Commit graph

236 commits

Author SHA1 Message Date
Zefan Li
4fae6ccac6 cpuset: PF_SPREAD_PAGE and PF_SPREAD_SLAB should be atomic flags
commit 2ad654bc5e upstream.

When we change cpuset.memory_spread_{page,slab}, cpuset will flip
PF_SPREAD_{PAGE,SLAB} bit of tsk->flags for each task in that cpuset.
This should be done using atomic bitops, but currently we don't,
which is broken.

Tetsuo reported a hard-to-reproduce kernel crash on RHEL6, which happened
when one thread tried to clear PF_USED_MATH while at the same time another
thread tried to flip PF_SPREAD_PAGE/PF_SPREAD_SLAB. They both operate on
the same task.

Here's the full report:
https://lkml.org/lkml/2014/9/19/230

To fix this, we make PF_SPREAD_PAGE and PF_SPREAD_SLAB atomic flags.

v4:
- updated mm/slab.c. (Fengguang Wu)
- updated Documentation.

Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: Kees Cook <keescook@chromium.org>
Fixes: 950592f7b9 ("cpusets: update tasks' page/slab spread flags in time")
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
[lizf: Backported to 3.4:
 - adjust context
 - check current->flags & PF_MEMPOLICY rather than current->mempolicy]
2014-12-01 18:02:38 +08:00
Gu Zheng
f54e04114e cpuset,mempolicy: fix sleeping function called from invalid context
commit 391acf970d upstream.

When runing with the kernel(3.15-rc7+), the follow bug occurs:
[ 9969.258987] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:586
[ 9969.359906] in_atomic(): 1, irqs_disabled(): 0, pid: 160655, name: python
[ 9969.441175] INFO: lockdep is turned off.
[ 9969.488184] CPU: 26 PID: 160655 Comm: python Tainted: G       A      3.15.0-rc7+ #85
[ 9969.581032] Hardware name: FUJITSU-SV PRIMEQUEST 1800E/SB, BIOS PRIMEQUEST 1000 Series BIOS Version 1.39 11/16/2012
[ 9969.706052]  ffffffff81a20e60 ffff8803e941fbd0 ffffffff8162f523 ffff8803e941fd18
[ 9969.795323]  ffff8803e941fbe0 ffffffff8109995a ffff8803e941fc58 ffffffff81633e6c
[ 9969.884710]  ffffffff811ba5dc ffff880405c6b480 ffff88041fdd90a0 0000000000002000
[ 9969.974071] Call Trace:
[ 9970.003403]  [<ffffffff8162f523>] dump_stack+0x4d/0x66
[ 9970.065074]  [<ffffffff8109995a>] __might_sleep+0xfa/0x130
[ 9970.130743]  [<ffffffff81633e6c>] mutex_lock_nested+0x3c/0x4f0
[ 9970.200638]  [<ffffffff811ba5dc>] ? kmem_cache_alloc+0x1bc/0x210
[ 9970.272610]  [<ffffffff81105807>] cpuset_mems_allowed+0x27/0x140
[ 9970.344584]  [<ffffffff811b1303>] ? __mpol_dup+0x63/0x150
[ 9970.409282]  [<ffffffff811b1385>] __mpol_dup+0xe5/0x150
[ 9970.471897]  [<ffffffff811b1303>] ? __mpol_dup+0x63/0x150
[ 9970.536585]  [<ffffffff81068c86>] ? copy_process.part.23+0x606/0x1d40
[ 9970.613763]  [<ffffffff810bf28d>] ? trace_hardirqs_on+0xd/0x10
[ 9970.683660]  [<ffffffff810ddddf>] ? monotonic_to_bootbased+0x2f/0x50
[ 9970.759795]  [<ffffffff81068cf0>] copy_process.part.23+0x670/0x1d40
[ 9970.834885]  [<ffffffff8106a598>] do_fork+0xd8/0x380
[ 9970.894375]  [<ffffffff81110e4c>] ? __audit_syscall_entry+0x9c/0xf0
[ 9970.969470]  [<ffffffff8106a8c6>] SyS_clone+0x16/0x20
[ 9971.030011]  [<ffffffff81642009>] stub_clone+0x69/0x90
[ 9971.091573]  [<ffffffff81641c29>] ? system_call_fastpath+0x16/0x1b

The cause is that cpuset_mems_allowed() try to take
mutex_lock(&callback_mutex) under the rcu_read_lock(which was hold in
__mpol_dup()). And in cpuset_mems_allowed(), the access to cpuset is
under rcu_read_lock, so in __mpol_dup, we can reduce the rcu_read_lock
protection region to protect the access to cpuset only in
current_cpuset_is_being_rebound(). So that we can avoid this bug.

This patch is a temporary solution that just addresses the bug
mentioned above, can not fix the long-standing issue about cpuset.mems
rebinding on fork():

"When the forker's task_struct is duplicated (which includes
 ->mems_allowed) and it races with an update to cpuset_being_rebound
 in update_tasks_nodemask() then the task's mems_allowed doesn't get
 updated. And the child task's mems_allowed can be wrong if the
 cpuset's nodemask changes before the child has been added to the
 cgroup's tasklist."

Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-07-17 15:39:49 -07:00
Li Zefan
c5ad4fdec0 cpuset: fix a race condition in __cpuset_node_allowed_softwall()
commit 99afb0fd5f upstream.

It's not safe to access task's cpuset after releasing task_lock().
Holding callback_mutex won't help.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-03-23 21:37:05 -07:00
Peter Zijlstra
fe094c4129 cpuset: Fix memory allocator deadlock
commit 0fc0287c9e upstream.

