/* Copyright (c) 2010-2012, Code Aurora Forum. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ /* #define DEBUG */ #define DEV_DBG_PREFIX "HDMI: " /* #define REG_DUMP */ #define CEC_MSG_PRINT #define TOGGLE_CEC_HARDWARE_FSM #include #include #include #include #include #include #include #include #include #include "msm_fb.h" #include "hdmi_msm.h" /* Supported HDMI Audio channels */ #define MSM_HDMI_AUDIO_CHANNEL_2 0 #define MSM_HDMI_AUDIO_CHANNEL_4 1 #define MSM_HDMI_AUDIO_CHANNEL_6 2 #define MSM_HDMI_AUDIO_CHANNEL_8 3 #define MSM_HDMI_AUDIO_CHANNEL_MAX 4 #define MSM_HDMI_AUDIO_CHANNEL_FORCE_32BIT 0x7FFFFFFF /* Supported HDMI Audio sample rates */ #define MSM_HDMI_SAMPLE_RATE_32KHZ 0 #define MSM_HDMI_SAMPLE_RATE_44_1KHZ 1 #define MSM_HDMI_SAMPLE_RATE_48KHZ 2 #define MSM_HDMI_SAMPLE_RATE_88_2KHZ 3 #define MSM_HDMI_SAMPLE_RATE_96KHZ 4 #define MSM_HDMI_SAMPLE_RATE_176_4KHZ 5 #define MSM_HDMI_SAMPLE_RATE_192KHZ 6 #define MSM_HDMI_SAMPLE_RATE_MAX 7 #define MSM_HDMI_SAMPLE_RATE_FORCE_32BIT 0x7FFFFFFF static int msm_hdmi_sample_rate = MSM_HDMI_SAMPLE_RATE_48KHZ; /* HDMI/HDCP Registers */ #define HDCP_DDC_STATUS 0x0128 #define HDCP_DDC_CTRL_0 0x0120 #define HDCP_DDC_CTRL_1 0x0124 #define HDMI_DDC_CTRL 0x020C #define HPD_DISCONNECT_POLARITY 0 #define HPD_CONNECT_POLARITY 1 #define SWITCH_SET_HDMI_AUDIO(d, force) \ do {\ if (!hdmi_msm_is_dvi_mode() &&\ ((force) ||\ (external_common_state->audio_sdev.state != (d)))) {\ switch_set_state(&external_common_state->audio_sdev,\ (d));\ DEV_INFO("%s: hdmi_audio state switched to %d\n",\ __func__,\ external_common_state->audio_sdev.state);\ } \ } while (0) struct workqueue_struct *hdmi_work_queue; struct hdmi_msm_state_type *hdmi_msm_state; /* Enable HDCP by default */ static bool hdcp_feature_on = true; DEFINE_MUTEX(hdmi_msm_state_mutex); EXPORT_SYMBOL(hdmi_msm_state_mutex); static DEFINE_MUTEX(hdcp_auth_state_mutex); static void hdmi_msm_dump_regs(const char *prefix); static void hdmi_msm_hdcp_enable(void); static void hdmi_msm_turn_on(void); static int hdmi_msm_audio_off(void); static int hdmi_msm_read_edid(void); static void hdmi_msm_hpd_off(void); static boolean hdmi_msm_is_dvi_mode(void); #ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT static void hdmi_msm_cec_line_latch_detect(void); #ifdef TOGGLE_CEC_HARDWARE_FSM static boolean msg_send_complete = TRUE; static boolean msg_recv_complete = TRUE; #endif #define HDMI_MSM_CEC_REFTIMER_REFTIMER_ENABLE BIT(16) #define HDMI_MSM_CEC_REFTIMER_REFTIMER(___t) (((___t)&0xFFFF) << 0) #define HDMI_MSM_CEC_TIME_SIGNAL_FREE_TIME(___t) (((___t)&0x1FF) << 7) #define HDMI_MSM_CEC_TIME_ENABLE BIT(0) #define HDMI_MSM_CEC_ADDR_LOGICAL_ADDR(___la) (((___la)&0xFF) << 0) #define HDMI_MSM_CEC_CTRL_LINE_OE BIT(9) #define HDMI_MSM_CEC_CTRL_FRAME_SIZE(___sz) (((___sz)&0x1F) << 4) #define HDMI_MSM_CEC_CTRL_SOFT_RESET BIT(2) #define HDMI_MSM_CEC_CTRL_SEND_TRIG BIT(1) #define HDMI_MSM_CEC_CTRL_ENABLE BIT(0) #define HDMI_MSM_CEC_INT_FRAME_RD_DONE_MASK BIT(7) #define HDMI_MSM_CEC_INT_FRAME_RD_DONE_ACK BIT(6) #define HDMI_MSM_CEC_INT_FRAME_RD_DONE_INT BIT(6) #define HDMI_MSM_CEC_INT_MONITOR_MASK BIT(5) #define HDMI_MSM_CEC_INT_MONITOR_ACK BIT(4) #define HDMI_MSM_CEC_INT_MONITOR_INT BIT(4) #define HDMI_MSM_CEC_INT_FRAME_ERROR_MASK BIT(3) #define HDMI_MSM_CEC_INT_FRAME_ERROR_ACK BIT(2) #define HDMI_MSM_CEC_INT_FRAME_ERROR_INT BIT(2) #define HDMI_MSM_CEC_INT_FRAME_WR_DONE_MASK BIT(1) #define HDMI_MSM_CEC_INT_FRAME_WR_DONE_ACK BIT(0) #define HDMI_MSM_CEC_INT_FRAME_WR_DONE_INT BIT(0) #define HDMI_MSM_CEC_FRAME_WR_SUCCESS(___st) (((___st)&0xB) ==\ (HDMI_MSM_CEC_INT_FRAME_WR_DONE_INT |\ HDMI_MSM_CEC_INT_FRAME_WR_DONE_MASK |\ HDMI_MSM_CEC_INT_FRAME_ERROR_MASK)) #define HDMI_MSM_CEC_RETRANSMIT_NUM(___num) (((___num)&0xF) << 4) #define HDMI_MSM_CEC_RETRANSMIT_ENABLE BIT(0) #define HDMI_MSM_CEC_WR_DATA_DATA(___d) (((___d)&0xFF) << 8) void hdmi_msm_cec_init(void) { /* 0x02A8 CEC_REFTIMER */ HDMI_OUTP(0x02A8, HDMI_MSM_CEC_REFTIMER_REFTIMER_ENABLE | HDMI_MSM_CEC_REFTIMER_REFTIMER(27 * 50) ); /* * 0x02A0 CEC_ADDR * Starting with a default address of 4 */ HDMI_OUTP(0x02A0, HDMI_MSM_CEC_ADDR_LOGICAL_ADDR(4)); hdmi_msm_state->first_monitor = 0; hdmi_msm_state->fsm_reset_done = false; /* 0x029C CEC_INT */ /* Enable CEC interrupts */ HDMI_OUTP(0x029C, \ HDMI_MSM_CEC_INT_FRAME_WR_DONE_MASK \ | HDMI_MSM_CEC_INT_FRAME_ERROR_MASK \ | HDMI_MSM_CEC_INT_MONITOR_MASK \ | HDMI_MSM_CEC_INT_FRAME_RD_DONE_MASK); HDMI_OUTP(0x02B0, 0x7FF << 4 | 1); /* * Slight adjustment to logic 1 low periods on read, * CEC Test 8.2-3 was failing, 8 for the * BIT_1_ERR_RANGE_HI = 8 => 750us, the test used 775us, * so increased this to 9 which => 800us. */ /* * CEC latch up issue - To fire monitor interrupt * for every start of message */ HDMI_OUTP(0x02E0, 0x880000); /* * Slight adjustment to logic 0 low period on write */ HDMI_OUTP(0x02DC, 0x8888A888); /* * Enable Signal Free Time counter and set to 7 bit periods */ HDMI_OUTP(0x02A4, 0x1 | (7 * 0x30) << 7); /* 0x028C CEC_CTRL */ HDMI_OUTP(0x028C, HDMI_MSM_CEC_CTRL_ENABLE); } void hdmi_msm_cec_write_logical_addr(int addr) { /* 0x02A0 CEC_ADDR * LOGICAL_ADDR 7:0 NUM */ HDMI_OUTP(0x02A0, addr & 0xFF); } void hdmi_msm_dump_cec_msg(struct hdmi_msm_cec_msg *msg) { #ifdef CEC_MSG_PRINT int i; DEV_DBG("sender_id : %d", msg->sender_id); DEV_DBG("recvr_id : %d", msg->recvr_id); if (msg->frame_size < 2) { DEV_DBG("polling message"); return; } DEV_DBG("opcode : %02x", msg->opcode); for (i = 0; i < msg->frame_size - 2; i++) DEV_DBG("operand(%2d) : %02x", i + 1, msg->operand[i]); #endif /* CEC_MSG_PRINT */ } void hdmi_msm_cec_msg_send(struct hdmi_msm_cec_msg *msg) { int i; uint32 timeout_count = 1; int retry = 10; boolean frameType = (msg->recvr_id == 15 ? BIT(0) : 0); mutex_lock(&hdmi_msm_state_mutex); hdmi_msm_state->fsm_reset_done = false; mutex_unlock(&hdmi_msm_state_mutex); #ifdef TOGGLE_CEC_HARDWARE_FSM msg_send_complete = FALSE; #endif INIT_COMPLETION(hdmi_msm_state->cec_frame_wr_done); hdmi_msm_state->cec_frame_wr_status = 0; /* 0x0294 HDMI_MSM_CEC_RETRANSMIT */ HDMI_OUTP(0x0294, #ifdef DRVR_ONLY_CECT_NO_DAEMON HDMI_MSM_CEC_RETRANSMIT_NUM(msg->retransmit) | (msg->retransmit > 0) ? HDMI_MSM_CEC_RETRANSMIT_ENABLE : 0); #else HDMI_MSM_CEC_RETRANSMIT_NUM(0) | HDMI_MSM_CEC_RETRANSMIT_ENABLE); #endif /* 0x028C CEC_CTRL */ HDMI_OUTP(0x028C, 0x1 | msg->frame_size << 4); /* 0x0290 CEC_WR_DATA */ /* header block */ HDMI_OUTP(0x0290, HDMI_MSM_CEC_WR_DATA_DATA(msg->sender_id << 4 | msg->recvr_id) | frameType); /* data block 0 : opcode */ HDMI_OUTP(0x0290, HDMI_MSM_CEC_WR_DATA_DATA(msg->frame_size < 2 ? 0 : msg->opcode) | frameType); /* data block 1-14 : operand 0-13 */ for (i = 0; i < msg->frame_size - 1; i++) HDMI_OUTP(0x0290, HDMI_MSM_CEC_WR_DATA_DATA(msg->operand[i]) | (msg->recvr_id == 15 ? BIT(0) : 0)); for (; i < 14; i++) HDMI_OUTP(0x0290, HDMI_MSM_CEC_WR_DATA_DATA(0) | (msg->recvr_id == 15 ? BIT(0) : 0)); while ((HDMI_INP(0x0298) & 1) && retry--) { DEV_DBG("CEC line is busy(%d)\n", retry); schedule(); } /* 0x028C CEC_CTRL */ HDMI_OUTP(0x028C, HDMI_MSM_CEC_CTRL_LINE_OE | HDMI_MSM_CEC_CTRL_FRAME_SIZE(msg->frame_size) | HDMI_MSM_CEC_CTRL_SEND_TRIG | HDMI_MSM_CEC_CTRL_ENABLE); timeout_count = wait_for_completion_interruptible_timeout( &hdmi_msm_state->cec_frame_wr_done, HZ); if (!timeout_count) { hdmi_msm_state->cec_frame_wr_status |= CEC_STATUS_WR_TMOUT; DEV_ERR("%s: timedout", __func__); hdmi_msm_dump_cec_msg(msg); } else { DEV_DBG("CEC write frame done (frame len=%d)", msg->frame_size); hdmi_msm_dump_cec_msg(msg); } #ifdef TOGGLE_CEC_HARDWARE_FSM if (!msg_recv_complete) { /* Toggle CEC hardware FSM */ HDMI_OUTP(0x028C, 0x0); HDMI_OUTP(0x028C, HDMI_MSM_CEC_CTRL_ENABLE); msg_recv_complete = TRUE; } msg_send_complete = TRUE; #else HDMI_OUTP(0x028C, 0x0); HDMI_OUTP(0x028C, HDMI_MSM_CEC_CTRL_ENABLE); #endif } void hdmi_msm_cec_line_latch_detect(void) { /* * CECT 9-5-1 * The timer period needs to be changed to appropriate value */ /* * Timedout without RD_DONE, WR_DONE or ERR_INT * Toggle CEC hardware FSM */ mutex_lock(&hdmi_msm_state_mutex); if (hdmi_msm_state->first_monitor == 1) { DEV_WARN("CEC line is probably latched up - CECT 9-5-1"); if (!msg_recv_complete) hdmi_msm_state->fsm_reset_done = true; HDMI_OUTP(0x028C, 0x0); HDMI_OUTP(0x028C, HDMI_MSM_CEC_CTRL_ENABLE); hdmi_msm_state->first_monitor = 0; } mutex_unlock(&hdmi_msm_state_mutex); } void hdmi_msm_cec_msg_recv(void) { uint32 data; int i; #ifdef DRVR_ONLY_CECT_NO_DAEMON struct hdmi_msm_cec_msg temp_msg; #endif mutex_lock(&hdmi_msm_state_mutex); if (hdmi_msm_state->cec_queue_wr == hdmi_msm_state->cec_queue_rd && hdmi_msm_state->cec_queue_full) { mutex_unlock(&hdmi_msm_state_mutex); DEV_ERR("CEC message queue is overflowing\n"); #ifdef DRVR_ONLY_CECT_NO_DAEMON /* * Without CEC daemon: * Compliance tests fail once the queue gets filled up. * so reset the pointers to the start of the queue. */ hdmi_msm_state->cec_queue_wr = hdmi_msm_state->cec_queue_start; hdmi_msm_state->cec_queue_rd = hdmi_msm_state->cec_queue_start; hdmi_msm_state->cec_queue_full = false; #else return; #endif } if (hdmi_msm_state->cec_queue_wr == NULL) { DEV_ERR("%s: wp is NULL\n", __func__); return; } mutex_unlock(&hdmi_msm_state_mutex); /* 0x02AC CEC_RD_DATA */ data = HDMI_INP(0x02AC); hdmi_msm_state->cec_queue_wr->sender_id = (data & 0xF0) >> 4; hdmi_msm_state->cec_queue_wr->recvr_id = (data & 0x0F); hdmi_msm_state->cec_queue_wr->frame_size = (data & 0x1F00) >> 8; DEV_DBG("Recvd