File-private locks have been re-christened as "open file description"
locks. Finish the symbol name cleanup in the internal implementation.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Change-Id: Iee48047540a7d8fefb5078cc005ae9ea8994f521
File-private locks have been merged into Linux for v3.15, and *now*
people are commenting that the name and macro definitions for the new
file-private locks suck.
...and I can't even disagree. The names and command macros do suck.
We're going to have to live with these for a long time, so it's
important that we be happy with the names before we're stuck with them.
The consensus on the lists so far is that they should be rechristened as
"open file description locks".
The name isn't a big deal for the kernel, but the command macros are not
visually distinct enough from the traditional POSIX lock macros. The
glibc and documentation folks are recommending that we change them to
look like F_OFD_{GETLK|SETLK|SETLKW}. That lessens the chance that a
programmer will typo one of the commands wrong, and also makes it easier
to spot this difference when reading code.
This patch makes the following changes that I think are necessary before
v3.15 ships:
1) rename the command macros to their new names. These end up in the uapi
headers and so are part of the external-facing API. It turns out that
glibc doesn't actually use the fcntl.h uapi header, but it's hard to
be sure that something else won't. Changing it now is safest.
2) make the the /proc/locks output display these as type "OFDLCK"
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Carlos O'Donell <carlos@redhat.com>
Cc: Stefan Metzmacher <metze@samba.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Frank Filz <ffilzlnx@mindspring.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Change-Id: Ia975197281d4c80a4ad420d7621896d2f369cef6
Due to some unfortunate history, POSIX locks have very strange and
unhelpful semantics. The thing that usually catches people by surprise
is that they are dropped whenever the process closes any file descriptor
associated with the inode.
This is extremely problematic for people developing file servers that
need to implement byte-range locks. Developers often need a "lock
management" facility to ensure that file descriptors are not closed
until all of the locks associated with the inode are finished.
Additionally, "classic" POSIX locks are owned by the process. Locks
taken between threads within the same process won't conflict with one
another, which renders them useless for synchronization between threads.
This patchset adds a new type of lock that attempts to address these
issues. These locks conflict with classic POSIX read/write locks, but
have semantics that are more like BSD locks with respect to inheritance
and behavior on close.
This is implemented primarily by changing how fl_owner field is set for
these locks. Instead of having them owned by the files_struct of the
process, they are instead owned by the filp on which they were acquired.
Thus, they are inherited across fork() and are only released when the
last reference to a filp is put.
These new semantics prevent them from being merged with classic POSIX
locks, even if they are acquired by the same process. These locks will
also conflict with classic POSIX locks even if they are acquired by
the same process or on the same file descriptor.
The new locks are managed using a new set of cmd values to the fcntl()
syscall. The initial implementation of this converts these values to
"classic" cmd values at a fairly high level, and the details are not
exposed to the underlying filesystem. We may eventually want to push
this handing out to the lower filesystem code but for now I don't
see any need for it.
Also, note that with this implementation the new cmd values are only
available via fcntl64() on 32-bit arches. There's little need to
add support for legacy apps on a new interface like this.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Change-Id: I35691bdfed9cadcbbcb6ff6804d9eea1db661ddc
Once we introduce file private locks, we'll need to know what cmd value
was used, as that affects the ownership and whether a conflict would
arise.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Change-Id: Iaeb8233ae25bde5ef0049118ff94e4a9e0f02214
FL_FILE_PVT locks are no longer tied to a particular pid, and are
instead inheritable by child processes. Report a l_pid of '-1' for
these sorts of locks since the pid is somewhat meaningless for them.
This precedent comes from FreeBSD. There, POSIX and flock() locks can
conflict with one another. If fcntl(F_GETLK, ...) returns a lock set
with flock() then the l_pid member cannot be a process ID because the
lock is not held by a process as such.
Acked-by: J. Bruce Fields <bfields@fieldses.org>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Change-Id: I7d702fcaaaf8592356926d51b60e53ee217ca747
In a later patch, we'll be adding a new type of lock that's owned by
the struct file instead of the files_struct. Those sorts of locks
will be flagged with a new FL_FILE_PVT flag.
Report these types of locks as "FLPVT" in /proc/locks to distinguish
them from "classic" POSIX locks.
