Merge branch 'fortglx/3.4/time' of git://git.linaro.org/people/jstultz/linux into timers/core

This commit is contained in:
Thomas Gleixner 2012-02-15 20:29:18 +01:00
commit 97ac984d2f
3 changed files with 248 additions and 190 deletions

View file

@ -234,23 +234,9 @@ struct timex {
extern unsigned long tick_usec; /* USER_HZ period (usec) */
extern unsigned long tick_nsec; /* ACTHZ period (nsec) */
/*
* phase-lock loop variables
*/
extern int time_status; /* clock synchronization status bits */
extern void ntp_init(void);
extern void ntp_clear(void);
/**
* ntp_synced - Returns 1 if the NTP status is not UNSYNC
*
*/
static inline int ntp_synced(void)
{
return !(time_status & STA_UNSYNC);
}
/* Required to safely shift negative values */
#define shift_right(x, s) ({ \
__typeof__(x) __x = (x); \
@ -264,10 +250,9 @@ static inline int ntp_synced(void)
#define NTP_INTERVAL_LENGTH (NSEC_PER_SEC/NTP_INTERVAL_FREQ)
/* Returns how long ticks are at present, in ns / 2^NTP_SCALE_SHIFT. */
extern u64 tick_length;
extern u64 ntp_tick_length(void);
extern void second_overflow(void);
extern void update_ntp_one_tick(void);
extern int do_adjtimex(struct timex *);
extern void hardpps(const struct timespec *, const struct timespec *);

View file

@ -22,13 +22,16 @@
* NTP timekeeping variables:
*/
DEFINE_SPINLOCK(ntp_lock);
/* USER_HZ period (usecs): */
unsigned long tick_usec = TICK_USEC;
/* ACTHZ period (nsecs): */
unsigned long tick_nsec;
u64 tick_length;
static u64 tick_length;
static u64 tick_length_base;
static struct hrtimer leap_timer;
@ -49,7 +52,7 @@ static struct hrtimer leap_timer;
static int time_state = TIME_OK;
/* clock status bits: */
int time_status = STA_UNSYNC;
static int time_status = STA_UNSYNC;
/* TAI offset (secs): */
static long time_tai;
@ -133,7 +136,7 @@ static inline void pps_reset_freq_interval(void)
/**
* pps_clear - Clears the PPS state variables
*
* Must be called while holding a write on the xtime_lock
* Must be called while holding a write on the ntp_lock
*/
static inline void pps_clear(void)
{
@ -149,7 +152,7 @@ static inline void pps_clear(void)
* the last PPS signal. When it reaches 0, indicate that PPS signal is
* missing.
*
* Must be called while holding a write on the xtime_lock
* Must be called while holding a write on the ntp_lock
*/
static inline void pps_dec_valid(void)
{
@ -233,6 +236,17 @@ static inline void pps_fill_timex(struct timex *txc)
#endif /* CONFIG_NTP_PPS */
/**
* ntp_synced - Returns 1 if the NTP status is not UNSYNC
*
*/
static inline int ntp_synced(void)
{
return !(time_status & STA_UNSYNC);
}
/*
* NTP methods:
*/
@ -330,11 +344,13 @@ static void ntp_update_offset(long offset)
/**
* ntp_clear - Clears the NTP state variables
*
* Must be called while holding a write on the xtime_lock
*/
void ntp_clear(void)
{
unsigned long flags;
spin_lock_irqsave(&ntp_lock, flags);
time_adjust = 0; /* stop active adjtime() */
time_status |= STA_UNSYNC;
time_maxerror = NTP_PHASE_LIMIT;
@ -347,8 +363,23 @@ void ntp_clear(void)
/* Clear PPS state variables */
pps_clear();
spin_unlock_irqrestore(&ntp_lock, flags);
}
u64 ntp_tick_length(void)
{
unsigned long flags;
s64 ret;
spin_lock_irqsave(&ntp_lock, flags);
ret = tick_length;
spin_unlock_irqrestore(&ntp_lock, flags);
return ret;
}
/*
* Leap second processing. If in leap-insert state at the end of the
* day, the system clock is set back one second; if in leap-delete
@ -357,14 +388,15 @@ void ntp_clear(void)
static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
{
enum hrtimer_restart res = HRTIMER_NORESTART;
unsigned long flags;
int leap = 0;
write_seqlock(&xtime_lock);
spin_lock_irqsave(&ntp_lock, flags);
switch (time_state) {
case TIME_OK:
break;
case TIME_INS:
timekeeping_leap_insert(-1);
