hwmon: (via686a) Fix checkpatch issues

Fixed:
ERROR: do not use assignment in if condition
ERROR: open brace '{' following function declarations go on the next line
ERROR: space prohibited before that close parenthesis ')'
ERROR: space required after that ',' (ctx:VxV)
ERROR: spaces required around that '==' (ctx:VxV)
ERROR: spaces required around that ':' (ctx:VxV)
ERROR: spaces required around that '?' (ctx:VxV)
ERROR: that open brace { should be on the previous line
WARNING: line over 80 characters
WARNING: simple_strtol is obsolete, use kstrtol instead
WARNING: simple_strtoul is obsolete, use kstrtoul instead

Modify multi-line comments to follow Documentation/CodingStyle.

Not fixed (false positive):
ERROR: Macros with multiple statements should be enclosed in a do - while loop

Signed-off-by: Guenter Roeck <linux@roeck-us.net>
This commit is contained in:
Guenter Roeck 2012-01-15 06:38:23 -08:00 committed by Guenter Roeck
parent bce2778df9
commit 9004ac8134

View file

@ -1,34 +1,35 @@
/* /*
via686a.c - Part of lm_sensors, Linux kernel modules * via686a.c - Part of lm_sensors, Linux kernel modules
for hardware monitoring * for hardware monitoring
*
Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>, * Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>,
Kyösti Mälkki <kmalkki@cc.hut.fi>, * Kyösti Mälkki <kmalkki@cc.hut.fi>,
Mark Studebaker <mdsxyz123@yahoo.com>, * Mark Studebaker <mdsxyz123@yahoo.com>,
and Bob Dougherty <bobd@stanford.edu> * and Bob Dougherty <bobd@stanford.edu>
(Some conversion-factor data were contributed by Jonathan Teh Soon Yew *
<j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.) * (Some conversion-factor data were contributed by Jonathan Teh Soon Yew
* <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.)
This program is free software; you can redistribute it and/or modify *
it under the terms of the GNU General Public License as published by * This program is free software; you can redistribute it and/or modify
the Free Software Foundation; either version 2 of the License, or * it under the terms of the GNU General Public License as published by
(at your option) any later version. * the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
This program is distributed in the hope that it will be useful, *
but WITHOUT ANY WARRANTY; without even the implied warranty of * This program is distributed in the hope that it will be useful,
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * but WITHOUT ANY WARRANTY; without even the implied warranty of
GNU General Public License for more details. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
You should have received a copy of the GNU General Public License *
along with this program; if not, write to the Free Software * You should have received a copy of the GNU General Public License
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * along with this program; if not, write to the Free Software
*/ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* /*
Supports the Via VT82C686A, VT82C686B south bridges. * Supports the Via VT82C686A, VT82C686B south bridges.
Reports all as a 686A. * Reports all as a 686A.
Warning - only supports a single device. * Warning - only supports a single device.
*/ */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
@ -47,8 +48,10 @@
#include <linux/io.h> #include <linux/io.h>
/* If force_addr is set to anything different from 0, we forcibly enable /*
the device at the given address. */ * If force_addr is set to anything different from 0, we forcibly enable
* the device at the given address.
*/
static unsigned short force_addr; static unsigned short force_addr;
module_param(force_addr, ushort, 0); module_param(force_addr, ushort, 0);
MODULE_PARM_DESC(force_addr, MODULE_PARM_DESC(force_addr,
@ -57,9 +60,9 @@ MODULE_PARM_DESC(force_addr,
static struct platform_device *pdev; static struct platform_device *pdev;
/* /*
The Via 686a southbridge has a LM78-like chip integrated on the same IC. * The Via 686a southbridge has a LM78-like chip integrated on the same IC.