Acked-by: J. Bruce Fields <bfields@fieldses.org>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Change-Id: Id0b6d9c7a947b512e5683ad3b6188d73582c2de9
This function currently removes leases in addition to flock locks and in
a later patch we'll have it deal with file-private locks too. Rename it
to locks_remove_file to indicate that it removes locks that are
associated with a particular struct file, and not just flock locks.
Acked-by: J. Bruce Fields <bfields@fieldses.org>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Change-Id: I1289cfbc02eb778532e984a29adffb02a9370cc1
We have many places where we want to check if a socket is
not a timewait or request socket. Use a helper to avoid
hard coding this.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
[backported from net-next 1d0ab253872cdd3d8e7913f59c266c7fd01771d0]
[lorenzo@google.com: removed TCPF_NEW_SYN_RECV, and added a comment to add it back.]
Signed-off-by: Lorenzo Colitti <lorenzo@google.com>
Bug: 24163529
Change-Id: Ibf09017e1ab00af5e6925273117c335d7f515d73
When I cooked commit c3658e8d0f ("tcp: fix possible NULL dereference in
tcp_vX_send_reset()") I missed other spots we could deref a NULL
skb_dst(skb)
Again, if a socket is provided, we do not need skb_dst() to get a
pointer to network namespace : sock_net(sk) is good enough.
[Backport of net-next 0f85feae6b710ced3abad5b2b47d31dfcb956b62]
Bug: 16355602
Change-Id: Ibe1def7979625ee7902bff2f33ec8945b9945948
Reported-by: Dann Frazier <dann.frazier@canonical.com>
Bisected-by: Dann Frazier <dann.frazier@canonical.com>
Tested-by: Dann Frazier <dann.frazier@canonical.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Fixes: ca777eff51 ("tcp: remove dst refcount false sharing for prequeue mode")
Signed-off-by: David S. Miller <davem@davemloft.net>
The mtu should be a __be32, not the mark.
Reported-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Change-Id: Ie321dcc3652921f8f28491d39c8262268aeb22bc
One tricky issue on the ipv6 side vs. ipv4 is that the ICMP callouts
to handle the error pass the 32-bit info cookie in network byte order
whereas ipv4 passes it around in host byte order.
Like the ipv4 side, we have two helper functions. One for when we
have a socket context and one for when we do not.
ip6ip6 tunnels are not handled here, because they handle PMTU events
by essentially relaying another ICMP packet-too-big message back to
the original sender.
This patch allows us to get rid of rt6_do_pmtu_disc(). It handles all
kinds of situations that simply cannot happen when we do the PMTU
update directly using a fully resolved route.
In fact, the "plen == 128" check in ip6_rt_update_pmtu() can very
likely be removed or changed into a BUG_ON() check. We should never
have a prefixed ipv6 route when we get there.
Another piece of strange history here is that TCP and DCCP, unlike in
ipv4, never invoke the update_pmtu() method from their ICMP error
handlers. This is incredibly astonishing since this is the context
where we have the most accurate context in which to make a PMTU
update, namely we have a fully connected socket and associated cached
socket route.
Signed-off-by: David S. Miller <davem@davemloft.net>
Change-Id: Ibb5cae4316256108c5130459b07288c9fc7380c3
[ Upstream commit 001eabfd54c0cbf9d7d16264ddc8cc0bee67e3ed ]
This updates the bit sliced AES module to the latest version in the
upstream OpenSSL repository (e620e5ae37bc). This is needed to fix a
bug in the XTS decryption path, where data chunked in a certain way
could trigger the ciphertext stealing code, which is not supposed to
be active in the kernel build (The kernel implementation of XTS only
supports round multiples of the AES block size of 16 bytes, whereas
the conformant OpenSSL implementation of XTS supports inputs of
arbitrary size by applying ciphertext stealing). This is fixed in
the upstream version by adding the missing #ifndef XTS_CHAIN_TWEAK
around the offending instructions.
The upstream code also contains the change applied by Russell to
build the code unconditionally, i.e., even if __LINUX_ARM_ARCH__ < 7,
but implemented slightly differently.
Cc: stable@vger.kernel.org
Fixes: e4e7f10bfc ("ARM: add support for bit sliced AES using NEON instructions")
Reported-by: Adrian Kotelba <adrian.kotelba@gmail.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Milan Broz <gmazyland@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Change-Id: I94f417ae8b9830c76230cdb6a4870efa216715cd
A shared anonymous mapping created without MAP_NORESERVE holds memory
reservation for whole range of shmem segment. Usually there is no way
to change its size, but /proc/<pid>/map_files/... (available if
CONFIG_CHECKPOINT_RESTORE=y) allows that.
