drm/nouveau/gk20a: reclocking support

Add support for reclocking on GK20A, using a statically-defined pstates
table. The algorithms for calculating the coefficients and setting the
clocks are directly taken from the ChromeOS kernel.

Signed-off-by: Alexandre Courbot <acourbot@nvidia.com>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
This commit is contained in:
Alexandre Courbot 2014-07-26 18:41:41 +09:00 committed by Ben Skeggs
parent bb4d29df5e
commit b13a0a9e29
5 changed files with 669 additions and 0 deletions

View file

@ -65,6 +65,7 @@ nouveau-y += core/subdev/clock/nva3.o
nouveau-y += core/subdev/clock/nvaa.o
nouveau-y += core/subdev/clock/nvc0.o
nouveau-y += core/subdev/clock/nve0.o
nouveau-y += core/subdev/clock/gk20a.o
nouveau-y += core/subdev/clock/pllnv04.o
nouveau-y += core/subdev/clock/pllnva3.o
nouveau-y += core/subdev/devinit/base.o

View file

@ -158,6 +158,7 @@ nve0_identify(struct nouveau_device *device)
break;
case 0xea:
device->cname = "GK20A";
device->oclass[NVDEV_SUBDEV_CLOCK ] = &gk20a_clock_oclass;
device->oclass[NVDEV_SUBDEV_MC ] = gk20a_mc_oclass;
device->oclass[NVDEV_SUBDEV_BUS ] = nvc0_bus_oclass;
device->oclass[NVDEV_SUBDEV_TIMER ] = &gk20a_timer_oclass;

View file

@ -147,6 +147,7 @@ extern struct nouveau_oclass *nvaa_clock_oclass;
extern struct nouveau_oclass nva3_clock_oclass;
extern struct nouveau_oclass nvc0_clock_oclass;
extern struct nouveau_oclass nve0_clock_oclass;
extern struct nouveau_oclass gk20a_clock_oclass;
int nv04_clock_pll_set(struct nouveau_clock *, u32 type, u32 freq);
int nv04_clock_pll_calc(struct nouveau_clock *, struct nvbios_pll *,

View file

@ -22,6 +22,7 @@
#include <linux/log2.h>
#include <linux/pm_runtime.h>
#include <linux/power_supply.h>
#include <linux/clk.h>
#include <asm/unaligned.h>

