enabled. */ * enabled. */
RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2); rtc_writel(sa1100_rtc, RTSR, (RTSR_AL | RTSR_HZ) & (rtsr >> 2));
} else { } else {
/* For some reason, it is possible to enter this routine /* For some reason, it is possible to enter this routine
* without interruptions enabled, it has been tested with * without interruptions enabled, it has been tested with
@ -99,13 +118,13 @@ static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
* This situation leads to an infinite "loop" of interrupt * This situation leads to an infinite "loop" of interrupt
* routine calling and as a result the processor seems to * routine calling and as a result the processor seems to
* lock on its first call to open(). */ * lock on its first call to open(). */
RTSR = RTSR_AL | RTSR_HZ; rtc_writel(sa1100_rtc, RTSR, (RTSR_AL | RTSR_HZ));
} }
/* clear alarm interrupt if it has occurred */ /* clear alarm interrupt if it has occurred */
if (rtsr & RTSR_AL) if (rtsr & RTSR_AL)
rtsr &= ~RTSR_ALE; rtsr &= ~RTSR_ALE;
RTSR = rtsr & (RTSR_ALE | RTSR_HZE); rtc_writel(sa1100_rtc, RTSR, rtsr & (RTSR_ALE | RTSR_HZE));
/* update irq data & counter */ /* update irq data & counter */
if (rtsr & RTSR_AL) if (rtsr & RTSR_AL)
@ -113,86 +132,100 @@ static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
if (rtsr & RTSR_HZ) if (rtsr & RTSR_HZ)
events |= RTC_UF | RTC_IRQF; events |= RTC_UF | RTC_IRQF;
rtc_update_irq(rtc, 1, events); rtc_update_irq(sa1100_rtc->rtc, 1, events);
spin_unlock(&sa1100_rtc_lock); spin_unlock(&sa1100_rtc->lock);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
static int sa1100_rtc_open(struct device *dev) static int sa1100_rtc_open(struct device *dev)
{ {
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
int ret; int ret;
struct platform_device *plat_dev = to_platform_device(dev);
struct rtc_device *rtc = platform_get_drvdata(plat_dev);
ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED, ret = request_irq(sa1100_rtc->irq_1Hz, sa1100_rtc_interrupt,
"rtc 1Hz", dev); IRQF_DISABLED, "rtc 1Hz", dev);
if (ret) { if (ret) {
dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz); dev_err(dev, "IRQ %d already in use.\n", sa1100_rtc->irq_1Hz);
goto fail_ui; goto fail_ui;
} }
ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED, ret = request_irq(sa1100_rtc->irq_Alrm, sa1100_rtc_interrupt,
"rtc Alrm", dev); IRQF_DISABLED, "rtc Alrm", dev);
if (ret) { if (ret) {
dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm); dev_err(dev, "IRQ %d already in use.\n", sa1100_rtc->irq_Alrm);
goto fail_ai; goto fail_ai;
} }
rtc->max_user_freq = RTC_FREQ; sa1100_rtc->rtc->max_user_freq = RTC_FREQ;
rtc_irq_set_freq(rtc, NULL, RTC_FREQ); rtc_irq_set_freq(sa1100_rtc->rtc, NULL, RTC_FREQ);
return 0; return 0;
fail_ai: fail_ai:
free_irq(IRQ_RTC1Hz, dev); free_irq(sa1100_rtc->irq_1Hz, dev);
fail_ui: fail_ui:
return ret; return ret;
} }
static void sa1100_rtc_release(struct device *dev) static void sa1100_rtc_release(struct device *dev)
{ {
spin_lock_irq(&sa1100_rtc_lock); struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
RTSR = 0;
spin_unlock_irq(&sa1100_rtc_lock);
free_irq(IRQ_RTCAlrm, dev); spin_lock_irq(&sa1100_rtc->lock);
free_irq(IRQ_RTC1Hz, dev); rtc_writel(sa1100_rtc, RTSR, 0);
spin_unlock_irq(&sa1100_rtc->lock);
free_irq(sa1100_rtc->irq_Alrm, dev);
free_irq(sa1100_rtc->irq_1Hz, dev);
} }
static int sa1100_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) static int sa1100_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{ {
spin_lock_irq(&sa1100_rtc_lock); struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
unsigned int rtsr;
spin_lock_irq(&sa1100_rtc->lock);
rtsr = rtc_readl(sa1100_rtc, RTSR);
if (enabled) if (enabled)
RTSR |= RTSR_ALE; rtsr |= RTSR_ALE;
else else
RTSR &= ~RTSR_ALE; rtsr &= ~RTSR_ALE;
spin_unlock_irq(&sa1100_rtc_lock); rtc_writel(sa1100_rtc, RTSR, rtsr);
spin_unlock_irq(&sa1100_rtc->lock);
return 0; return 0;
} }
static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm) static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
{ {
rtc_time_to_tm(RCNR, tm); struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
rtc_time_to_tm(rtc_readl(sa1100_rtc, RCNR), tm);