This patch adjusts the memory reservation in shmem_setattr().
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change-Id: Ibaf48bed2a1eada5ffa96e550b7f1549d569e1b6
This patch fixes an "off-by-one" bug found in
581791f (FunctionFS: enable multiple functions).
During gfs_bind/gfs_unbind the functionfs_bind/functionfs_unbind should be
called for every functionfs instance. With the "i" pre-decremented they
were not called for the zeroth instance.
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Andrzej Pietrasiewicz <andrzej.p@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Cc: <stable@vger.kernel.org>
[ balbi@ti.com : added offending commit's subject ]
Signed-off-by: Felipe Balbi <balbi@ti.com>
Change-Id: Idf19c2d3842546fb0fb47f77f59a248b1caa3fcb
Modify the request_module to prefix the file system type with "fs-"
and add aliases to all of the filesystems that can be built as modules
to match.
A common practice is to build all of the kernel code and leave code
that is not commonly needed as modules, with the result that many
users are exposed to any bug anywhere in the kernel.
Looking for filesystems with a fs- prefix limits the pool of possible
modules that can be loaded by mount to just filesystems trivially
making things safer with no real cost.
Using aliases means user space can control the policy of which
filesystem modules are auto-loaded by editing /etc/modprobe.d/*.conf
with blacklist and alias directives. Allowing simple, safe,
well understood work-arounds to known problematic software.
This also addresses a rare but unfortunate problem where the filesystem
name is not the same as it's module name and module auto-loading
would not work. While writing this patch I saw a handful of such
cases. The most significant being autofs that lives in the module
autofs4.
This is relevant to user namespaces because we can reach the request
module in get_fs_type() without having any special permissions, and
people get uncomfortable when a user specified string (in this case
the filesystem type) goes all of the way to request_module.
After having looked at this issue I don't think there is any
particular reason to perform any filtering or permission checks beyond
making it clear in the module request that we want a filesystem
module. The common pattern in the kernel is to call request_module()
without regards to the users permissions. In general all a filesystem
module does once loaded is call register_filesystem() and go to sleep.
Which means there is not much attack surface exposed by loading a
filesytem module unless the filesystem is mounted. In a user
namespace filesystems are not mounted unless .fs_flags = FS_USERNS_MOUNT,
which most filesystems do not set today.
Change-Id: I623b13dbdb44bb9ba7481f29575e1ca4ad8102f4
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Acked-by: Kees Cook <keescook@chromium.org>
Reported-by: Kees Cook <keescook@google.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Kevin F. Haggerty <haggertk@lineageos.org>
This is needed for MTP to know if writes are aligned to packet size.
Change-Id: If504511e649d46eb8d52f1fafeda071dddeec263
Signed-off-by: Jerry Zhang <zhangjerry@google.com>
When writing the descriptors to the ep0 file of functionfs, the HID descriptors where not recognized which caused the initialization from user space to fail.
Signed-off-by: Koen Beel <koen.beel@barco.com>
Signed-off-by: Felipe Balbi <balbi@ti.com>
Change-Id: Id0f930e12a84315995a3ea4d08757ba1f3b567be
There's a bunch of failure exits in ffs_fs_mount() with
seriously broken recovery logics. Most of that appears to stem
from misunderstanding of the ->kill_sb() semantics; unlike
->put_super() it is called for *all* superblocks of given type,
no matter how (in)complete the setup had been. ->put_super()
is called only if ->s_root is not NULL; any failure prior to
setting ->s_root will have the call of ->put_super() skipped.
->kill_sb(), OTOH, awaits every superblock that has come from
sget().