init=[%u] dest=[%u] size=[%u]\n", hdmi_msm_state->cec_queue_wr->sender_id, hdmi_msm_state->cec_queue_wr->recvr_id, hdmi_msm_state->cec_queue_wr->frame_size); if (hdmi_msm_state->cec_queue_wr->frame_size < 1) { DEV_ERR("%s: invalid message (frame length = %d)", __func__, hdmi_msm_state->cec_queue_wr->frame_size); return; } else if (hdmi_msm_state->cec_queue_wr->frame_size == 1) { DEV_DBG("%s: polling message (dest[%x] <- init[%x])", __func__, hdmi_msm_state->cec_queue_wr->recvr_id, hdmi_msm_state->cec_queue_wr->sender_id); return; } /* data block 0 : opcode */ data = HDMI_INP(0x02AC); hdmi_msm_state->cec_queue_wr->opcode = data & 0xFF; /* data block 1-14 : operand 0-13 */ for (i = 0; i < hdmi_msm_state->cec_queue_wr->frame_size - 2; i++) { data = HDMI_INP(0x02AC); hdmi_msm_state->cec_queue_wr->operand[i] = data & 0xFF; } for (; i < 14; i++) hdmi_msm_state->cec_queue_wr->operand[i] = 0; DEV_DBG("CEC read frame done\n"); DEV_DBG("=======================================\n"); hdmi_msm_dump_cec_msg(hdmi_msm_state->cec_queue_wr); DEV_DBG("=======================================\n"); #ifdef DRVR_ONLY_CECT_NO_DAEMON switch (hdmi_msm_state->cec_queue_wr->opcode) { case 0x64: /* Set OSD String */ DEV_INFO("Recvd OSD Str=[%x]\n",\ hdmi_msm_state->cec_queue_wr->operand[3]); break; case 0x83: /* Give Phy Addr */ DEV_INFO("Recvd a Give Phy Addr cmd\n"); memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg)); /* Setup a frame for sending out phy addr */ temp_msg.sender_id = 0x4; /* Broadcast */ temp_msg.recvr_id = 0xf; temp_msg.opcode = 0x84; i = 0; temp_msg.operand[i++] = 0x10; temp_msg.operand[i++] = 0x00; temp_msg.operand[i++] = 0x04; temp_msg.frame_size = i + 2; hdmi_msm_cec_msg_send(&temp_msg); break; case 0xFF: /* Abort */ DEV_INFO("Recvd an abort cmd 0xFF\n"); memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg)); temp_msg.sender_id = 0x4; temp_msg.recvr_id = hdmi_msm_state->cec_queue_wr->sender_id; i = 0; /*feature abort */ temp_msg.opcode = 0x00; temp_msg.operand[i++] = hdmi_msm_state->cec_queue_wr->opcode; /*reason for abort = "Refused" */ temp_msg.operand[i++] = 0x04; temp_msg.frame_size = i + 2; hdmi_msm_dump_cec_msg(&temp_msg); hdmi_msm_cec_msg_send(&temp_msg); break; case 0x046: /* Give OSD name */ DEV_INFO("Recvd cmd 0x046\n"); memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg)); temp_msg.sender_id = 0x4; temp_msg.recvr_id = hdmi_msm_state->cec_queue_wr->sender_id; i = 0; /* OSD Name */ temp_msg.opcode = 0x47; /* Display control byte */ temp_msg.operand[i++] = 0x00; temp_msg.operand[i++] = 'H'; temp_msg.operand[i++] = 'e'; temp_msg.operand[i++] = 'l'; temp_msg.operand[i++] = 'l'; temp_msg.operand[i++] = 'o'; temp_msg.operand[i++] = ' '; temp_msg.operand[i++] = 'W'; temp_msg.operand[i++] = 'o'; temp_msg.operand[i++] = 'r'; temp_msg.operand[i++] = 'l'; temp_msg.operand[i++] = 'd'; temp_msg.frame_size = i + 2; hdmi_msm_cec_msg_send(&temp_msg); break; case 0x08F: /* Give Device Power status */ DEV_INFO("Recvd a Power status message\n"); memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg)); temp_msg.sender_id = 0x4; temp_msg.recvr_id = hdmi_msm_state->cec_queue_wr->sender_id; i = 0; /* OSD String */ temp_msg.opcode = 0x90; temp_msg.operand[i++] = 'H'; temp_msg.operand[i++] = 'e'; temp_msg.operand[i++] = 'l'; temp_msg.operand[i++] = 'l'; temp_msg.operand[i++] = 'o'; temp_msg.operand[i++] = ' '; temp_msg.operand[i++] = 'W'; temp_msg.operand[i++] = 'o'; temp_msg.operand[i++] = 'r'; temp_msg.operand[i++] = 'l'; temp_msg.operand[i++] = 'd'; temp_msg.frame_size = i + 2; hdmi_msm_cec_msg_send(&temp_msg); break; case 0x080: /* Routing Change cmd */ case 0x086: /* Set Stream Path */ DEV_INFO("Recvd Set Stream\n"); memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg)); temp_msg.sender_id = 0x4; /*Broadcast this message*/ temp_msg.recvr_id = 0xf; i = 0; temp_msg.opcode = 0x82; /* Active Source */ temp_msg.operand[i++] = 0x10; temp_msg.operand[i++] = 0x00; temp_msg.frame_size = i + 2; hdmi_msm_cec_msg_send(&temp_msg); /* * sending message */ memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg)); temp_msg.sender_id = 0x4; temp_msg.recvr_id = hdmi_msm_state->cec_queue_wr->sender_id; i = 0; /* opcode for Image View On */ temp_msg.opcode = 0x04; temp_msg.frame_size = i + 2; hdmi_msm_cec_msg_send(&temp_msg); break; case 0x44: /* User Control Pressed */ DEV_INFO("User Control Pressed\n"); break; case 0x45: /* User Control Released */ DEV_INFO("User Control Released\n"); break; default: DEV_INFO("Recvd an unknown cmd = [%u]\n", hdmi_msm_state->cec_queue_wr->opcode); #ifdef __SEND_ABORT__ memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg)); temp_msg.sender_id = 0x4; temp_msg.recvr_id = hdmi_msm_state->cec_queue_wr->sender_id; i = 0; /* opcode for feature abort */ temp_msg.opcode = 0x00; temp_msg.operand[i++] = hdmi_msm_state->cec_queue_wr->opcode; /*reason for abort = "Unrecognized opcode" */ temp_msg.operand[i++] = 0x00; temp_msg.frame_size = i + 2; hdmi_msm_cec_msg_send(&temp_msg); break; #else memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg)); temp_msg.sender_id = 0x4; temp_msg.recvr_id = hdmi_msm_state->cec_queue_wr->sender_id; i = 0; /* OSD String */ temp_msg.opcode = 0x64; temp_msg.operand[i++] = 0x0; temp_msg.operand[i++] = 'H'; temp_msg.operand[i++] = 'e'; temp_msg.operand[i++] = 'l'; temp_msg.operand[i++] = 'l'; temp_msg.operand[i++] = 'o'; temp_msg.operand[i++] = ' '; temp_msg.operand[i++] = 'W'; temp_msg.operand[i++] = 'o'; temp_msg.operand[i++] = 'r'; temp_msg.operand[i++] = 'l'; temp_msg.operand[i++] = 'd'; temp_msg.frame_size = i + 2; hdmi_msm_cec_msg_send(&temp_msg); break; #endif /* __SEND_ABORT__ */ } #endif /* DRVR_ONLY_CECT_NO_DAEMON */ mutex_lock(&hdmi_msm_state_mutex); hdmi_msm_state->cec_queue_wr++; if (hdmi_msm_state->cec_queue_wr == CEC_QUEUE_END) hdmi_msm_state->cec_queue_wr = hdmi_msm_state->cec_queue_start; if (hdmi_msm_state->cec_queue_wr == hdmi_msm_state->cec_queue_rd) hdmi_msm_state->cec_queue_full = true; mutex_unlock(&hdmi_msm_state_mutex); DEV_DBG("Exiting %s()\n", __func__); } void hdmi_msm_cec_one_touch_play(void) { struct hdmi_msm_cec_msg temp_msg; uint32 i = 0; memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg)); temp_msg.sender_id = 0x4; /* * Broadcast this message */ temp_msg.recvr_id = 0xf; i = 0; /* Active Source */ temp_msg.opcode = 0x82; temp_msg.operand[i++] = 0x10; temp_msg.operand[i++] = 0x00; /*temp_msg.operand[i++] = 0x04;*/ temp_msg.frame_size = i + 2; hdmi_msm_cec_msg_send(&temp_msg); /* * sending message */ memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg)); temp_msg.sender_id = 0x4; temp_msg.recvr_id = hdmi_msm_state->cec_queue_wr->sender_id; i = 0; /* Image View On */ temp_msg.opcode = 0x04; temp_msg.frame_size = i + 2; hdmi_msm_cec_msg_send(&temp_msg); } #endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT */ uint32 hdmi_msm_get_io_base(void) { return (uint32)MSM_HDMI_BASE; } EXPORT_SYMBOL(hdmi_msm_get_io_base); /* Table indicating the video format supported by the HDMI TX Core v1.0 */ /* Valid Pixel-Clock rates: 25.2MHz, 27MHz, 27.03MHz, 74.25MHz, 148.5MHz */ static void hdmi_msm_setup_video_mode_lut(void) { HDMI_SETUP_LUT(640x480p60_4_3); HDMI_SETUP_LUT(720x480p60_4_3); HDMI_SETUP_LUT(720x480p60_16_9); HDMI_SETUP_LUT(1280x720p60_16_9); HDMI_SETUP_LUT(1920x1080i60_16_9); HDMI_SETUP_LUT(1440x480i60_4_3); HDMI_SETUP_LUT(1440x480i60_16_9); HDMI_SETUP_LUT(1920x1080p60_16_9); HDMI_SETUP_LUT(720x576p50_4_3); HDMI_SETUP_LUT(720x576p50_16_9); HDMI_SETUP_LUT(1280x720p50_16_9); HDMI_SETUP_LUT(1440x576i50_4_3); HDMI_SETUP_LUT(1440x576i50_16_9); HDMI_SETUP_LUT(1920x1080p50_16_9); HDMI_SETUP_LUT(1920x1080p24_16_9); HDMI_SETUP_LUT(1920x1080p25_16_9); HDMI_SETUP_LUT(1920x1080p30_16_9); } #ifdef PORT_DEBUG const char *hdmi_msm_name(uint32 offset) { switch (offset) { case 0x0000: return "CTRL"; case 0x0020: return "AUDIO_PKT_CTRL1"; case 0x0024: return "ACR_PKT_CTRL"; case 0x0028: return "VBI_PKT_CTRL"; case 0x002C: return "INFOFRAME_CTRL0"; #ifdef CONFIG_FB_MSM_HDMI_3D case 0x0034: return "GEN_PKT_CTRL"; #endif case 0x003C: return "ACP"; case 0x0040: return "GC"; case 0x0044: return "AUDIO_PKT_CTRL2"; case 0x0048: return "ISRC1_0"; case 0x004C: return "ISRC1_1"; case 0x0050: return "ISRC1_2"; case 0x0054: return "ISRC1_3"; case 0x0058: return "ISRC1_4"; case 0x005C: return "ISRC2_0"; case 0x0060: return "ISRC2_1"; case 0x0064: return "ISRC2_2"; case 0x0068: return "ISRC2_3"; case 0x006C: return "AVI_INFO0"; case 0x0070: return "AVI_INFO1"; case 0x0074: return "AVI_INFO2"; case 0x0078: return "AVI_INFO3"; #ifdef CONFIG_FB_MSM_HDMI_3D case 0x0084: return "GENERIC0_HDR"; case 0x0088: return "GENERIC0_0"; case 0x008C: return "GENERIC0_1"; #endif case 0x00C4: return "ACR_32_0"; case 0x00C8: return "ACR_32_1"; case 0x00CC: return "ACR_44_0"; case 0x00D0: return "ACR_44_1"; case 0x00D4: return "ACR_48_0"; case 0x00D8: return "ACR_48_1"; case 0x00E4: return "AUDIO_INFO0"; case 0x00E8: return "AUDIO_INFO1"; case 0x0110: return "HDCP_CTRL"; case 0x0114: return "HDCP_DEBUG_CTRL"; case 0x0118: return "HDCP_INT_CTRL"; case 0x011C: return "HDCP_LINK0_STATUS"; case 0x012C: return "HDCP_ENTROPY_CTRL0"; case 0x0130: return "HDCP_RESET"; case 0x0134: return "HDCP_RCVPORT_DATA0"; case 0x0138: return "HDCP_RCVPORT_DATA1"; case 0x013C: return "HDCP_RCVPORT_DATA2"; case 0x0144: return "HDCP_RCVPORT_DATA3"; case 0x0148: return "HDCP_RCVPORT_DATA4"; case 0x014C: return "HDCP_RCVPORT_DATA5"; case 0x0150: return "HDCP_RCVPORT_DATA6"; case 0x0168: return "HDCP_RCVPORT_DATA12"; case 0x01D0: return "AUDIO_CFG"; case 0x0208: return "USEC_REFTIMER"; case 