leap = -1;
time_state = TIME_OOP;
printk(KERN_NOTICE
"Clock: inserting leap second 23:59:60 UTC\n");
@ -372,7 +404,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
res = HRTIMER_RESTART;
break;
case TIME_DEL:
timekeeping_leap_insert(1);
leap = 1;
time_tai--;
time_state = TIME_WAIT;
printk(KERN_NOTICE
@ -387,8 +419,14 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
time_state = TIME_OK;
break;
}
spin_unlock_irqrestore(&ntp_lock, flags);
write_sequnlock(&xtime_lock);
/*
* We have to call this outside of the ntp_lock to keep
* the proper locking hierarchy
*/
if (leap)
timekeeping_leap_insert(leap);
return res;
}
@ -404,6 +442,9 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
void second_overflow(void)
{
s64 delta;
unsigned long flags;
spin_lock_irqsave(&ntp_lock, flags);
/* Bump the maxerror field */
time_maxerror += MAXFREQ / NSEC_PER_USEC;
@ -423,23 +464,25 @@ void second_overflow(void)
pps_dec_valid();
if (!time_adjust)
return;
goto out;
if (time_adjust > MAX_TICKADJ) {
time_adjust -= MAX_TICKADJ;
tick_length += MAX_TICKADJ_SCALED;
return;
goto out;
}
if (time_adjust < -MAX_TICKADJ) {
time_adjust += MAX_TICKADJ;
tick_length -= MAX_TICKADJ_SCALED;
return;
goto out;
}
tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
<< NTP_SCALE_SHIFT;
time_adjust = 0;
out:
spin_unlock_irqrestore(&ntp_lock, flags);
}
#ifdef CONFIG_GENERIC_CMOS_UPDATE
@ -663,7 +706,7 @@ int do_adjtimex(struct timex *txc)
getnstimeofday(&ts);
write_seqlock_irq(&xtime_lock);
spin_lock_irq(&ntp_lock);
if (txc->modes & ADJ_ADJTIME) {
long save_adjust = time_adjust;
@ -705,7 +748,7 @@ int do_adjtimex(struct timex *txc)
/* fill PPS status fields */
pps_fill_timex(txc);
write_sequnlock_irq(&xtime_lock);
spin_unlock_irq(&ntp_lock);
txc->time.tv_sec = ts.tv_sec;
txc->time.tv_usec = ts.tv_nsec;
@ -903,7 +946,7 @@ void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
pts_norm = pps_normalize_ts(*phase_ts);
write_seqlock_irqsave(&xtime_lock, flags);
spin_lock_irqsave(&ntp_lock, flags);
/* clear the error bits, they will be set again if needed */
time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
@ -916,7 +959,7 @@ void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
* just start the frequency interval */
if (unlikely(pps_fbase.tv_sec == 0)) {
pps_fbase = *raw_ts;
write_sequnlock_irqrestore(&xtime_lock, flags);
spin_unlock_irqrestore(&ntp_lock, flags);
return;
}
@ -931,7 +974,7 @@ void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
time_status |= STA_PPSJITTER;
/* restart the frequency calibration interval */
pps_fbase = *raw_ts;
write_sequnlock_irqrestore(&xtime_lock, flags);
spin_unlock_irqrestore(&ntp_lock, flags);
pr_err("hardpps: PPSJITTER: bad pulse\n");
return;
}
@ -948,7 +991,7 @@ void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
hardpps_update_phase(pts_norm.nsec);
write_sequnlock_irqrestore(&xtime_lock, flags);
spin_unlock_irqrestore(&ntp_lock, flags);
}
EXPORT_SYMBOL(hardpps);

View file

@ -25,6 +25,8 @@
struct timekeeper {
/* Current clocksource used for timekeeping. */
struct clocksource *clock;
/* NTP adjusted clock multiplier */
u32 mult;
/* The shift value of the current clocksource. */
int shift;
@ -45,12 +47,47 @@ struct timekeeper {
/* Shift conversion between clock shifted nano seconds and
* ntp shifted nano seconds. */
int ntp_error_shift;
/* NTP adjusted clock multiplier */
u32 mult;
/* The current time */
struct timespec xtime;
/*
* wall_to_monotonic is what we need to add to xtime (or xtime corrected
* for sub jiffie times) to get to monotonic time. Monotonic is pegged
* at zero at system boot time, so wall_to_monotonic will be negative,
* however, we will ALWAYS keep the tv_nsec part positive so we can use
* the usual normalization.