This driver is a customized copy of lm78.c * This driver is a customized copy of lm78.c
*/ */
/* Many VIA686A constants specified below */ /* Many VIA686A constants specified below */
@ -91,40 +94,46 @@ static const u8 VIA686A_REG_TEMP_HYST[] = { 0x3a, 0x3e, 0x1e };
#define VIA686A_REG_ALARM2 0x42 #define VIA686A_REG_ALARM2 0x42
#define VIA686A_REG_FANDIV 0x47 #define VIA686A_REG_FANDIV 0x47
#define VIA686A_REG_CONFIG 0x40 #define VIA686A_REG_CONFIG 0x40
/* The following register sets temp interrupt mode (bits 1-0 for temp1, /*
3-2 for temp2, 5-4 for temp3). Modes are: * The following register sets temp interrupt mode (bits 1-0 for temp1,
00 interrupt stays as long as value is out-of-range * 3-2 for temp2, 5-4 for temp3). Modes are:
01 interrupt is cleared once register is read (default) * 00 interrupt stays as long as value is out-of-range
10 comparator mode- like 00, but ignores hysteresis * 01 interrupt is cleared once register is read (default)
11 same as 00 */ * 10 comparator mode- like 00, but ignores hysteresis
* 11 same as 00
*/
#define VIA686A_REG_TEMP_MODE 0x4b #define VIA686A_REG_TEMP_MODE 0x4b
/* We'll just assume that you want to set all 3 simultaneously: */ /* We'll just assume that you want to set all 3 simultaneously: */
#define VIA686A_TEMP_MODE_MASK 0x3F #define VIA686A_TEMP_MODE_MASK 0x3F
#define VIA686A_TEMP_MODE_CONTINUOUS 0x00 #define VIA686A_TEMP_MODE_CONTINUOUS 0x00
/* Conversions. Limit checking is only done on the TO_REG /*
variants. * Conversions. Limit checking is only done on the TO_REG
* variants.
********* VOLTAGE CONVERSIONS (Bob Dougherty) ******** *
From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew): ******** VOLTAGE CONVERSIONS (Bob Dougherty) ********
voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp * From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V * voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp
voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V * voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V
voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V * voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V
voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V * voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V
in[i]=(data[i+2]*25.0+133)*voltagefactor[i]; * voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V
That is: * in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
volts = (25*regVal+133)*factor * That is:
regVal = (volts/factor-133)/25 * volts = (25*regVal+133)*factor
(These conversions were contributed by Jonathan Teh Soon Yew * regVal = (volts/factor-133)/25
<j.teh@iname.com>) */ * (These conversions were contributed by Jonathan Teh Soon Yew
* <j.teh@iname.com>)
*/
static inline u8 IN_TO_REG(long val, int inNum) static inline u8 IN_TO_REG(long val, int inNum)
{ {
/* To avoid floating point, we multiply constants by 10 (100 for +12V). /*
Rounding is done (120500 is actually 133000 - 12500). * To avoid floating point, we multiply constants by 10 (100 for +12V).
Remember that val is expressed in 0.001V/bit, which is why we divide * Rounding is done (120500 is actually 133000 - 12500).
by an additional 10000 (100000 for +12V): 1000 for val and 10 (100) * Remember that val is expressed in 0.001V/bit, which is why we divide
for the constants. */ * by an additional 10000 (100000 for +12V): 1000 for val and 10 (100)
* for the constants.
*/
if (inNum <= 1) if (inNum <= 1)
return (u8) return (u8)
SENSORS_LIMIT((val * 21024 - 1205000) / 250000, 0, 255); SENSORS_LIMIT((val * 21024 - 1205000) / 250000, 0, 255);
@ -141,9 +150,11 @@ static inline u8 IN_TO_REG(long val, int inNum)
static inline long IN_FROM_REG(u8 val, int inNum) static inline long IN_FROM_REG(u8 val, int inNum)
{ {
/* To avoid floating point, we multiply constants by 10 (100 for +12V). /*
We also multiply them by 1000 because we want 0.001V/bit for the * To avoid floating point, we multiply constants by 10 (100 for +12V).
output value. Rounding is done. */ * We also multiply them by 1000 because we want 0.001V/bit for the
* output value. Rounding is done.
*/
if (inNum <= 1) if (inNum <= 1)
return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024); return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024);
else if (inNum == 2) else if (inNum == 2)
@ -155,9 +166,11 @@ static inline long IN_FROM_REG(u8 val, int inNum)
} }
/********* FAN RPM CONVERSIONS ********/ /********* FAN RPM CONVERSIONS ********/
/* Higher register values = slower fans (the fan's strobe gates a counter). /*
But this chip saturates back at 0, not at 255 like all the other chips. * Higher register values = slower fans (the fan's strobe gates a counter).
So, 0 means 0 RPM */ * But this chip saturates back at 0, not at 255 like all the other chips.