0x020C: return "DDC_CTRL"; case 0x0214: return "DDC_INT_CTRL"; case 0x0218: return "DDC_SW_STATUS"; case 0x021C: return "DDC_HW_STATUS"; case 0x0220: return "DDC_SPEED"; case 0x0224: return "DDC_SETUP"; case 0x0228: return "DDC_TRANS0"; case 0x022C: return "DDC_TRANS1"; case 0x0238: return "DDC_DATA"; case 0x0250: return "HPD_INT_STATUS"; case 0x0254: return "HPD_INT_CTRL"; case 0x0258: return "HPD_CTRL"; case 0x025C: return "HDCP_ENTROPY_CTRL1"; case 0x027C: return "DDC_REF"; case 0x0284: return "HDCP_SW_UPPER_AKSV"; case 0x0288: return "HDCP_SW_LOWER_AKSV"; case 0x02B4: return "ACTIVE_H"; case 0x02B8: return "ACTIVE_V"; case 0x02BC: return "ACTIVE_V_F2"; case 0x02C0: return "TOTAL"; case 0x02C4: return "V_TOTAL_F2"; case 0x02C8: return "FRAME_CTRL"; case 0x02CC: return "AUD_INT"; case 0x0300: return "PHY_REG0"; case 0x0304: return "PHY_REG1"; case 0x0308: return "PHY_REG2"; case 0x030C: return "PHY_REG3"; case 0x0310: return "PHY_REG4"; case 0x0314: return "PHY_REG5"; case 0x0318: return "PHY_REG6"; case 0x031C: return "PHY_REG7"; case 0x0320: return "PHY_REG8"; case 0x0324: return "PHY_REG9"; case 0x0328: return "PHY_REG10"; case 0x032C: return "PHY_REG11"; case 0x0330: return "PHY_REG12"; default: return "???"; } } void hdmi_outp(uint32 offset, uint32 value) { uint32 in_val; outpdw(MSM_HDMI_BASE+offset, value); in_val = inpdw(MSM_HDMI_BASE+offset); DEV_DBG("HDMI[%04x] => %08x [%08x] %s\n", offset, value, in_val, hdmi_msm_name(offset)); } uint32 hdmi_inp(uint32 offset) { uint32 value = inpdw(MSM_HDMI_BASE+offset); DEV_DBG("HDMI[%04x] <= %08x %s\n", offset, value, hdmi_msm_name(offset)); return value; } #endif /* DEBUG */ static void hdmi_msm_turn_on(void); static int hdmi_msm_audio_off(void); static int hdmi_msm_read_edid(void); static void hdmi_msm_hpd_off(void); static void hdmi_msm_send_event(boolean on) { char *envp[2]; /* QDSP OFF preceding the HPD event notification */ envp[0] = "HDCP_STATE=FAIL"; envp[1] = NULL; DEV_ERR("hdmi: HDMI HPD: QDSP OFF\n"); kobject_uevent_env(external_common_state->uevent_kobj, KOBJ_CHANGE, envp); if (on) { /* Build EDID table */ hdmi_msm_read_edid(); switch_set_state(&external_common_state->sdev, 1); DEV_INFO("%s: hdmi state switched to %d\n", __func__, external_common_state->sdev.state); DEV_INFO("HDMI HPD: CONNECTED: send ONLINE\n"); kobject_uevent(external_common_state->uevent_kobj, KOBJ_ONLINE); if (!hdmi_msm_state->hdcp_enable) { /* Send Audio for HDMI Compliance Cases*/ envp[0] = "HDCP_STATE=PASS"; envp[1] = NULL; DEV_INFO("HDMI HPD: sense : send HDCP_PASS\n"); kobject_uevent_env(external_common_state->uevent_kobj, KOBJ_CHANGE, envp); } } else { switch_set_state(&external_common_state->sdev, 0); DEV_INFO("%s: hdmi state switch to %d\n", __func__, external_common_state->sdev.state); DEV_INFO("hdmi: HDMI HPD: sense DISCONNECTED: send OFFLINE\n"); kobject_uevent(external_common_state->uevent_kobj, KOBJ_OFFLINE); } } static void hdmi_msm_hpd_state_work(struct work_struct *work) { if (!hdmi_msm_state || !hdmi_msm_state->hpd_initialized || !MSM_HDMI_BASE) { DEV_ERR("hdmi: %s: ignored, probe failed\n", __func__); return; } hdmi_msm_send_event(external_common_state->hpd_state); } #ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT static void hdmi_msm_cec_latch_work(struct work_struct *work) { hdmi_msm_cec_line_latch_detect(); } #endif static void hdcp_deauthenticate(void); static void hdmi_msm_hdcp_reauth_work(struct work_struct *work) { if (!hdmi_msm_state->hdcp_enable) { DEV_DBG("%s: HDCP not enabled\n", __func__); return; } /* Don't process recursive actions */ mutex_lock(&hdmi_msm_state_mutex); if (hdmi_msm_state->hdcp_activating) { mutex_unlock(&hdmi_msm_state_mutex); return; } mutex_unlock(&hdmi_msm_state_mutex); /* * Reauth=>deauth, hdcp_auth * hdcp_auth=>turn_on() which calls * HDMI Core reset without informing the Audio QDSP * this can do bad things to video playback on the HDTV * Therefore, as surprising as it may sound do reauth * only if the device is HDCP-capable */ hdcp_deauthenticate(); mutex_lock(&hdcp_auth_state_mutex); hdmi_msm_state->reauth = TRUE; mutex_unlock(&hdcp_auth_state_mutex); mod_timer(&hdmi_msm_state->hdcp_timer, jiffies + HZ/2); } static void hdmi_msm_hdcp_work(struct work_struct *work) { if (!hdmi_msm_state->hdcp_enable) { DEV_DBG("%s: HDCP not enabled\n", __func__); return; } /* Only re-enable if cable still connected */ mutex_lock(&external_common_state_hpd_mutex); if (external_common_state->hpd_state && !(hdmi_msm_state->full_auth_done)) { mutex_unlock(&external_common_state_hpd_mutex); if (hdmi_msm_state->reauth == TRUE) { DEV_DBG("%s: Starting HDCP re-authentication\n", __func__); hdmi_msm_turn_on(); } else { DEV_DBG("%s: Starting HDCP authentication\n", __func__); hdmi_msm_hdcp_enable(); } } else { mutex_unlock(&external_common_state_hpd_mutex); DEV_DBG("%s: HDMI not connected or HDCP already active\n", __func__); hdmi_msm_state->reauth = FALSE; } } int hdmi_msm_process_hdcp_interrupts(void) { int rc = -1; uint32 hdcp_int_val; char *envp[2]; if (!hdmi_msm_state->hdcp_enable) { DEV_DBG("%s: HDCP not enabled\n", __func__); return -EINVAL; } /* HDCP_INT_CTRL[0x0118] * [0] AUTH_SUCCESS_INT [R] HDCP Authentication Success * interrupt status * [1] AUTH_SUCCESS_ACK [W] Acknowledge bit for HDCP * Authentication Success bit - write 1 to clear * [2] AUTH_SUCCESS_MASK [R/W] Mask bit for HDCP Authentication * Success interrupt - set to 1 to enable interrupt */ hdcp_int_val = HDMI_INP_ND(0x0118); if ((hdcp_int_val & (1 << 2)) && (hdcp_int_val & (1 << 0))) { /* AUTH_SUCCESS_INT */ HDMI_OUTP(0x0118, (hdcp_int_val | (1 << 1)) & ~(1 << 0)); DEV_INFO("HDCP: AUTH_SUCCESS_INT received\n"); complete_all(&hdmi_msm_state->hdcp_success_done); return 0; } /* [4] AUTH_FAIL_INT [R] HDCP Authentication Lost * interrupt Status * [5] AUTH_FAIL_ACK [W] Acknowledge bit for HDCP * Authentication Lost bit - write 1 to clear * [6] AUTH_FAIL_MASK [R/W] Mask bit fo HDCP Authentication * Lost interrupt set to 1 to enable interrupt * [7] AUTH_FAIL_INFO_ACK [W] Acknowledge bit for HDCP * Authentication Failure Info field - write 1 to clear */ if ((hdcp_int_val & (1 << 6)) && (hdcp_int_val & (1 << 4))) { /* AUTH_FAIL_INT */ /* Clear and Disable */ uint32 link_status = HDMI_INP_ND(0x011C); HDMI_OUTP(0x0118, (hdcp_int_val | (1 << 5)) & ~((1 << 6) | (1 << 4))); DEV_INFO("HDCP: AUTH_FAIL_INT received, LINK0_STATUS=0x%08x\n", link_status); if (hdmi_msm_state->full_auth_done) { SWITCH_SET_HDMI_AUDIO(0, 0); envp[0] = "HDCP_STATE=FAIL"; envp[1] = NULL; DEV_INFO("HDMI HPD:QDSP OFF\n"); kobject_uevent_env(external_common_state->uevent_kobj, KOBJ_CHANGE, envp); mutex_lock(&hdcp_auth_state_mutex); hdmi_msm_state->full_auth_done = FALSE; mutex_unlock(&hdcp_auth_state_mutex); /* Calling reauth only when authentication * is sucessful or else we always go into * the reauth loop. Also, No need to reauthenticate * if authentication failed because of cable disconnect */ if (((link_status & 0xF0) >> 4) != 0x7) { DEV_DBG("Reauthenticate From %s HDCP FAIL INT ", __func__); queue_work(hdmi_work_queue, &hdmi_msm_state->hdcp_reauth_work); } else { DEV_INFO("HDCP: HDMI cable disconnected\n"); } } /* Clear AUTH_FAIL_INFO as well */ HDMI_OUTP(0x0118, (hdcp_int_val | (1 << 7))); return 0; } /* [8] DDC_XFER_REQ_INT [R] HDCP DDC Transfer Request * interrupt status * [9] DDC_XFER_REQ_ACK [W] Acknowledge bit for HDCP DDC * Transfer Request bit - write 1 to clear * [10] DDC_XFER_REQ_MASK [R/W] Mask bit for HDCP DDC Transfer * Request interrupt - set to 1 to enable interrupt */ if ((hdcp_int_val & (1 << 10)) && (hdcp_int_val & (1 << 8))) { /* DDC_XFER_REQ_INT */ HDMI_OUTP_ND(0x0118, (hdcp_int_val | (1 << 9)) & ~(1 << 8)); if (!(hdcp_int_val & (1 << 12))) return 0; } /* [12] DDC_XFER_DONE_INT [R] HDCP DDC Transfer done interrupt * status * [13] DDC_XFER_DONE_ACK [W] Acknowledge bit for HDCP DDC * Transfer done bit - write 1 to clear * [14] DDC_XFER_DONE_MASK [R/W] Mask bit for HDCP DDC Transfer * done interrupt - set to 1 to enable interrupt */ if ((hdcp_int_val & (1 << 14)) && (hdcp_int_val & (1 << 12))) { /* DDC_XFER_DONE_INT */ HDMI_OUTP_ND(0x0118, (hdcp_int_val | (1 << 13)) & ~(1 << 12)); DEV_INFO("HDCP: DDC_XFER_DONE received\n"); return 0; } return rc; } static irqreturn_t hdmi_msm_isr(int irq, void *dev_id) { uint32 hpd_int_status; uint32 hpd_int_ctrl; #ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT uint32 cec_intr_status; #endif uint32 ddc_int_ctrl; uint32 audio_int_val; static uint32 fifo_urun_int_occurred; static uint32 sample_drop_int_occurred; const uint32 occurrence_limit = 5; if (!hdmi_msm_state || !hdmi_msm_state->hpd_initialized || !MSM_HDMI_BASE) { DEV_DBG("ISR ignored, probe failed\n"); return IRQ_HANDLED; } /* Process HPD Interrupt */ /* HDMI_HPD_INT_STATUS[0x0250] */ hpd_int_status = HDMI_INP_ND(0x0250); /* HDMI_HPD_INT_CTRL[0x0254] */ hpd_int_ctrl = HDMI_INP_ND(0x0254); if ((hpd_int_ctrl & (1 << 2)) && (hpd_int_status & (1 << 0))) { /* * Got HPD interrupt. Ack the interrupt and disable any * further HPD interrupts until we process this interrupt. */ HDMI_OUTP(0x0254, ((hpd_int_ctrl | (BIT(0))) & ~BIT(2))); external_common_state->hpd_state = (HDMI_INP(0x0250) & BIT(1)) >> 1; DEV_DBG("%s: Queuing work to handle HPD %s event\n", __func__, external_common_state->hpd_state ? "connect" : "disconnect"); queue_work(hdmi_work_queue, &hdmi_msm_state->hpd_state_work); return IRQ_HANDLED; } /* Process DDC Interrupts */ /* HDMI_DDC_INT_CTRL[0x0214] */ ddc_int_ctrl = HDMI_INP_ND(0x0214); if ((ddc_int_ctrl & (1 << 2)) && (ddc_int_ctrl & (1 << 0))) { /* SW_DONE INT occured, clr it */ HDMI_OUTP_ND(0x0214, ddc_int_ctrl | (1 << 1)); complete(&hdmi_msm_state->ddc_sw_done); return IRQ_HANDLED; } /* FIFO Underrun Int is enabled */ /* HDMI_AUD_INT[0x02CC] * [3] AUD_SAM_DROP_MASK [R/W] * [2] AUD_SAM_DROP_ACK [W], AUD_SAM_DROP_INT [R] * [1] AUD_FIFO_URUN_MASK [R/W] * [0] AUD_FIFO_URUN_ACK [W], AUD_FIFO_URUN_INT [R] */ audio_int_val = HDMI_INP_ND(0x02CC); if ((audio_int_val & (1 << 1)) && (audio_int_val & (1 << 0))) { /* FIFO Underrun occured, clr it */ HDMI_OUTP(0x02CC, audio_int_val | (1 << 0)); ++fifo_urun_int_occurred; DEV_INFO("HDMI AUD_FIFO_URUN: %d\n", fifo_urun_int_occurred); if (fifo_urun_int_occurred >= occurrence_limit) { HDMI_OUTP(0x02CC, HDMI_INP(0x02CC) & ~(1 << 1)); DEV_INFO("HDMI AUD_FIFO_URUN: INT has been disabled " "by the ISR after %d occurences...