return 0; return 0;
} }
static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm) static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
{ {
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
unsigned long time; unsigned long time;
int ret; int ret;
ret = rtc_tm_to_time(tm, &time); ret = rtc_tm_to_time(tm, &time);
if (ret == 0) if (ret == 0)
RCNR = time; rtc_writel(sa1100_rtc, RCNR, time);
return ret; return ret;
} }
static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{ {
u32 rtsr; struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
unsigned long time;
unsigned int rtsr;
memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time)); time = rtc_readl(sa1100_rtc, RCNR);
rtsr = RTSR; rtc_time_to_tm(time, &alrm->time);
rtsr = rtc_readl(sa1100_rtc, RTSR);
alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0; alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0;
alrm->pending = (rtsr & RTSR_AL) ? 1 : 0; alrm->pending = (rtsr & RTSR_AL) ? 1 : 0;
return 0; return 0;
@ -200,31 +233,39 @@ static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{ {
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
struct rtc_time now_tm, alarm_tm; struct rtc_time now_tm, alarm_tm;
int ret; unsigned long time, alarm;
unsigned int rtsr;
spin_lock_irq(&sa1100_rtc_lock); spin_lock_irq(&sa1100_rtc->lock);
now = RCNR; time = rtc_readl(sa1100_rtc, RCNR);
rtc_time_to_tm(now, &now_tm); rtc_time_to_tm(time, &now_tm);
rtc_next_alarm_time(&alarm_tm, &now_tm, alrm->time); rtc_next_alarm_time(&alarm_tm, &now_tm, &alrm->time);
rtc_tm_to_time(&alarm_tm, &time); rtc_tm_to_time(&alarm_tm, &alarm);
RTAR = time; rtc_writel(sa1100_rtc, RTAR, alarm);
rtsr = rtc_readl(sa1100_rtc, RTSR);
if (alrm->enabled) if (alrm->enabled)
RTSR |= RTSR_ALE; rtsr |= RTSR_ALE;
else else
RTSR &= ~RTSR_ALE; rtsr &= ~RTSR_ALE;
rtc_writel(sa1100_rtc, RTSR, rtsr);
spin_unlock_irq(&sa1100_rtc_lock); spin_unlock_irq(&sa1100_rtc->lock);
return ret; return 0;
} }
static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq) static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
{ {
seq_printf(seq, "trim/divider\t\t: 0x%08x\n", (u32) RTTR); struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
seq_printf(seq, "RTSR\t\t\t: 0x%08x\n", (u32)RTSR);
seq_printf(seq, "trim/divider\t\t: 0x%08x\n",
rtc_readl(sa1100_rtc, RTTR));
seq_printf(seq, "RTSR\t\t\t: 0x%08x\n",
rtc_readl(sa1100_rtc, RTSR));
return 0; return 0;
} }
@ -241,7 +282,51 @@ static const struct rtc_class_ops sa1100_rtc_ops = {
static int sa1100_rtc_probe(struct platform_device *pdev) static int sa1100_rtc_probe(struct platform_device *pdev)
{ {
struct rtc_device *rtc; struct sa1100_rtc *sa1100_rtc;
unsigned int rttr;
int ret;
sa1100_rtc = kzalloc(sizeof(struct sa1100_rtc), GFP_KERNEL);
if (!sa1100_rtc)
return -ENOMEM;
spin_lock_init(&sa1100_rtc->lock);
platform_set_drvdata(pdev, sa1100_rtc);
ret = -ENXIO;
sa1100_rtc->ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!sa1100_rtc->ress) {
dev_err(&pdev->dev, "No I/O memory resource defined\n");
goto err_ress;
}
sa1100_rtc->irq_1Hz = platform_get_irq(pdev, 0);
if (sa1100_rtc->irq_1Hz < 0) {
dev_err(&pdev->dev, "No 1Hz IRQ resource defined\n");
goto err_ress;
}
sa1100_rtc->irq_Alrm = platform_get_irq(pdev, 1);
if (sa1100_rtc->irq_Alrm < 0) {
dev_err(&pdev->dev, "No alarm IRQ resource defined\n");
goto err_ress;
}
ret = -ENOMEM;
sa1100_rtc->base = ioremap(sa1100_rtc->ress->start,
resource_size(sa1100_rtc->ress));
if (!sa1100_rtc->base) {
dev_err(&pdev->dev, "Unable to map pxa RTC I/O memory\n");
goto err_map;
}
sa1100_rtc->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(sa1100_rtc->clk)) {
dev_err(&pdev->dev, "failed to find rtc clock source\n");
ret = PTR_ERR(sa1100_rtc->clk);
goto err_clk;
}
clk_prepare(sa1100_rtc->clk);
clk_enable(sa1100_rtc->clk);
/* /*
* According to the manual we should be able to let RTTR be zero * According to the manual we should be able to let RTTR be zero
@ -250,24 +335,24 @@ static int sa1100_rtc_probe(struct platform_device *pdev)
* If the clock divider is uninitialized then reset it to the * If the clock divider is uninitialized then reset it to the
* default value to get the 1Hz clock. * default value to get the 1Hz clock.