Juri hit the below lockdep report:

[    4.303391] ======================================================
[    4.303392] [ INFO: SOFTIRQ-safe -> SOFTIRQ-unsafe lock order detected ]
[    4.303394] 3.12.0-dl-peterz+ #144 Not tainted
[    4.303395] ------------------------------------------------------
[    4.303397] kworker/u4:3/689 [HC0[0]:SC0[0]:HE0:SE1] is trying to acquire:
[    4.303399]  (&p->mems_allowed_seq){+.+...}, at: [<ffffffff8114e63c>] new_slab+0x6c/0x290
[    4.303417]
[    4.303417] and this task is already holding:
[    4.303418]  (&(&q->__queue_lock)->rlock){..-...}, at: [<ffffffff812d2dfb>] blk_execute_rq_nowait+0x5b/0x100
[    4.303431] which would create a new lock dependency:
[    4.303432]  (&(&q->__queue_lock)->rlock){..-...} -> (&p->mems_allowed_seq){+.+...}
[    4.303436]

[    4.303898] the dependencies between the lock to be acquired and SOFTIRQ-irq-unsafe lock:
[    4.303918] -> (&p->mems_allowed_seq){+.+...} ops: 2762 {
[    4.303922]    HARDIRQ-ON-W at:
[    4.303923]                     [<ffffffff8108ab9a>] __lock_acquire+0x65a/0x1ff0
[    4.303926]                     [<ffffffff8108cbe3>] lock_acquire+0x93/0x140
[    4.303929]                     [<ffffffff81063dd6>] kthreadd+0x86/0x180
[    4.303931]                     [<ffffffff816ded6c>] ret_from_fork+0x7c/0xb0
[    4.303933]    SOFTIRQ-ON-W at:
[    4.303933]                     [<ffffffff8108abcc>] __lock_acquire+0x68c/0x1ff0
[    4.303935]                     [<ffffffff8108cbe3>] lock_acquire+0x93/0x140
[    4.303940]                     [<ffffffff81063dd6>] kthreadd+0x86/0x180
[    4.303955]                     [<ffffffff816ded6c>] ret_from_fork+0x7c/0xb0
[    4.303959]    INITIAL USE at:
[    4.303960]                    [<ffffffff8108a884>] __lock_acquire+0x344/0x1ff0
[    4.303963]                    [<ffffffff8108cbe3>] lock_acquire+0x93/0x140
[    4.303966]                    [<ffffffff81063dd6>] kthreadd+0x86/0x180
[    4.303969]                    [<ffffffff816ded6c>] ret_from_fork+0x7c/0xb0
[    4.303972]  }

Which reports that we take mems_allowed_seq with interrupts enabled. A
little digging found that this can only be from
cpuset_change_task_nodemask().

This is an actual deadlock because an interrupt doing an allocation will
hit get_mems_allowed()->...->__read_seqcount_begin(), which will spin
forever waiting for the write side to complete.

Cc: John Stultz <john.stultz@linaro.org>
Cc: Mel Gorman <mgorman@suse.de>
Reported-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Juri Lelli <juri.lelli@gmail.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-12-04 10:50:34 -08:00
Li Zefan
a74e9a386f cpuset: fix cpuset_print_task_mems_allowed() vs rename() race
commit 63f43f55c9 upstream.

rename() will change dentry->d_name. The result of this race can
be worse than seeing partially rewritten name, but we might access
a stale pointer because rename() will re-allocate memory to hold
a longer name.

It's safe in the protection of dentry->d_lock.

v2: check NULL dentry before acquiring dentry lock.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-03-04 06:06:44 +08:00
Srivatsa S. Bhat
c62f9945ef CPU hotplug, cpusets, suspend: Don't modify cpusets during suspend/resume
commit d35be8bab9 upstream.

In the event of CPU hotplug, the kernel modifies the cpusets' cpus_allowed
masks as and when necessary to ensure that the tasks belonging to the cpusets
have some place (online CPUs) to run on. And regular CPU hotplug is
destructive in the sense that the kernel doesn't remember the original cpuset
configurations set by the user, across hotplug operations.

However, suspend/resume (which uses CPU hotplug) is a special case in which
the kernel has the responsibility to restore the system (during resume), to
exactly the same state it was in before suspend.

In order to achieve that, do the following:

1. Don't modify cpusets during suspend/resume. At all.
   In particular, don't move the tasks from one cpuset to another, and
   don't modify any cpuset's cpus_allowed mask. So, simply ignore cpusets
   during the CPU hotplug operations that are carried out in the
   suspend/resume path.

2. However, cpusets and sched domains are related. We just want to avoid
   altering cpusets alone. So, to keep the sched domains updated, build
   a single sched domain (containing all active cpus) during each of the
   CPU hotplug operations carried out in s/r path, effectively ignoring
   the cpusets' cpus_allowed masks.

   (Since userspace is frozen while doing all this, it will go unnoticed.)

3. During the last CPU online operation during resume, build the sched
   domains by looking up the (unaltered) cpusets' cpus_allowed masks.
   That will bring back the system to the same original state as it was in
   before suspend.

Ultimately, this will not only solve the cpuset problem related to suspend
resume (ie., restores the cpusets to exactly what it was before suspend, by
not touching it at all) but also speeds up suspend/resume because we avoid
running cpuset update code for every CPU being offlined/onlined.

Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20120524141611.3692.20155.stgit@srivatsabhat.in.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-10-13 05:38:57 +09:00
Linus Torvalds
deb74f5ca1 Autogenerated GPG tag for Rusty D1ADB8F1: 15EE 8D6C AB0E 7F0C F999 BFCB D920 0E6C D1AD B8F1
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1.4.11 (GNU/Linux)
 
 iQIcBAABAgAGBQJPc+5PAAoJENkgDmzRrbjx8qwQAIRGDWGAJ7fiu8QBVbjycXJG
 7828enxrbBQodNmc+uAkYvTv3KEoi8tlweMsk/lWDv8WovZV4IlQDEFCX/f4hWVY
 S+2PmqJkN/alsG3dXd00zotK9mOJD+mQPAdjUBaNnRdp3QoV3YrjgihkWiL23DyT
 dZTgqXdbUJkHk/d9YD1qcDvWdSr1EufSLYa52PhLJqYiYVk8zCdX82deJX1MWh64
 v9I6htA73ORoX4JBGsFAOHO8fmLaq1yhBUMHOL4+gfEJVv4kSTU05GgepBHQP1fm
 BbG2hN6G4vqqiqhV5A59+h271o/2d/KBGKx8/twRGk8tNJIwTIVnr/qcGuUfytC3
 vA1fmq3vul0bzbqRgph8bGJyoVIg8CHjq24BFJQOXiQ1/6HOvjxnKBYs+3sVA829
 ZYQYuEoRKmTsD3vv3nmcqAdZZDzehBQ499bEqDNsnQRLOjOVNag/pJSaENkeVC4T
 CKYXt9BEabYnermPLdrjiabPE27GaEznX11SzCSXiWJsKX2kJnvz5RxVo8nlh1fc
 /KQWJyWi/QVmAdy4eCJFp48513BqncHvKtPZ6zN9+Y6NHKmnmAqieZhh4yV/SCqi
 EcK2oHQXmioKldn5DANQjeUCWlmEYXHbR08ahGRLNc7GZ1qKCgDr8+WEC0XYB/gQ
 XLH3KKLM+VmvtonqjDV7
 =W59/
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://github.com/rustyrussell/linux

Pull cpumask cleanups from Rusty Russell:
 "(Somehow forgot to send this out; it's been sitting in linux-next, and
  if you don't want it, it can sit there another cycle)"

I'm a sucker for things that actually delete lines of code.