\n", fifo_urun_int_occurred); } return IRQ_HANDLED; } /* Audio Sample Drop int is enabled */ if ((audio_int_val & (1 << 3)) && (audio_int_val & (1 << 2))) { /* Audio Sample Drop occured, clr it */ HDMI_OUTP(0x02CC, audio_int_val | (1 << 2)); DEV_DBG("%s: AUD_SAM_DROP", __func__); ++sample_drop_int_occurred; if (sample_drop_int_occurred >= occurrence_limit) { HDMI_OUTP(0x02CC, HDMI_INP(0x02CC) & ~(1 << 3)); DEV_INFO("HDMI AUD_SAM_DROP: INT has been disabled " "by the ISR after %d occurences...\n", sample_drop_int_occurred); } return IRQ_HANDLED; } if (!hdmi_msm_process_hdcp_interrupts()) return IRQ_HANDLED; #ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT /* Process CEC Interrupt */ /* HDMI_MSM_CEC_INT[0x029C] */ cec_intr_status = HDMI_INP_ND(0x029C); DEV_DBG("cec interrupt status is [%u]\n", cec_intr_status); if (HDMI_MSM_CEC_FRAME_WR_SUCCESS(cec_intr_status)) { DEV_DBG("CEC_IRQ_FRAME_WR_DONE\n"); HDMI_OUTP(0x029C, cec_intr_status | HDMI_MSM_CEC_INT_FRAME_WR_DONE_ACK); mutex_lock(&hdmi_msm_state_mutex); hdmi_msm_state->cec_frame_wr_status |= CEC_STATUS_WR_DONE; hdmi_msm_state->first_monitor = 0; del_timer(&hdmi_msm_state->cec_read_timer); mutex_unlock(&hdmi_msm_state_mutex); complete(&hdmi_msm_state->cec_frame_wr_done); return IRQ_HANDLED; } if ((cec_intr_status & (1 << 2)) && (cec_intr_status & (1 << 3))) { DEV_DBG("CEC_IRQ_FRAME_ERROR\n"); #ifdef TOGGLE_CEC_HARDWARE_FSM /* Toggle CEC hardware FSM */ HDMI_OUTP(0x028C, 0x0); HDMI_OUTP(0x028C, HDMI_MSM_CEC_CTRL_ENABLE); #endif HDMI_OUTP(0x029C, cec_intr_status); mutex_lock(&hdmi_msm_state_mutex); hdmi_msm_state->first_monitor = 0; del_timer(&hdmi_msm_state->cec_read_timer); hdmi_msm_state->cec_frame_wr_status |= CEC_STATUS_WR_ERROR; mutex_unlock(&hdmi_msm_state_mutex); complete(&hdmi_msm_state->cec_frame_wr_done); return IRQ_HANDLED; } if ((cec_intr_status & (1 << 4)) && (cec_intr_status & (1 << 5))) { DEV_DBG("CEC_IRQ_MONITOR\n"); HDMI_OUTP(0x029C, cec_intr_status | HDMI_MSM_CEC_INT_MONITOR_ACK); /* * CECT 9-5-1 * On the first occassion start a timer * for few hundred ms, if it expires then * reset the CEC block else go on with * frame transactions as usual. * Below adds hdmi_msm_cec_msg_recv() as an * item into the work queue instead of running in * interrupt context */ mutex_lock(&hdmi_msm_state_mutex); if (hdmi_msm_state->first_monitor == 0) { /* This timer might have to be changed * worst case theoritical = * 16 bytes * 8 * 2.7msec = 346 msec */ mod_timer(&hdmi_msm_state->cec_read_timer, jiffies + HZ/2); hdmi_msm_state->first_monitor = 1; } mutex_unlock(&hdmi_msm_state_mutex); return IRQ_HANDLED; } if ((cec_intr_status & (1 << 6)) && (cec_intr_status & (1 << 7))) { DEV_DBG("CEC_IRQ_FRAME_RD_DONE\n"); mutex_lock(&hdmi_msm_state_mutex); hdmi_msm_state->first_monitor = 0; del_timer(&hdmi_msm_state->cec_read_timer); mutex_unlock(&hdmi_msm_state_mutex); HDMI_OUTP(0x029C, cec_intr_status | HDMI_MSM_CEC_INT_FRAME_RD_DONE_ACK); hdmi_msm_cec_msg_recv(); #ifdef TOGGLE_CEC_HARDWARE_FSM if (!msg_send_complete) msg_recv_complete = FALSE; else { /* Toggle CEC hardware FSM */ HDMI_OUTP(0x028C, 0x0); HDMI_OUTP(0x028C, HDMI_MSM_CEC_CTRL_ENABLE); } #else HDMI_OUTP(0x028C, 0x0); HDMI_OUTP(0x028C, HDMI_MSM_CEC_CTRL_ENABLE); #endif return IRQ_HANDLED; } #endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT */ DEV_DBG("%s: HPD, ddc_int_ctrl=%04x, " "aud_int=%04x, cec_intr_status=%04x\n", __func__, hpd_int_ctrl, hpd_int_status, ddc_int_ctrl, audio_int_val, HDMI_INP_ND(0x029C)); return IRQ_HANDLED; } static int check_hdmi_features(void) { /* RAW_FEAT_CONFIG_ROW0_LSB */ uint32 val = inpdw(QFPROM_BASE + 0x0238); /* HDMI_DISABLE */ boolean hdmi_disabled = (val & 0x00200000) >> 21; /* HDCP_DISABLE */ boolean hdcp_disabled = (val & 0x00400000) >> 22; DEV_DBG("Features \n", val, hdmi_disabled ? "OFF" : "ON", hdcp_disabled ? "OFF" : "ON"); if (hdmi_disabled) { DEV_ERR("ERROR: HDMI disabled\n"); return -ENODEV; } if (hdcp_disabled) DEV_WARN("WARNING: HDCP disabled\n"); return 0; } static boolean hdmi_msm_has_hdcp(void) { /* RAW_FEAT_CONFIG_ROW0_LSB, HDCP_DISABLE */ return (inpdw(QFPROM_BASE + 0x0238) & 0x00400000) ? FALSE : TRUE; } static boolean hdmi_msm_is_power_on(void) { /* HDMI_CTRL, ENABLE */ return (HDMI_INP_ND(0x0000) & 0x00000001) ? TRUE : FALSE; } /* 1.2.1.2.1 DVI Operation * HDMI compliance requires the HDMI core to support DVI as well. The * HDMI core also supports DVI. In DVI operation there are no preambles * and guardbands transmitted. THe TMDS encoding of video data remains * the same as HDMI. There are no VBI or audio packets transmitted. In * order to enable DVI mode in HDMI core, HDMI_DVI_SEL field of * HDMI_CTRL register needs to be programmed to 0. */ static boolean hdmi_msm_is_dvi_mode(void) { /* HDMI_CTRL, HDMI_DVI_SEL */ return (HDMI_INP_ND(0x0000) & 0x00000002) ? FALSE : TRUE; } void hdmi_msm_set_mode(boolean power_on) { uint32 reg_val = 0; if (power_on) { /* ENABLE */ reg_val |= 0x00000001; /* Enable the block */ if (external_common_state->hdmi_sink == 0) { /* HDMI_DVI_SEL */ reg_val |= 0x00000002; if (hdmi_msm_state->hdcp_enable) /* HDMI Encryption */ reg_val |= 0x00000004; /* HDMI_CTRL */ HDMI_OUTP(0x0000, reg_val); /* HDMI_DVI_SEL */ reg_val &= ~0x00000002; } else { if (hdmi_msm_state->hdcp_enable) /* HDMI_Encryption_ON */ reg_val |= 0x00000006; else reg_val |= 0x00000002; } } else reg_val = 0x00000002; /* HDMI_CTRL */ HDMI_OUTP(0x0000, reg_val); DEV_DBG("HDMI Core: %s, HDMI_CTRL=0x%08x\n", power_on ? "Enable" : "Disable", reg_val); } static void msm_hdmi_init_ddc(void) { /* 0x0220 HDMI_DDC_SPEED [31:16] PRESCALE prescale = (m * xtal_frequency) / (desired_i2c_speed), where m is multiply factor, default: m = 1 [1:0] THRESHOLD Select threshold to use to determine whether value sampled on SDA is a 1 or 0. Specified in terms of the ratio between the number of sampled ones and the total number of times SDA is sampled. * 0x0: >0 * 0x1: 1/4 of total samples * 0x2: 1/2 of total samples * 0x3: 3/4 of total samples */ /* Configure the Pre-Scale multiplier * Configure the Threshold */ HDMI_OUTP_ND(0x0220, (10 << 16) | (2 << 0)); /* * 0x0224 HDMI_DDC_SETUP * Setting 31:24 bits : Time units to wait before timeout * when clock is being stalled by external sink device */ HDMI_OUTP_ND(0x0224, 0xff000000); /* 0x027C HDMI_DDC_REF [6] REFTIMER_ENABLE Enable the timer * 0: Disable * 1: Enable [15:0] REFTIMER Value to set the register in order to generate DDC strobe. This register counts on HDCP application clock */ /* Enable reference timer * 27 micro-seconds */ HDMI_OUTP_ND(0x027C, (1 << 16) | (27 << 0)); } static int hdmi_msm_ddc_clear_irq(const char *what) { const uint32 time_out = 0xFFFF; uint32 time_out_count, reg_val; /* clear pending and enable interrupt */ time_out_count = time_out; do { --time_out_count; /* HDMI_DDC_INT_CTRL[0x0214] [2] SW_DONE_MK Mask bit for SW_DONE_INT. Set to 1 to enable interrupt. [1] SW_DONE_ACK WRITE ONLY. Acknowledge bit for SW_DONE_INT. Write 1 to clear interrupt. [0] SW_DONE_INT READ ONLY. SW_DONE interrupt status */ /* Clear and Enable DDC interrupt */ /* Write */ HDMI_OUTP_ND(0x0214, (1 << 2) | (1 << 1)); /* Read back */ reg_val = HDMI_INP_ND(0x0214); } while ((reg_val & 0x1) && time_out_count); if (!time_out_count) { DEV_ERR("%s[%s]: timedout\n", __func__, what); return -ETIMEDOUT; } return 0; } static int hdmi_msm_ddc_write(uint32 dev_addr, uint32 offset, const uint8 *data_buf, uint32 data_len, const char *what) { uint32 reg_val, ndx; int status = 0, retry = 10; uint32 time_out_count; if (NULL == data_buf) { status = -EINVAL; DEV_ERR("%s[%s]: invalid input paramter\n", __func__, what); goto error; } again: status = hdmi_msm_ddc_clear_irq(what); if (status) goto error; /* Ensure Device Address has LSB set to 0 to indicate Slave addr read */ dev_addr &= 0xFE; /* 0x0238 HDMI_DDC_DATA [31] INDEX_WRITE WRITE ONLY. To write index field, set this bit to 1 while writing HDMI_DDC_DATA. [23:16] INDEX Use to set index into DDC buffer for next read or current write, or to read index of current read or next write. Writable only when INDEX_WRITE=1. [15:8] DATA Use to fill or read the DDC buffer [0] DATA_RW Select whether buffer access will be a read or write. For writes, address auto-increments on write to HDMI_DDC_DATA. For reads, address autoincrements on reads to HDMI_DDC_DATA. * 0: Write * 1: Read */ /* 1. Write to HDMI_I2C_DATA with the following fields set in order to * handle portion #1 * DATA_RW = 0x1 (write) * DATA = linkAddress (primary link address and writing) * INDEX = 0x0 (initial offset into buffer) * INDEX_WRITE = 0x1 (setting initial offset) */ HDMI_OUTP_ND(0x0238, (0x1UL << 31) | (dev_addr << 