...and fix up the callers. For do_file_open_root, just declare a
struct filename on the stack and fill out the .name field. For
do_filp_open, make it also take a struct filename pointer, and fix up its
callers to call it appropriately.
For filp_open, add a variant that takes a struct filename pointer and turn
filp_open into a wrapper around it.
Change-Id: Ibeb0479a22019e78b22990406d54c4ebed76a567
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
getname() is intended to copy pathname strings from userspace into a
kernel buffer. The result is just a string in kernel space. It would
however be quite helpful to be able to attach some ancillary info to
the string.
For instance, we could attach some audit-related info to reduce the
amount of audit-related processing needed. When auditing is enabled,
we could also call getname() on the string more than once and not
need to recopy it from userspace.
This patchset converts the getname()/putname() interfaces to return
a struct instead of a string. For now, the struct just tracks the
string in kernel space and the original userland pointer for it.
Later, we'll add other information to the struct as it becomes
convenient.
Change-Id: Ib690c3dd4d56624f0ddb081e1c1d4f23c2dd0cd1
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
boolean "does it have to be exclusive?" flag is passed instead;
Local filesystem should just ignore it - the object is guaranteed
not to be there yet.
Change-Id: I25efea9892458f6f64070c62bd1adb5194dcd8c1
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The 'move_paghes()' system call was introduced long long ago with the
same permission checks as for sending a signal (except using
CAP_SYS_NICE instead of CAP_SYS_KILL for the overriding capability).
That turns out to not be a great choice - while the system call really
only moves physical page allocations around (and you need other
capabilities to do a lot of it), you can check the return value to map
out some the virtual address choices and defeat ASLR of a binary that
still shares your uid.
So change the access checks to the more common 'ptrace_may_access()'
model instead.
This tightens the access checks for the uid, and also effectively
changes the CAP_SYS_NICE check to CAP_SYS_PTRACE, but it's unlikely that
anybody really _uses_ this legacy system call any more (we hav ebetter
NUMA placement models these days), so I expect nobody to notice.
Famous last words.
Reported-by: Otto Ebeling <otto.ebeling@iki.fi>
Acked-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: stable@kernel.org
Bug: 65468230
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cherry-picked from: 197e7e521384a23b9e585178f3f11c9fa08274b9
This branch does not have the PTRACE_MODE_REALCREDS flag but its
default behavior is the same as PTRACE_MODE_REALCREDS. So use
PTRACE_MODE_READ instead of PTRACE_MODE_READ_REALCREDS.
Change-Id: I75364561d91155c01f78dd62cdd41c5f0f418854
When I use several fast SSD to do swap, swapper_space.tree_lock is
heavily contended. This makes each swap partition have one
address_space to reduce the lock contention. There is an array of
address_space for swap. The swap entry type is the index to the array.
In my test with 3 SSD, this increases the swapout throughput 20%.
[akpm@linux-foundation.org: revert unneeded change to __add_to_swap_cache]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change-Id: I8503ace83342398bf7be3d2216616868cca65311
This patch changes memcg's behavior at task_move().
At task_move(), the kernel scans a task's page table and move the changes
for mapped pages from source cgroup to target cgroup. There has been a
bug at handling shared anonymous pages for a long time.
Before patch:
- The spec says 'shared anonymous pages are not moved.'
- The implementation was 'shared anonymoys pages may be moved'.
If page_mapcount <=2, shared anonymous pages's charge were moved.
After patch:
- The spec says 'all anonymous pages are moved'.
- The implementation is 'all anonymous pages are moved'.
Considering usage of memcg, this will not affect user's experience.
'shared anonymous' pages only exists between a tree of processes which
don't do exec(). Moving one of process without exec() seems not sane.
For example, libcgroup will not be affected by this change. (Anyway, no
one noticed the implementation for a long time...)
Below is a discussion log:
- current spec/implementation are complex
- Now, shared file caches are moved
- It adds unclear check as page_mapcount(). To do correct check,
we should check swap users, etc.
- No one notice this implementation behavior. So, no one get benefit
from the design.
- In general, once task is moved to a cgroup for running, it will not
be moved....
- Finally, we have control knob as memory.move_charge_at_immigrate.
Here is a patch to allow moving shared pages, completely. This makes
memcg simpler and fix current broken code.
Suggested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 160a117f0864871ae1bab26554a985a1d2861afd)
Do not perform cond_resched() before the busy compaction loop in
__zs_compact(), because this loop does it when needed.
Bug: 25951511
Change-Id: I3b20b46f3a4fb44a2bf6ccb17264acf30deb7111
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 81da9b13f73653bf5f38c63af8029fc459198ac0)
There is no point in overriding the size class below. It causes fatal
corruption on the next chunk on the 3264-bytes size class, which is the
last size class that is not huge.