*
* wall_to_monotonic is moved after resume from suspend for the
* monotonic time not to jump. We need to add total_sleep_time to
* wall_to_monotonic to get the real boot based time offset.
*
* - wall_to_monotonic is no longer the boot time, getboottime must be
* used instead.
*/
struct timespec wall_to_monotonic;
/* time spent in suspend */
struct timespec total_sleep_time;
/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
struct timespec raw_time;
/* Seqlock for all timekeeper values */
seqlock_t lock;
};
static struct timekeeper timekeeper;
/*
* This read-write spinlock protects us from races in SMP while
* playing with xtime.
*/
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;
/**
* timekeeper_setup_internals - Set up internals to use clocksource clock.
*
@ -135,47 +172,28 @@ static inline s64 timekeeping_get_ns_raw(void)
return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
}
/*
* This read-write spinlock protects us from races in SMP while
* playing with xtime.
*/
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
/* must hold write on timekeeper.lock */
static void timekeeping_update(bool clearntp)
{
if (clearntp) {
timekeeper.ntp_error = 0;
ntp_clear();
}
update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
timekeeper.clock, timekeeper.mult);
}
/*
* The current time
* wall_to_monotonic is what we need to add to xtime (or xtime corrected
* for sub jiffie times) to get to monotonic time. Monotonic is pegged
* at zero at system boot time, so wall_to_monotonic will be negative,
* however, we will ALWAYS keep the tv_nsec part positive so we can use
* the usual normalization.
*
* wall_to_monotonic is moved after resume from suspend for the monotonic
* time not to jump. We need to add total_sleep_time to wall_to_monotonic
* to get the real boot based time offset.
*
* - wall_to_monotonic is no longer the boot time, getboottime must be
* used instead.
*/
static struct timespec xtime __attribute__ ((aligned (16)));
static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
static struct timespec total_sleep_time;
/*
* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
*/
static struct timespec raw_time;
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;
/* must hold xtime_lock */
void timekeeping_leap_insert(int leapsecond)
{
xtime.tv_sec += leapsecond;
wall_to_monotonic.tv_sec -= leapsecond;
update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
timekeeper.mult);
unsigned long flags;
write_seqlock_irqsave(&timekeeper.lock, flags);
timekeeper.xtime.tv_sec += leapsecond;
timekeeper.wall_to_monotonic.tv_sec -= leapsecond;
timekeeping_update(false);
write_sequnlock_irqrestore(&timekeeper.lock, flags);
}
/**
@ -202,10 +220,10 @@ static void timekeeping_forward_now(void)
/* If arch requires, add in gettimeoffset() */
nsec += arch_gettimeoffset();
timespec_add_ns(&xtime, nsec);
timespec_add_ns(&timekeeper.xtime, nsec);
nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
timespec_add_ns(&raw_time, nsec);
timespec_add_ns(&timekeeper.raw_time, nsec);
}
/**
@ -222,15 +240,15 @@ void getnstimeofday(struct timespec *ts)
WARN_ON(timekeeping_suspended);
do {
seq = read_seqbegin(&xtime_lock);
seq = read_seqbegin(&timekeeper.lock);
*ts = xtime;
*ts = timekeeper.xtime;
nsecs = timekeeping_get_ns();
/* If arch requires, add in gettimeoffset() */
nsecs += arch_gettimeoffset();
} while (read_seqretry(&xtime_lock, seq));
} while (read_seqretry(&timekeeper.lock, seq));
timespec_add_ns(ts, nsecs);
}
@ -245,14 +263,16 @@ ktime_t ktime_get(void)
WARN_ON(timekeeping_suspended);
do {
seq = read_seqbegin(&xtime_lock);
secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
seq = read_seqbegin(&timekeeper.lock);
secs = timekeeper.xtime.tv_sec +
timekeeper.wall_to_monotonic.tv_sec;
nsecs = timekeeper.xtime.tv_nsec +
timekeeper.wall_to_monotonic.tv_nsec;
nsecs += timekeeping_get_ns();
/* If arch requires, add in gettimeoffset() */
nsecs += arch_gettimeoffset();
} while (read_seqretry(&xtime_lock, seq));
} while (read_seqretry(&timekeeper.lock, seq));
/*
* Use ktime_set/ktime_add_ns to create a proper ktime on
* 32-bit architectures without CONFIG_KTIME_SCALAR.
