i2c: Add MSM i2c driver

Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
This commit is contained in:
Stephen Boyd 2013-01-11 16:54:17 -08:00
parent aaf081b365
commit d13e8669ce
3 changed files with 807 additions and 0 deletions

View file

@ -470,6 +470,14 @@ config I2C_MPC
This driver can also be built as a module. If so, the module
will be called i2c-mpc.
config I2C_MSM
tristate "MSM"
depends on I2C && (ARCH_MSM || ARCH_QSD)
default y
help
If you say yes to this option, support will be included for the
built-in I2C interface on the MSM or QSD family processors.
config I2C_MV64XXX
tristate "Marvell mv64xxx I2C Controller"
depends on (MV64X60 || PLAT_ORION) && EXPERIMENTAL

View file

@ -46,6 +46,7 @@ obj-$(CONFIG_I2C_INTEL_MID) += i2c-intel-mid.o
obj-$(CONFIG_I2C_IOP3XX) += i2c-iop3xx.o
obj-$(CONFIG_I2C_IXP2000) += i2c-ixp2000.o
obj-$(CONFIG_I2C_MPC) += i2c-mpc.o
obj-$(CONFIG_I2C_MSM) += i2c-msm.o
obj-$(CONFIG_I2C_MV64XXX) += i2c-mv64xxx.o
obj-$(CONFIG_I2C_MXS) += i2c-mxs.o
obj-$(CONFIG_I2C_NOMADIK) += i2c-nomadik.o

View file

@ -0,0 +1,798 @@
/* drivers/i2c/busses/i2c-msm.c
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2009, Code Aurora Forum. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/* #define DEBUG */
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <mach/board.h>
#include <linux/mutex.h>
#include <linux/timer.h>
#include <linux/remote_spinlock.h>
#include <linux/pm_qos.h>
#include <linux/gpio.h>
#include <linux/module.h>
enum {
I2C_WRITE_DATA = 0x00,
I2C_CLK_CTL = 0x04,
I2C_STATUS = 0x08,
I2C_READ_DATA = 0x0c,
I2C_INTERFACE_SELECT = 0x10,
I2C_WRITE_DATA_DATA_BYTE = 0xff,
I2C_WRITE_DATA_ADDR_BYTE = 1U << 8,
I2C_WRITE_DATA_LAST_BYTE = 1U << 9,
I2C_CLK_CTL_FS_DIVIDER_VALUE = 0xff,
I2C_CLK_CTL_HS_DIVIDER_VALUE = 7U << 8,
I2C_STATUS_WR_BUFFER_FULL = 1U << 0,
I2C_STATUS_RD_BUFFER_FULL = 1U << 1,
I2C_STATUS_BUS_ERROR = 1U << 2,
I2C_STATUS_PACKET_NACKED = 1U << 3,
I2C_STATUS_ARB_LOST = 1U << 4,
I2C_STATUS_INVALID_WRITE = 1U << 5,
I2C_STATUS_FAILED = 3U << 6,
I2C_STATUS_BUS_ACTIVE = 1U << 8,
I2C_STATUS_BUS_MASTER = 1U << 9,
I2C_STATUS_ERROR_MASK = 0xfc,
I2C_INTERFACE_SELECT_INTF_SELECT = 1U << 0,
I2C_INTERFACE_SELECT_SCL = 1U << 8,
I2C_INTERFACE_SELECT_SDA = 1U << 9,
I2C_STATUS_RX_DATA_STATE = 3U << 11,
I2C_STATUS_LOW_CLK_STATE = 3U << 13,
};
struct msm_i2c_dev {
struct device *dev;
void __iomem *base; /* virtual */
int irq;
struct clk *clk;
struct i2c_adapter adap_pri;
struct i2c_adapter adap_aux;
spinlock_t lock;
struct i2c_msg *msg;
int rem;
int pos;
int cnt;
int err;
int flush_cnt;
int rd_acked;
int one_bit_t;
remote_mutex_t r_lock;
int suspended;
struct mutex mlock;
struct msm_i2c_platform_data *pdata;
struct timer_list pwr_timer;
int clk_state;
void *complete;
struct pm_qos_request pm_qos_req;
};
static void
msm_i2c_pwr_mgmt(struct msm_i2c_dev *dev, unsigned int state)
{
dev->clk_state = state;