Current behaviour of ffs_fs_mount():
We have struct ffs_sb_fill_data data on stack there. We do
ffs_dev = functionfs_acquire_dev_callback(dev_name);
and store that in data.private_data. Then we call mount_nodev(),
passing it ffs_sb_fill() as a callback. That will either fail
outright, or manage to call ffs_sb_fill(). There we allocate an
instance of struct ffs_data, slap the value of ffs_dev (picked
from data.private_data) into ffs->private_data and overwrite
data.private_data by storing ffs into an overlapping member
(data.ffs_data). Then we store ffs into sb->s_fs_info and attempt
to set the rest of the things up (root inode, root dentry, then
create /ep0 there). Any of those might fail. Should that
happen, we get ffs_fs_kill_sb() called before mount_nodev()
returns. If mount_nodev() fails for any reason whatsoever,
we proceed to
functionfs_release_dev_callback(data.ffs_data);
That's broken in a lot of ways. Suppose the thing has failed in
allocation of e.g. root inode or dentry. We have
functionfs_release_dev_callback(ffs);
ffs_data_put(ffs);
done by ffs_fs_kill_sb() (ffs accessed via sb->s_fs_info), followed by
functionfs_release_dev_callback(ffs);
from ffs_fs_mount() (via data.ffs_data). Note that the second
functionfs_release_dev_callback() has every chance to be done to freed memory.
Suppose we fail *before* root inode allocation. What happens then?
ffs_fs_kill_sb() doesn't do anything to ffs (it's either not called at all,
or it doesn't have a pointer to ffs stored in sb->s_fs_info). And
functionfs_release_dev_callback(data.ffs_data);
is called by ffs_fs_mount(), but here we are in nasal daemon country - we
are reading from a member of union we'd never stored into. In practice,
we'll get what we used to store into the overlapping field, i.e. ffs_dev.
And then we get screwed, since we treat it (struct gfs_ffs_obj * in
disguise, returned by functionfs_acquire_dev_callback()) as struct
ffs_data *, pick what would've been ffs_data ->private_data from it
(*well* past the actual end of the struct gfs_ffs_obj - struct ffs_data
is much bigger) and poke in whatever it points to.
FWIW, there's a minor leak on top of all that in case if ffs_sb_fill()
fails on kstrdup() - ffs is obviously forgotten.
The thing is, there is no point in playing all those games with union.
Just allocate and initialize ffs_data *before* calling mount_nodev() and
pass a pointer to it via data.ffs_data. And once it's stored in
sb->s_fs_info, clear data.ffs_data, so that ffs_fs_mount() knows that
it doesn't need to kill the sucker manually - from that point on
we'll have it done by ->kill_sb().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: stable <stable@vger.kernel.org> # 3.3+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Change-Id: Ic3886c79018e4f06cf84d27c98ce5f80d7d9bbe9
Android uses ashmem for sharing memory regions. We are looking forward
to migrating all usecases of ashmem to memfd so that we can possibly
remove the ashmem driver in the future from staging while also
benefiting from using memfd and contributing to it. Note staging drivers
are also not ABI and generally can be removed at anytime.
One of the main usecases Android has is the ability to create a region
and mmap it as writeable, then add protection against making any
"future" writes while keeping the existing already mmap'ed
writeable-region active. This allows us to implement a usecase where
receivers of the shared memory buffer can get a read-only view, while
the sender continues to write to the buffer.
See CursorWindow documentation in Android for more details:
https://developer.android.com/reference/android/database/CursorWindow
This usecase cannot be implemented with the existing F_SEAL_WRITE seal.
To support the usecase, this patch adds a new F_SEAL_FUTURE_WRITE seal
which prevents any future mmap and write syscalls from succeeding while
keeping the existing mmap active.
Verified with test program at: https://lore.kernel.org/patchwork/patch/1008117/
Backport link: https://lore.kernel.org/patchwork/patch/1014892/
Bug: 113362644
Change-Id: If7424db3b64372932d455f0219cd9df613fec1d4
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Joel Fernandes <joelaf@google.com>
Running my likely/unlikely profiler, I discovered that the test in
shmem_write_begin() that tests for info->seals as unlikely, is always
incorrect. This is because shmem_get_inode() sets info->seals to have
F_SEAL_SEAL set by default, and it is unlikely to be cleared when
shmem_write_begin() is called. Thus, the if statement is very likely.
But as the if statement block only cares about F_SEAL_WRITE and
F_SEAL_GROW, change the test to only test those two bits.
Link: http://lkml.kernel.org/r/20170203105656.7aec6237@gandalf.local.home
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: David Herrmann <dh.herrmann@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change-Id: I83b8fc6ebae581486df16842713ba83a37e3b858
The new header file memfd.h from commit 9183df25fe ("shm: add
memfd_create() syscall") should be exported.