For example, if the requested size was exactly 3264 bytes, current
zsmalloc allocates and returns a chunk from the size class of 3264 bytes,
not 4096. User access to this chunk may overwrite head of the next
adjacent chunk.
Here is the panic log captured when freelist was corrupted due to this:
Kernel BUG at ffffffc00030659c [verbose debug info unavailable]
Internal error: Oops - BUG: 96000006 [#1] PREEMPT SMP
Modules linked in:
exynos-snapshot: core register saved(CPU:5)
CPUMERRSR: 0000000000000000, L2MERRSR: 0000000000000000
exynos-snapshot: context saved(CPU:5)
exynos-snapshot: item - log_kevents is disabled
CPU: 5 PID: 898 Comm: kswapd0 Not tainted 3.10.61-4497415-eng #1
task: ffffffc0b8783d80 ti: ffffffc0b71e8000 task.ti: ffffffc0b71e8000
PC is at obj_idx_to_offset+0x0/0x1c
LR is at obj_malloc+0x44/0xe8
pc : [<ffffffc00030659c>] lr : [<ffffffc000306604>] pstate: a0000045
sp : ffffffc0b71eb790
x29: ffffffc0b71eb790 x28: ffffffc00204c000
x27: 000000000001d96f x26: 0000000000000000
x25: ffffffc098cc3500 x24: ffffffc0a13f2810
x23: ffffffc098cc3501 x22: ffffffc0a13f2800
x21: 000011e1a02006e3 x20: ffffffc0a13f2800
x19: ffffffbc02a7e000 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000feb
x15: 0000000000000000 x14: 00000000a01003e3
x13: 0000000000000020 x12: fffffffffffffff0
x11: ffffffc08b264000 x10: 00000000e3a01004
x9 : ffffffc08b263fea x8 : ffffffc0b1e611c0
x7 : ffffffc000307d24 x6 : 0000000000000000
x5 : 0000000000000038 x4 : 000000000000011e
x3 : ffffffbc00003e90 x2 : 0000000000000cc0
x1 : 00000000d0100371 x0 : ffffffbc00003e90
Bug: 25951511
Change-Id: I0c82f61aa779ddf906212ab6e47e16c088fe683c
Reported-by: Sooyong Suk <s.suk@samsung.com>
Signed-off-by: Heesub Shin <heesub.shin@samsung.com>
Tested-by: Sooyong Suk <s.suk@samsung.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 839373e645d12613308d9148041c4bd967bce8d5)
In putback_zspage, we don't need to insert a zspage into list of zspage
in size_class again to just fix fullness group. We could do directly
without reinsertion so we could save some instuctions.
Bug: 25951511
Change-Id: I07ad8bac6d2f5dc90ac0d492626e067a02699979
Reported-by: Heesub Shin <heesub.shin@samsung.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Ganesh Mahendran <opensource.ganesh@gmail.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Gunho Lee <gunho.lee@lge.com>
Cc: Juneho Choi <juno.choi@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 495819ead5ad02174208994ca610852a7791a2f2)
A micro-optimization. Avoid additional branching and reduce (a bit)
registry pressure (f.e. s_off += size; d_off += size; may be calculated
twise: first for >= PAGE_SIZE check and later for offset update in "else"
clause).
scripts/bloat-o-meter shows some improvement
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-10 (-10)
function old new delta
zs_object_copy 550 540 -10
Bug: 25951511
Change-Id: Ie3255d79246493fc755e6256f12082e692c0fc3c
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 1ec7cfb13acb8047ae5baafb43d2cd6b64ac85b9)
Do not synchronize rcu in zs_compact(). Neither zsmalloc not
zram use rcu.
Bug: 25951511
Change-Id: I2f2d1a81dac561ddfabb861bedcbb1ba773f207f
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 248ca1b053c82fa22427d22b33ac51a24c88a86d)
During investigating compaction, fullness information of each class is
helpful for investigating how the compaction works well. With that, we
could know how compaction works well more clear on each size class.
Bug: 25951511
Change-Id: Idc07b265d005b680abb55b7dc61341a3de43a62c
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Juneho Choi <juno.choi@lge.com>
Cc: Gunho Lee <gunho.lee@lge.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 7b60a68529b0d827d26ea3426c2addd071bff789)
We store handle on header of each allocated object so it increases the
size of each object by sizeof(unsigned long).
If zram stores 4096 bytes to zsmalloc(ie, bad compression), zsmalloc needs
4104B-class to add handle.
However, 4104B-class has 1-pages_per_zspage so wasted size by internal
fragment is 8192 - 4104, which is terrible.