View file

@ -0,0 +1,665 @@
/*
* Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
*
*/
#define MHZ (1000 * 1000)
#define MASK(w) ((1 << w) - 1)
#define SYS_GPCPLL_CFG_BASE 0x00137000
#define GPC_BCASE_GPCPLL_CFG_BASE 0x00132800
#define GPCPLL_CFG (SYS_GPCPLL_CFG_BASE + 0)
#define GPCPLL_CFG_ENABLE BIT(0)
#define GPCPLL_CFG_IDDQ BIT(1)
#define GPCPLL_CFG_LOCK_DET_OFF BIT(4)
#define GPCPLL_CFG_LOCK BIT(17)
#define GPCPLL_COEFF (SYS_GPCPLL_CFG_BASE + 4)
#define GPCPLL_COEFF_M_SHIFT 0
#define GPCPLL_COEFF_M_WIDTH 8
#define GPCPLL_COEFF_N_SHIFT 8
#define GPCPLL_COEFF_N_WIDTH 8
#define GPCPLL_COEFF_P_SHIFT 16
#define GPCPLL_COEFF_P_WIDTH 6
#define GPCPLL_CFG2 (SYS_GPCPLL_CFG_BASE + 0xc)
#define GPCPLL_CFG2_SETUP2_SHIFT 16
#define GPCPLL_CFG2_PLL_STEPA_SHIFT 24
#define GPCPLL_CFG3 (SYS_GPCPLL_CFG_BASE + 0x18)
#define GPCPLL_CFG3_PLL_STEPB_SHIFT 16
#define GPCPLL_NDIV_SLOWDOWN (SYS_GPCPLL_CFG_BASE + 0x1c)
#define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT 0
#define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT 8
#define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT 16
#define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT 22
#define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT 31
#define SEL_VCO (SYS_GPCPLL_CFG_BASE + 0x100)
#define SEL_VCO_GPC2CLK_OUT_SHIFT 0
#define GPC2CLK_OUT (SYS_GPCPLL_CFG_BASE + 0x250)
#define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH 1
#define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT 31
#define GPC2CLK_OUT_SDIV14_INDIV4_MODE 1
#define GPC2CLK_OUT_VCODIV_WIDTH 6
#define GPC2CLK_OUT_VCODIV_SHIFT 8
#define GPC2CLK_OUT_VCODIV1 0
#define GPC2CLK_OUT_VCODIV_MASK (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
GPC2CLK_OUT_VCODIV_SHIFT)
#define GPC2CLK_OUT_BYPDIV_WIDTH 6
#define GPC2CLK_OUT_BYPDIV_SHIFT 0
#define GPC2CLK_OUT_BYPDIV31 0x3c
#define GPC2CLK_OUT_INIT_MASK ((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \
GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\
| (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\
| (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT))
#define GPC2CLK_OUT_INIT_VAL ((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \
GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \
| (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \
| (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT))
#define GPC_BCAST_NDIV_SLOWDOWN_DEBUG (GPC_BCASE_GPCPLL_CFG_BASE + 0xa0)
#define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT 24
#define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
(0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)
#include <subdev/clock.h>
#include <subdev/timer.h>
#ifdef __KERNEL__
#include <nouveau_platform.h>
#endif
static const u8 pl_to_div[] = {
/* PL: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 */
/* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
};
/* All frequencies in Mhz */
struct gk20a_clk_pllg_params {
u32 min_vco, max_vco;
u32 min_u, max_u;
u32 min_m, max_m;
u32 min_n, max_n;
u32 min_pl, max_pl;
};
static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
.min_vco = 1000, .max_vco = 1700,
.min_u = 12, .max_u = 38,
.min_m = 1, .max_m = 255,
.min_n = 8, .max_n = 255,
.min_pl = 1, .max_pl = 32,
};
struct gk20a_clock_priv {
struct nouveau_clock base;
const struct gk20a_clk_pllg_params *params;
u32 m, n, pl;
u32 parent_rate;
};
#define to_gk20a_clock(base) container_of(base, struct gk20a_clock_priv, base)
static void
gk20a_pllg_read_mnp(struct gk20a_clock_priv *priv)
{
u32 val;
val = nv_rd32(priv, GPCPLL_COEFF);
priv->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
priv->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