@ -278,14 +298,14 @@ void ktime_get_ts(struct timespec *ts)
WARN_ON(timekeeping_suspended);
do {
seq = read_seqbegin(&xtime_lock);
*ts = xtime;
tomono = wall_to_monotonic;
seq = read_seqbegin(&timekeeper.lock);
*ts = timekeeper.xtime;
tomono = timekeeper.wall_to_monotonic;
nsecs = timekeeping_get_ns();
/* If arch requires, add in gettimeoffset() */
nsecs += arch_gettimeoffset();
} while (read_seqretry(&xtime_lock, seq));
} while (read_seqretry(&timekeeper.lock, seq));
set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
ts->tv_nsec + tomono.tv_nsec + nsecs);
@ -313,10 +333,10 @@ void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
do {
u32 arch_offset;
seq = read_seqbegin(&xtime_lock);
seq = read_seqbegin(&timekeeper.lock);
*ts_raw = raw_time;
*ts_real = xtime;
*ts_raw = timekeeper.raw_time;
*ts_real = timekeeper.xtime;
nsecs_raw = timekeeping_get_ns_raw();
nsecs_real = timekeeping_get_ns();
@ -326,7 +346,7 @@ void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
nsecs_raw += arch_offset;
nsecs_real += arch_offset;
} while (read_seqretry(&xtime_lock, seq));
} while (read_seqretry(&timekeeper.lock, seq));
timespec_add_ns(ts_raw, nsecs_raw);
timespec_add_ns(ts_real, nsecs_real);
@ -365,23 +385,19 @@ int do_settimeofday(const struct timespec *tv)
if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
return -EINVAL;
write_seqlock_irqsave(&xtime_lock, flags);
write_seqlock_irqsave(&timekeeper.lock, flags);
timekeeping_forward_now();
ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
timekeeper.wall_to_monotonic =
timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
xtime = *tv;
timekeeper.xtime = *tv;
timekeeping_update(true);
timekeeper.ntp_error = 0;
ntp_clear();
update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
timekeeper.mult);
write_sequnlock_irqrestore(&xtime_lock, flags);
write_sequnlock_irqrestore(&timekeeper.lock, flags);
/* signal hrtimers about time change */
clock_was_set();
@ -405,20 +421,17 @@ int timekeeping_inject_offset(struct timespec *ts)
if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
return -EINVAL;
write_seqlock_irqsave(&xtime_lock, flags);
write_seqlock_irqsave(&timekeeper.lock, flags);
timekeeping_forward_now();
xtime = timespec_add(xtime, *ts);
wall_to_monotonic = timespec_sub(wall_to_monotonic, *ts);
timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
timekeeper.wall_to_monotonic =
timespec_sub(timekeeper.wall_to_monotonic, *ts);
timekeeper.ntp_error = 0;
ntp_clear();
timekeeping_update(true);
update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
timekeeper.mult);
write_sequnlock_irqrestore(&xtime_lock, flags);
write_sequnlock_irqrestore(&timekeeper.lock, flags);
/* signal hrtimers about time change */
clock_was_set();
@ -490,11 +503,11 @@ void getrawmonotonic(struct timespec *ts)
s64 nsecs;
do {
seq = read_seqbegin(&xtime_lock);
seq = read_seqbegin(&timekeeper.lock);
nsecs = timekeeping_get_ns_raw();
*ts = raw_time;
*ts = timekeeper.raw_time;
} while (read_seqretry(&xtime_lock, seq));
} while (read_seqretry(&timekeeper.lock, seq));
timespec_add_ns(ts, nsecs);
}
@ -510,24 +523,30 @@ int timekeeping_valid_for_hres(void)
int ret;
do {
seq = read_seqbegin(&xtime_lock);
seq = read_seqbegin(&timekeeper.lock);
ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
} while (read_seqretry(&xtime_lock, seq));
} while (read_seqretry(&timekeeper.lock, seq));
return ret;
}
/**
* timekeeping_max_deferment - Returns max time the clocksource can be deferred
*
* Caller must observe xtime_lock via read_seqbegin/read_seqretry to
* ensure that the clocksource does not change!