* So, 0 means 0 RPM
*/
static inline u8 FAN_TO_REG(long rpm, int div) static inline u8 FAN_TO_REG(long rpm, int div)
{ {
if (rpm == 0) if (rpm == 0)
@ -166,42 +179,45 @@ static inline u8 FAN_TO_REG(long rpm, int div)
return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 255); return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 255);
} }
#define FAN_FROM_REG(val,div) ((val)==0?0:(val)==255?0:1350000/((val)*(div))) #define FAN_FROM_REG(val, div) ((val) == 0 ? 0 : (val) == 255 ? 0 : 1350000 / \
((val) * (div)))
/******** TEMP CONVERSIONS (Bob Dougherty) *********/ /******** TEMP CONVERSIONS (Bob Dougherty) *********/
/* linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew) /*
if(temp<169) * linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
return double(temp)*0.427-32.08; * if(temp<169)
else if(temp>=169 && temp<=202) * return double(temp)*0.427-32.08;
return double(temp)*0.582-58.16; * else if(temp>=169 && temp<=202)
else * return double(temp)*0.582-58.16;
return double(temp)*0.924-127.33; * else
* return double(temp)*0.924-127.33;
A fifth-order polynomial fits the unofficial data (provided by Alex van *
Kaam <darkside@chello.nl>) a bit better. It also give more reasonable * A fifth-order polynomial fits the unofficial data (provided by Alex van
numbers on my machine (ie. they agree with what my BIOS tells me). * Kaam <darkside@chello.nl>) a bit better. It also give more reasonable
Here's the fifth-order fit to the 8-bit data: * numbers on my machine (ie. they agree with what my BIOS tells me).
temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 - * Here's the fifth-order fit to the 8-bit data:
2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0. * temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
* 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
(2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for *
finding my typos in this formula!) * (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for
* finding my typos in this formula!)
Alas, none of the elegant function-fit solutions will work because we *
aren't allowed to use floating point in the kernel and doing it with * Alas, none of the elegant function-fit solutions will work because we
integers doesn't provide enough precision. So we'll do boring old * aren't allowed to use floating point in the kernel and doing it with
look-up table stuff. The unofficial data (see below) have effectively * integers doesn't provide enough precision. So we'll do boring old
7-bit resolution (they are rounded to the nearest degree). I'm assuming * look-up table stuff. The unofficial data (see below) have effectively
that the transfer function of the device is monotonic and smooth, so a * 7-bit resolution (they are rounded to the nearest degree). I'm assuming
smooth function fit to the data will allow us to get better precision. * that the transfer function of the device is monotonic and smooth, so a
I used the 5th-order poly fit described above and solved for * smooth function fit to the data will allow us to get better precision.
VIA register values 0-255. I *10 before rounding, so we get tenth-degree * I used the 5th-order poly fit described above and solved for
precision. (I could have done all 1024 values for our 10-bit readings, * VIA register values 0-255. I *10 before rounding, so we get tenth-degree
but the function is very linear in the useful range (0-80 deg C), so * precision. (I could have done all 1024 values for our 10-bit readings,
we'll just use linear interpolation for 10-bit readings.) So, tempLUT * but the function is very linear in the useful range (0-80 deg C), so
is the temp at via register values 0-255: */ * we'll just use linear interpolation for 10-bit readings.) So, tempLUT
static const s16 tempLUT[] = * is the temp at via register values 0-255:
{ -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519, */
static const s16 tempLUT[] = {
-709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519,
-503, -487, -471, -456, -442, -428, -414, -400, -387, -375, -503, -487, -471, -456, -442, -428, -414, -400, -387, -375,
-362, -350, -339, -327, -316, -305, -295, -285, -275, -265, -362, -350, -339, -327, -316, -305, -295, -285, -275, -265,
-255, -246, -237, -229, -220, -212, -204, -196, -188, -180, -255, -246, -237, -229, -220, -212, -204, -196, -188, -180,
@ -225,29 +241,31 @@ static const s16 tempLUT[] =
1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462
}; };
/* the original LUT values from Alex van Kaam <darkside@chello.nl> /*
(for via register values 12-240): * the original LUT values from Alex van Kaam <darkside@chello.nl>
{-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31, * (for via register values 12-240):
-30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15, * {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
-15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3, * -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
-3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12, * -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22, * -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33, * 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45, * 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60, * 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84, * 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110}; * 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
* 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
*
Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed *
an extra term for a good fit to these inverse data!) and then * Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed
solving for each temp value from -50 to 110 (the useable range for * an extra term for a good fit to these inverse data!) and then
this chip). Here's the fit: * solving for each temp value from -50 to 110 (the useable range for
viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4 * this chip). Here's the fit:
- 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01) * viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
Note that n=161: */ * - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
static const u8 viaLUT[] = * Note that n=161:
{ 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23, */
static const u8 viaLUT[] = {
12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40,
41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66, 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66,
69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100, 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100,
@ -262,9 +280,11 @@ static const u8 viaLUT[] =
239, 240 239, 240
}; };
/* Converting temps to (8-bit) hyst and over registers /*
No interpolation here. * Converting temps to (8-bit) hyst and over registers
The +50 is because the temps start at -50 */ * No interpolation here.