So this patch records the handle in page->private on such huge object(ie,
pages_per_zspage == 1 && maxobj_per_zspage == 1) instead of header of each
object so we could use 4096B-class, not 4104B-class.
Bug: 25951511
Change-Id: I392eed4a0e0db5a940bc8a97ef56c26a7397b0f9
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Juneho Choi <juno.choi@lge.com>
Cc: Gunho Lee <gunho.lee@lge.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit d3d07c92ff69f784bb8c3279fa87678bfa2f7f6f)
Curretly, zsmalloc regards a zspage as ZS_ALMOST_EMPTY if the zspage has
under 1/4 used objects(ie, fullness_threshold_frac). It could make result
in loose packing since zsmalloc migrates only ZS_ALMOST_EMPTY zspage out.
This patch changes the rule so that zsmalloc makes zspage which has above
3/4 used object ZS_ALMOST_FULL so it could make tight packing.
Bug: 25951511
Change-Id: I9283cd6e8ce9916ea7213b724946664e2a6f32cb
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Juneho Choi <juno.choi@lge.com>
Cc: Gunho Lee <gunho.lee@lge.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 312fcae227037619dc858c9ccd362c7b847730a2)
This patch provides core functions for migration of zsmalloc. Migraion
policy is simple as follows.
for each size class {
while {
src_page = get zs_page from ZS_ALMOST_EMPTY
if (!src_page)
break;
dst_page = get zs_page from ZS_ALMOST_FULL
if (!dst_page)
dst_page = get zs_page from ZS_ALMOST_EMPTY
if (!dst_page)
break;
migrate(from src_page, to dst_page);
}
}
For migration, we need to identify which objects in zspage are allocated
to migrate them out. We could know it by iterating of freed objects in a
zspage because first_page of zspage keeps free objects singly-linked list
but it's not efficient. Instead, this patch adds a tag(ie,
OBJ_ALLOCATED_TAG) in header of each object(ie, handle) so we could check
whether the object is allocated easily.
This patch adds another status bit in handle to synchronize between user
access through zs_map_object and migration. During migration, we cannot
move objects user are using due to data coherency between old object and
new object.
Bug: 25951511
Change-Id: Ideb5295570cc1f6c4fcb18a8f8609c63a38c86e4
[akpm@linux-foundation.org: zsmalloc.c needs sched.h for cond_resched()]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Juneho Choi <juno.choi@lge.com>
Cc: Gunho Lee <gunho.lee@lge.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit c78062612fb525430b775a0bef4d3cc07e512da0)
In later patch, migration needs some part of functions in zs_malloc and
zs_free so this patch factor out them.
Bug: 25951511
Change-Id: I6079cbc1d3d107bc39f9dbb3412d9eb9039875ad
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Juneho Choi <juno.choi@lge.com>
Cc: Gunho Lee <gunho.lee@lge.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 2e40e163a25af3bd35d128d3e2e005916de5cce6)
Recently, we started to use zram heavily and some of issues
popped.
1) external fragmentation
I got a report from Juneho Choi that fork failed although there are plenty
of free pages in the system. His investigation revealed zram is one of
the culprit to make heavy fragmentation so there was no more contiguous
16K page for pgd to fork in the ARM.
2) non-movable pages
Other problem of zram now is that inherently, user want to use zram as
swap in small memory system so they use zRAM with CMA to use memory
efficiently. However, unfortunately, it doesn't work well because zRAM
cannot use CMA's movable pages unless it doesn't support compaction. I
got several reports about that OOM happened with zram although there are
lots of swap space and free space in CMA area.
3) internal fragmentation
zRAM has started support memory limitation feature to limit memory usage
and I sent a patchset(https://lkml.org/lkml/2014/9/21/148) for VM to be
harmonized with zram-swap to stop anonymous page reclaim if zram consumed
memory up to the limit although there are free space on the swap. One
problem for that direction is zram has no way to know any hole in memory
space zsmalloc allocated by internal fragmentation so zram would regard
swap is full although there are free space in zsmalloc. For solving the
issue, zram want to trigger compaction of zsmalloc before it decides full
or not.
This patchset is first step to support above issues. For that, it adds
indirect layer between handle and object location and supports manual
compaction to solve 3th problem first of all.
After this patchset got merged, next step is to make VM aware of zsmalloc
compaction so that generic compaction will move zsmalloced-pages
automatically in runtime.
In my imaginary experiment(ie, high compress ratio data with heavy swap
in/out on 8G zram-swap), data is as follows,
Before =
zram allocated object : 60212066 bytes
zram total used: 140103680 bytes
ratio: 42.98 percent
MemFree: 840192 kB
Compaction
After =
frag ratio after compaction
zram allocated object : 60212066 bytes
zram total used: 76185600 bytes
ratio: 79.03 percent
MemFree: 901932 kB
Juneho reported below in his real platform with small aging.