if (state != 0)
clk_enable(dev->clk);
else
clk_disable(dev->clk);
}
static void
msm_i2c_pwr_timer(unsigned long data)
{
struct msm_i2c_dev *dev = (struct msm_i2c_dev *) data;
dev_dbg(dev->dev, "I2C_Power: Inactivity based power management\n");
if (dev->clk_state == 1)
msm_i2c_pwr_mgmt(dev, 0);
}
#ifdef DEBUG
static void
dump_status(uint32_t status)
{
printk("STATUS (0x%.8x): ", status);
if (status & I2C_STATUS_BUS_MASTER)
printk("MST ");
if (status & I2C_STATUS_BUS_ACTIVE)
printk("ACT ");
if (status & I2C_STATUS_INVALID_WRITE)
printk("INV_WR ");
if (status & I2C_STATUS_ARB_LOST)
printk("ARB_LST ");
if (status & I2C_STATUS_PACKET_NACKED)
printk("NAK ");
if (status & I2C_STATUS_BUS_ERROR)
printk("BUS_ERR ");
if (status & I2C_STATUS_RD_BUFFER_FULL)
printk("RD_FULL ");
if (status & I2C_STATUS_WR_BUFFER_FULL)
printk("WR_FULL ");
if (status & I2C_STATUS_FAILED)
printk("FAIL 0x%x", (status & I2C_STATUS_FAILED));
printk("\n");
}
#endif
static irqreturn_t
msm_i2c_interrupt(int irq, void *devid)
{
struct msm_i2c_dev *dev = devid;
uint32_t status = readl(dev->base + I2C_STATUS);
int err = 0;
#ifdef DEBUG
dump_status(status);
#endif
spin_lock(&dev->lock);
if (!dev->msg) {
printk(KERN_ERR "%s: IRQ but nothing to do!\n", __func__);
spin_unlock(&dev->lock);
return IRQ_HANDLED;
}
if (status & I2C_STATUS_ERROR_MASK) {
err = -EIO;
goto out_err;
}
if (dev->msg->flags & I2C_M_RD) {
if (status & I2C_STATUS_RD_BUFFER_FULL) {
/*
* Theres something in the FIFO.
* Are we expecting data or flush crap?
*/
if (dev->cnt) { /* DATA */
uint8_t *data = &dev->msg->buf[dev->pos];
/* This is in spin-lock. So there will be no
* scheduling between reading the second-last
* byte and writing LAST_BYTE to the controller.
* So extra read-cycle-clock won't be generated
* Per I2C MSM HW Specs: Write LAST_BYTE befure
* reading 2nd last byte
*/
if (dev->cnt == 2)
writel(I2C_WRITE_DATA_LAST_BYTE,
dev->base + I2C_WRITE_DATA);
*data = readl(dev->base + I2C_READ_DATA);
dev->cnt--;
dev->pos++;
if (dev->msg->len == 1)
dev->rd_acked = 0;
if (dev->cnt == 0)
goto out_complete;
} else {
/* Now that extra read-cycle-clocks aren't
* generated, this becomes error condition
*/
dev_err(dev->dev,
"read did not stop, status - %x\n",
status);
err = -EIO;
goto out_err;
}
} else if (dev->msg->len == 1 && dev->rd_acked == 0 &&
((status & I2C_STATUS_RX_DATA_STATE) ==
I2C_STATUS_RX_DATA_STATE))
writel(I2C_WRITE_DATA_LAST_BYTE,
dev->base + I2C_WRITE_DATA);
} else {
uint16_t data;
if (status & I2C_STATUS_WR_BUFFER_FULL) {
dev_err(dev->dev,
"Write buffer full in ISR on write?\n");
err = -EIO;
goto out_err;
}
if (dev->cnt) {
/* Ready to take a byte */
data = dev->msg->buf[dev->pos];
if (dev->cnt == 1 && dev->rem == 1)
data |= I2C_WRITE_DATA_LAST_BYTE;
status = readl(dev->base + I2C_STATUS);
/*
* Due to a hardware timing issue, data line setup time
* may be reduced to less than recommended 250 ns.