* The +50 is because the temps start at -50
*/
static inline u8 TEMP_TO_REG(long val) static inline u8 TEMP_TO_REG(long val)
{ {
return viaLUT[val <= -50000 ? 0 : val >= 110000 ? 160 : return viaLUT[val <= -50000 ? 0 : val >= 110000 ? 160 :
@ -290,10 +310,12 @@ static inline long TEMP_FROM_REG10(u16 val)
} }
#define DIV_FROM_REG(val) (1 << (val)) #define DIV_FROM_REG(val) (1 << (val))
#define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1) #define DIV_TO_REG(val) ((val) == 8 ? 3 : (val) == 4 ? 2 : (val) == 1 ? 0 : 1)
/* For each registered chip, we need to keep some data in memory. /*
The structure is dynamically allocated. */ * For each registered chip, we need to keep some data in memory.
* The structure is dynamically allocated.
*/
struct via686a_data { struct via686a_data {
unsigned short addr; unsigned short addr;
const char *name; const char *name;
@ -365,7 +387,12 @@ static ssize_t set_in_min(struct device *dev, struct device_attribute *da,
struct via686a_data *data = dev_get_drvdata(dev); struct via686a_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index; int nr = attr->index;
unsigned long val = simple_strtoul(buf, NULL, 10); unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock); mutex_lock(&data->update_lock);
data->in_min[nr] = IN_TO_REG(val, nr); data->in_min[nr] = IN_TO_REG(val, nr);
@ -379,7 +406,12 @@ static ssize_t set_in_max(struct device *dev, struct device_attribute *da,
struct via686a_data *data = dev_get_drvdata(dev); struct via686a_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index; int nr = attr->index;
unsigned long val = simple_strtoul(buf, NULL, 10); unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock); mutex_lock(&data->update_lock);
data->in_max[nr] = IN_TO_REG(val, nr); data->in_max[nr] = IN_TO_REG(val, nr);
@ -429,7 +461,12 @@ static ssize_t set_temp_over(struct device *dev, struct device_attribute *da,
struct via686a_data *data = dev_get_drvdata(dev); struct via686a_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index; int nr = attr->index;
int val = simple_strtol(buf, NULL, 10); long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock); mutex_lock(&data->update_lock);
data->temp_over[nr] = TEMP_TO_REG(val); data->temp_over[nr] = TEMP_TO_REG(val);
@ -443,7 +480,12 @@ static ssize_t set_temp_hyst(struct device *dev, struct device_attribute *da,
struct via686a_data *data = dev_get_drvdata(dev); struct via686a_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index; int nr = attr->index;
int val = simple_strtol(buf, NULL, 10); long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock); mutex_lock(&data->update_lock);
data->temp_hyst[nr] = TEMP_TO_REG(val); data->temp_hyst[nr] = TEMP_TO_REG(val);
@ -471,7 +513,7 @@ static ssize_t show_fan(struct device *dev, struct device_attribute *da,
struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index; int nr = attr->index;
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr], return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
DIV_FROM_REG(data->fan_div[nr])) ); DIV_FROM_REG(data->fan_div[nr])));
} }
static ssize_t show_fan_min(struct device *dev, struct device_attribute *da, static ssize_t show_fan_min(struct device *dev, struct device_attribute *da,
char *buf) { char *buf) {
@ -479,21 +521,27 @@ static ssize_t show_fan_min(struct device *dev, struct device_attribute *da,
struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index; int nr = attr->index;
return sprintf(buf, "%d\n", return sprintf(buf, "%d\n",
FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])) ); FAN_FROM_REG(data->fan_min[nr],
DIV_FROM_REG(data->fan_div[nr])));
} }
static ssize_t show_fan_div(struct device *dev, struct device_attribute *da, static ssize_t show_fan_div(struct device *dev, struct device_attribute *da,
char *buf) { char *buf) {
struct via686a_data *data = via686a_update_device(dev); struct via686a_data *data = via686a_update_device(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index; int nr = attr->index;
return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]) ); return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
} }
