mirror of
https://github.com/followmsi/android_kernel_google_msm.git
synced 2024-11-06 23:17:41 +00:00
mm: document /proc/pagetypeinfo
Add documentation for /proc/pagetypeinfo. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
72f0ba0252
commit
a1b57ac061
1 changed files with 44 additions and 1 deletions
|
@ -438,6 +438,7 @@ Table 1-5: Kernel info in /proc
|
|||
modules List of loaded modules
|
||||
mounts Mounted filesystems
|
||||
net Networking info (see text)
|
||||
pagetypeinfo Additional page allocator information (see text) (2.5)
|
||||
partitions Table of partitions known to the system
|
||||
pci Deprecated info of PCI bus (new way -> /proc/bus/pci/,
|
||||
decoupled by lspci (2.4)
|
||||
|
@ -592,7 +593,7 @@ Node 0, zone DMA 0 4 5 4 4 3 ...
|
|||
Node 0, zone Normal 1 0 0 1 101 8 ...
|
||||
Node 0, zone HighMem 2 0 0 1 1 0 ...
|
||||
|
||||
Memory fragmentation is a problem under some workloads, and buddyinfo is a
|
||||
External fragmentation is a problem under some workloads, and buddyinfo is a
|
||||
useful tool for helping diagnose these problems. Buddyinfo will give you a
|
||||
clue as to how big an area you can safely allocate, or why a previous
|
||||
allocation failed.
|
||||
|
@ -602,6 +603,48 @@ available. In this case, there are 0 chunks of 2^0*PAGE_SIZE available in
|
|||
ZONE_DMA, 4 chunks of 2^1*PAGE_SIZE in ZONE_DMA, 101 chunks of 2^4*PAGE_SIZE
|
||||
available in ZONE_NORMAL, etc...
|
||||
|
||||
More information relevant to external fragmentation can be found in
|
||||
pagetypeinfo.
|
||||
|
||||
> cat /proc/pagetypeinfo
|
||||
Page block order: 9
|
||||
Pages per block: 512
|
||||
|
||||
Free pages count per migrate type at order 0 1 2 3 4 5 6 7 8 9 10
|
||||
Node 0, zone DMA, type Unmovable 0 0 0 1 1 1 1 1 1 1 0
|
||||
Node 0, zone DMA, type Reclaimable 0 0 0 0 0 0 0 0 0 0 0
|
||||
Node 0, zone DMA, type Movable 1 1 2 1 2 1 1 0 1 0 2
|
||||
Node 0, zone DMA, type Reserve 0 0 0 0 0 0 0 0 0 1 0
|
||||
Node 0, zone DMA, type Isolate 0 0 0 0 0 0 0 0 0 0 0
|
||||
Node 0, zone DMA32, type Unmovable 103 54 77 1 1 1 11 8 7 1 9
|
||||
Node 0, zone DMA32, type Reclaimable 0 0 2 1 0 0 0 0 1 0 0
|
||||
Node 0, zone DMA32, type Movable 169 152 113 91 77 54 39 13 6 1 452
|
||||
Node 0, zone DMA32, type Reserve 1 2 2 2 2 0 1 1 1 1 0
|
||||
Node 0, zone DMA32, type Isolate 0 0 0 0 0 0 0 0 0 0 0
|
||||
|
||||
Number of blocks type Unmovable Reclaimable Movable Reserve Isolate
|
||||
Node 0, zone DMA 2 0 5 1 0
|
||||
Node 0, zone DMA32 41 6 967 2 0
|
||||
|
||||
Fragmentation avoidance in the kernel works by grouping pages of different
|
||||
migrate types into the same contiguous regions of memory called page blocks.
|
||||
A page block is typically the size of the default hugepage size e.g. 2MB on
|
||||
X86-64. By keeping pages grouped based on their ability to move, the kernel
|
||||
can reclaim pages within a page block to satisfy a high-order allocation.
|
||||
|
||||
The pagetypinfo begins with information on the size of a page block. It
|
||||
then gives the same type of information as buddyinfo except broken down
|
||||
by migrate-type and finishes with details on how many page blocks of each
|
||||
type exist.
|
||||
|
||||
If min_free_kbytes has been tuned correctly (recommendations made by hugeadm
|
||||
from libhugetlbfs http://sourceforge.net/projects/libhugetlbfs/), one can
|
||||
make an estimate of the likely number of huge pages that can be allocated
|
||||
at a given point in time. All the "Movable" blocks should be allocatable
|
||||
unless memory has been mlock()'d. Some of the Reclaimable blocks should
|
||||
also be allocatable although a lot of filesystem metadata may have to be
|
||||
reclaimed to achieve this.
|
||||
|
||||
..............................................................................
|
||||
|
||||
meminfo:
|
||||
|
|
Loading…
Reference in a new issue