Change-Id: I07ea7ae25765ece11180c0dcaed749918bf03a11
Signed-off-by: David Drysdale <drysdale@google.com>
Reviewed-by: David Herrmann <dh.herrmann@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we set SEAL_WRITE on a file, we must make sure there cannot be any
ongoing write-operations on the file. For write() calls, we simply lock
the inode mutex, for mmap() we simply verify there're no writable
mappings. However, there might be pages pinned by AIO, Direct-IO and
similar operations via GUP. We must make sure those do not write to the
memfd file after we set SEAL_WRITE.
As there is no way to notify GUP users to drop pages or to wait for them
to be done, we implement the wait ourself: When setting SEAL_WRITE, we
check all pages for their ref-count. If it's bigger than 1, we know
there's some user of the page. We then mark the page and wait for up to
150ms for those ref-counts to be dropped. If the ref-counts are not
dropped in time, we refuse the seal operation.
Change-Id: I964c29a82f2a9a1077647b29b2073c9ef4e0a05a
Signed-off-by: David Herrmann <dh.herrmann@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ryan Lortie <desrt@desrt.ca>
Cc: Lennart Poettering <lennart@poettering.net>
Cc: Daniel Mack <zonque@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If two processes share a common memory region, they usually want some
guarantees to allow safe access. This often includes:
- one side cannot overwrite data while the other reads it
- one side cannot shrink the buffer while the other accesses it
- one side cannot grow the buffer beyond previously set boundaries
If there is a trust-relationship between both parties, there is no need
for policy enforcement. However, if there's no trust relationship (eg.,
for general-purpose IPC) sharing memory-regions is highly fragile and
often not possible without local copies. Look at the following two
use-cases:
1) A graphics client wants to share its rendering-buffer with a
graphics-server. The memory-region is allocated by the client for
read/write access and a second FD is passed to the server. While
scanning out from the memory region, the server has no guarantee that
the client doesn't shrink the buffer at any time, requiring rather
cumbersome SIGBUS handling.
2) A process wants to perform an RPC on another process. To avoid huge
bandwidth consumption, zero-copy is preferred. After a message is
assembled in-memory and a FD is passed to the remote side, both sides
want to be sure that neither modifies this shared copy, anymore. The
source may have put sensible data into the message without a separate
copy and the target may want to parse the message inline, to avoid a
local copy.
While SIGBUS handling, POSIX mandatory locking and MAP_DENYWRITE provide
ways to achieve most of this, the first one is unproportionally ugly to
use in libraries and the latter two are broken/racy or even disabled due
to denial of service attacks.
This patch introduces the concept of SEALING. If you seal a file, a
specific set of operations is blocked on that file forever. Unlike locks,
seals can only be set, never removed. Hence, once you verified a specific
set of seals is set, you're guaranteed that no-one can perform the blocked
operations on this file, anymore.
An initial set of SEALS is introduced by this patch:
- SHRINK: If SEAL_SHRINK is set, the file in question cannot be reduced
in size. This affects ftruncate() and open(O_TRUNC).
- GROW: If SEAL_GROW is set, the file in question cannot be increased
in size. This affects ftruncate(), fallocate() and write().
- WRITE: If SEAL_WRITE is set, no write operations (besides resizing)
are possible. This affects fallocate(PUNCH_HOLE), mmap() and
write().
- SEAL: If SEAL_SEAL is set, no further seals can be added to a file.
This basically prevents the F_ADD_SEAL operation on a file and
can be set to prevent others from adding further seals that you
don't want.
The described use-cases can easily use these seals to provide safe use
without any trust-relationship:
1) The graphics server can verify that a passed file-descriptor has
SEAL_SHRINK set. This allows safe scanout, while the client is
allowed to increase buffer size for window-resizing on-the-fly.
Concurrent writes are explicitly allowed.
2) For general-purpose IPC, both processes can verify that SEAL_SHRINK,
SEAL_GROW and SEAL_WRITE are set. This guarantees that neither
process can modify the data while the other side parses it.
Furthermore, it guarantees that even with writable FDs passed to the
peer, it cannot increase the size to hit memory-limits of the source
process (in case the file-storage is accounted to the source).
