This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Pass the register type to the prolog, also provides alternate "HV"
version of hardware interrupt (0x500) and adjust LPES accordingly
We tag those interrupts by setting bit 0x2 in the trap number
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The current interrupt logic is just completely broken. We get a notification
from user space, telling us that an interrupt is there. But then user space
expects us that we just acknowledge an interrupt once we deliver it to the
guest.
This is not how real hardware works though. On real hardware, the interrupt
controller pulls the external interrupt line until it gets notified that the
interrupt was received.
So in reality we have two events: pulling and letting go of the interrupt line.
To maintain backwards compatibility, I added a new request for the pulling
part. The letting go part was implemented earlier already.
With this in place, we can now finally start guests that do not randomly stall
and stop to work at random times.
This patch implements above logic for Book3S.
Signed-off-by: Alexander Graf <agraf@suse.de>
When we're on a paired single capable host, we can just always enable
paired singles and expose them to the guest directly.
This approach breaks when multiple VMs run and access PS concurrently,
but this should suffice until we get a proper framework for it in Linux.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
The Gekko implements an extension called paired singles. When the guest wants
to use that extension, we need to make sure we're not running the host FPU,
because all FPU instructions need to get emulated to accomodate for additional
operations that occur.
This patch adds an hflag to track if we're in paired single mode or not.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
To fetch the last instruction we were interrupted on, we enable DR in early
exit code, where we are still in a very transitional phase between guest
and host state.
Most of the time this seemed to work, but another CPU can easily flush our
TLB and HTAB which makes us go in the Linux page fault handler which totally
breaks because we still use the guest's SLB entries.
To work around that, let's introduce a second KVM guest mode that defines
that whenever we get a trap, we don't call the Linux handler or go into
the KVM exit code, but just jump over the faulting instruction.
That way a potentially bad lwz doesn't trigger any faults and we can later
on interpret the invalid instruction we fetched as "fetch didn't work".
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Currently userspace has no chance to find out which virtual address space we're
in and resolve addresses. While that is a big problem for migration, it's also
unpleasent when debugging, as gdb and the monitor don't work on virtual
addresses.
This patch exports enough of the MMU segment state to userspace to make
debugging work and thus also includes the groundwork for migration.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We need quite a bunch of new constants for KVM on Book3s,
so let's define them now.
These constants will be used in later patches.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
from include/asm-powerpc. This is the result of a
mkdir arch/powerpc/include/asm
git mv include/asm-powerpc/* arch/powerpc/include/asm
Followed by a few documentation/comment fixups and a couple of places
where <asm-powepc/...> was being used explicitly. Of the latter only
one was outside the arch code and it is a driver only built for powerpc.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-08-04 12:02:00 +10:00
Renamed from include/asm-powerpc/kvm_asm.h (Browse further)