priv->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
}
static u32
gk20a_pllg_calc_rate(struct gk20a_clock_priv *priv)
{
u32 rate;
u32 divider;
rate = priv->parent_rate * priv->n;
divider = priv->m * pl_to_div[priv->pl];
do_div(rate, divider);
return rate / 2;
}
static int
gk20a_pllg_calc_mnp(struct gk20a_clock_priv *priv, unsigned long rate)
{
u32 target_clk_f, ref_clk_f, target_freq;
u32 min_vco_f, max_vco_f;
u32 low_pl, high_pl, best_pl;
u32 target_vco_f, vco_f;
u32 best_m, best_n;
u32 u_f;
u32 m, n, n2;
u32 delta, lwv, best_delta = ~0;
u32 pl;
target_clk_f = rate * 2 / MHZ;
ref_clk_f = priv->parent_rate / MHZ;
max_vco_f = priv->params->max_vco;
min_vco_f = priv->params->min_vco;
best_m = priv->params->max_m;
best_n = priv->params->min_n;
best_pl = priv->params->min_pl;
target_vco_f = target_clk_f + target_clk_f / 50;
if (max_vco_f < target_vco_f)
max_vco_f = target_vco_f;
/* min_pl <= high_pl <= max_pl */
high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
high_pl = min(high_pl, priv->params->max_pl);
high_pl = max(high_pl, priv->params->min_pl);
/* min_pl <= low_pl <= max_pl */
low_pl = min_vco_f / target_vco_f;
low_pl = min(low_pl, priv->params->max_pl);
low_pl = max(low_pl, priv->params->min_pl);
/* Find Indices of high_pl and low_pl */
for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
if (pl_to_div[pl] >= low_pl) {
low_pl = pl;
break;
}
}
for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
if (pl_to_div[pl] >= high_pl) {
high_pl = pl;
break;
}
}
nv_debug(priv, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);
/* Select lowest possible VCO */
for (pl = low_pl; pl <= high_pl; pl++) {
target_vco_f = target_clk_f * pl_to_div[pl];
for (m = priv->params->min_m; m <= priv->params->max_m; m++) {
u_f = ref_clk_f / m;
if (u_f < priv->params->min_u)
break;
if (u_f > priv->params->max_u)
continue;
n = (target_vco_f * m) / ref_clk_f;
n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
if (n > priv->params->max_n)
break;
for (; n <= n2; n++) {
if (n < priv->params->min_n)
continue;
if (n > priv->params->max_n)
break;
vco_f = ref_clk_f * n / m;
if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
lwv = (vco_f + (pl_to_div[pl] / 2))
/ pl_to_div[pl];
delta = abs(lwv - target_clk_f);
if (delta < best_delta) {
best_delta = delta;
best_m = m;
best_n = n;
best_pl = pl;
if (best_delta == 0)
goto found_match;
}
}
}
}
}
found_match:
WARN_ON(best_delta == ~0);
if (best_delta != 0)
nv_debug(priv, "no best match for target @ %dMHz on gpc_pll",
target_clk_f);
priv->m = best_m;
priv->n = best_n;
priv->pl = best_pl;
target_freq = gk20a_pllg_calc_rate(priv) / MHZ;
nv_debug(priv, "actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
target_freq, priv->m, priv->n, priv->pl, pl_to_div[priv->pl]);
return 0;
}
static int
gk20a_pllg_slide(struct gk20a_clock_priv *priv, u32 n)
{
u32 val;
int ramp_timeout;
/* get old coefficients */
val = nv_rd32(priv, GPCPLL_COEFF);
/* do nothing if NDIV is the same */
if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
return 0;
/* setup */
nv_mask(priv, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
nv_mask(priv, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);
/* pll slowdown mode */
nv_mask(priv, GPCPLL_NDIV_SLOWDOWN,
BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
/* new ndiv ready for ramp */
val = nv_rd32(priv, GPCPLL_COEFF);
val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
udelay(1);
nv_wr32(priv, GPCPLL_COEFF, val);
/* dynamic ramp to new ndiv */
val = nv_rd32(priv, GPCPLL_NDIV_SLOWDOWN);
val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
udelay(1);
nv_wr32(priv, GPCPLL_NDIV_SLOWDOWN, val);
