sched_clock: Use an hrtimer instead of timer

In the next patch we're going to increase the number of bits that
the generic sched_clock can handle to be greater than 32. With
more than 32 bits the wraparound time can be larger than what can
fit into the units that msecs_to_jiffies takes (unsigned int).
Luckily, the wraparound is initially calculated in nanoseconds
which we can easily use with hrtimers, so switch to using an
hrtimer.

Change-Id: Ia052d3d5d9c1ec7b59c440ceae852c12c61477e1
Cc: Russell King <linux@arm.linux.org.uk>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
[jstultz: Fixup hrtimer intitialization order issue]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Git-commit: a08ca5d108
Git-repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Signed-off-by: Ian Maund <imaund@codeaurora.org>
This commit is contained in:
Stephen Boyd 2013-07-18 16:21:16 -07:00 committed by Artem Borisov
parent 538b187b6e
commit b2ee62ec51
1 changed files with 21 additions and 17 deletions

View File

@ -8,14 +8,16 @@
#include <linux/clocksource.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/ktime.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/syscore_ops.h>
#include <linux/timer.h>
#include <linux/hrtimer.h>
#include <linux/sched_clock.h>
#include <linux/seqlock.h>
struct clock_data {
ktime_t wrap_kt;
u64 epoch_ns;
u32 epoch_cyc;
seqcount_t seq;
@ -26,8 +28,7 @@ struct clock_data {
bool needs_suspend;
};
static void sched_clock_poll(unsigned long wrap_ticks);
static DEFINE_TIMER(sched_clock_timer, sched_clock_poll, 0, 0);
static struct hrtimer sched_clock_timer;
static struct clock_data cd = {
.mult = NSEC_PER_SEC / HZ,
@ -90,15 +91,16 @@ static void notrace update_sched_clock(void)
raw_local_irq_restore(flags);
}
static void sched_clock_poll(unsigned long wrap_ticks)
static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
{
mod_timer(&sched_clock_timer, round_jiffies(jiffies + wrap_ticks));
update_sched_clock();
hrtimer_forward_now(hrt, cd.wrap_kt);
return HRTIMER_RESTART;
}
void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate)
{
unsigned long r, w;
unsigned long r;
u64 res, wrap;
char r_unit;
@ -126,19 +128,13 @@ void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate)
/* calculate how many ns until we wrap */
wrap = cyc_to_ns((1ULL << bits) - 1, cd.mult, cd.shift);
do_div(wrap, NSEC_PER_MSEC);
w = wrap;
cd.wrap_kt = ns_to_ktime(wrap - (wrap >> 3));
/* calculate the ns resolution of this counter */
res = cyc_to_ns(1ULL, cd.mult, cd.shift);
pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lums\n",
bits, r, r_unit, res, w);
pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
bits, r, r_unit, res, wrap);
/*
* Start the timer to keep sched_clock() properly updated and
* sets the initial epoch.
*/
sched_clock_timer.data = msecs_to_jiffies(w - (w / 10));
update_sched_clock();
/*
@ -165,12 +161,20 @@ void __init sched_clock_postinit(void)
if (read_sched_clock == jiffy_sched_clock_read)
setup_sched_clock(jiffy_sched_clock_read, 32, HZ);
sched_clock_poll(sched_clock_timer.data);
update_sched_clock();
/*
* Start the timer to keep sched_clock() properly updated and
* sets the initial epoch.
*/
hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
sched_clock_timer.function = sched_clock_poll;
hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
}
static int sched_clock_suspend(void)
{
sched_clock_poll(sched_clock_timer.data);
sched_clock_poll(&sched_clock_timer);
cd.suspended = true;
return 0;
}