Fix up trivial conflict in arch/arm/kernel/kprobes.c, where Rusty fixed
a user of &cpu_online_map to be cpu_online_mask, but that code got
deleted by commit b21d55e98a ("ARM: 7332/1: extract out code patch
function from kprobes").

* tag 'for-linus' of git://github.com/rustyrussell/linux:
  cpumask: remove old cpu_*_map.
  documentation: remove references to cpu_*_map.
  drivers/cpufreq/db8500-cpufreq: remove references to cpu_*_map.
  remove references to cpu_*_map in arch/
2012-04-02 08:53:24 -07:00
Linus Torvalds
7fda0412c5 Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar.

* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  cpusets: Remove an unused variable
  sched/rt: Improve pick_next_highest_task_rt()
  sched: Fix select_fallback_rq() vs cpu_active/cpu_online
  sched/x86/smp: Do not enable IRQs over calibrate_delay()
  sched: Fix compiler warning about declared inline after use
  MAINTAINERS: Update email address for SCHEDULER and PERF EVENTS
2012-03-29 14:46:05 -07:00
Rusty Russell
5f054e31c6 documentation: remove references to cpu_*_map.
This has been obsolescent for a while, fix documentation and
misc comments.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-03-29 15:38:31 +10:30
Dan Carpenter
160594e99d cpusets: Remove an unused variable
We don't use "cpu" any more after 2baab4e904 "sched: Fix
select_fallback_rq() vs cpu_active/cpu_online".

Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Paul Menage <paul@paulmenage.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120328104608.GD29022@elgon.mountain
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-03-28 13:40:44 +02:00
Peter Zijlstra
2baab4e904 sched: Fix select_fallback_rq() vs cpu_active/cpu_online
Commit 5fbd036b55 ("sched: Cleanup cpu_active madness"), which was
supposed to finally sort the cpu_active mess, instead uncovered more.

Since CPU_STARTING is ran before setting the cpu online, there's a
(small) window where the cpu has active,!online.

If during this time there's a wakeup of a task that used to reside on
that cpu select_task_rq() will use select_fallback_rq() to compute an
alternative cpu to run on since we find !online.

select_fallback_rq() however will compute the new cpu against
cpu_active, this means that it can return the same cpu it started out
with, the !online one, since that cpu is in fact marked active.

This results in us trying to scheduling a task on an offline cpu and
triggering a WARN in the IPI code.

The solution proposed by Chuansheng Liu of setting cpu_active in
set_cpu_online() is buggy, firstly not all archs actually use
set_cpu_online(), secondly, not all archs call set_cpu_online() with
IRQs disabled, this means we would introduce either the same race or
the race from fd8a7de17 ("x86: cpu-hotplug: Prevent softirq wakeup on
wrong CPU") -- albeit much narrower.

[ By setting online first and active later we have a window of
  online,!active, fresh and bound kthreads have task_cpu() of 0 and
  since cpu0 isn't in tsk_cpus_allowed() we end up in
  select_fallback_rq() which excludes !active, resulting in a reset
  of ->cpus_allowed and the thread running all over the place. ]

The solution is to re-work select_fallback_rq() to require active
_and_ online. This makes the active,!online case work as expected,
OTOH archs running CPU_STARTING after setting online are now
vulnerable to the issue from fd8a7de17 -- these are alpha and
blackfin.

Reported-by: Chuansheng Liu <chuansheng.liu@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: linux-alpha@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-hubqk1i10o4dpvlm06gq7v6j@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-03-27 14:50:14 +02:00
Mel Gorman
cc9a6c8776 cpuset: mm: reduce large amounts of memory barrier related damage v3
Commit c0ff7453bb ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.

[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths.  This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32.  The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.

For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.

This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side.  This is much cheaper on some architectures, including x86.  The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.

While updating the nodemask, a check is made to see if a false failure
is a risk.  If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.

In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%.  The
actual results were

                             3.3.0-rc3          3.3.0-rc3
                             rc3-vanilla        nobarrier-v2r1
    Clients   1 UserTime       0.07 (  0.00%)   0.08 (-14.19%)
    Clients   2 UserTime       0.07 (  0.00%)   0.07 (  2.72%)
    Clients   4 UserTime       0.08 (  0.00%)   0.07 (  3.29%)
    Clients   1 SysTime        0.70 (  0.00%)   0.65 (  6.65%)
    Clients   2 SysTime        0.85 (  0.00%)   0.82 (  3.65%)
    Clients   4 SysTime        1.41 (  0.00%)   1.41 (  0.32%)
    Clients   1 WallTime       0.77 (  0.00%)   0.74 (  4.19%)
    Clients   2 WallTime       0.47 (  0.00%)   0.45 (  3.73%)
    Clients   4 WallTime       0.38 (  0.00%)   0.37 (  1.58%)
    Clients   1 Flt/sec/cpu  497620.28 (  0.00%) 520294.53 (  4.56%)
    Clients   2 Flt/sec/cpu  414639.05 (  0.00%) 429882.01 (  3.68%)
    Clients   4 Flt/sec/cpu  257959.16 (  0.00%) 258761.48 (  0.31%)
    Clients   1 Flt/sec      495161.39 (  0.00%) 517292.87 (  4.47%)
    Clients   2 Flt/sec      820325.95 (  0.00%) 850289.77 (  3.65%)
    Clients   4 Flt/sec      1020068.93 (  0.00%) 1022674.06 (  0.26%)
    MMTests Statistics: duration
    Sys Time Running Test (seconds)             135.68    132.17
    User+Sys Time Running Test (seconds)         164.2    160.13
    Total Elapsed Time (seconds)                123.46    120.87

The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected).  The
actual number of page faults is noticeably improved.