* This happens when next byte is written in a
* particular window of clock line being low and master
* not stretching the clock line. Due to setup time
* violation, some slaves may miss first-bit of data, or
* misinterprete data as start condition.
* We introduce delay of just over 1/2 clock cycle to
* ensure master stretches the clock line thereby
* avoiding setup time violation. Delay is introduced
* only if I2C clock FSM is LOW. The delay is not needed
* if I2C clock FSM is HIGH or FORCED_LOW.
*/
if ((status & I2C_STATUS_LOW_CLK_STATE) ==
I2C_STATUS_LOW_CLK_STATE)
udelay((dev->one_bit_t >> 1) + 1);
writel(data, dev->base + I2C_WRITE_DATA);
dev->pos++;
dev->cnt--;
} else
goto out_complete;
}
spin_unlock(&dev->lock);
return IRQ_HANDLED;
out_err:
dev->err = err;
out_complete:
complete(dev->complete);
spin_unlock(&dev->lock);
return IRQ_HANDLED;
}
static int
msm_i2c_poll_writeready(struct msm_i2c_dev *dev)
{
uint32_t retries = 0;
while (retries != 2000) {
uint32_t status = readl(dev->base + I2C_STATUS);
if (!(status & I2C_STATUS_WR_BUFFER_FULL))
return 0;
if (retries++ > 1000)
usleep_range(100, 200);
}
return -ETIMEDOUT;
}
static int
msm_i2c_poll_notbusy(struct msm_i2c_dev *dev)
{
uint32_t retries = 0;
while (retries != 2000) {
uint32_t status = readl(dev->base + I2C_STATUS);
if (!(status & I2C_STATUS_BUS_ACTIVE))
return 0;
if (retries++ > 1000)
usleep_range(100, 200);
}
return -ETIMEDOUT;
}
static int
msm_i2c_recover_bus_busy(struct msm_i2c_dev *dev, struct i2c_adapter *adap)
{
int i;
int gpio_clk;
int gpio_dat;
uint32_t status = readl(dev->base + I2C_STATUS);
bool gpio_clk_status = false;
if (!(status & (I2C_STATUS_BUS_ACTIVE | I2C_STATUS_WR_BUFFER_FULL)))
return 0;
dev->pdata->msm_i2c_config_gpio(adap->nr, 0);
/* Even adapter is primary and Odd adapter is AUX */
if (adap->nr % 2) {
gpio_clk = dev->pdata->aux_clk;
gpio_dat = dev->pdata->aux_dat;
} else {
gpio_clk = dev->pdata->pri_clk;
gpio_dat = dev->pdata->pri_dat;
}
disable_irq(dev->irq);
if (status & I2C_STATUS_RD_BUFFER_FULL) {
dev_warn(dev->dev, "Read buffer full, status %x, intf %x\n",
status, readl(dev->base + I2C_INTERFACE_SELECT));
writel(I2C_WRITE_DATA_LAST_BYTE, dev->base + I2C_WRITE_DATA);
readl(dev->base + I2C_READ_DATA);
} else if (status & I2C_STATUS_BUS_MASTER) {
dev_warn(dev->dev, "Still the bus master, status %x, intf %x\n",
status, readl(dev->base + I2C_INTERFACE_SELECT));
writel(I2C_WRITE_DATA_LAST_BYTE | 0xff,
dev->base + I2C_WRITE_DATA);
}
for (i = 0; i < 9; i++) {
if (gpio_get_value(gpio_dat) && gpio_clk_status)
break;
gpio_direction_output(gpio_clk, 0);
udelay(5);
gpio_direction_output(gpio_dat, 0);
udelay(5);
gpio_direction_input(gpio_clk);