8)); /* 2. Write to HDMI_I2C_DATA with the following fields set in order to * handle portion #2 * DATA_RW = 0x0 (write) * DATA = offsetAddress * INDEX = 0x0 * INDEX_WRITE = 0x0 (auto-increment by hardware) */ HDMI_OUTP_ND(0x0238, offset << 8); /* 3. Write to HDMI_I2C_DATA with the following fields set in order to * handle portion #3 * DATA_RW = 0x0 (write) * DATA = data_buf[ndx] * INDEX = 0x0 * INDEX_WRITE = 0x0 (auto-increment by hardware) */ for (ndx = 0; ndx < data_len; ++ndx) HDMI_OUTP_ND(0x0238, ((uint32)data_buf[ndx]) << 8); /* Data setup is complete, now setup the transaction characteristics */ /* 0x0228 HDMI_DDC_TRANS0 [23:16] CNT0 Byte count for first transaction (excluding the first byte, which is usually the address). [13] STOP0 Determines whether a stop bit will be sent after the first transaction * 0: NO STOP * 1: STOP [12] START0 Determines whether a start bit will be sent before the first transaction * 0: NO START * 1: START [8] STOP_ON_NACK0 Determines whether the current transfer will stop if a NACK is received during the first transaction (current transaction always stops). * 0: STOP CURRENT TRANSACTION, GO TO NEXT TRANSACTION * 1: STOP ALL TRANSACTIONS, SEND STOP BIT [0] RW0 Read/write indicator for first transaction - set to 0 for write, 1 for read. This bit only controls HDMI_DDC behaviour - the R/W bit in the transaction is programmed into the DDC buffer as the LSB of the address byte. * 0: WRITE * 1: READ */ /* 4. Write to HDMI_I2C_TRANSACTION0 with the following fields set in order to handle characteristics of portion #1 and portion #2 * RW0 = 0x0 (write) * START0 = 0x1 (insert START bit) * STOP0 = 0x0 (do NOT insert STOP bit) * CNT0 = 0x1 (single byte transaction excluding address) */ HDMI_OUTP_ND(0x0228, (1 << 12) | (1 << 16)); /* 0x022C HDMI_DDC_TRANS1 [23:16] CNT1 Byte count for second transaction (excluding the first byte, which is usually the address). [13] STOP1 Determines whether a stop bit will be sent after the second transaction * 0: NO STOP * 1: STOP [12] START1 Determines whether a start bit will be sent before the second transaction * 0: NO START * 1: START [8] STOP_ON_NACK1 Determines whether the current transfer will stop if a NACK is received during the second transaction (current transaction always stops). * 0: STOP CURRENT TRANSACTION, GO TO NEXT TRANSACTION * 1: STOP ALL TRANSACTIONS, SEND STOP BIT [0] RW1 Read/write indicator for second transaction - set to 0 for write, 1 for read. This bit only controls HDMI_DDC behaviour - the R/W bit in the transaction is programmed into the DDC buffer as the LSB of the address byte. * 0: WRITE * 1: READ */ /* 5. Write to HDMI_I2C_TRANSACTION1 with the following fields set in order to handle characteristics of portion #3 * RW1 = 0x1 (read) * START1 = 0x1 (insert START bit) * STOP1 = 0x1 (insert STOP bit) * CNT1 = data_len (0xN (write N bytes of data)) * Byte count for second transition (excluding the first * Byte which is usually the address) */ HDMI_OUTP_ND(0x022C, (1 << 13) | ((data_len-1) << 16)); /* Trigger the I2C transfer */ /* 0x020C HDMI_DDC_CTRL [21:20] TRANSACTION_CNT Number of transactions to be done in current transfer. * 0x0: transaction0 only * 0x1: transaction0, transaction1 * 0x2: transaction0, transaction1, transaction2 * 0x3: transaction0, transaction1, transaction2, transaction3 [3] SW_STATUS_RESET Write 1 to reset HDMI_DDC_SW_STATUS flags, will reset SW_DONE, ABORTED, TIMEOUT, SW_INTERRUPTED, BUFFER_OVERFLOW, STOPPED_ON_NACK, NACK0, NACK1, NACK2, NACK3 [2] SEND_RESET Set to 1 to send reset sequence (9 clocks with no data) at start of transfer. This sequence is sent after GO is written to 1, before the first transaction only. [1] SOFT_RESET Write 1 to reset DDC controller [0] GO WRITE ONLY. Write 1 to start DDC transfer. */ /* 6. Write to HDMI_I2C_CONTROL to kick off the hardware. * Note that NOTHING has been transmitted on the DDC lines up to this * point. * TRANSACTION_CNT = 0x1 (execute transaction0 followed by * transaction1) * GO = 0x1 (kicks off hardware) */ INIT_COMPLETION(hdmi_msm_state->ddc_sw_done); HDMI_OUTP_ND(0x020C, (1 << 0) | (1 << 20)); time_out_count = wait_for_completion_interruptible_timeout( &hdmi_msm_state->ddc_sw_done, HZ/2); HDMI_OUTP_ND(0x0214, 0x2); if (!time_out_count) { if (retry-- > 0) { DEV_INFO("%s[%s]: failed timout, retry=%d\n", __func__, what, retry); goto again; } status = -ETIMEDOUT; DEV_ERR("%s[%s]: timedout, DDC SW Status=%08x, HW " "Status=%08x, Int Ctrl=%08x\n", __func__, what, HDMI_INP_ND(0x0218), HDMI_INP_ND(0x021C), HDMI_INP_ND(0x0214)); goto error; } /* Read DDC status */ reg_val = HDMI_INP_ND(0x0218); reg_val &= 0x00001000 | 0x00002000 | 0x00004000 | 0x00008000; /* Check if any NACK occurred */ if (reg_val) { if (retry > 1) HDMI_OUTP_ND(0x020C, BIT(3)); /* SW_STATUS_RESET */ else HDMI_OUTP_ND(0x020C, BIT(1)); /* SOFT_RESET */ if (retry-- > 0) { DEV_DBG("%s[%s]: failed NACK=%08x, retry=%d\n", __func__, what, reg_val, retry); msleep(100); goto again; } status = -EIO; DEV_ERR("%s[%s]: failed NACK: %08x\n", __func__, what, reg_val); goto error; } DEV_DBG("%s[%s] success\n", __func__, what); error: return status; } static int hdmi_msm_ddc_read_retry(uint32 dev_addr, uint32 offset, uint8 *data_buf, uint32 data_len, uint32 request_len, int retry, const char *what) { uint32 reg_val, ndx; int status = 0; uint32 time_out_count; int log_retry_fail = retry != 1; if (NULL == data_buf) { status = -EINVAL; DEV_ERR("%s: invalid input paramter\n", __func__); goto error; } again: status = hdmi_msm_ddc_clear_irq(what); if (status) goto error; /* Ensure Device Address has LSB set to 0 to indicate Slave addr read */ dev_addr &= 0xFE; /* 0x0238 HDMI_DDC_DATA [31] INDEX_WRITE WRITE ONLY. To write index field, set this bit to 1 while writing HDMI_DDC_DATA. [23:16] INDEX Use to set index into DDC buffer for next read or current write, or to read index of current read or next write. Writable only when INDEX_WRITE=1. [15:8] DATA Use to fill or read the DDC buffer [0] DATA_RW Select whether buffer access will be a read or write. For writes, address auto-increments on write to HDMI_DDC_DATA. For reads, address autoincrements on reads to HDMI_DDC_DATA. * 0: Write * 1: Read */ /* 1. Write to HDMI_I2C_DATA with the following fields set in order to * handle portion #1 * DATA_RW = 0x0 (write) * DATA = linkAddress (primary link address and writing) * INDEX = 0x0 (initial offset into buffer) * INDEX_WRITE = 0x1 (setting initial offset) */ HDMI_OUTP_ND(0x0238, (0x1UL << 31) | (dev_addr << 8)); /* 2. Write to HDMI_I2C_DATA with the following fields set in order to * handle portion #2 * DATA_RW = 0x0 (write) * DATA = offsetAddress * INDEX = 0x0 * INDEX_WRITE = 0x0 (auto-increment by hardware) */ HDMI_OUTP_ND(0x0238, offset << 8); /* 3. Write to HDMI_I2C_DATA with the following fields set in order to * handle portion #3 * DATA_RW = 0x0 (write) * DATA = linkAddress + 1 (primary link address 0x74 and reading) * INDEX = 0x0 * INDEX_WRITE = 0x0 (auto-increment by hardware) */ HDMI_OUTP_ND(0x0238, (dev_addr | 1) << 8); /* Data setup is complete, now setup the transaction characteristics */ /* 0x0228 HDMI_DDC_TRANS0 [23:16] CNT0 Byte count for first transaction (excluding the first byte, which is usually the address). [13] STOP0 Determines whether a stop bit will be sent after the first transaction * 0: NO STOP * 1: STOP [12] START0 Determines whether a start bit will be sent before the first transaction * 0: NO START * 1: START [8] STOP_ON_NACK0 Determines whether the current transfer will stop if a NACK is received during the first transaction (current transaction always stops). * 0: STOP CURRENT TRANSACTION, GO TO NEXT TRANSACTION * 1: STOP ALL TRANSACTIONS, SEND STOP BIT [0] RW0 Read/write indicator for first transaction - set to 0 for write, 1 for read. This bit only controls HDMI_DDC behaviour - the R/W bit in the transaction is programmed into the DDC buffer as the LSB of the address byte. * 0: WRITE * 1: READ */ /* 4. Write to HDMI_I2C_TRANSACTION0 with the following fields set in order to handle characteristics of portion #1 and portion #2 * RW0 = 0x0 (write) * START0 = 0x1 (insert START bit) * STOP0 = 0x0 (do NOT insert STOP bit) * CNT0 = 0x1 (single byte transaction excluding address) */ HDMI_OUTP_ND(0x0228, (1 << 12) | (1 << 16)); /* 0x022C HDMI_DDC_TRANS1 [23:16] CNT1 Byte count for second transaction (excluding the first byte, which is usually the address). [13] STOP1 Determines whether a stop bit will be sent after the second transaction * 0: NO STOP * 1: STOP [12] START1 Determines whether a start bit will be sent before the second transaction * 0: NO START * 1: START [8] STOP_ON_NACK1 Determines whether the current transfer will stop if a NACK is received during the second transaction (current transaction always stops). * 0: STOP CURRENT TRANSACTION, GO TO NEXT TRANSACTION * 1: STOP ALL TRANSACTIONS, SEND STOP BIT [0] RW1 Read/write indicator for second transaction - set to 0 for write, 1 for read. This bit only controls HDMI_DDC behaviour - the R/W bit in the transaction is programmed into the DDC buffer as the LSB of the address byte. * 0: WRITE * 1: READ */ /* 5. Write to HDMI_I2C_TRANSACTION1 with the following fields set in order to handle characteristics of portion #3 * RW1 = 0x1 (read) * START1 = 0x1 (insert START bit) * STOP1 = 0x1 (insert STOP bit) * CNT1 = data_len (it's 128 (0x80) for a blk read) */ HDMI_OUTP_ND(0x022C, 1 | (1 << 12) | (1 << 13) | (request_len << 16)); /* Trigger the I2C transfer */ /* 0x020C