For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.

To test the actual bug the commit fixed I opened two terminals.  The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data.  In a second window, the nodemask of the
cpuset was continually randomised in a loop.

Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:59 -07:00
Li Zefan
761b3ef50e cgroup: remove cgroup_subsys argument from callbacks
The argument is not used at all, and it's not necessary, because
a specific callback handler of course knows which subsys it
belongs to.

Now only ->pupulate() takes this argument, because the handlers of
this callback always call cgroup_add_file()/cgroup_add_files().

So we reduce a few lines of code, though the shrinking of object size
is minimal.

 16 files changed, 113 insertions(+), 162 deletions(-)

   text    data     bss     dec     hex filename
5486240  656987 7039960 13183187         c928d3 vmlinux.o.orig
5486170  656987 7039960 13183117         c9288d vmlinux.o

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2012-02-02 09:20:22 -08:00
Linus Torvalds
db0c2bf69a Merge branch 'for-3.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
* 'for-3.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (21 commits)
  cgroup: fix to allow mounting a hierarchy by name
  cgroup: move assignement out of condition in cgroup_attach_proc()
  cgroup: Remove task_lock() from cgroup_post_fork()
  cgroup: add sparse annotation to cgroup_iter_start() and cgroup_iter_end()
  cgroup: mark cgroup_rmdir_waitq and cgroup_attach_proc() as static
  cgroup: only need to check oldcgrp==newgrp once
  cgroup: remove redundant get/put of task struct
  cgroup: remove redundant get/put of old css_set from migrate
  cgroup: Remove unnecessary task_lock before fetching css_set on migration
  cgroup: Drop task_lock(parent) on cgroup_fork()
  cgroups: remove redundant get/put of css_set from css_set_check_fetched()
  resource cgroups: remove bogus cast
  cgroup: kill subsys->can_attach_task(), pre_attach() and attach_task()
  cgroup, cpuset: don't use ss->pre_attach()
  cgroup: don't use subsys->can_attach_task() or ->attach_task()
  cgroup: introduce cgroup_taskset and use it in subsys->can_attach(), cancel_attach() and attach()
  cgroup: improve old cgroup handling in cgroup_attach_proc()
  cgroup: always lock threadgroup during migration
  threadgroup: extend threadgroup_lock() to cover exit and exec
  threadgroup: rename signal->threadgroup_fork_lock to ->group_rwsem
  ...

Fix up conflict in kernel/cgroup.c due to commit e0197aae59: "cgroups:
fix a css_set not found bug in cgroup_attach_proc" that already
mentioned that the bug is fixed (differently) in Tejun's cgroup
patchset. This one, in other words.
2012-01-09 12:59:24 -08:00
David Rientjes
b246272ecc cpusets: stall when updating mems_allowed for mempolicy or disjoint nodemask
Kernels where MAX_NUMNODES > BITS_PER_LONG may temporarily see an empty
nodemask in a tsk's mempolicy if its previous nodemask is remapped onto a
new set of allowed cpuset nodes where the two nodemasks, as a result of
the remap, are now disjoint.

c0ff7453bb ("cpuset,mm: fix no node to alloc memory when changing
cpuset's mems") adds get_mems_allowed() to prevent the set of allowed
nodes from changing for a thread.  This causes any update to a set of
allowed nodes to stall until put_mems_allowed() is called.

This stall is unncessary, however, if at least one node remains unchanged
in the update to the set of allowed nodes.  This was addressed by
89e8a244b9 ("cpusets: avoid looping when storing to mems_allowed if one
node remains set"), but it's still possible that an empty nodemask may be
read from a mempolicy because the old nodemask may be remapped to the new
nodemask during rebind.  To prevent this, only avoid the stall if there is
no mempolicy for the thread being changed.

This is a temporary solution until all reads from mempolicy nodemasks can
be guaranteed to not be empty without the get_mems_allowed()
synchronization.

Also moves the check for nodemask intersection inside task_lock() so that
tsk->mems_allowed cannot change.  This ensures that nothing can set this
tsk's mems_allowed out from under us and also protects tsk->mempolicy.

Reported-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <paul@paulmenage.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-20 10:25:04 -08:00
Tejun Heo
94196f51c1 cgroup, cpuset: don't use ss->pre_attach()
->pre_attach() is supposed to be called before migration, which is
observed during process migration but task migration does it the other
way around.  The only ->pre_attach() user is cpuset which can do the
same operaitons in ->can_attach().  Collapse cpuset_pre_attach() into
cpuset_can_attach().

-v2: Patch contamination from later patch removed.  Spotted by Paul
     Menage.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul Menage <paul@paulmenage.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
2011-12-12 18:12:22 -08:00
Tejun Heo
bb9d97b6df cgroup: don't use subsys->can_attach_task() or ->attach_task()
Now that subsys->can_attach() and attach() take @tset instead of
@task, they can handle per-task operations.  Convert
->can_attach_task() and ->attach_task() users to use ->can_attach()
and attach() instead.  Most converions are straight-forward.
Noteworthy changes are,

* In cgroup_freezer, remove unnecessary NULL assignments to unused
  methods.  It's useless and very prone to get out of sync, which
  already happened.

* In cpuset, PF_THREAD_BOUND test is checked for each task.  This
  doesn't make any practical difference but is conceptually cleaner.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <paul@paulmenage.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: James Morris <jmorris@namei.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
2011-12-12 18:12:21 -08:00
Tejun Heo
2f7ee5691e cgroup: introduce cgroup_taskset and use it in subsys->can_attach(), cancel_attach() and attach()
Currently, there's no way to pass multiple tasks to cgroup_subsys
methods necessitating the need for separate per-process and per-task
methods.  This patch introduces cgroup_taskset which can be used to
pass multiple tasks and their associated cgroups to cgroup_subsys
methods.

Three methods - can_attach(), cancel_attach() and attach() - are
converted to use cgroup_taskset.  This unifies passed parameters so
that all methods have access to all information.  Conversions in this
patchset are identical and don't introduce any behavior change.