*/
u64 timekeeping_max_deferment(void)
{
return timekeeper.clock->max_idle_ns;
unsigned long seq;
u64 ret;
do {
seq = read_seqbegin(&timekeeper.lock);
ret = timekeeper.clock->max_idle_ns;
} while (read_seqretry(&timekeeper.lock, seq));
return ret;
}
/**
@ -572,28 +591,29 @@ void __init timekeeping_init(void)
read_persistent_clock(&now);
read_boot_clock(&boot);
write_seqlock_irqsave(&xtime_lock, flags);
seqlock_init(&timekeeper.lock);
ntp_init();
write_seqlock_irqsave(&timekeeper.lock, flags);
clock = clocksource_default_clock();
if (clock->enable)
clock->enable(clock);
timekeeper_setup_internals(clock);
xtime.tv_sec = now.tv_sec;
xtime.tv_nsec = now.tv_nsec;
raw_time.tv_sec = 0;
raw_time.tv_nsec = 0;
timekeeper.xtime.tv_sec = now.tv_sec;
timekeeper.xtime.tv_nsec = now.tv_nsec;
timekeeper.raw_time.tv_sec = 0;
timekeeper.raw_time.tv_nsec = 0;
if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
boot.tv_sec = xtime.tv_sec;
boot.tv_nsec = xtime.tv_nsec;
boot.tv_sec = timekeeper.xtime.tv_sec;
boot.tv_nsec = timekeeper.xtime.tv_nsec;
}
set_normalized_timespec(&wall_to_monotonic,
set_normalized_timespec(&timekeeper.wall_to_monotonic,
-boot.tv_sec, -boot.tv_nsec);
total_sleep_time.tv_sec = 0;
total_sleep_time.tv_nsec = 0;
write_sequnlock_irqrestore(&xtime_lock, flags);
timekeeper.total_sleep_time.tv_sec = 0;
timekeeper.total_sleep_time.tv_nsec = 0;
write_sequnlock_irqrestore(&timekeeper.lock, flags);
}
/* time in seconds when suspend began */
@ -614,9 +634,11 @@ static void __timekeeping_inject_sleeptime(struct timespec *delta)
return;
}
xtime = timespec_add(xtime, *delta);
wall_to_monotonic = timespec_sub(wall_to_monotonic, *delta);
total_sleep_time = timespec_add(total_sleep_time, *delta);
timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
timekeeper.wall_to_monotonic =
timespec_sub(timekeeper.wall_to_monotonic, *delta);
timekeeper.total_sleep_time = timespec_add(
timekeeper.total_sleep_time, *delta);
}
@ -640,17 +662,15 @@ void timekeeping_inject_sleeptime(struct timespec *delta)
if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
return;
write_seqlock_irqsave(&xtime_lock, flags);
write_seqlock_irqsave(&timekeeper.lock, flags);
timekeeping_forward_now();
__timekeeping_inject_sleeptime(delta);
timekeeper.ntp_error = 0;
ntp_clear();
update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
timekeeper.mult);
timekeeping_update(true);
write_sequnlock_irqrestore(&xtime_lock, flags);
write_sequnlock_irqrestore(&timekeeper.lock, flags);
/* signal hrtimers about time change */
clock_was_set();
@ -673,7 +693,7 @@ static void timekeeping_resume(void)
clocksource_resume();
write_seqlock_irqsave(&xtime_lock, flags);
write_seqlock_irqsave(&timekeeper.lock, flags);
if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
ts = timespec_sub(ts, timekeeping_suspend_time);
@ -683,7 +703,7 @@ static void timekeeping_resume(void)
timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
timekeeper.ntp_error = 0;
timekeeping_suspended = 0;
write_sequnlock_irqrestore(&xtime_lock, flags);
write_sequnlock_irqrestore(&timekeeper.lock, flags);
touch_softlockup_watchdog();
@ -701,7 +721,7 @@ static int timekeeping_suspend(void)
read_persistent_clock(&timekeeping_suspend_time);
write_seqlock_irqsave(&xtime_lock, flags);
write_seqlock_irqsave(&timekeeper.lock, flags);
timekeeping_forward_now();
timekeeping_suspended = 1;
@ -711,7 +731,7 @@ static int timekeeping_suspend(void)
* try to compensate so the difference in system time
* and persistent_clock time stays close to constant.