udelay(5);
if (!gpio_get_value(gpio_clk))
usleep_range(20, 30);
if (!gpio_get_value(gpio_clk))
msleep(10);
gpio_clk_status = gpio_get_value(gpio_clk);
gpio_direction_input(gpio_dat);
udelay(5);
}
dev->pdata->msm_i2c_config_gpio(adap->nr, 1);
udelay(10);
status = readl(dev->base + I2C_STATUS);
if (!(status & I2C_STATUS_BUS_ACTIVE)) {
dev_info(dev->dev, "Bus busy cleared after %d clock cycles, "
"status %x, intf %x\n",
i, status, readl(dev->base + I2C_INTERFACE_SELECT));
enable_irq(dev->irq);
return 0;
}
dev_err(dev->dev, "Bus still busy, status %x, intf %x\n",
status, readl(dev->base + I2C_INTERFACE_SELECT));
enable_irq(dev->irq);
return -EBUSY;
}
static int
msm_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
{
DECLARE_COMPLETION_ONSTACK(complete);
struct msm_i2c_dev *dev = i2c_get_adapdata(adap);
int ret;
int rem = num;
uint16_t addr;
long timeout;
unsigned long flags;
int check_busy = 1;
del_timer_sync(&dev->pwr_timer);
mutex_lock(&dev->mlock);
if (dev->suspended) {
mutex_unlock(&dev->mlock);
return -EIO;
}
if (dev->clk_state == 0) {
dev_dbg(dev->dev, "I2C_Power: Enable I2C clock(s)\n");
msm_i2c_pwr_mgmt(dev, 1);
}
/* Don't allow power collapse until we release remote spinlock */
pm_qos_update_request(&dev->pm_qos_req, dev->pdata->pm_lat);
if (dev->pdata->rmutex) {
remote_mutex_lock(&dev->r_lock);
/* If other processor did some transactions, we may have
* interrupt pending. Clear it
*/
irq_get_chip(dev->irq)->irq_ack(irq_get_irq_data(dev->irq));
}
if (adap == &dev->adap_pri)
writel(0, dev->base + I2C_INTERFACE_SELECT);
else
writel(I2C_INTERFACE_SELECT_INTF_SELECT,
dev->base + I2C_INTERFACE_SELECT);
enable_irq(dev->irq);
while (rem) {
addr = msgs->addr << 1;
if (msgs->flags & I2C_M_RD)
addr |= 1;
spin_lock_irqsave(&dev->lock, flags);
dev->msg = msgs;
dev->rem = rem;
dev->pos = 0;
dev->err = 0;
dev->flush_cnt = 0;
dev->cnt = msgs->len;
dev->complete = &complete;
spin_unlock_irqrestore(&dev->lock, flags);
if (check_busy) {
ret = msm_i2c_poll_notbusy(dev);
if (ret)
ret = msm_i2c_recover_bus_busy(dev, adap);
if (ret) {
dev_err(dev->dev,
"Error waiting for notbusy\n");
goto out_err;
}
check_busy = 0;
}
if (rem == 1 && msgs->len == 0)
addr |= I2C_WRITE_DATA_LAST_BYTE;
/* Wait for WR buffer not full */
ret = msm_i2c_poll_writeready(dev);
if (ret) {
ret = msm_i2c_recover_bus_busy(dev, adap);
if (ret) {
dev_err(dev->dev,
"Error waiting for write ready before addr\n");
goto out_err;
}
}
/* special case for doing 1 byte read.
* There should be no scheduling between I2C controller becoming
* ready to read and writing LAST-BYTE to I2C controller
* This will avoid potential of I2C controller starting to latch
* another extra byte.