So, I think the benefit would be bigger in real aging system
for a long time.
- frag_ratio increased 3% (ie, higher is better)
- memfree increased about 6MB
- In buddy info, Normal 2^3: 4, 2^2: 1: 2^1 increased, Highmem: 2^1 21 increased
frag ratio after swap fragment
used : 156677 kbytes
total: 166092 kbytes
frag_ratio : 94
meminfo before compaction
MemFree: 83724 kB
Node 0, zone Normal 13642 1364 57 10 61 17 9 5 4 0 0
Node 0, zone HighMem 425 29 1 0 0 0 0 0 0 0 0
num_migrated : 23630
compaction done
frag ratio after compaction
used : 156673 kbytes
total: 160564 kbytes
frag_ratio : 97
meminfo after compaction
MemFree: 89060 kB
Node 0, zone Normal 14076 1544 67 14 61 17 9 5 4 0 0
Node 0, zone HighMem 863 50 1 0 0 0 0 0 0 0 0
This patchset adds more logics(about 480 lines) in zsmalloc but when I
tested heavy swapin/out program, the regression for swapin/out speed is
marginal because most of overheads were caused by compress/decompress and
other MM reclaim stuff.
This patch (of 7):
Currently, handle of zsmalloc encodes object's location directly so it
makes support of migration hard.
This patch decouples handle and object via adding indirect layer. For
that, it allocates handle dynamically and returns it to user. The handle
is the address allocated by slab allocation so it's unique and we could
keep object's location in the memory space allocated for handle.
With it, we can change object's position without changing handle itself.
Bug: 25951511
Change-Id: Id50a98341f63c4e1bb39589ca992661486469dca
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Juneho Choi <juno.choi@lge.com>
Cc: Gunho Lee <gunho.lee@lge.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 3eba0c6a56c04f2b017b43641a821f1ebfb7fb4c)
Currently the underlay of zpool: zsmalloc/zbud, do not know who creates
them. There is not a method to let zsmalloc/zbud find which caller they
belong to.
Now we want to add statistics collection in zsmalloc. We need to name the
debugfs dir for each pool created. The way suggested by Minchan Kim is to
use a name passed by caller(such as zram) to create the zsmalloc pool.
/sys/kernel/debug/zsmalloc/zram0
This patch adds an argument `name' to zs_create_pool() and other related
functions.
Bug: 25951511
Change-Id: Ib71e8e63c71e808795073bd08c0aab14b43b4c35
Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 66cdef663cd7a97aff6bbbf41a81a0205dc81ba2)
Currently functions in zsmalloc.c does not arranged in a readable and
reasonable sequence. With the more and more functions added, we may
meet below inconvenience. For example:
Current functions:
void zs_init()
{
}
static void get_maxobj_per_zspage()
{
}
Then I want to add a func_1() which is called from zs_init(), and this
new added function func_1() will used get_maxobj_per_zspage() which is
defined below zs_init().
void func_1()
{
get_maxobj_per_zspage()
}
void zs_init()
{
func_1()
}
static void get_maxobj_per_zspage()
{
}
This will cause compiling issue. So we must add a declaration:
static void get_maxobj_per_zspage();
before func_1() if we do not put get_maxobj_per_zspage() before
func_1().
In addition, puting module_[init|exit] functions at the bottom of the
file conforms to our habit.
So, this patch ajusts function sequence as:
/* helper functions */
...
obj_location_to_handle()
...
/* Some exported functions */
...
zs_map_object()
zs_unmap_object()
zs_malloc()
zs_free()
zs_init()
zs_exit()
Bug: 25951511
Change-Id: I68377a213ade041b34e99a4280ebd57a933dfa83
Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit df8b5bb998f10cfc040ad30300f9a9ea4592ff82)
In zs_create_pool(), prev_class is assigned (ZS_SIZE_CLASSES - 1) times.
And the prev_class only references to the previous size_class. So we do
not need unnecessary assignement.
This patch assigns *prev_class* when a new size_class structure is
allocated and uses prev_class to check whether the first class has been
allocated.
Bug: 25951511
Change-Id: Ie5e4be867976af0e9ce786a58d1ee0147b7fb0ad
[akpm@linux-foundation.org: remove now-unused ZS_SIZE_CLASSES]
Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Reviewed-by: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 40f9fb8cffc6a20ae269e3b43dfba7a4f65d7f50)
I sent a patch [1] for unnecessary check in zsmalloc. And Minchan Kim
found zsmalloc even does not support allocating an obj with the size of
ZS_MAX_ALLOC_SIZE in some situations.