HDMI_DDC_CTRL [21:20] TRANSACTION_CNT Number of transactions to be done in current transfer. * 0x0: transaction0 only * 0x1: transaction0, transaction1 * 0x2: transaction0, transaction1, transaction2 * 0x3: transaction0, transaction1, transaction2, transaction3 [3] SW_STATUS_RESET Write 1 to reset HDMI_DDC_SW_STATUS flags, will reset SW_DONE, ABORTED, TIMEOUT, SW_INTERRUPTED, BUFFER_OVERFLOW, STOPPED_ON_NACK, NACK0, NACK1, NACK2, NACK3 [2] SEND_RESET Set to 1 to send reset sequence (9 clocks with no data) at start of transfer. This sequence is sent after GO is written to 1, before the first transaction only. [1] SOFT_RESET Write 1 to reset DDC controller [0] GO WRITE ONLY. Write 1 to start DDC transfer. */ /* 6. Write to HDMI_I2C_CONTROL to kick off the hardware. * Note that NOTHING has been transmitted on the DDC lines up to this * point. * TRANSACTION_CNT = 0x1 (execute transaction0 followed by * transaction1) * SEND_RESET = Set to 1 to send reset sequence * GO = 0x1 (kicks off hardware) */ INIT_COMPLETION(hdmi_msm_state->ddc_sw_done); HDMI_OUTP_ND(0x020C, (1 << 0) | (1 << 20)); time_out_count = wait_for_completion_interruptible_timeout( &hdmi_msm_state->ddc_sw_done, HZ/2); HDMI_OUTP_ND(0x0214, 0x2); if (!time_out_count) { if (retry-- > 0) { DEV_INFO("%s: failed timout, retry=%d\n", __func__, retry); goto again; } status = -ETIMEDOUT; DEV_ERR("%s: timedout(7), DDC SW Status=%08x, HW " "Status=%08x, Int Ctrl=%08x\n", __func__, HDMI_INP(0x0218), HDMI_INP(0x021C), HDMI_INP(0x0214)); goto error; } /* Read DDC status */ reg_val = HDMI_INP_ND(0x0218); reg_val &= 0x00001000 | 0x00002000 | 0x00004000 | 0x00008000; /* Check if any NACK occurred */ if (reg_val) { HDMI_OUTP_ND(0x020C, BIT(3)); /* SW_STATUS_RESET */ if (retry == 1) HDMI_OUTP_ND(0x020C, BIT(1)); /* SOFT_RESET */ if (retry-- > 0) { DEV_DBG("%s(%s): failed NACK=0x%08x, retry=%d, " "dev-addr=0x%02x, offset=0x%02x, " "length=%d\n", __func__, what, reg_val, retry, dev_addr, offset, data_len); goto again; } status = -EIO; if (log_retry_fail) DEV_ERR("%s(%s): failed NACK=0x%08x, dev-addr=0x%02x, " "offset=0x%02x, length=%d\n", __func__, what, reg_val, dev_addr, offset, data_len); goto error; } /* 0x0238 HDMI_DDC_DATA [31] INDEX_WRITE WRITE ONLY. To write index field, set this bit to 1 while writing HDMI_DDC_DATA. [23:16] INDEX Use to set index into DDC buffer for next read or current write, or to read index of current read or next write. Writable only when INDEX_WRITE=1. [15:8] DATA Use to fill or read the DDC buffer [0] DATA_RW Select whether buffer access will be a read or write. For writes, address auto-increments on write to HDMI_DDC_DATA. For reads, address autoincrements on reads to HDMI_DDC_DATA. * 0: Write * 1: Read */ /* 8. ALL data is now available and waiting in the DDC buffer. * Read HDMI_I2C_DATA with the following fields set * RW = 0x1 (read) * DATA = BCAPS (this is field where data is pulled from) * INDEX = 0x3 (where the data has been placed in buffer by hardware) * INDEX_WRITE = 0x1 (explicitly define offset) */ /* Write this data to DDC buffer */ HDMI_OUTP_ND(0x0238, 0x1 | (3 << 16) | (1 << 31)); /* Discard first byte */ HDMI_INP_ND(0x0238); for (ndx = 0; ndx < data_len; ++ndx) { reg_val = HDMI_INP_ND(0x0238); data_buf[ndx] = (uint8) ((reg_val & 0x0000FF00) >> 8); } DEV_DBG("%s[%s] success\n", __func__, what); error: return status; } static int hdmi_msm_ddc_read_edid_seg(uint32 dev_addr, uint32 offset, uint8 *data_buf, uint32 data_len, uint32 request_len, int retry, const char *what) { uint32 reg_val, ndx; int status = 0; uint32 time_out_count; int log_retry_fail = retry != 1; int seg_addr = 0x60, seg_num = 0x01; if (NULL == data_buf) { status = -EINVAL; DEV_ERR("%s: invalid input paramter\n", __func__); goto error; } again: status = hdmi_msm_ddc_clear_irq(what); if (status) goto error; /* Ensure Device Address has LSB set to 0 to indicate Slave addr read */ dev_addr &= 0xFE; /* 0x0238 HDMI_DDC_DATA [31] INDEX_WRITE WRITE ONLY. To write index field, set this bit to 1 while writing HDMI_DDC_DATA. [23:16] INDEX Use to set index into DDC buffer for next read or current write, or to read index of current read or next write. Writable only when INDEX_WRITE=1. [15:8] DATA Use to fill or read the DDC buffer [0] DATA_RW Select whether buffer access will be a read or write. For writes, address auto-increments on write to HDMI_DDC_DATA. For reads, address autoincrements on reads to HDMI_DDC_DATA. * 0: Write * 1: Read */ /* 1. Write to HDMI_I2C_DATA with the following fields set in order to * handle portion #1 * DATA_RW = 0x0 (write) * DATA = linkAddress (primary link address and writing) * INDEX = 0x0 (initial offset into buffer) * INDEX_WRITE = 0x1 (setting initial offset) */ HDMI_OUTP_ND(0x0238, (0x1UL << 31) | (seg_addr << 8)); /* 2. Write to HDMI_I2C_DATA with the following fields set in order to * handle portion #2 * DATA_RW = 0x0 (write) * DATA = offsetAddress * INDEX = 0x0 * INDEX_WRITE = 0x0 (auto-increment by hardware) */ HDMI_OUTP_ND(0x0238, seg_num << 8); /* 3. Write to HDMI_I2C_DATA with the following fields set in order to * handle portion #3 * DATA_RW = 0x0 (write) * DATA = linkAddress + 1 (primary link address 0x74 and reading) * INDEX = 0x0 * INDEX_WRITE = 0x0 (auto-increment by hardware) */ HDMI_OUTP_ND(0x0238, dev_addr << 8); HDMI_OUTP_ND(0x0238, offset << 8); HDMI_OUTP_ND(0x0238, (dev_addr | 1) << 8); /* Data setup is complete, now setup the transaction characteristics */ /* 0x0228 HDMI_DDC_TRANS0 [23:16] CNT0 Byte count for first transaction (excluding the first byte, which is usually the address). [13] STOP0 Determines whether a stop bit will be sent after the first transaction * 0: NO STOP * 1: STOP [12] START0 Determines whether a start bit will be sent before the first transaction * 0: NO START * 1: START [8] STOP_ON_NACK0 Determines whether the current transfer will stop if a NACK is received during the first transaction (current transaction always stops). * 0: STOP CURRENT TRANSACTION, GO TO NEXT TRANSACTION * 1: STOP ALL TRANSACTIONS, SEND STOP BIT [0] RW0 Read/write indicator for first transaction - set to 0 for write, 1 for read. This bit only controls HDMI_DDC behaviour - the R/W bit in the transaction is programmed into the DDC buffer as the LSB of the address byte. * 0: WRITE * 1: READ */ /* 4. Write to HDMI_I2C_TRANSACTION0 with the following fields set in order to handle characteristics of portion #1 and portion #2 * RW0 = 0x0 (write) * START0 = 0x1 (insert START bit) * STOP0 = 0x0 (do NOT insert STOP bit) * CNT0 = 0x1 (single byte transaction excluding address) */ HDMI_OUTP_ND(0x0228, (1 << 12) | (1 << 16)); /* 0x022C HDMI_DDC_TRANS1 [23:16] CNT1 Byte count for second transaction (excluding the first byte, which is usually the address). [13] STOP1 Determines whether a stop bit will be sent after the second transaction * 0: NO STOP * 1: STOP [12] START1 Determines whether a start bit will be sent before the second transaction * 0: NO START * 1: START [8] STOP_ON_NACK1 Determines whether the current transfer will stop if a NACK is received during the second transaction (current transaction always stops). * 0: STOP CURRENT TRANSACTION, GO TO NEXT TRANSACTION * 1: STOP ALL TRANSACTIONS, SEND STOP BIT [0] RW1 Read/write indicator for second transaction - set to 0 for write, 1 for read. This bit only controls HDMI_DDC behaviour - the R/W bit in the transaction is programmed into the DDC buffer as the LSB of the address byte. * 0: WRITE * 1: READ */ /* 5. Write to HDMI_I2C_TRANSACTION1 with the following fields set in order to handle characteristics of portion #3 * RW1 = 0x1 (read) * START1 = 0x1 (insert START bit) * STOP1 = 0x1 (insert STOP bit) * CNT1 = data_len (it's 128 (0x80) for a blk read) */ HDMI_OUTP_ND(0x022C, (1 << 12) | (1 << 16)); /* 0x022C HDMI_DDC_TRANS2 [23:16] CNT1 Byte count for second transaction (excluding the first byte, which is usually the address). [13] STOP1 Determines whether a stop bit will be sent after the second transaction * 0: NO STOP * 1: STOP [12] START1 Determines whether a start bit will be sent before the second transaction * 0: NO START * 1: START [8] STOP_ON_NACK1 Determines whether the current transfer will stop if a NACK is received during the second transaction (current transaction always stops). * 0: STOP CURRENT TRANSACTION, GO TO NEXT TRANSACTION * 1: STOP ALL TRANSACTIONS, SEND STOP BIT [0] RW1 Read/write indicator for second transaction - set to 0 for write, 1 for read. This bit only controls HDMI_DDC behaviour - the R/W bit in the transaction is programmed into the DDC buffer as the LSB of the address byte. * 0: WRITE * 1: READ */ /* 5. Write to HDMI_I2C_TRANSACTION1 with the following fields set in order to handle characteristics of portion #3 * RW1 = 0x1 (read) * START1 = 0x1 (insert START bit) * STOP1 = 0x1 (insert STOP bit) * CNT1 = data_len (it's 128 (0x80) for a blk read) */ HDMI_OUTP_ND(0x0230, 1 | (1 << 12) | (1 << 13) | (request_len << 16)); /* Trigger the I2C transfer */ /* 0x020C HDMI_DDC_CTRL [21:20] TRANSACTION_CNT Number of transactions to be done in current transfer. * 0x0: transaction0 only * 0x1: transaction0, transaction1 * 0x2: transaction0, transaction1, transaction2 * 0x3: transaction0, transaction1, transaction2, transaction3 [3] SW_STATUS_RESET Write 1 to reset HDMI_DDC_SW_STATUS flags, will reset SW_DONE, ABORTED, TIMEOUT, SW_INTERRUPTED, BUFFER_OVERFLOW, STOPPED_ON_NACK, NACK0, NACK1, NACK2, NACK3 [2] SEND_RESET Set to 1 to send reset sequence (9 clocks with no data) at start