-v2: documentation updated as per Paul Menage's suggestion.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul Menage <paul@paulmenage.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: James Morris <jmorris@namei.org>
2011-12-12 18:12:21 -08:00
Linus Torvalds
32aaeffbd4 Merge branch 'modsplit-Oct31_2011' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
* 'modsplit-Oct31_2011' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux: (230 commits)
  Revert "tracing: Include module.h in define_trace.h"
  irq: don't put module.h into irq.h for tracking irqgen modules.
  bluetooth: macroize two small inlines to avoid module.h
  ip_vs.h: fix implicit use of module_get/module_put from module.h
  nf_conntrack.h: fix up fallout from implicit moduleparam.h presence
  include: replace linux/module.h with "struct module" wherever possible
  include: convert various register fcns to macros to avoid include chaining
  crypto.h: remove unused crypto_tfm_alg_modname() inline
  uwb.h: fix implicit use of asm/page.h for PAGE_SIZE
  pm_runtime.h: explicitly requires notifier.h
  linux/dmaengine.h: fix implicit use of bitmap.h and asm/page.h
  miscdevice.h: fix up implicit use of lists and types
  stop_machine.h: fix implicit use of smp.h for smp_processor_id
  of: fix implicit use of errno.h in include/linux/of.h
  of_platform.h: delete needless include <linux/module.h>
  acpi: remove module.h include from platform/aclinux.h
  miscdevice.h: delete unnecessary inclusion of module.h
  device_cgroup.h: delete needless include <linux/module.h>
  net: sch_generic remove redundant use of <linux/module.h>
  net: inet_timewait_sock doesnt need <linux/module.h>
  ...

Fix up trivial conflicts (other header files, and  removal of the ab3550 mfd driver) in
 - drivers/media/dvb/frontends/dibx000_common.c
 - drivers/media/video/{mt9m111.c,ov6650.c}
 - drivers/mfd/ab3550-core.c
 - include/linux/dmaengine.h
2011-11-06 19:44:47 -08:00
David Rientjes
89e8a244b9 cpusets: avoid looping when storing to mems_allowed if one node remains set
{get,put}_mems_allowed() exist so that general kernel code may locklessly
access a task's set of allowable nodes without having the chance that a
concurrent write will cause the nodemask to be empty on configurations
where MAX_NUMNODES > BITS_PER_LONG.

This could incur a significant delay, however, especially in low memory
conditions because the page allocator is blocking and reclaim requires
get_mems_allowed() itself.  It is not atypical to see writes to
cpuset.mems take over 2 seconds to complete, for example.  In low memory
conditions, this is problematic because it's one of the most imporant
times to change cpuset.mems in the first place!

The only way a task's set of allowable nodes may change is through cpusets
by writing to cpuset.mems and when attaching a task to a generic code is
not reading the nodemask with get_mems_allowed() at the same time, and
then clearing all the old nodes.  This prevents the possibility that a
reader will see an empty nodemask at the same time the writer is storing a
new nodemask.

If at least one node remains unchanged, though, it's possible to simply
set all new nodes and then clear all the old nodes.  Changing a task's
nodemask is protected by cgroup_mutex so it's guaranteed that two threads
are not changing the same task's nodemask at the same time, so the
nodemask is guaranteed to be stored before another thread changes it and
determines whether a node remains set or not.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Paul Menage <paul@paulmenage.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-02 16:07:00 -07:00
Paul Gortmaker
9984de1a5a kernel: Map most files to use export.h instead of module.h
The changed files were only including linux/module.h for the
EXPORT_SYMBOL infrastructure, and nothing else.  Revector them
onto the isolated export header for faster compile times.

Nothing to see here but a whole lot of instances of:

  -#include <linux/module.h>
  +#include <linux/export.h>

This commit is only changing the kernel dir; next targets
will probably be mm, fs, the arch dirs, etc.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2011-10-31 09:20:12 -04:00
Arun Sharma
60063497a9 atomic: use <linux/atomic.h>
This allows us to move duplicated code in <asm/atomic.h>
(atomic_inc_not_zero() for now) to <linux/atomic.h>

Signed-off-by: Arun Sharma <asharma@fb.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-26 16:49:47 -07:00
Michal Hocko
778d3b0ff0 cpusets: randomize node rotor used in cpuset_mem_spread_node()
[ This patch has already been accepted as commit 0ac0c0d0f8 but later
  reverted (commit 35926ff5fb) because it itroduced arch specific
  __node_random which was defined only for x86 code so it broke other
  archs.  This is a followup without any arch specific code.  Other than
  that there are no functional changes.]

Some workloads that create a large number of small files tend to assign
too many pages to node 0 (multi-node systems).  Part of the reason is
that the rotor (in cpuset_mem_spread_node()) used to assign nodes starts
at node 0 for newly created tasks.

This patch changes the rotor to be initialized to a random node number
of the cpuset.

[akpm@linux-foundation.org: fix layout]
[Lee.Schermerhorn@hp.com: Define stub numa_random() for !NUMA configuration]
[mhocko@suse.cz: Make it arch independent]
[akpm@linux-foundation.org: fix CONFIG_NUMA=y, MAX_NUMNODES>1 build]
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Paul Menage <menage@google.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Menage <menage@google.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-26 16:49:43 -07:00
KOSAKI Motohiro
1e1b6c511d cpuset: Fix cpuset_cpus_allowed_fallback(), don't update tsk->rt.nr_cpus_allowed
The rule is, we have to update tsk->rt.nr_cpus_allowed if we change
tsk->cpus_allowed. Otherwise RT scheduler may confuse.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4DD4B3FA.5060901@jp.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-05-28 17:02:57 +02:00
Daniel Lezcano
a77aea9201 cgroup: remove the ns_cgroup
The ns_cgroup is an annoying cgroup at the namespace / cgroup frontier and
leads to some problems:

  * cgroup creation is out-of-control
  * cgroup name can conflict when pids are looping
  * it is not possible to have a single process handling a lot of
    namespaces without falling in a exponential creation time
  * we may want to create a namespace without creating a cgroup

  The ns_cgroup was replaced by a compatibility flag 'clone_children',
  where a newly created cgroup will copy the parent cgroup values.
  The userspace has to manually create a cgroup and add a task to
  the 'tasks' file.

This patch removes the ns_cgroup as suggested in the following thread:

https://lists.linux-foundation.org/pipermail/containers/2009-June/018616.html

The 'cgroup_clone' function is removed because it is no longer used.