*/
if ((msgs->len == 1) && (msgs->flags & I2C_M_RD)) {
uint32_t retries = 0;
spin_lock_irqsave(&dev->lock, flags);
writel(I2C_WRITE_DATA_ADDR_BYTE | addr,
dev->base + I2C_WRITE_DATA);
/* Poll for I2C controller going into RX_DATA mode to
* ensure controller goes into receive mode.
* Just checking write_buffer_full may not work since
* there is delay between the write-buffer becoming
* empty and the slave sending ACK to ensure I2C
* controller goes in receive mode to receive data.
*/
while (retries != 2000) {
uint32_t status = readl(dev->base + I2C_STATUS);
if ((status & I2C_STATUS_RX_DATA_STATE)
== I2C_STATUS_RX_DATA_STATE)
break;
retries++;
}
if (retries >= 2000) {
dev->rd_acked = 0;
spin_unlock_irqrestore(&dev->lock, flags);
/* 1-byte-reads from slow devices in interrupt
* context
*/
goto wait_for_int;
}
dev->rd_acked = 1;
writel(I2C_WRITE_DATA_LAST_BYTE,
dev->base + I2C_WRITE_DATA);
spin_unlock_irqrestore(&dev->lock, flags);
} else {
writel(I2C_WRITE_DATA_ADDR_BYTE | addr,
dev->base + I2C_WRITE_DATA);
}
/* Polling and waiting for write_buffer_empty is not necessary.
* Even worse, if we do, it can result in invalid status and
* error if interrupt(s) occur while polling.
*/
/*
* Now that we've setup the xfer, the ISR will transfer the data
* and wake us up with dev->err set if there was an error
*/
wait_for_int:
timeout = wait_for_completion_timeout(&complete, HZ);
if (!timeout) {
dev_err(dev->dev, "Transaction timed out\n");
writel(I2C_WRITE_DATA_LAST_BYTE,
dev->base + I2C_WRITE_DATA);
msleep(100);
/* FLUSH */
readl(dev->base + I2C_READ_DATA);
readl(dev->base + I2C_STATUS);
ret = -ETIMEDOUT;
goto out_err;
}
if (dev->err) {
dev_err(dev->dev,
"(%04x) Error during data xfer (%d)\n",
addr, dev->err);
ret = dev->err;
goto out_err;
}
if (msgs->flags & I2C_M_RD)
check_busy = 1;
msgs++;
rem--;
}
ret = num;
out_err:
spin_lock_irqsave(&dev->lock, flags);
dev->complete = NULL;
dev->msg = NULL;
dev->rem = 0;
dev->pos = 0;
dev->err = 0;
dev->flush_cnt = 0;
dev->cnt = 0;
spin_unlock_irqrestore(&dev->lock, flags);
disable_irq(dev->irq);
if (dev->pdata->rmutex)
remote_mutex_unlock(&dev->r_lock);
pm_qos_update_request(&dev->pm_qos_req,
PM_QOS_DEFAULT_VALUE);
mod_timer(&dev->pwr_timer, (jiffies + 3*HZ));
mutex_unlock(&dev->mlock);
return ret;
}
static u32
msm_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
}
static const struct i2c_algorithm msm_i2c_algo = {
.master_xfer = msm_i2c_xfer,
.functionality = msm_i2c_func,
};
static int
msm_i2c_probe(struct platform_device *pdev)
{
struct msm_i2c_dev *dev;
struct resource *mem, *irq, *ioarea;
int ret;
int fs_div;
int hs_div;
int i2c_clk;
int clk_ctl;
struct clk *clk;
struct msm_i2c_platform_data *pdata;
printk(KERN_INFO "msm_i2c_probe\n");
/* NOTE: driver uses the static register mapping */
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!mem) {