The new API is an extension to fcntl(), adding two new commands:
F_GET_SEALS: Return a bitset describing the seals on the file. This
can be called on any FD if the underlying file supports
sealing.
F_ADD_SEALS: Change the seals of a given file. This requires WRITE
access to the file and F_SEAL_SEAL may not already be set.
Furthermore, the underlying file must support sealing and
there may not be any existing shared mapping of that file.
Otherwise, EBADF/EPERM is returned.
The given seals are _added_ to the existing set of seals
on the file. You cannot remove seals again.
The fcntl() handler is currently specific to shmem and disabled on all
files. A file needs to explicitly support sealing for this interface to
work. A separate syscall is added in a follow-up, which creates files that
support sealing. There is no intention to support this on other
file-systems. Semantics are unclear for non-volatile files and we lack any
use-case right now. Therefore, the implementation is specific to shmem.
Change-Id: I2d6247d3287c61dbe6bafabf56554e80b414f938
Signed-off-by: David Herrmann <dh.herrmann@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ryan Lortie <desrt@desrt.ca>
Cc: Lennart Poettering <lennart@poettering.net>
Cc: Daniel Mack <zonque@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch (of 6):
The i_mmap_writable field counts existing writable mappings of an
address_space. To allow drivers to prevent new writable mappings, make
this counter signed and prevent new writable mappings if it is negative.
This is modelled after i_writecount and DENYWRITE.
This will be required by the shmem-sealing infrastructure to prevent any
new writable mappings after the WRITE seal has been set. In case there
exists a writable mapping, this operation will fail with EBUSY.
Note that we rely on the fact that iff you already own a writable mapping,
you can increase the counter without using the helpers. This is the same
that we do for i_writecount.
Change-Id: Id16c5b650e451956a4f6df004483cb63197c613c
Signed-off-by: David Herrmann <dh.herrmann@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ryan Lortie <desrt@desrt.ca>
Cc: Lennart Poettering <lennart@poettering.net>
Cc: Daniel Mack <zonque@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
correct_wcount and inode in mmap_region() just complicate the code. This
boolean was needed previously, when deny_write_access() was called before
vma_merge(), now we can simply check VM_DENYWRITE and do
allow_write_access() if it is set.
allow_write_access() checks file != NULL, so this is safe even if it was
possible to use VM_DENYWRITE && !file. Just we need to ensure we use the
same file which was deny_write_access()'ed, so the patch also moves "file
= vma->vm_file" down after allow_write_access().
Change-Id: I80d3674ce40fb97a80b128ea63edc86ca1770d20
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Colin Cross <ccross@android.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is intended for use in loops which read data protected by RCU and may
have a large number of iterations. Such an example is dumping the list of
connections known to IPVS: ip_vs_conn_array() and ip_vs_conn_seq_next().
The benefits are for CONFIG_PREEMPT_RCU=y where we save CPU cycles
by moving rcu_read_lock and rcu_read_unlock out of large loops
but still allowing the current task to be preempted after every
loop iteration for the CONFIG_PREEMPT_RCU=n case.
The call to cond_resched() is not needed when CONFIG_PREEMPT_RCU=y.
Thanks to Paul E. McKenney for explaining this and for the
final version that checks the context with CONFIG_DEBUG_ATOMIC_SLEEP=y
for all possible configurations.
The function can be empty in the CONFIG_PREEMPT_RCU case,
rcu_read_lock and rcu_read_unlock are not needed in this case
because the task can be preempted on indication from scheduler.
Thanks to Peter Zijlstra for catching this and for his help
in trying a solution that changes __might_sleep.
Initial cond_resched_rcu_lock() function suggested by Eric Dumazet.
Change-Id: Ia218ce69df122c64c3aed2166a1a7507d41fbcad
Tested-by: Julian Anastasov <ja@ssi.bg>
Signed-off-by: Julian Anastasov <ja@ssi.bg>
Signed-off-by: Simon Horman <horms@verge.net.au>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
commit b1a366500b upstream.
shmem_fault() is the actual culprit in trinity's hole-punch starvation,
and the most significant cause of such problems: since a page faulted is
one that then appears page_mapped(), needing unmap_mapping_range() and
i_mmap_mutex to be unmapped again.