of transfer. This sequence is sent after GO is written to 1, before the first transaction only. [1] SOFT_RESET Write 1 to reset DDC controller [0] GO WRITE ONLY. Write 1 to start DDC transfer. */ /* 6. Write to HDMI_I2C_CONTROL to kick off the hardware. * Note that NOTHING has been transmitted on the DDC lines up to this * point. * TRANSACTION_CNT = 0x2 (execute transaction0 followed by * transaction1) * GO = 0x1 (kicks off hardware) */ INIT_COMPLETION(hdmi_msm_state->ddc_sw_done); HDMI_OUTP_ND(0x020C, (1 << 0) | (2 << 20)); time_out_count = wait_for_completion_interruptible_timeout( &hdmi_msm_state->ddc_sw_done, HZ/2); HDMI_OUTP_ND(0x0214, 0x2); if (!time_out_count) { if (retry-- > 0) { DEV_INFO("%s: failed timout, retry=%d\n", __func__, retry); goto again; } status = -ETIMEDOUT; DEV_ERR("%s: timedout(7), DDC SW Status=%08x, HW " "Status=%08x, Int Ctrl=%08x\n", __func__, HDMI_INP(0x0218), HDMI_INP(0x021C), HDMI_INP(0x0214)); goto error; } /* Read DDC status */ reg_val = HDMI_INP_ND(0x0218); reg_val &= 0x00001000 | 0x00002000 | 0x00004000 | 0x00008000; /* Check if any NACK occurred */ if (reg_val) { HDMI_OUTP_ND(0x020C, BIT(3)); /* SW_STATUS_RESET */ if (retry == 1) HDMI_OUTP_ND(0x020C, BIT(1)); /* SOFT_RESET */ if (retry-- > 0) { DEV_DBG("%s(%s): failed NACK=0x%08x, retry=%d, " "dev-addr=0x%02x, offset=0x%02x, " "length=%d\n", __func__, what, reg_val, retry, dev_addr, offset, data_len); goto again; } status = -EIO; if (log_retry_fail) DEV_ERR("%s(%s): failed NACK=0x%08x, dev-addr=0x%02x, " "offset=0x%02x, length=%d\n", __func__, what, reg_val, dev_addr, offset, data_len); goto error; } /* 0x0238 HDMI_DDC_DATA [31] INDEX_WRITE WRITE ONLY. To write index field, set this bit to 1 while writing HDMI_DDC_DATA. [23:16] INDEX Use to set index into DDC buffer for next read or current write, or to read index of current read or next write. Writable only when INDEX_WRITE=1. [15:8] DATA Use to fill or read the DDC buffer [0] DATA_RW Select whether buffer access will be a read or write. For writes, address auto-increments on write to HDMI_DDC_DATA. For reads, address autoincrements on reads to HDMI_DDC_DATA. * 0: Write * 1: Read */ /* 8. ALL data is now available and waiting in the DDC buffer. * Read HDMI_I2C_DATA with the following fields set * RW = 0x1 (read) * DATA = BCAPS (this is field where data is pulled from) * INDEX = 0x5 (where the data has been placed in buffer by hardware) * INDEX_WRITE = 0x1 (explicitly define offset) */ /* Write this data to DDC buffer */ HDMI_OUTP_ND(0x0238, 0x1 | (5 << 16) | (1 << 31)); /* Discard first byte */ HDMI_INP_ND(0x0238); for (ndx = 0; ndx < data_len; ++ndx) { reg_val = HDMI_INP_ND(0x0238); data_buf[ndx] = (uint8) ((reg_val & 0x0000FF00) >> 8); } DEV_DBG("%s[%s] success\n", __func__, what); error: return status; } static int hdmi_msm_ddc_read(uint32 dev_addr, uint32 offset, uint8 *data_buf, uint32 data_len, int retry, const char *what, boolean no_align) { int ret = hdmi_msm_ddc_read_retry(dev_addr, offset, data_buf, data_len, data_len, retry, what); if (!ret) return 0; if (no_align) { return hdmi_msm_ddc_read_retry(dev_addr, offset, data_buf, data_len, data_len, retry, what); } else { return hdmi_msm_ddc_read_retry(dev_addr, offset, data_buf, data_len, 32 * ((data_len + 31) / 32), retry, what); } } static int hdmi_msm_read_edid_block(int block, uint8 *edid_buf) { int i, rc = 0; int block_size = 0x80; do { DEV_DBG("EDID: reading block(%d) with block-size=%d\n", block, block_size); for (i = 0; i < 0x80; i += block_size) { /*Read EDID twice with 32bit alighnment too */ if (block < 2) { rc = hdmi_msm_ddc_read(0xA0, block*0x80 + i, edid_buf+i, block_size, 1, "EDID", FALSE); } else { rc = hdmi_msm_ddc_read_edid_seg(0xA0, block*0x80 + i, edid_buf+i, block_size, block_size, 1, "EDID"); } if (rc) break; } block_size /= 2; } while (rc && (block_size >= 16)); return rc; } static int hdmi_msm_read_edid(void) { int status; msm_hdmi_init_ddc(); /* Looks like we need to turn on HDMI engine before any * DDC transaction */ if (!hdmi_msm_is_power_on()) { DEV_ERR("%s: failed: HDMI power is off", __func__); status = -ENXIO; goto error; } external_common_state->read_edid_block = hdmi_msm_read_edid_block; #ifdef CONFIG_SLIMPORT_ANX7808 external_common_state->read_edid_block = slimport_read_edid_block; #endif status = hdmi_common_read_edid(); if (!status) DEV_DBG("EDID: successfully read\n"); error: return status; } static void hdcp_auth_info(uint32 auth_info) { if (!hdmi_msm_state->hdcp_enable) { DEV_DBG("%s: HDCP not enabled\n", __func__); return; } switch (auth_info) { case 0: DEV_INFO("%s: None", __func__); break; case 1: DEV_INFO("%s: Software Disabled Authentication", __func__); break; case 2: DEV_INFO("%s: An Written", __func__); break; case 3: DEV_INFO("%s: Invalid Aksv", __func__); break; case 4: DEV_INFO("%s: Invalid Bksv", __func__); break; case 5: DEV_INFO("%s: RI Mismatch (including RO)", __func__); break; case 6: DEV_INFO("%s: consecutive Pj Mismatches", __func__); break; case 7: DEV_INFO("%s: HPD Disconnect", __func__); break; case 8: default: DEV_INFO("%s: Reserved", __func__); break; } } static void hdcp_key_state(uint32 key_state) { if (!hdmi_msm_state->hdcp_enable) { DEV_DBG("%s: HDCP not enabled\n", __func__); return; } switch (key_state) { case 0: DEV_WARN("%s: No HDCP Keys", __func__); break; case 1: DEV_WARN("%s: Not Checked", __func__); break; case 2: DEV_DBG("%s: Checking", __func__); break; case 3: DEV_DBG("%s: HDCP Keys Valid", __func__); break; case 4: DEV_WARN("%s: AKSV not valid", __func__); break; case 5: DEV_WARN("%s: Checksum Mismatch", __func__); break; case 6: DEV_DBG("%s: Production AKSV" "with ENABLE_USER_DEFINED_AN=1", __func__); break; case 7: default: DEV_INFO("%s: Reserved", __func__); break; } } static int hdmi_msm_count_one(uint8 *array, uint8 len) { int i, j, count = 0; for (i = 0; i < len; i++) for (j = 0; j < 8; j++) count += (((array[i] >> j) & 0x1) ? 1 : 0); return count; } static void hdcp_deauthenticate(void) { int hdcp_link_status = HDMI_INP(0x011C); if (!hdmi_msm_state->hdcp_enable) { DEV_DBG("%s: HDCP not enabled\n", __func__); return; } /* Disable HDCP interrupts */ HDMI_OUTP(0x0118, 0x0); mutex_lock(&hdcp_auth_state_mutex); external_common_state->hdcp_active = FALSE; mutex_unlock(&hdcp_auth_state_mutex); /* 0x0130 HDCP_RESET [0] LINK0_DEAUTHENTICATE */ HDMI_OUTP(0x0130, 0x1); /* 0x0110 HDCP_CTRL [8] ENCRYPTION_ENABLE [0] ENABLE */ /* encryption_enable = 0 | hdcp block enable = 1 */ HDMI_OUTP(0x0110, 0x0); if (hdcp_link_status & 0x00000004) hdcp_auth_info((hdcp_link_status & 0x000000F0) >> 4); } static void check_and_clear_HDCP_DDC_Failure(void) { int hdcp_ddc_ctrl1_reg; int hdcp_ddc_status; int failure; int nack0; if (!hdmi_msm_state->hdcp_enable) { DEV_DBG("%s: HDCP not enabled\n", __func__); return; } /* * Check for any DDC transfer failures * 0x0128 HDCP_DDC_STATUS * [16] FAILED Indicates that the last HDCP HW DDC transer * failed. This occurs when a transfer is * attempted with HDCP DDC disabled * (HDCP_DDC_DISABLE=1) or the number of retries * match HDCP_DDC_RETRY_CNT * * [14] NACK0 Indicates that the last HDCP HW DDC transfer * was aborted due to a NACK on the first * transaction - cleared by writing 0 to GO bit */ hdcp_ddc_status = HDMI_INP(HDCP_DDC_STATUS); failure = (hdcp_ddc_status >> 16) & 0x1; nack0 = (hdcp_ddc_status >> 14) & 0x1; DEV_DBG("%s: On Entry: HDCP_DDC_STATUS = 0x%x, FAILURE = %d," "NACK0 = %d\n", __func__ , hdcp_ddc_status, failure, nack0); if (failure == 0x1) { /* * Indicates that the last HDCP HW DDC transfer failed. * This occurs when a transfer is attempted with HDCP DDC * disabled (HDCP_DDC_DISABLE=1) or the number of retries * matches HDCP_DDC_RETRY_CNT. * Failure occured, let's clear it. */ DEV_INFO("%s: DDC failure detected. HDCP_DDC_STATUS=0x%08x\n", __func__, hdcp_ddc_status); /* * First, Disable DDC * 0x0120 HDCP_DDC_CTRL_0 * [0] DDC_DISABLE Determines whether HDCP Ri and Pj reads * are done unassisted by hardware or by * software via HDMI_DDC (HDCP provides * interrupts to request software * transfers) * 0 : Use Hardware DDC * 1 : Use Software DDC */ HDMI_OUTP(HDCP_DDC_CTRL_0, 0x1); /* * ACK the Failure to Clear it * 0x0124 HDCP_DDC_CTRL_1 * [0] DDC_FAILED_ACK Write 1 to clear * HDCP_STATUS.HDCP_DDC_FAILED */ hdcp_ddc_ctrl1_reg = HDMI_INP(HDCP_DDC_CTRL_1); HDMI_OUTP(HDCP_DDC_CTRL_1, hdcp_ddc_ctrl1_reg | 0x1); /* Check if the FAILURE got Cleared */ hdcp_ddc_status = HDMI_INP(HDCP_DDC_STATUS); hdcp_ddc_status = (hdcp_ddc_status >> 16) & 0x1; if (hdcp_ddc_status == 0x0) { DEV_INFO("%s: HDCP DDC Failure has been cleared\n", __func__); } else { DEV_WARN("%s: Error: HDCP DDC Failure DID NOT get" "cleared\n", __func__); } /* Re-Enable HDCP DDC */ HDMI_OUTP(HDCP_DDC_CTRL_0, 0x0); } if (nack0 == 0x1) { /* * 0x020C HDMI_DDC_CTRL * [3] SW_STATUS_RESET Write 1 to reset HDMI_DDC_SW_STATUS * flags, will reset SW_DONE, ABORTED, * TIMEOUT, SW_INTERRUPTED, * BUFFER_OVERFLOW, STOPPED_ON_NACK, NACK0, * NACK1, NACK2, NACK3 */ HDMI_OUTP_ND(HDMI_DDC_CTRL, HDMI_INP(HDMI_DDC_CTRL) | (0x1 << 3)); msleep(20); HDMI_OUTP_ND(HDMI_DDC_CTRL, HDMI_INP(HDMI_DDC_CTRL) & ~(0x1 << 3)); } hdcp_ddc_status = HDMI_INP(HDCP_DDC_STATUS); failure = (hdcp_ddc_status >> 16) & 0x1; nack0 = (hdcp_ddc_status >> 14) & 0x1; DEV_DBG("%s: On Exit: HDCP_DDC_STATUS = 0x%x, FAILURE = %d," "NACK0 = %d\n", __func__ , hdcp_ddc_status, failure, nack0); } static int hdcp_authentication_part1(void) { int ret = 0; boolean is_match; boolean is_part1_done = FALSE; uint32 timeout_count; uint8 bcaps; uint8 