*/
delta = timespec_sub(xtime, timekeeping_suspend_time);
delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
delta_delta = timespec_sub(delta, old_delta);
if (abs(delta_delta.tv_sec) >= 2) {
/*
@ -724,7 +744,7 @@ static int timekeeping_suspend(void)
timekeeping_suspend_time =
timespec_add(timekeeping_suspend_time, delta_delta);
}
write_sequnlock_irqrestore(&xtime_lock, flags);
write_sequnlock_irqrestore(&timekeeper.lock, flags);
clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
clocksource_suspend();
@ -775,7 +795,7 @@ static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
* Now calculate the error in (1 << look_ahead) ticks, but first
* remove the single look ahead already included in the error.
*/
tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
tick_error -= timekeeper.xtime_interval >> 1;
error = ((error - tick_error) >> look_ahead) + tick_error;
@ -943,22 +963,22 @@ static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
while (timekeeper.xtime_nsec >= nsecps) {
timekeeper.xtime_nsec -= nsecps;
xtime.tv_sec++;
timekeeper.xtime.tv_sec++;
second_overflow();
}
/* Accumulate raw time */
raw_nsecs = timekeeper.raw_interval << shift;
raw_nsecs += raw_time.tv_nsec;
raw_nsecs += timekeeper.raw_time.tv_nsec;
if (raw_nsecs >= NSEC_PER_SEC) {
u64 raw_secs = raw_nsecs;
raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
raw_time.tv_sec += raw_secs;
timekeeper.raw_time.tv_sec += raw_secs;
}
raw_time.tv_nsec = raw_nsecs;
timekeeper.raw_time.tv_nsec = raw_nsecs;
/* Accumulate error between NTP and clock interval */
timekeeper.ntp_error += tick_length << shift;
timekeeper.ntp_error += ntp_tick_length() << shift;
timekeeper.ntp_error -=
(timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
(timekeeper.ntp_error_shift + shift);
@ -970,17 +990,19 @@ static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
/**
* update_wall_time - Uses the current clocksource to increment the wall time
*
* Called from the timer interrupt, must hold a write on xtime_lock.
*/
static void update_wall_time(void)
{
struct clocksource *clock;
cycle_t offset;
int shift = 0, maxshift;
unsigned long flags;
write_seqlock_irqsave(&timekeeper.lock, flags);
/* Make sure we're fully resumed: */
if (unlikely(timekeeping_suspended))
return;
goto out;
clock = timekeeper.clock;
@ -989,7 +1011,8 @@ static void update_wall_time(void)
#else
offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
#endif
timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
timekeeper.shift;
/*
* With NO_HZ we may have to accumulate many cycle_intervals
@ -1002,7 +1025,7 @@ static void update_wall_time(void)
shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
shift = max(0, shift);
/* Bound shift to one less then what overflows tick_length */
maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
shift = min(shift, maxshift);
while (offset >= timekeeper.cycle_interval) {
offset = logarithmic_accumulation(offset, shift);
@ -1040,8 +1063,10 @@ static void update_wall_time(void)
* Store full nanoseconds into xtime after rounding it up and
* add the remainder to the error difference.