dev_err(&pdev->dev, "no mem resource?\n");
return -ENODEV;
}
irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!irq) {
dev_err(&pdev->dev, "no irq resource?\n");
return -ENODEV;
}
ioarea = request_mem_region(mem->start, (mem->end - mem->start) + 1,
pdev->name);
if (!ioarea) {
dev_err(&pdev->dev, "I2C region already claimed\n");
return -EBUSY;
}
clk = clk_get(&pdev->dev, "core_clk");
if (IS_ERR(clk)) {
dev_err(&pdev->dev, "Could not get clock\n");
ret = PTR_ERR(clk);
goto err_clk_get_failed;
}
pdata = pdev->dev.platform_data;
if (!pdata) {
dev_err(&pdev->dev, "platform data not initialized\n");
ret = -ENOSYS;
goto err_clk_get_failed;
}
if (!pdata->msm_i2c_config_gpio) {
dev_err(&pdev->dev, "config_gpio function not initialized\n");
ret = -ENOSYS;
goto err_clk_get_failed;
}
/* We support frequencies upto FAST Mode(400KHz) */
if (pdata->clk_freq <= 0 || pdata->clk_freq > 400000) {
dev_err(&pdev->dev, "clock frequency not supported\n");
ret = -EIO;
goto err_clk_get_failed;
}
dev = kzalloc(sizeof(struct msm_i2c_dev), GFP_KERNEL);
if (!dev) {
ret = -ENOMEM;
goto err_alloc_dev_failed;
}
dev->dev = &pdev->dev;
dev->irq = irq->start;
dev->clk = clk;
dev->pdata = pdata;
dev->base = ioremap(mem->start, (mem->end - mem->start) + 1);
if (!dev->base) {
ret = -ENOMEM;
goto err_ioremap_failed;
}
dev->one_bit_t = USEC_PER_SEC/pdata->clk_freq;
spin_lock_init(&dev->lock);
platform_set_drvdata(pdev, dev);
clk_enable(clk);
if (pdata->rmutex) {
struct remote_mutex_id rmid;
rmid.r_spinlock_id = pdata->rsl_id;
rmid.delay_us = 10000000/pdata->clk_freq;
if (remote_mutex_init(&dev->r_lock, &rmid) != 0)
pdata->rmutex = 0;
}
/* I2C_HS_CLK = I2C_CLK/(3*(HS_DIVIDER_VALUE+1) */
/* I2C_FS_CLK = I2C_CLK/(2*(FS_DIVIDER_VALUE+3) */
/* FS_DIVIDER_VALUE = ((I2C_CLK / I2C_FS_CLK) / 2) - 3 */
i2c_clk = 19200000; /* input clock */
fs_div = ((i2c_clk / pdata->clk_freq) / 2) - 3;
hs_div = 3;
clk_ctl = ((hs_div & 0x7) << 8) | (fs_div & 0xff);
writel(clk_ctl, dev->base + I2C_CLK_CTL);
printk(KERN_INFO "msm_i2c_probe: clk_ctl %x, %d Hz\n",
clk_ctl, i2c_clk / (2 * ((clk_ctl & 0xff) + 3)));
i2c_set_adapdata(&dev->adap_pri, dev);
dev->adap_pri.algo = &msm_i2c_algo;
strlcpy(dev->adap_pri.name,
"MSM I2C adapter-PRI",
sizeof(dev->adap_pri.name));
dev->adap_pri.nr = pdev->id;
ret = i2c_add_numbered_adapter(&dev->adap_pri);
if (ret) {
dev_err(&pdev->dev, "Primary i2c_add_adapter failed\n");
goto err_i2c_add_adapter_failed;
}
i2c_set_adapdata(&dev->adap_aux, dev);
dev->adap_aux.algo = &msm_i2c_algo;
strlcpy(dev->adap_aux.name,
"MSM I2C adapter-AUX",
sizeof(dev->adap_aux.name));
dev->adap_aux.nr = pdev->id + 1;
ret = i2c_add_numbered_adapter(&dev->adap_aux);
if (ret) {
dev_err(&pdev->dev, "auxiliary i2c_add_adapter failed\n");
i2c_del_adapter(&dev->adap_pri);
goto err_i2c_add_adapter_failed;