This is a userspace-visible change.  Commit 45531757b4 ("cgroup: notify
ns_cgroup deprecated") (merged into 2.6.27) caused the kernel to emit a
printk warning users that the feature is planned for removal.  Since that
time we have heard from XXX users who were affected by this.

Signed-off-by: Daniel Lezcano <daniel.lezcano@free.fr>
Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Jamal Hadi Salim <hadi@cyberus.ca>
Reviewed-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Acked-by: Matt Helsley <matthltc@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-26 17:12:34 -07:00
Ben Blum
f780bdb7c1 cgroups: add per-thread subsystem callbacks
Add cgroup subsystem callbacks for per-thread attachment in atomic contexts

Add can_attach_task(), pre_attach(), and attach_task() as new callbacks
for cgroups's subsystem interface.  Unlike can_attach and attach, these
are for per-thread operations, to be called potentially many times when
attaching an entire threadgroup.

Also, the old "bool threadgroup" interface is removed, as replaced by
this.  All subsystems are modified for the new interface - of note is
cpuset, which requires from/to nodemasks for attach to be globally scoped
(though per-cpuset would work too) to persist from its pre_attach to
attach_task and attach.

This is a pre-patch for cgroup-procs-writable.patch.

Signed-off-by: Ben Blum <bblum@andrew.cmu.edu>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Reviewed-by: Paul Menage <menage@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-26 17:12:34 -07:00
Peter Zijlstra
60495e7760 sched: Dynamic sched_domain::level
Remove the SD_LV_ enum and use dynamic level assignments.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110407122942.969433965@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-04-11 14:09:32 +02:00
Li Zefan
523fb486bf cpuset: hold callback_mutex in cpuset_post_clone()
Chaning cpuset->mems/cpuset->cpus should be protected under
callback_mutex.

cpuset_clone() doesn't follow this rule. It's ok because it's
called when creating and initializing a cgroup, but we'd better
hold the lock to avoid subtil break in the future.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 19:46:35 -07:00
Li Zefan
ee24d37977 cpuset: fix unchecked calls to NODEMASK_ALLOC()
Those functions that use NODEMASK_ALLOC() can't propagate errno
to users, but will fail silently.

Fix it by using a static nodemask_t variable for each function, and
those variables are protected by cgroup_mutex;

[akpm@linux-foundation.org: fix comment spelling, strengthen cgroup_lock comment]
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 19:46:35 -07:00
Li Zefan
c8163ca8af cpuset: remove unneeded NODEMASK_ALLOC() in cpuset_attach()
oldcs->mems_allowed is not modified during cpuset_attach(), so we don't
have to copy it to a buffer allocated by NODEMASK_ALLOC().  Just pass it
to cpuset_migrate_mm().

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 19:46:34 -07:00
Li Zefan
9303e0c481 cpuset: remove unneeded NODEMASK_ALLOC() in cpuset_sprintf_memlist()
It's not necessary to copy cpuset->mems_allowed to a buffer allocated by
NODEMASK_ALLOC().  Just pass it to nodelist_scnprintf().

As spotted by Paul, a side effect is we fix a bug that the function can
return -ENOMEM but the caller doesn't expect negative return value.
Therefore change the return value of cpuset_sprintf_cpulist() and
cpuset_sprintf_memlist() from int to size_t.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 19:46:34 -07:00
Li Zefan
b75f38d659 cpuset: add a missing unlock in cpuset_write_resmask()
Don't forget to release cgroup_mutex if alloc_trial_cpuset() fails.

[akpm@linux-foundation.org: avoid multiple return points]
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-04 17:53:38 -08:00
Al Viro
f7e835710a convert cgroup and cpuset
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2010-10-29 04:17:06 -04:00
KOSAKI Motohiro
b0ae198113 security: remove unused parameter from security_task_setscheduler()
All security modules shouldn't change sched_param parameter of
security_task_setscheduler().  This is not only meaningless, but also
make a harmful result if caller pass a static variable.

This patch remove policy and sched_param parameter from
security_task_setscheduler() becuase none of security module is
using it.

Cc: James Morris <jmorris@namei.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-10-21 10:12:44 +11:00
Linus Torvalds
c4efd6b569 Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (27 commits)
  sched: Use correct macro to display sched_child_runs_first in /proc/sched_debug
  sched: No need for bootmem special cases
  sched: Revert nohz_ratelimit() for now
  sched: Reduce update_group_power() calls
  sched: Update rq->clock for nohz balanced cpus
  sched: Fix spelling of sibling
  sched, cpuset: Drop __cpuexit from cpu hotplug callbacks
  sched: Fix the racy usage of thread_group_cputimer() in fastpath_timer_check()
  sched: run_posix_cpu_timers: Don't check ->exit_state, use lock_task_sighand()
  sched: thread_group_cputime: Simplify, document the "alive" check
  sched: Remove the obsolete exit_state/signal hacks
  sched: task_tick_rt: Remove the obsolete ->signal != NULL check
  sched: __sched_setscheduler: Read the RLIMIT_RTPRIO value lockless
  sched: Fix comments to make them DocBook happy
  sched: Fix fix_small_capacity
  powerpc: Exclude arch_sd_sibiling_asym_packing() on UP
  powerpc: Enable asymmetric SMT scheduling on POWER7
  sched: Add asymmetric group packing option for sibling domain
  sched: Fix capacity calculations for SMT4
  sched: Change nohz idle load balancing logic to push model
  ...
2010-08-06 09:39:22 -07:00
Tejun Heo
0b2e918aa9 sched, cpuset: Drop __cpuexit from cpu hotplug callbacks
Commit 3a101d05 (sched: adjust when cpu_active and cpuset
configurations are updated during cpu on/offlining) added
hotplug notifiers marked with __cpuexit; however, ia64 drops
text in __cpuexit during link unlike x86.

This means that functions which are referenced during init but used
only for cpu hot unplugging afterwards shouldn't be marked with
__cpuexit. Drop __cpuexit from those functions.