for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
udelay(1);
val = nv_rd32(priv, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
break;
}
/* exit slowdown mode */
nv_mask(priv, GPCPLL_NDIV_SLOWDOWN,
BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
nv_rd32(priv, GPCPLL_NDIV_SLOWDOWN);
if (ramp_timeout <= 0) {
nv_error(priv, "gpcpll dynamic ramp timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static void
_gk20a_pllg_enable(struct gk20a_clock_priv *priv)
{
nv_mask(priv, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
nv_rd32(priv, GPCPLL_CFG);
}
static void
_gk20a_pllg_disable(struct gk20a_clock_priv *priv)
{
nv_mask(priv, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
nv_rd32(priv, GPCPLL_CFG);
}
static int
_gk20a_pllg_program_mnp(struct gk20a_clock_priv *priv, bool allow_slide)
{
u32 val, cfg;
u32 m_old, pl_old, n_lo;
/* get old coefficients */
val = nv_rd32(priv, GPCPLL_COEFF);
m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
/* do NDIV slide if there is no change in M and PL */
cfg = nv_rd32(priv, GPCPLL_CFG);
if (allow_slide && priv->m == m_old && priv->pl == pl_old &&
(cfg & GPCPLL_CFG_ENABLE)) {
return gk20a_pllg_slide(priv, priv->n);
}
/* slide down to NDIV_LO */
n_lo = DIV_ROUND_UP(m_old * priv->params->min_vco,
priv->parent_rate / MHZ);
if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
int ret = gk20a_pllg_slide(priv, n_lo);
if (ret)
return ret;
}
/* split FO-to-bypass jump in halfs by setting out divider 1:2 */
nv_mask(priv, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
/* put PLL in bypass before programming it */
val = nv_rd32(priv, SEL_VCO);
val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
udelay(2);
nv_wr32(priv, SEL_VCO, val);
/* get out from IDDQ */
val = nv_rd32(priv, GPCPLL_CFG);
if (val & GPCPLL_CFG_IDDQ) {
val &= ~GPCPLL_CFG_IDDQ;
nv_wr32(priv, GPCPLL_CFG, val);
nv_rd32(priv, GPCPLL_CFG);
udelay(2);
}
_gk20a_pllg_disable(priv);
nv_debug(priv, "%s: m=%d n=%d pl=%d\n", __func__, priv->m, priv->n,
priv->pl);
n_lo = DIV_ROUND_UP(priv->m * priv->params->min_vco,
priv->parent_rate / MHZ);
val = priv->m << GPCPLL_COEFF_M_SHIFT;
val |= (allow_slide ? n_lo : priv->n) << GPCPLL_COEFF_N_SHIFT;
val |= priv->pl << GPCPLL_COEFF_P_SHIFT;
nv_wr32(priv, GPCPLL_COEFF, val);
_gk20a_pllg_enable(priv);
val = nv_rd32(priv, GPCPLL_CFG);
if (val & GPCPLL_CFG_LOCK_DET_OFF) {
val &= ~GPCPLL_CFG_LOCK_DET_OFF;
nv_wr32(priv, GPCPLL_CFG, val);
}
if (!nouveau_timer_wait_eq(priv, 300000, GPCPLL_CFG, GPCPLL_CFG_LOCK,
GPCPLL_CFG_LOCK)) {
nv_error(priv, "%s: timeout waiting for pllg lock\n", __func__);
return -ETIMEDOUT;
}
/* switch to VCO mode */
nv_mask(priv, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
/* restore out divider 1:1 */
val = nv_rd32(priv, GPC2CLK_OUT);
val &= ~GPC2CLK_OUT_VCODIV_MASK;
udelay(2);
nv_wr32(priv, GPC2CLK_OUT, val);
/* slide up to new NDIV */
return allow_slide ? gk20a_pllg_slide(priv, priv->n) : 0;
}
static int
gk20a_pllg_program_mnp(struct gk20a_clock_priv *priv)
{
int err;
err = _gk20a_pllg_program_mnp(priv, true);
if (err)
err = _gk20a_pllg_program_mnp(priv, false);
return err;
}
static void
gk20a_pllg_disable(struct gk20a_clock_priv *priv)
{
u32 val;
/* slide to VCO min */
val = nv_rd32(priv, GPCPLL_CFG);
if (val & GPCPLL_CFG_ENABLE) {
u32 coeff, m, n_lo;
coeff = nv_rd32(priv, GPCPLL_COEFF);
m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
n_lo = DIV_ROUND_UP(m * priv->params->min_vco,
priv->parent_rate / MHZ);
gk20a_pllg_slide(priv, n_lo);
}
/* put PLL in bypass before disabling it */
nv_mask(priv, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
_gk20a_pllg_disable(priv);
}
#define GK20A_CLK_GPC_MDIV 1000
static struct nouveau_clocks