}
ret = request_irq(dev->irq, msm_i2c_interrupt,
IRQF_TRIGGER_RISING, pdev->name, dev);
if (ret) {
dev_err(&pdev->dev, "request_irq failed\n");
goto err_request_irq_failed;
}
pm_qos_add_request(&dev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
PM_QOS_DEFAULT_VALUE);
disable_irq(dev->irq);
dev->suspended = 0;
mutex_init(&dev->mlock);
dev->clk_state = 0;
/* Config GPIOs for primary and secondary lines */
pdata->msm_i2c_config_gpio(dev->adap_pri.nr, 1);
pdata->msm_i2c_config_gpio(dev->adap_aux.nr, 1);
clk_disable(dev->clk);
setup_timer(&dev->pwr_timer, msm_i2c_pwr_timer, (unsigned long) dev);
return 0;
err_request_irq_failed:
i2c_del_adapter(&dev->adap_pri);
i2c_del_adapter(&dev->adap_aux);
err_i2c_add_adapter_failed:
clk_disable(clk);
iounmap(dev->base);
err_ioremap_failed:
kfree(dev);
err_alloc_dev_failed:
clk_put(clk);
err_clk_get_failed:
release_mem_region(mem->start, (mem->end - mem->start) + 1);
return ret;
}
static int
msm_i2c_remove(struct platform_device *pdev)
{
struct msm_i2c_dev *dev = platform_get_drvdata(pdev);
struct resource *mem;
/* Grab mutex to ensure ongoing transaction is over */
mutex_lock(&dev->mlock);
dev->suspended = 1;
mutex_unlock(&dev->mlock);
mutex_destroy(&dev->mlock);
del_timer_sync(&dev->pwr_timer);
if (dev->clk_state != 0)
msm_i2c_pwr_mgmt(dev, 0);
platform_set_drvdata(pdev, NULL);
pm_qos_remove_request(&dev->pm_qos_req);
free_irq(dev->irq, dev);
i2c_del_adapter(&dev->adap_pri);
i2c_del_adapter(&dev->adap_aux);
clk_put(dev->clk);
iounmap(dev->base);
kfree(dev);
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (mem)
release_mem_region(mem->start, (mem->end - mem->start) + 1);
return 0;
}
static int msm_i2c_suspend(struct platform_device *pdev, pm_message_t state)
{
struct msm_i2c_dev *dev = platform_get_drvdata(pdev);
/* Wait until current transaction finishes
* Make sure remote lock is released before we suspend
*/
if (dev) {
/* Grab mutex to ensure ongoing transaction is over */
mutex_lock(&dev->mlock);
dev->suspended = 1;
mutex_unlock(&dev->mlock);
del_timer_sync(&dev->pwr_timer);
if (dev->clk_state != 0)
msm_i2c_pwr_mgmt(dev, 0);
}
return 0;
}
static int msm_i2c_resume(struct platform_device *pdev)
{
struct msm_i2c_dev *dev = platform_get_drvdata(pdev);
dev->suspended = 0;
return 0;
}
static struct platform_driver msm_i2c_driver = {
.probe = msm_i2c_probe,
.remove = msm_i2c_remove,
.suspend = msm_i2c_suspend,
.resume = msm_i2c_resume,
.driver = {
.name = "msm_i2c",
.owner = THIS_MODULE,
},
};
/* I2C may be needed to bring up other drivers */
static int __init
msm_i2c_init_driver(void)
{
return platform_driver_register(&msm_i2c_driver);
}
subsys_initcall(msm_i2c_init_driver);
static void __exit msm_i2c_exit_driver(void)
{
platform_driver_unregister(&msm_i2c_driver);
}
module_exit(msm_i2c_exit_driver);