For example:
In system with 64KB PAGE_SIZE and 32 bit of physical addr. Then:
ZS_MIN_ALLOC_SIZE is 32 bytes which is calculated by:
MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
ZS_MAX_ALLOC_SIZE is 64KB(in current code, is PAGE_SIZE)
ZS_SIZE_CLASS_DELTA is 256 bytes
So, ZS_SIZE_CLASSES = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) /
ZS_SIZE_CLASS_DELTA + 1
= 256
In zs_create_pool(), the max size obj which can be allocated will be:
ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA = 32 + 255*256 = 65312
We can see that 65312 < 65536 (ZS_MAX_ALLOC_SIZE). So we can NOT
allocate objs with size ZS_MAX_ALLOC_SIZE(65536) which we promise upper
users we can do.
[1] http://lkml.iu.edu/hypermail/linux/kernel/1411.2/03835.html
[2] http://lkml.iu.edu/hypermail/linux/kernel/1411.2/04534.html
This patch fixes this issue by dynamiclly calculating zs_size_classes when
module is loaded, allocates buffer with size ZS_MAX_ALLOC_SIZE. Then the
max obj(size is ZS_MAX_ALLOC_SIZE) can be stored in it.
Bug: 25951511
Change-Id: Ia35e3456e94ebaf14c65a13dde8b471ebe1095ab
[akpm@linux-foundation.org: restore ZS_SIZE_CLASSES to fix bisectability]
Signed-off-by: Mahendran Ganesh <opensource.ganesh@gmail.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit af4ee5e977acb150371c28bd85cb7e34cac48b13)
The kunmap_atomic should use virtual address getting by kmap_atomic.
However, some pieces of code in zsmalloc uses modified address, not the
one got by kmap_atomic for kunmap_atomic.
It's okay for working because zsmalloc modifies the address inner
PAGE_SIZE bounday so it works with current kmap_atomic's implementation.
But it's still fragile with potential changing of kmap_atomic so let's
correct it.
I got a subtle bug when I implemented a new feature of zsmalloc
(compaction) due to a link's mishandling (the link was over page
boundary). Although it was totally my mistake, it took a while to find
the cause because an unpredictable kmapped address was unmapped causing an
almost random crash.
Bug: 25951511
Change-Id: I9337684d102af93ec600077bf4c9658a942c8d09
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit b1b00a5b8a6cf32e3973507decf1216709b55072)
Mahendran Ganesh reported that zpool-enabled zsmalloc should not call
zpool_unregister_driver() from zs_init() if cpu notifier registration has
failed, because error handling is performed before we register the driver
via zpool_register_driver() call.
Factor out cpu notifier registration and unregistration code and fix
zs_init() error handling.
Bug: 25951511
Change-Id: I9311d16de84accd9c5d3f2a333b30fe189a37222
link: http://lkml.iu.edu//hypermail/linux/kernel/1411.1/04156.html
[akpm@linux-foundation.org: squash bogus gcc warning]
[akpm@linux-foundation.org: use __init and __exit]
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reported-by: Mahendran Ganesh <opensource.ganesh@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 9eec4cd53f9865b733dc78cf5f6465871beed014)
zsmalloc has many size_classes to reduce fragmentation and they are in 16
bytes unit, for example, 16, 32, 48, etc., if PAGE_SIZE is 4096. And,
zsmalloc has constraint that each zspage has 4 pages at maximum.
In this situation, we can see interesting aspect. Let's think about
size_class for 1488, 1472, ..., 1376. To prevent external fragmentation,
they uses 4 pages per zspage and so all they can contain 11 objects at
maximum.
16384 (4096 * 4) = 1488 * 11 + remains
16384 (4096 * 4) = 1472 * 11 + remains
16384 (4096 * 4) = ...
16384 (4096 * 4) = 1376 * 11 + remains
It means that they have same characteristics and classification between
them isn't needed. If we use one size_class for them, we can reduce
fragementation and save some memory since both the 1488 and 1472 sized
classes can only fit 11 objects into 4 pages, and an object that's 1472
bytes can fit into an object that's 1488 bytes, merging these classes to
always use objects that are 1488 bytes will reduce the total number of
size classes. And reducing the total number of size classes reduces
overall fragmentation, because a wider range of compressed pages can fit
into a single size class, leaving less unused objects in each size class.
For this purpose, this patch implement size_class merging. If there is
size_class that have same pages_per_zspage and same number of objects per
zspage with previous size_class, we don't create new size_class. Instead,
we use previous, same characteristic size_class. With this way, above
example sizes (1488, 1472, ..., 1376) use just one size_class so we can
get much more memory utilization.