static ssize_t set_fan_min(struct device *dev, struct device_attribute *da, static ssize_t set_fan_min(struct device *dev, struct device_attribute *da,
const char *buf, size_t count) { const char *buf, size_t count) {
struct via686a_data *data = dev_get_drvdata(dev); struct via686a_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index; int nr = attr->index;
int val = simple_strtol(buf, NULL, 10); unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock); mutex_lock(&data->update_lock);
data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
@ -506,8 +554,13 @@ static ssize_t set_fan_div(struct device *dev, struct device_attribute *da,
struct via686a_data *data = dev_get_drvdata(dev); struct via686a_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index; int nr = attr->index;
int val = simple_strtol(buf, NULL, 10);
int old; int old;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock); mutex_lock(&data->update_lock);
old = via686a_read_value(data, VIA686A_REG_FANDIV); old = via686a_read_value(data, VIA686A_REG_FANDIV);
@ -530,10 +583,13 @@ show_fan_offset(1);
show_fan_offset(2); show_fan_offset(2);
/* Alarms */ /* Alarms */
static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) { static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct via686a_data *data = via686a_update_device(dev); struct via686a_data *data = via686a_update_device(dev);
return sprintf(buf, "%u\n", data->alarms); return sprintf(buf, "%u\n", data->alarms);
} }
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
@ -641,7 +697,8 @@ static int __devinit via686a_probe(struct platform_device *pdev)
return -ENODEV; return -ENODEV;
} }
if (!(data = kzalloc(sizeof(struct via686a_data), GFP_KERNEL))) { data = kzalloc(sizeof(struct via686a_data), GFP_KERNEL);
if (!data) {
err = -ENOMEM; err = -ENOMEM;
goto exit_release; goto exit_release;
} }
@ -655,7 +712,8 @@ static int __devinit via686a_probe(struct platform_device *pdev)
via686a_init_device(data); via686a_init_device(data);
/* Register sysfs hooks */ /* Register sysfs hooks */
if ((err = sysfs_create_group(&pdev->dev.kobj, &via686a_group))) err = sysfs_create_group(&pdev->dev.kobj, &via686a_group);
if (err)
goto exit_free; goto exit_free;
data->hwmon_dev = hwmon_device_register(&pdev->dev); data->hwmon_dev = hwmon_device_register(&pdev->dev);
@ -748,10 +806,11 @@ static struct via686a_data *via686a_update_device(struct device *dev)
via686a_read_value(data, via686a_read_value(data,
VIA686A_REG_TEMP_HYST[i]); VIA686A_REG_TEMP_HYST[i]);
} }
/* add in lower 2 bits /*
temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1 * add in lower 2 bits
temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23 * temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23 * temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
* temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
*/ */
data->temp[0] |= (via686a_read_value(data, data->temp[0] |= (via686a_read_value(data,
VIA686A_REG_TEMP_LOW1) VIA686A_REG_TEMP_LOW1)
@ -779,9 +838,8 @@ static struct via686a_data *via686a_update_device(struct device *dev)
static DEFINE_PCI_DEVICE_TABLE(via686a_pci_ids) = { static DEFINE_PCI_DEVICE_TABLE(via686a_pci_ids) = {
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) }, { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) },
{ 0, } { }
}; };
MODULE_DEVICE_TABLE(pci, via686a_pci_ids); MODULE_DEVICE_TABLE(pci, via686a_pci_ids);
static int __devinit via686a_device_add(unsigned short address) static int __devinit via686a_device_add(unsigned short address)
@ -872,7 +930,8 @@ static int __devinit via686a_pci_probe(struct pci_dev *dev,
if (via686a_device_add(address)) if (via686a_device_add(address))
goto exit_unregister; goto exit_unregister;
/* Always return failure here. This is to allow other drivers to bind /*
* Always return failure here. This is to allow other drivers to bind
* to this pci device. We don't really want to have control over the * to this pci device. We don't really want to have control over the
* pci device, we only wanted to read as few register values from it. * pci device, we only wanted to read as few register values from it.
*/ */