Reported-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <4C1FDF5B.1040301@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-06-22 08:07:39 +02:00
Jiri Kosina
f1bbbb6912 Merge branch 'master' into for-next 2010-06-16 18:08:13 +02:00
Uwe Kleine-König
732bee7af3 fix typos concerning "hierarchy"
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2010-06-16 18:03:14 +02:00
Tejun Heo
3a101d0548 sched: adjust when cpu_active and cpuset configurations are updated during cpu on/offlining
Currently, when a cpu goes down, cpu_active is cleared before
CPU_DOWN_PREPARE starts and cpuset configuration is updated from a
default priority cpu notifier.  When a cpu is coming up, it's set
before CPU_ONLINE but cpuset configuration again is updated from the
same cpu notifier.

For cpu notifiers, this presents an inconsistent state.  Threads which
a CPU_DOWN_PREPARE notifier expects to be bound to the CPU can be
migrated to other cpus because the cpu is no more inactive.

Fix it by updating cpu_active in the highest priority cpu notifier and
cpuset configuration in the second highest when a cpu is coming up.
Down path is updated similarly.  This guarantees that all other cpu
notifiers see consistent cpu_active and cpuset configuration.

cpuset_track_online_cpus() notifier is converted to
cpuset_update_active_cpus() which just updates the configuration and
now called from cpuset_cpu_[in]active() notifiers registered from
sched_init_smp().  If cpuset is disabled, cpuset_update_active_cpus()
degenerates into partition_sched_domains() making separate notifier
for !CONFIG_CPUSETS unnecessary.

This problem is triggered by cmwq.  During CPU_DOWN_PREPARE, hotplug
callback creates a kthread and kthread_bind()s it to the target cpu,
and the thread is expected to run on that cpu.

* Ingo's test discovered __cpuinit/exit markups were incorrect.
  Fixed.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Paul Menage <menage@google.com>
2010-06-08 21:40:36 +02:00
Jack Steiner
6adef3ebe5 cpusets: new round-robin rotor for SLAB allocations
We have observed several workloads running on multi-node systems where
memory is assigned unevenly across the nodes in the system.  There are
numerous reasons for this but one is the round-robin rotor in
cpuset_mem_spread_node().

For example, a simple test that writes a multi-page file will allocate
pages on nodes 0 2 4 6 ...  Odd nodes are skipped.  (Sometimes it
allocates on odd nodes & skips even nodes).

An example is shown below.  The program "lfile" writes a file consisting
of 10 pages.  The program then mmaps the file & uses get_mempolicy(...,
MPOL_F_NODE) to determine the nodes where the file pages were allocated.
The output is shown below:

	# ./lfile
	 allocated on nodes: 2 4 6 0 1 2 6 0 2

There is a single rotor that is used for allocating both file pages & slab
pages.  Writing the file allocates both a data page & a slab page
(buffer_head).  This advances the RR rotor 2 nodes for each page
allocated.

A quick confirmation seems to confirm this is the cause of the uneven
allocation:

	# echo 0 >/dev/cpuset/memory_spread_slab
	# ./lfile
	 allocated on nodes: 6 7 8 9 0 1 2 3 4 5

This patch introduces a second rotor that is used for slab allocations.

Signed-off-by: Jack Steiner <steiner@sgi.com>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Paul Menage <menage@google.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-27 09:12:44 -07:00
Miao Xie
c0ff7453bb cpuset,mm: fix no node to alloc memory when changing cpuset's mems
Before applying this patch, cpuset updates task->mems_allowed and
mempolicy by setting all new bits in the nodemask first, and clearing all
old unallowed bits later.  But in the way, the allocator may find that
there is no node to alloc memory.

The reason is that cpuset rebinds the task's mempolicy, it cleans the
nodes which the allocater can alloc pages on, for example:

(mpol: mempolicy)
	task1			task1's mpol	task2
	alloc page		1
	  alloc on node0? NO	1
				1		change mems from 1 to 0
				1		rebind task1's mpol
				0-1		  set new bits
				0	  	  clear disallowed bits
	  alloc on node1? NO	0
	  ...
	can't alloc page
	  goto oom

This patch fixes this problem by expanding the nodes range first(set newly
allowed bits) and shrink it lazily(clear newly disallowed bits).  So we
use a variable to tell the write-side task that read-side task is reading
nodemask, and the write-side task clears newly disallowed nodes after
read-side task ends the current memory allocation.

[akpm@linux-foundation.org: fix spello]
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Paul Menage <menage@google.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Ravikiran Thirumalai <kiran@scalex86.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:06:57 -07:00
Miao Xie
708c1bbc9d mempolicy: restructure rebinding-mempolicy functions
Nick Piggin reported that the allocator may see an empty nodemask when
changing cpuset's mems[1].  It happens only on the kernel that do not do
atomic nodemask_t stores.  (MAX_NUMNODES > BITS_PER_LONG)

But I found that there is also a problem on the kernel that can do atomic
nodemask_t stores.  The problem is that the allocator can't find a node to
alloc page when changing cpuset's mems though there is a lot of free
memory.  The reason is like this:

(mpol: mempolicy)
	task1			task1's mpol	task2
	alloc page		1
	  alloc on node0? NO	1
				1		change mems from 1 to 0
				1		rebind task1's mpol
				0-1		  set new bits
				0	  	  clear disallowed bits
	  alloc on node1? NO	0
	  ...
	can't alloc page
	  goto oom

I can use the attached program reproduce it by the following step:

# mkdir /dev/cpuset
# mount -t cpuset cpuset /dev/cpuset
# mkdir /dev/cpuset/1
# echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus
# echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems
# echo $$ > /dev/cpuset/1/tasks
# numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> &
   <nr_tasks> = max(nr_cpus - 1, 1)
# killall -s SIGUSR1 cpuset_mem_hog
# ./change_mems.sh

several hours later, oom will happen though there is a lot of free memory.

This patchset fixes this problem by expanding the nodes range first(set
newly allowed bits) and shrink it lazily(clear newly disallowed bits).  So
we use a variable to tell the write-side task that read-side task is
reading nodemask, and the write-side task clears newly disallowed nodes
after read-side task ends the current memory allocation.

This patch:

In order to fix no node to alloc memory, when we want to update mempolicy
and mems_allowed, we expand the set of nodes first (set all the newly
nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the
mempolicy's rebind functions may breaks the expanding.