Below is result of my simple test.
TEST ENV: EXT4 on zram, mount with discard option WORKLOAD: untar kernel
source code, remove directory in descending order in size. (drivers arch
fs sound include net Documentation firmware kernel tools)
Each line represents orig_data_size, compr_data_size, mem_used_total,
fragmentation overhead (mem_used - compr_data_size) and overhead ratio
(overhead to compr_data_size), respectively, after untar and remove
operation is executed.
* untar-nomerge.out
orig_size compr_size used_size overhead overhead_ratio
525.88MB 199.16MB 210.23MB 11.08MB 5.56%
288.32MB 97.43MB 105.63MB 8.20MB 8.41%
177.32MB 61.12MB 69.40MB 8.28MB 13.55%
146.47MB 47.32MB 56.10MB 8.78MB 18.55%
124.16MB 38.85MB 48.41MB 9.55MB 24.58%
103.93MB 31.68MB 40.93MB 9.25MB 29.21%
84.34MB 22.86MB 32.72MB 9.86MB 43.13%
66.87MB 14.83MB 23.83MB 9.00MB 60.70%
60.67MB 11.11MB 18.60MB 7.49MB 67.48%
55.86MB 8.83MB 16.61MB 7.77MB 88.03%
53.32MB 8.01MB 15.32MB 7.31MB 91.24%
* untar-merge.out
orig_size compr_size used_size overhead overhead_ratio
526.23MB 199.18MB 209.81MB 10.64MB 5.34%
288.68MB 97.45MB 104.08MB 6.63MB 6.80%
177.68MB 61.14MB 66.93MB 5.79MB 9.47%
146.83MB 47.34MB 52.79MB 5.45MB 11.51%
124.52MB 38.87MB 44.30MB 5.43MB 13.96%
104.29MB 31.70MB 36.83MB 5.13MB 16.19%
84.70MB 22.88MB 27.92MB 5.04MB 22.04%
67.11MB 14.83MB 19.26MB 4.43MB 29.86%
60.82MB 11.10MB 14.90MB 3.79MB 34.17%
55.90MB 8.82MB 12.61MB 3.79MB 42.97%
53.32MB 8.01MB 11.73MB 3.73MB 46.53%
As you can see above result, merged one has better utilization (overhead
ratio, 5th column) and uses less memory (mem_used_total, 3rd column).
Bug: 25951511
Change-Id: I00825d2b8de666abb7a0d8b47348b89e8af80571
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reviewed-by: Dan Streetman <ddstreet@ieee.org>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: <juno.choi@lge.com>
Cc: "seungho1.park" <seungho1.park@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 5538c56237)
Change zsmalloc init_zspage() logic to iterate through each object on each
of its pages, checking the offset to verify the object is on the current
page before linking it into the zspage.
The current zsmalloc init_zspage free object linking code has logic that
relies on there only being one page per zspage when PAGE_SIZE is a
multiple of class->size. It calculates the number of objects for the
current page, and iterates through all of them plus one, to account for
the assumed partial object at the end of the page. While this currently
works, the logic can be simplified to just link the object at each
successive offset until the offset is larger than PAGE_SIZE, which does
not rely on PAGE_SIZE being a multiple of class->size.
Bug: 25951511
Change-Id: I89e562a18b083f24f4697b4154d5b238becb36e6
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 6dd9737e31)
The letter 'f' in "n <= N/f" stands for fullness_threshold_frac, not
1/fullness_threshold_frac.
Bug: 25951511
Change-Id: I3d3f090fab39fca1011999ea12e9aab187504e39
Signed-off-by: Wang Sheng-Hui <shhuiw@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 722cdc1723)
zs_get_total_size_bytes returns a amount of memory zsmalloc consumed with
*byte unit* but zsmalloc operates *page unit* rather than byte unit so
let's change the API so benefit we could get is that reduce unnecessary
overhead (ie, change page unit with byte unit) in zsmalloc.
Since return type is pages, "zs_get_total_pages" is better than
"zs_get_total_size_bytes".
Bug: 25951511
Change-Id: I2cbd9426483ae31c846923594e2cc3a8028e6cc2
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Dan Streetman <ddstreet@ieee.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: <juno.choi@lge.com>
Cc: <seungho1.park@lge.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: David Horner <ds2horner@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 13de8933c9)
Currently, zram has no feature to limit memory so theoretically zram can
deplete system memory. Users have asked for a limit several times as even
without exhaustion zram makes it hard to control memory usage of the
platform. This patchset adds the feature.
Patch 1 makes zs_get_total_size_bytes faster because it would be used
frequently in later patches for the new feature.