*/
xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
timekeeper.shift) + 1;
timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
timekeeper.shift;
timekeeper.ntp_error += timekeeper.xtime_nsec <<
timekeeper.ntp_error_shift;
@ -1049,15 +1074,17 @@ static void update_wall_time(void)
* Finally, make sure that after the rounding
* xtime.tv_nsec isn't larger then NSEC_PER_SEC
*/
if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
xtime.tv_nsec -= NSEC_PER_SEC;
xtime.tv_sec++;
if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
timekeeper.xtime.tv_sec++;
second_overflow();
}
/* check to see if there is a new clocksource to use */
update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
timekeeper.mult);
timekeeping_update(false);
out:
write_sequnlock_irqrestore(&timekeeper.lock, flags);
}
/**
@ -1074,8 +1101,10 @@ static void update_wall_time(void)
void getboottime(struct timespec *ts)
{
struct timespec boottime = {
.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
.tv_sec = timekeeper.wall_to_monotonic.tv_sec +
timekeeper.total_sleep_time.tv_sec,
.tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
timekeeper.total_sleep_time.tv_nsec
};
set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
@ -1101,13 +1130,13 @@ void get_monotonic_boottime(struct timespec *ts)
WARN_ON(timekeeping_suspended);
do {
seq = read_seqbegin(&xtime_lock);
*ts = xtime;
tomono = wall_to_monotonic;
sleep = total_sleep_time;
seq = read_seqbegin(&timekeeper.lock);
*ts = timekeeper.xtime;
tomono = timekeeper.wall_to_monotonic;
sleep = timekeeper.total_sleep_time;
nsecs = timekeeping_get_ns();
} while (read_seqretry(&xtime_lock, seq));
} while (read_seqretry(&timekeeper.lock, seq));
set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
@ -1137,19 +1166,19 @@ EXPORT_SYMBOL_GPL(ktime_get_boottime);
*/
void monotonic_to_bootbased(struct timespec *ts)
{
*ts = timespec_add(*ts, total_sleep_time);
*ts = timespec_add(*ts, timekeeper.total_sleep_time);
}
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
unsigned long get_seconds(void)
{
return xtime.tv_sec;
return timekeeper.xtime.tv_sec;
}
EXPORT_SYMBOL(get_seconds);
struct timespec __current_kernel_time(void)
{
return xtime;
return timekeeper.xtime;
}
struct timespec current_kernel_time(void)
@ -1158,10 +1187,10 @@ struct timespec current_kernel_time(void)
unsigned long seq;
do {
seq = read_seqbegin(&xtime_lock);
seq = read_seqbegin(&timekeeper.lock);
now = xtime;
} while (read_seqretry(&xtime_lock, seq));
now = timekeeper.xtime;
} while (read_seqretry(&timekeeper.lock, seq));
return now;
}
@ -1173,11 +1202,11 @@ struct timespec get_monotonic_coarse(void)
unsigned long seq;
do {
seq = read_seqbegin(&xtime_lock);
seq = read_seqbegin(&timekeeper.lock);
now = xtime;
mono = wall_to_monotonic;
} while (read_seqretry(&xtime_lock, seq));
now = timekeeper.xtime;
mono = timekeeper.wall_to_monotonic;
} while (read_seqretry(&timekeeper.lock, seq));
set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
now.tv_nsec + mono.tv_nsec);
@ -1209,11 +1238,11 @@ void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
unsigned long seq;
do {
seq = read_seqbegin(&xtime_lock);
*xtim = xtime;
*wtom = wall_to_monotonic;
*sleep = total_sleep_time;
} while (read_seqretry(&xtime_lock, seq));
seq = read_seqbegin(&timekeeper.lock);
*xtim = timekeeper.xtime;
*wtom = timekeeper.wall_to_monotonic;
*sleep = timekeeper.total_sleep_time;
} while (read_seqretry(&timekeeper.lock, seq));
}
/**
@ -1225,9 +1254,10 @@ ktime_t ktime_get_monotonic_offset(void)
struct timespec wtom;
do {
seq = read_seqbegin(&xtime_lock);
wtom = wall_to_monotonic;
} while (read_seqretry(&xtime_lock, seq));
seq = read_seqbegin(&timekeeper.lock);
wtom = timekeeper.wall_to_monotonic;
} while (read_seqretry(&timekeeper.lock, seq));
return timespec_to_ktime(wtom);
}