gk20a_domains[] = {
{ nv_clk_src_crystal, 0xff },
{ nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
{ nv_clk_src_max }
};
static struct nouveau_pstate
gk20a_pstates[] = {
{
.base = {
.domain[nv_clk_src_gpc] = 72000,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 108000,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 180000,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 252000,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 324000,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 396000,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 468000,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 540000,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 612000,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 648000,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 684000,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 708000,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 756000,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 804000,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 852000,
},
},
};
static int
gk20a_clock_read(struct nouveau_clock *clk, enum nv_clk_src src)
{
struct gk20a_clock_priv *priv = (void *)clk;
switch (src) {
case nv_clk_src_crystal:
return nv_device(clk)->crystal;
case nv_clk_src_gpc:
gk20a_pllg_read_mnp(priv);
return gk20a_pllg_calc_rate(priv) / GK20A_CLK_GPC_MDIV;
default:
nv_error(clk, "invalid clock source %d\n", src);
return -EINVAL;
}
}
static int
gk20a_clock_calc(struct nouveau_clock *clk, struct nouveau_cstate *cstate)
{
struct gk20a_clock_priv *priv = (void *)clk;
return gk20a_pllg_calc_mnp(priv, cstate->domain[nv_clk_src_gpc] *
GK20A_CLK_GPC_MDIV);
}
static int
gk20a_clock_prog(struct nouveau_clock *clk)
{
struct gk20a_clock_priv *priv = (void *)clk;
return gk20a_pllg_program_mnp(priv);
}
static void
gk20a_clock_tidy(struct nouveau_clock *clk)
{
}
static int
gk20a_clock_fini(struct nouveau_object *object, bool suspend)
{
struct gk20a_clock_priv *priv = (void *)object;
int ret;
ret = nouveau_clock_fini(&priv->base, false);
gk20a_pllg_disable(priv);
return ret;
}
static int
gk20a_clock_init(struct nouveau_object *object)
{
struct gk20a_clock_priv *priv = (void *)object;
int ret;
nv_mask(priv, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);
ret = nouveau_clock_init(&priv->base);
if (ret)
return ret;
ret = gk20a_clock_prog(&priv->base);
if (ret) {
nv_error(priv, "cannot initialize clock\n");
return ret;
}
return 0;
}
static int
gk20a_clock_ctor(struct nouveau_object *parent, struct nouveau_object *engine,
struct nouveau_oclass *oclass, void *data, u32 size,
struct nouveau_object **pobject)
{
struct gk20a_clock_priv *priv;
struct nouveau_platform_device *plat;
int ret;
int i;
/* Finish initializing the pstates */
for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) {
INIT_LIST_HEAD(&gk20a_pstates[i].list);
gk20a_pstates[i].pstate = i + 1;
}
ret = nouveau_clock_create(parent, engine, oclass, gk20a_domains,
gk20a_pstates, ARRAY_SIZE(gk20a_pstates), true, &priv);
*pobject = nv_object(priv);
if (ret)
return ret;
priv->params = &gk20a_pllg_params;
plat = nv_device_to_platform(nv_device(parent));
priv->parent_rate = clk_get_rate(plat->gpu->clk);
nv_info(priv, "parent clock rate: %d Mhz\n", priv->parent_rate / MHZ);
priv->base.read = gk20a_clock_read;
priv->base.calc = gk20a_clock_calc;
priv->base.prog = gk20a_clock_prog;
priv->base.tidy = gk20a_clock_tidy;
return 0;
}
struct nouveau_oclass
gk20a_clock_oclass = {
.handle = NV_SUBDEV(CLOCK, 0xea),
.ofuncs = &(struct nouveau_ofuncs) {
.ctor = gk20a_clock_ctor,
.dtor = _nouveau_subdev_dtor,
.init = gk20a_clock_init,
.fini = gk20a_clock_fini,
},
};