Patch 2 changes zs_get_total_size_bytes's return unit from bytes to page
so that zsmalloc doesn't need unnecessary operation(ie, << PAGE_SHIFT).
Patch 3 adds new feature. I added the feature into zram layer, not
zsmalloc because limiation is zram's requirement, not zsmalloc so any
other user using zsmalloc(ie, zpool) shouldn't affected by unnecessary
branch of zsmalloc. In future, if every users of zsmalloc want the
feature, then, we could move the feature from client side to zsmalloc
easily but vice versa would be painful.
Patch 4 adds news facility to report maximum memory usage of zram so that
this avoids user polling frequently via /sys/block/zram0/ mem_used_total
and ensures transient max are not missed.
This patch (of 4):
pages_allocated has counted in size_class structure and when user of
zsmalloc want to see total_size_bytes, it should gather all of count from
each size_class to report the sum.
It's not bad if user don't see the value often but if user start to see
the value frequently, it would be not a good deal for performance pov.
This patch moves the count from size_class to zs_pool so it could reduce
memory footprint (from [255 * 8byte] to [sizeof(atomic_long_t)]).
Bug: 25951511
Change-Id: I05526575b81c95a12a7f8f0ef05040ed18b5fa6f
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Dan Streetman <ddstreet@ieee.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: <juno.choi@lge.com>
Cc: <seungho1.park@lge.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Reviewed-by: David Horner <ds2horner@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 137f8cff50)
To avoid potential format string expansion via module parameters, do not
use the zpool type directly in request_module() without a format string.
Additionally, to avoid arbitrary modules being loaded via zpool API
(e.g. via the zswap_zpool_type module parameter) add a "zpool-" prefix
to the requested module, as well as module aliases for the existing
zpool types (zbud and zsmalloc).
Bug: 25951511
Change-Id: Id04e543f6e12e73e72bf79bdde4b1b13c35d7cae
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Acked-by: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit af8d417a04)
Add zpool api.
zpool provides an interface for memory storage, typically of compressed
memory. Users can select what backend to use; currently the only
implementations are zbud, a low density implementation with up to two
compressed pages per storage page, and zsmalloc, a higher density
implementation with multiple compressed pages per storage page.
Bug: 25951511
Change-Id: I25da4c5454ad97c35e7f666df936d4c199f656a4
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Tested-by: Seth Jennings <sjennings@variantweb.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Weijie Yang <weijie.yang@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 7eb52512a9)
According to calculation, ZS_SIZE_CLASSES value is 255 on systems with 4K
page size, not 254. The old value may forget count the ZS_MIN_ALLOC_SIZE
in.
This patch fixes this trivial issue in the comments.
Bug: 25951511
Change-Id: I7f3039f14a6813bc2e97972b6968ac09d87202ed
Signed-off-by: Weijie Yang <weijie.yang@samsung.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit 2216ee8530)
The help text for CONFIG_PGTABLE_MAPPING has an incorrect URL. While
we're at it, remove the unnecessary footnote notation.
Bug: 25951511
Change-Id: Ia2eb06b2a5d29960b51f0b6558ef5041fd9c03fa
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry-pick from commit c3e3e88adc)
This patch adds lots of comments and it will help others
to review and enhance.
Bug: 25951511
Change-Id: I2c1edf24e917c2d51ef68a9987d81f9b6a4a2bd2
Signed-off-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Signed-off-by: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
(cherry-pick from commit 1b945aeef0)
Zsmalloc has two methods 1) copy-based and 2) pte based to
access objects that span two pages.
You can see history why we supported two approach from [1].
But it was bad choice that adding hard coding to select arch
which want to use pte based method because there are lots of
SoC in an architecure and they can have different cache size,
CPU speed and so on so it would be better to expose it to user
as selectable Kconfig option like Andrew Morton suggested.
[1] https://lkml.org/lkml/2012/7/11/58
Bug: 25951511
Change-Id: Ic6855e8fefc7a0f36db896e8b03869c143e982d6
Acked-by: Nitin Gupta <ngupta@vflare.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
(cherry-pick from commit 67296874eb)
zsmalloc encodes a handle using the pfn and an object
index. On hardware platforms with physical memory starting
at 0x0 the pfn can be 0. This causes the encoded handle to be
0 and is incorrectly interpreted as an allocation failure.
This issue affects all current and future SoCs with physical
memory starting at 0x0. All MSM8974 SoCs which includes
Google Nexus 5 devices are affected.
To prevent this false error we ensure that the encoded handle
will not be 0 when allocation succeeds.
Bug: 25951511
Change-Id: I6d3c18ba4963c89a673fe633ce1e7a29d767fefa
Signed-off-by: Olav Haugan <ohaugan@codeaurora.org>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
(cherry-pick from commit 396b7fd6f9)
The existing comments are using an odd style. Fixed them up to adhere
to the StyleGuide. No code changes.