*/ */
if (RTTR == 0) { if (rtc_readl(sa1100_rtc, RTTR) == 0) {
RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16); rttr = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
dev_warn(&pdev->dev, "warning: " rtc_writel(sa1100_rtc, RTTR, rttr);
"initializing default clock divider/trim value\n"); dev_warn(&pdev->dev, "warning: initializing default clock"
" divider/trim value\n");
/* The current RTC value probably doesn't make sense either */ /* The current RTC value probably doesn't make sense either */
RCNR = 0; rtc_writel(sa1100_rtc, RCNR, 0);
} }
device_init_wakeup(&pdev->dev, 1); device_init_wakeup(&pdev->dev, 1);
rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops, sa1100_rtc->rtc = rtc_device_register(pdev->name, &pdev->dev,
THIS_MODULE); &sa1100_rtc_ops, THIS_MODULE);
if (IS_ERR(sa1100_rtc->rtc)) {
if (IS_ERR(rtc)) dev_err(&pdev->dev, "Failed to register RTC device -> %d\n",
return PTR_ERR(rtc); ret);
goto err_rtc_reg;
platform_set_drvdata(pdev, rtc); }
/* Fix for a nasty initialization problem the in SA11xx RTSR register. /* Fix for a nasty initialization problem the in SA11xx RTSR register.
* See also the comments in sa1100_rtc_interrupt(). * See also the comments in sa1100_rtc_interrupt().
* *
@ -290,33 +375,46 @@ static int sa1100_rtc_probe(struct platform_device *pdev)
* *
* Notice that clearing bit 1 and 0 is accomplished by writting ONES to * Notice that clearing bit 1 and 0 is accomplished by writting ONES to
* the corresponding bits in RTSR. */ * the corresponding bits in RTSR. */
RTSR = RTSR_AL | RTSR_HZ; rtc_writel(sa1100_rtc, RTSR, (RTSR_AL | RTSR_HZ));
return 0; return 0;
err_rtc_reg:
err_clk:
iounmap(sa1100_rtc->base);
err_ress:
err_map:
kfree(sa1100_rtc);
return ret;
} }
static int sa1100_rtc_remove(struct platform_device *pdev) static int sa1100_rtc_remove(struct platform_device *pdev)
{ {
struct rtc_device *rtc = platform_get_drvdata(pdev); struct sa1100_rtc *sa1100_rtc = platform_get_drvdata(pdev);
if (rtc)
rtc_device_unregister(rtc);
rtc_device_unregister(sa1100_rtc->rtc);
clk_disable(sa1100_rtc->clk);
clk_unprepare(sa1100_rtc->clk);
iounmap(sa1100_rtc->base);
return 0; return 0;
} }
#ifdef CONFIG_PM #ifdef CONFIG_PM
static int sa1100_rtc_suspend(struct device *dev) static int sa1100_rtc_suspend(struct device *dev)
{ {
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
if (device_may_wakeup(dev)) if (device_may_wakeup(dev))
enable_irq_wake(IRQ_RTCAlrm); enable_irq_wake(sa1100_rtc->irq_Alrm);
return 0; return 0;
} }
static int sa1100_rtc_resume(struct device *dev) static int sa1100_rtc_resume(struct device *dev)
{ {
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
if (device_may_wakeup(dev)) if (device_may_wakeup(dev))
disable_irq_wake(IRQ_RTCAlrm); disable_irq_wake(sa1100_rtc->irq_Alrm);
return 0; return 0;
} }