So we restructure the mempolicy's rebind functions and split the rebind
work to two steps, just like the update of cpuset's mems: The 1st step:
expand the set of the mempolicy's nodes.  The 2nd step: shrink the set of
the mempolicy's nodes.  It is used when there is no real lock to protect
the mempolicy in the read-side.  Otherwise we can do rebind work at once.

In order to implement it, we define

	enum mpol_rebind_step {
		MPOL_REBIND_ONCE,
		MPOL_REBIND_STEP1,
		MPOL_REBIND_STEP2,
		MPOL_REBIND_NSTEP,
	};

If the mempolicy needn't be updated by two steps, we can pass
MPOL_REBIND_ONCE to the rebind functions.  Or we can pass
MPOL_REBIND_STEP1 to do the first step of the rebind work and pass
MPOL_REBIND_STEP2 to do the second step work.

Besides that, it maybe long time between these two step and we have to
release the lock that protects mempolicy and mems_allowed.  If we hold the
lock once again, we must check whether the current mempolicy is under the
rebinding (the first step has been done) or not, because the task may
alloc a new mempolicy when we don't hold the lock.  So we defined the
following flag to identify it:

#define MPOL_F_REBINDING (1 << 2)

The new functions will be used in the next patch.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Paul Menage <menage@google.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Ravikiran Thirumalai <kiran@scalex86.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:06:57 -07:00
Oleg Nesterov
9084bb8246 sched: Make select_fallback_rq() cpuset friendly
Introduce cpuset_cpus_allowed_fallback() helper to fix the cpuset problems
with select_fallback_rq(). It can be called from any context and can't use
any cpuset locks including task_lock(). It is called when the task doesn't
have online cpus in ->cpus_allowed but ttwu/etc must be able to find a
suitable cpu.

I am not proud of this patch. Everything which needs such a fat comment
can't be good even if correct. But I'd prefer to not change the locking
rules in the code I hardly understand, and in any case I believe this
simple change make the code much more correct compared to deadlocks we
currently have.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20100315091027.GA9155@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-04-02 20:12:03 +02:00
Oleg Nesterov
897f0b3c3f sched: Kill the broken and deadlockable cpuset_lock/cpuset_cpus_allowed_locked code
This patch just states the fact the cpusets/cpuhotplug interaction is
broken and removes the deadlockable code which only pretends to work.

- cpuset_lock() doesn't really work. It is needed for
  cpuset_cpus_allowed_locked() but we can't take this lock in
  try_to_wake_up()->select_fallback_rq() path.

- cpuset_lock() is deadlockable. Suppose that a task T bound to CPU takes
  callback_mutex. If cpu_down(CPU) happens before T drops callback_mutex
  stop_machine() preempts T, then migration_call(CPU_DEAD) tries to take
  cpuset_lock() and hangs forever because CPU is already dead and thus
  T can't be scheduled.

- cpuset_cpus_allowed_locked() is deadlockable too. It takes task_lock()
  which is not irq-safe, but try_to_wake_up() can be called from irq.

Kill them, and change select_fallback_rq() to use cpu_possible_mask, like
we currently do without CONFIG_CPUSETS.

Also, with or without this patch, with or without CONFIG_CPUSETS, the
callers of select_fallback_rq() can race with each other or with
set_cpus_allowed() pathes.

The subsequent patches try to to fix these problems.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20100315091003.GA9123@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-04-02 20:12:01 +02:00
Miao Xie
53feb29767 cpuset: alloc nodemask_t on the heap rather than the stack
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-24 16:31:21 -07:00
Miao Xie
5ab116c934 cpuset: fix the problem that cpuset_mem_spread_node() returns an offline node
cpuset_mem_spread_node() returns an offline node, and causes an oops.

This patch fixes it by initializing task->mems_allowed to
node_states[N_HIGH_MEMORY], and updating task->mems_allowed when doing
memory hotplug.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Reported-by: Nick Piggin <npiggin@suse.de>
Tested-by: Nick Piggin <npiggin@suse.de>
Cc: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-24 16:31:21 -07:00
Peter Zijlstra
6ad4c18884 sched: Fix balance vs hotplug race
Since (e761b77: cpu hotplug, sched: Introduce cpu_active_map and redo
sched domain managment) we have cpu_active_mask which is suppose to rule
scheduler migration and load-balancing, except it never (fully) did.

The particular problem being solved here is a crash in try_to_wake_up()
where select_task_rq() ends up selecting an offline cpu because
select_task_rq_fair() trusts the sched_domain tree to reflect the
current state of affairs, similarly select_task_rq_rt() trusts the
root_domain.

However, the sched_domains are updated from CPU_DEAD, which is after the
cpu is taken offline and after stop_machine is done. Therefore it can
race perfectly well with code assuming the domains are right.

Cure this by building the domains from cpu_active_mask on
CPU_DOWN_PREPARE.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-06 21:10:56 +01:00
Geert Uytterhoeven
e1b8090bdf cpumask: Fix generate_sched_domains() for UP
Commit acc3f5d7ca ("cpumask:
Partition_sched_domains takes array of cpumask_var_t") changed
the function signature of generate_sched_domains() for the
CONFIG_SMP=y case, but forgot to update the corresponding
function for the CONFIG_SMP=n case, causing:

  kernel/cpuset.c:2073: warning: passing argument 1 of 'generate_sched_domains' from incompatible pointer type

Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
LKML-Reference: <alpine.DEB.2.00.0912062038070.5693@ayla.of.borg>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-06 21:08:41 +01:00
Rusty Russell
acc3f5d7ca cpumask: Partition_sched_domains takes array of cpumask_var_t
Currently partition_sched_domains() takes a 'struct cpumask
*doms_new' which is a kmalloc'ed array of cpumask_t.  You can't
have such an array if 'struct cpumask' is undefined, as we plan
for CONFIG_CPUMASK_OFFSTACK=y.

So, we make this an array of cpumask_var_t instead: this is the
same for the CONFIG_CPUMASK_OFFSTACK=n case, but requires
multiple allocations for the CONFIG_CPUMASK_OFFSTACK=y case.
Hence we add alloc_sched_domains() and free_sched_domains()
functions.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <200911031453.40668.rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-04 13:16:40 +01:00
Ingo Molnar
0b9e31e926 Merge branch 'linus' into sched/core
Conflicts:
	fs/proc/array.c

Merge reason: resolve conflict and queue up dependent patch.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-25 17:30:53 +01:00