Bug: 25951511
Change-Id: Ica40c276260a4a4fb573185929d804fa3685e1b0
Signed-off-by: Sara Bird <sara.bird.iar@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
(cherry pick from commit f0e71fcd0f)
Subsystems that want to register CPU hotplug callbacks, as well as perform
initialization for the CPUs that are already online, often do it as shown
below:
get_online_cpus();
for_each_online_cpu(cpu)
init_cpu(cpu);
register_cpu_notifier(&foobar_cpu_notifier);
put_online_cpus();
This is wrong, since it is prone to ABBA deadlocks involving the
cpu_add_remove_lock and the cpu_hotplug.lock (when running concurrently
with CPU hotplug operations).
Instead, the correct and race-free way of performing the callback
registration is:
cpu_notifier_register_begin();
for_each_online_cpu(cpu)
init_cpu(cpu);
/* Note the use of the double underscored version of the API */
__register_cpu_notifier(&foobar_cpu_notifier);
cpu_notifier_register_done();
Fix the zsmalloc code by using this latter form of callback registration.
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Bug: 24810447
Change-Id: Idda192da0c2d7cb3ca581ba2916fe9b4befe312e
(cherry pick from commit 31fc00bb78)
Add my copyright to the zsmalloc source code which I maintain.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Bug: 24810447
Change-Id: Ic4137129666be7a6a383ed8b9c929ee97b6cc9fc
(cherry pick from bcf1647d08)
This patch moves zsmalloc under mm directory.
Before that, description will explain why we have needed custom
allocator.
Zsmalloc is a new slab-based memory allocator for storing compressed
pages. It is designed for low fragmentation and high allocation success
rate on large object, but <= PAGE_SIZE allocations.
zsmalloc differs from the kernel slab allocator in two primary ways to
achieve these design goals.
zsmalloc never requires high order page allocations to back slabs, or
"size classes" in zsmalloc terms. Instead it allows multiple
single-order pages to be stitched together into a "zspage" which backs
the slab. This allows for higher allocation success rate under memory
pressure.
Also, zsmalloc allows objects to span page boundaries within the zspage.
This allows for lower fragmentation than could be had with the kernel
slab allocator for objects between PAGE_SIZE/2 and PAGE_SIZE. With the
kernel slab allocator, if a page compresses to 60% of it original size,
the memory savings gained through compression is lost in fragmentation
because another object of the same size can't be stored in the leftover
space.
This ability to span pages results in zsmalloc allocations not being
directly addressable by the user. The user is given an
non-dereferencable handle in response to an allocation request. That
handle must be mapped, using zs_map_object(), which returns a pointer to
the mapped region that can be used. The mapping is necessary since the
object data may reside in two different noncontigious pages.
The zsmalloc fulfills the allocation needs for zram perfectly
[sjenning@linux.vnet.ibm.com: borrow Seth's quote]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Nitin Gupta <ngupta@vflare.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Bug: 24810447
Change-Id: I7b7923baeb9989e002523c66696e4a98fb357c46
We want to know per-process workingset size for smart memory management
on userland and we use swap(ex, zram) heavily to maximize memory
efficiency so workingset includes swap as well as RSS.
On such system, if there are lots of shared anonymous pages, it's really
hard to figure out exactly how many each process consumes memory(ie, rss
+ wap) if the system has lots of shared anonymous memory(e.g, android).
This patch introduces SwapPss field on /proc/<pid>/smaps so we can get
more exact workingset size per process.
Bongkyu tested it. Result is below.
1. 50M used swap
SwapTotal: 461976 kB
SwapFree: 411192 kB
$ adb shell cat /proc/*/smaps | grep "SwapPss:" | awk '{sum += $2} END {print sum}';
48236
$ adb shell cat /proc/*/smaps | grep "Swap:" | awk '{sum += $2} END {print sum}';
141184
2. 240M used swap
SwapTotal: 461976 kB
SwapFree: 216808 kB
$ adb shell cat /proc/*/smaps | grep "SwapPss:" | awk '{sum += $2} END {print sum}';
230315
$ adb shell cat /proc/*/smaps | grep "Swap:" | awk '{sum += $2} END {print sum}';
1387744
[akpm@linux-foundation.org: simplify kunmap_atomic() call]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: Bongkyu Kim <bongkyu.kim@lge.com>
Tested-by: Bongkyu Kim <bongkyu.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Bug: 26190646
Change-Id: Idf92d682fdef432bdd66e530a7e7cdff8f375db1
Signed-off-by: Thierry Strudel <tstrudel@google.com>