But it is not the only way in which a page can be brought into a hole in
the radix_tree while that hole is being punched; and Vlastimil's testing
implies that if enough other processors are busy filling in the hole,
then shmem_undo_range() can be kept from completing indefinitely.
shmem_file_splice_read() is the main other user of SGP_CACHE, which can
instantiate shmem pagecache pages in the read-only case (without holding
i_mutex, so perhaps concurrently with a hole-punch). Probably it's
silly not to use SGP_READ already (using the ZERO_PAGE for holes): which
ought to be safe, but might bring surprises - not a change to be rushed.
shmem_read_mapping_page_gfp() is an internal interface used by
drivers/gpu/drm GEM (and next by uprobes): it should be okay. And
shmem_file_read_iter() uses the SGP_DIRTY variant of SGP_CACHE, when
called internally by the kernel (perhaps for a stacking filesystem,
which might rely on holes to be reserved): it's unclear whether it could
be provoked to keep hole-punch busy or not.
We could apply the same umbrella as now used in shmem_fault() to
shmem_file_splice_read() and the others; but it looks ugly, and use over
a range raises questions - should it actually be per page? can these get
starved themselves?
The origin of this part of the problem is my v3.1 commit d0823576bf
("mm: pincer in truncate_inode_pages_range"), once it was duplicated
into shmem.c. It seemed like a nice idea at the time, to ensure
(barring RCU lookup fuzziness) that there's an instant when the entire
hole is empty; but the indefinitely repeated scans to ensure that make
it vulnerable.
Revert that "enhancement" to hole-punch from shmem_undo_range(), but
retain the unproblematic rescanning when it's truncating; add a couple
of comments there.
Remove the "indices[0] >= end" test: that is now handled satisfactorily
by the inner loop, and mem_cgroup_uncharge_start()/end() are too light
to be worth avoiding here.
But if we do not always loop indefinitely, we do need to handle the case
of swap swizzled back to page before shmem_free_swap() gets it: add a
retry for that case, as suggested by Konstantin Khlebnikov; and for the
case of page swizzled back to swap, as suggested by Johannes Weiner.
Change-Id: I8fdc4c0d5ea757161b9cfff11a355402dbb58edf
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lukas Czerner <lczerner@redhat.com>
Cc: Dave Jones <davej@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8e205f779d upstream.
Commit f00cdc6df7 ("shmem: fix faulting into a hole while it's
punched") was buggy: Sasha sent a lockdep report to remind us that
grabbing i_mutex in the fault path is a no-no (write syscall may already
hold i_mutex while faulting user buffer).
We tried a completely different approach (see following patch) but that
proved inadequate: good enough for a rational workload, but not good
enough against trinity - which forks off so many mappings of the object
that contention on i_mmap_mutex while hole-puncher holds i_mutex builds
into serious starvation when concurrent faults force the puncher to fall
back to single-page unmap_mapping_range() searches of the i_mmap tree.
So return to the original umbrella approach, but keep away from i_mutex
this time. We really don't want to bloat every shmem inode with a new
mutex or completion, just to protect this unlikely case from trinity.
So extend the original with wait_queue_head on stack at the hole-punch
end, and wait_queue item on the stack at the fault end.
This involves further use of i_lock to guard against the races: lockdep
has been happy so far, and I see fs/inode.c:unlock_new_inode() holds
i_lock around wake_up_bit(), which is comparable to what we do here.
i_lock is more convenient, but we could switch to shmem's info->lock.
This issue has been tagged with CVE-2014-4171, which will require commit
f00cdc6df7 and this and the following patch to be backported: we
suggest to 3.1+, though in fact the trinity forkbomb effect might go
back as far as 2.6.16, when madvise(,,MADV_REMOVE) came in - or might
not, since much has changed, with i_mmap_mutex a spinlock before 3.0.
Anyone running trinity on 3.0 and earlier? I don't think we need care.
Change-Id: Ia8f6ca7b0c1ef0c14766bc81fee73e47bdb1738a
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lukas Czerner <lczerner@redhat.com>
Cc: Dave Jones <davej@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f00cdc6df7 upstream.
Trinity finds that mmap access to a hole while it's punched from shmem
can prevent the madvise(MADV_REMOVE) or fallocate(FALLOC_FL_PUNCH_HOLE)
from completing, until the reader chooses to stop; with the puncher's
hold on i_mutex locking out all other writers until it can complete.
It appears that the tmpfs fault path is too light in comparison with its
hole-punching path, lacking an i_data_sem to obstruct it; but we don't
want to slow down the common case.
Extend shmem_fallocate()'s existing range notification mechanism, so
shmem_fault() can refrain from faulting pages into the hole while it's
punched, waiting instead on i_mutex (when safe to sleep; or repeatedly
faulting when not).
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Dave Jones <davej@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Change-Id: Icb632d07fb5c6c315ea3914aecdfae52c6536dc1
commit 47ba973440 upstream.
This patch moves the dereference of "buffer" after the check for NULL.
The only place which passes a NULL parameter is gfs2_set_acl().
Change-Id: I7ede500c05e646e4c07238d159b8f182a1fbf80d
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
posix_acl_xattr_get requires get_acl() to return EOPNOTSUPP if the
filesystem cannot support acls. This is needed for NFS, which can't
know whether or not the server supports acls until it tries to get/set
one.
This patch converts posix_acl_chmod and posix_acl_create to deal with
EOPNOTSUPP return values from get_acl().
Change-Id: I931423ae763a4950056c7b20938be6f1f4536e24
Reported-by: Russell King <linux@arm.linux.org.uk>
Link: http://lkml.kernel.org/r/20140130140834.GW15937@n2100.arm.linux.org.uk
Cc: Al Viro viro@zeniv.linux.org.uk>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Tested-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
This will allow moving all the Posix ACL handling into the VFS and clean
up tons of cruft in the filesystems.
Change-Id: I99d1ac617acb0da73722f0f977357f6a1ed4efab
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
And instead convert tmpfs to use the new generic ACL code, with two stub
methods provided for in-memory filesystems.
Change-Id: Ide27840378dbbc062c32ded2a6420c1b6c28f57e
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Rename the current posix_acl_created to __posix_acl_create and add
a fully featured helper to set up the ACLs on file creation that
uses get_acl().
Change-Id: I7d8de350fe89ef3d2f9ff6eaa2c198b5403d33fc
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Rename the current posix_acl_chmod to __posix_acl_chmod and add
a fully featured ACL chmod helper that uses the ->set_acl inode
operation.
Change-Id: I503ed1049a28ad01d32fe3fa85d8fc9b7e12610f
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
With the ->set_acl inode operation we can implement the Posix ACL
xattr handlers in generic code instead of duplicating them all
over the tree.
Change-Id: I473c270b801d7faf3338d68a29c749ff929fc575
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Factor out the code to get an ACL either from the inode or disk from
check_acl, so that it can be used elsewhere later on.
Change-Id: I81fab0da8228eaee0ba14b9b9942071caa12aeae
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
So far, POSIX ACLs are using a canonical representation that keeps all ACL
entries in a strict order; the ACL_USER and ACL_GROUP entries for specific
users and groups are ordered by user and group identifier, respectively.
The user-space code provides ACL entries in this order; the kernel
verifies that the ACL entry order is correct in posix_acl_valid().
User namespaces allow to arbitrary map user and group identifiers which
can cause the ACL_USER and ACL_GROUP entry order to differ between user
space and the kernel; posix_acl_valid() would then fail.
Work around this by allowing ACL_USER and ACL_GROUP entries to be in any
order in the kernel. The effect is only minor: file permission checks
will pick the first matching ACL_USER entry, and check all matching
ACL_GROUP entries.
(The libacl user-space library and getfacl / setfacl tools will not create
ACLs with duplicate user or group idenfifiers; they will handle ACLs with
entries in an arbitrary order correctly.)
Change-Id: Ib73a93c56fb8029102ba2aec8ea3b56a7467fb86
Signed-off-by: Andreas Gruenbacher <agruen@linbit.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Theodore Tso <tytso@mit.edu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Jan Kara <jack@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 38f3865744 ("xattr: extract simple_xattr code from tmpfs") moved
some code from tmpfs but introduced a subtle bug along the way.
If the name passed to simple_xattr_remove() does not exist in the list of
xattrs, then it is possible to call kfree(new_xattr) when new_xattr is
actually initialized to itself on the stack via uninitialized_var().
This causes a BUG() since the memory was not allocated via the slab
allocator and was not bypassed through to the page allocator because it
was too large.
Initialize the local variable to NULL so the kfree() never takes place.
Change-Id: I0f090df631e871657fb31914dce57c13e81e25c2
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>