aksv[5]; uint32 qfprom_aksv_0, qfprom_aksv_1, link0_aksv_0, link0_aksv_1; uint8 bksv[5]; uint32 link0_bksv_0, link0_bksv_1; uint8 an[8]; uint32 link0_an_0, link0_an_1; uint32 hpd_int_status, hpd_int_ctrl; static uint8 buf[0xFF]; memset(buf, 0, sizeof(buf)); if (!hdmi_msm_state->hdcp_enable) { DEV_DBG("%s: HDCP not enabled\n", __func__); return 0; } if (!is_part1_done) { is_part1_done = TRUE; /* Fetch aksv from QFprom, this info should be public. */ qfprom_aksv_0 = inpdw(QFPROM_BASE + 0x000060D8); qfprom_aksv_1 = inpdw(QFPROM_BASE + 0x000060DC); /* copy an and aksv to byte arrays for transmission */ aksv[0] = qfprom_aksv_0 & 0xFF; aksv[1] = (qfprom_aksv_0 >> 8) & 0xFF; aksv[2] = (qfprom_aksv_0 >> 16) & 0xFF; aksv[3] = (qfprom_aksv_0 >> 24) & 0xFF; aksv[4] = qfprom_aksv_1 & 0xFF; /* check there are 20 ones in AKSV */ if (hdmi_msm_count_one(aksv, 5) != 20) { DEV_ERR("HDCP: AKSV read from QFPROM doesn't have " "20 1's and 20 0's, FAIL (AKSV=%02x%08x)\n", qfprom_aksv_1, qfprom_aksv_0); ret = -EINVAL; goto error; } DEV_DBG("HDCP: AKSV=%02x%08x\n", qfprom_aksv_1, qfprom_aksv_0); /* 0x0288 HDCP_SW_LOWER_AKSV [31:0] LOWER_AKSV */ /* 0x0284 HDCP_SW_UPPER_AKSV [7:0] UPPER_AKSV */ /* This is the lower 32 bits of the SW * injected AKSV value(AKSV[31:0]) read * from the EFUSE. It is needed for HDCP * authentication and must be written * before enabling HDCP. */ HDMI_OUTP(0x0288, qfprom_aksv_0); HDMI_OUTP(0x0284, qfprom_aksv_1); msm_hdmi_init_ddc(); /* read Bcaps at 0x40 in HDCP Port */ ret = hdmi_msm_ddc_read(0x74, 0x40, &bcaps, 1, 5, "Bcaps", TRUE); if (ret) { DEV_ERR("%s(%d): Read Bcaps failed", __func__, __LINE__); goto error; } DEV_DBG("HDCP: Bcaps=%02x\n", bcaps); /* HDCP setup prior to HDCP enabled */ /* 0x0148 HDCP_RCVPORT_DATA4 [15:8] LINK0_AINFO [7:0] LINK0_AKSV_1 */ /* LINK0_AINFO = 0x2 FEATURE 1.1 on. * = 0x0 FEATURE 1.1 off*/ HDMI_OUTP(0x0148, 0x0); /* 0x012C HDCP_ENTROPY_CTRL0 [31:0] BITS_OF_INFLUENCE_0 */ /* 0x025C HDCP_ENTROPY_CTRL1 [31:0] BITS_OF_INFLUENCE_1 */ HDMI_OUTP(0x012C, 0xB1FFB0FF); HDMI_OUTP(0x025C, 0xF00DFACE); /* 0x0114 HDCP_DEBUG_CTRL [2] DEBUG_RNG_CIPHER else default 0 */ HDMI_OUTP(0x0114, HDMI_INP(0x0114) & 0xFFFFFFFB); /* 0x0110 HDCP_CTRL [8] ENCRYPTION_ENABLE [0] ENABLE */ /* Enable HDCP. Encryption should be enabled after reading R0 */ HDMI_OUTP(0x0110, BIT(0)); /* * Check to see if a HDCP DDC Failure is indicated in * HDCP_DDC_STATUS. If yes, clear it. */ check_and_clear_HDCP_DDC_Failure(); /* 0x0118 HDCP_INT_CTRL * [2] AUTH_SUCCESS_MASK [R/W] Mask bit for\ * HDCP Authentication * Success interrupt - set to 1 to enable interrupt * * [6] AUTH_FAIL_MASK [R/W] Mask bit for HDCP * Authentication * Lost interrupt set to 1 to enable interrupt * * [7] AUTH_FAIL_INFO_ACK [W] Acknwledge bit for HDCP * Auth Failure Info field - write 1 to clear * * [10] DDC_XFER_REQ_MASK [R/W] Mask bit for HDCP\ * DDC Transfer * Request interrupt - set to 1 to enable interrupt * * [14] DDC_XFER_DONE_MASK [R/W] Mask bit for HDCP\ * DDC Transfer * done interrupt - set to 1 to enable interrupt */ /* enable all HDCP ints */ HDMI_OUTP(0x0118, (1 << 2) | (1 << 6) | (1 << 7)); /* 0x011C HDCP_LINK0_STATUS [8] AN_0_READY [9] AN_1_READY */ /* wait for an0 and an1 ready bits to be set in LINK0_STATUS */ mutex_lock(&hdcp_auth_state_mutex); timeout_count = 100; while (((HDMI_INP_ND(0x011C) & (0x3 << 8)) != (0x3 << 8)) && timeout_count--) msleep(20); if (!timeout_count) { ret = -ETIMEDOUT; DEV_ERR("%s(%d): timedout, An0=%d, An1=%d\n", __func__, __LINE__, (HDMI_INP_ND(0x011C) & BIT(8)) >> 8, (HDMI_INP_ND(0x011C) & BIT(9)) >> 9); mutex_unlock(&hdcp_auth_state_mutex); goto error; } /* 0x0168 HDCP_RCVPORT_DATA12 [23:8] BSTATUS [7:0] BCAPS */ HDMI_OUTP(0x0168, bcaps); /* 0x014C HDCP_RCVPORT_DATA5 [31:0] LINK0_AN_0 */ /* read an0 calculation */ link0_an_0 = HDMI_INP(0x014C); /* 0x0150 HDCP_RCVPORT_DATA6 [31:0] LINK0_AN_1 */ /* read an1 calculation */ link0_an_1 = HDMI_INP(0x0150); mutex_unlock(&hdcp_auth_state_mutex); /* three bits 28..30 */ hdcp_key_state((HDMI_INP(0x011C) >> 28) & 0x7); /* 0x0144 HDCP_RCVPORT_DATA3 [31:0] LINK0_AKSV_0 public key 0x0148 HDCP_RCVPORT_DATA4 [15:8] LINK0_AINFO [7:0] LINK0_AKSV_1 public key */ link0_aksv_0 = HDMI_INP(0x0144); link0_aksv_1 = HDMI_INP(0x0148); /* copy an and aksv to byte arrays for transmission */ aksv[0] = link0_aksv_0 & 0xFF; aksv[1] = (link0_aksv_0 >> 8) & 0xFF; aksv[2] = (link0_aksv_0 >> 16) & 0xFF; aksv[3] = (link0_aksv_0 >> 24) & 0xFF; aksv[4] = link0_aksv_1 & 0xFF; an[0] = link0_an_0 & 0xFF; an[1] = (link0_an_0 >> 8) & 0xFF; an[2] = (link0_an_0 >> 16) & 0xFF; an[3] = (link0_an_0 >> 24) & 0xFF; an[4] = link0_an_1 & 0xFF; an[5] = (link0_an_1 >> 8) & 0xFF; an[6] = (link0_an_1 >> 16) & 0xFF; an[7] = (link0_an_1 >> 24) & 0xFF; /* Write An 8 bytes to offset 0x18 */ ret = hdmi_msm_ddc_write(0x74, 0x18, an, 8, "An"); if (ret) { DEV_ERR("%s(%d): Write An failed", __func__, __LINE__); goto error; } /* Write Aksv 5 bytes to offset 0x10 */ ret = hdmi_msm_ddc_write(0x74, 0x10, aksv, 5, "Aksv"); if (ret) { DEV_ERR("%s(%d): Write Aksv failed", __func__, __LINE__); goto error; } DEV_DBG("HDCP: Link0-AKSV=%02x%08x\n", link0_aksv_1 & 0xFF, link0_aksv_0); /* Read Bksv 5 bytes at 0x00 in HDCP port */ ret = hdmi_msm_ddc_read(0x74, 0x00, bksv, 5, 5, "Bksv", TRUE); if (ret) { DEV_ERR("%s(%d): Read BKSV failed", __func__, __LINE__); goto error; } /* check there are 20 ones in BKSV */ if (hdmi_msm_count_one(bksv, 5) != 20) { DEV_ERR("HDCP: BKSV read from Sink doesn't have " "20 1's and 20 0's, FAIL (BKSV=" "%02x%02x%02x%02x%02x)\n", bksv[4], bksv[3], bksv[2], bksv[1], bksv[0]); ret = -EINVAL; goto error; } link0_bksv_0 = bksv[3]; link0_bksv_0 = (link0_bksv_0 << 8) | bksv[2]; link0_bksv_0 = (link0_bksv_0 << 8) | bksv[1]; link0_bksv_0 = (link0_bksv_0 << 8) | bksv[0]; link0_bksv_1 = bksv[4]; DEV_DBG("HDCP: BKSV=%02x%08x\n", link0_bksv_1, link0_bksv_0); /* 0x0134 HDCP_RCVPORT_DATA0 [31:0] LINK0_BKSV_0 */ HDMI_OUTP(0x0134, link0_bksv_0); /* 0x0138 HDCP_RCVPORT_DATA1 [31:0] LINK0_BKSV_1 */ HDMI_OUTP(0x0138, link0_bksv_1); DEV_DBG("HDCP: Link0-BKSV=%02x%08x\n", link0_bksv_1, link0_bksv_0); /* HDMI_HPD_INT_STATUS[0x0250] */ hpd_int_status = HDMI_INP_ND(0x0250); /* HDMI_HPD_INT_CTRL[0x0254] */ hpd_int_ctrl = HDMI_INP_ND(0x0254); DEV_DBG("[SR-DEUG]: HPD_INTR_CTRL=[%u] HPD_INTR_STATUS=[%u] " "before reading R0'\n", hpd_int_ctrl, hpd_int_status); /* * HDCP Compliace Test case 1B-01: * Wait here until all the ksv bytes have been * read from the KSV FIFO register. */ msleep(125); /* Reading R0' 2 bytes at offset 0x08 */ ret = hdmi_msm_ddc_read(0x74, 0x08, buf, 2, 5, "RO'", TRUE); if (ret) { DEV_ERR("%s(%d): Read RO's failed", __func__, __LINE__); goto error; } DEV_DBG("HDCP: R0'=%02x%02x\n", buf[1], buf[0]); INIT_COMPLETION(hdmi_msm_state->hdcp_success_done); /* 0x013C HDCP_RCVPORT_DATA2_0 [15:0] LINK0_RI */ HDMI_OUTP(0x013C, (((uint32)buf[1]) << 8) | buf[0]); timeout_count = wait_for_completion_interruptible_timeout( &hdmi_msm_state->hdcp_success_done, HZ*2); if (!timeout_count) { ret = -ETIMEDOUT; is_match = HDMI_INP(0x011C) & BIT(12); DEV_ERR("%s(%d): timedout, Link0=<%s>\n", __func__, __LINE__, is_match ? "RI_MATCH" : "No RI Match INTR in time"); if (!is_match) goto error; } /* 0x011C HDCP_LINK0_STATUS [12] RI_MATCHES [0] MISMATCH, [1] MATCH [0] AUTH_SUCCESS */ /* Checking for RI, R0 Match */ /* RI_MATCHES */ if ((HDMI_INP(0x011C) & BIT(12)) != BIT(12)) { ret = -EINVAL; DEV_ERR("%s: HDCP_LINK0_STATUS[RI_MATCHES]: MISMATCH\n", __func__); goto error; } /* Enable HDCP Encryption */ HDMI_OUTP(0x0110, BIT(0) | BIT(8)); DEV_INFO("HDCP: authentication part I, successful\n"); is_part1_done = FALSE; return 0; error: DEV_ERR("[%s]: HDCP Reauthentication\n", __func__); is_part1_done = FALSE; return ret; } else { return 1; } } static int hdmi_msm_transfer_v_h(void) { /* Read V'.HO 4 Byte at offset 0x20 */ char what[20]; int ret; uint8 buf[4]; if (!hdmi_msm_state->hdcp_enable) { DEV_DBG("%s: HDCP not enabled\n", __func__); return 0; } snprintf(what, sizeof(what), "V' H0"); ret = hdmi_msm_ddc_read(0x74, 0x20, buf, 4, 5, what, TRUE); if (ret) { DEV_ERR("%s: Read %s failed", __func__, what); return ret; } DEV_DBG("buf[0]= %x , buf[1] = %x , buf[2] = %x , buf[3] = %x\n ", buf[0] , buf[1] , buf[2] , buf[3]); /* 0x0154 HDCP_RCVPORT_DATA7 [31:0] V_HO */ HDMI_OUTP(0x0154 , (buf[3] << 24 | buf[2] << 16 | buf[1] << 8 | buf[0])); snprintf(what, sizeof(what), "V' H1"); ret = hdmi_msm_ddc_read(0x74, 0x24, buf, 4, 5, what, TRUE); if (ret) { DEV_ERR("%s: Read %s failed", __func__, what); return ret; } DEV_DBG("buf[0]= %x , buf[1] = %x , buf[2] = %x , buf[3] = %x\n ", buf[0] , buf[1] , buf[2] , buf[3]); /* 0x0158 HDCP_RCVPORT_ DATA8 [31:0] V_H1 */ HDMI_OUTP(0x0158, (buf[3] << 24 | buf[2] << 16 | buf[1] << 8 | buf[0])); snprintf(what, sizeof(what), "V' H2"); ret = hdmi_msm_ddc_read(0x74, 0x28, buf, 4, 5, what, TRUE); if (ret) { DEV_ERR("%s: Read %s failed", __func__, what); return ret; } DEV_DBG("buf[0]= %x , buf[1] = %x , buf[2] = %x , buf[3] = %x\n ", buf[0] , buf[1] , buf[2] , buf[3]); /* 0x015c HDCP_RCVPORT_DATA9 [31:0] V_H2 */ HDMI_OUTP(0x015c , (buf[3] << 24 | buf[2] << 16 | buf[1] << 8 | buf[0])); snprintf(what, sizeof(what), "V' H3"); ret = hdmi_msm_ddc_read(0x74, 0x2c, buf, 4, 5, what, TRUE); if (ret) { DEV_ERR("%s: Read %s failed", __func__, what); return ret; } DEV_DBG("buf[0]= %x , buf[1] = %x , buf[2] = %x , buf[3] = %x\n ", buf[0] , buf[1] , buf[2] , buf[3]); /* 0x0160 HDCP_RCVPORT_DATA10 [31:0] V_H3 */ HDMI_OUTP(0x0160, (buf[3] << 24 | buf[2] << 16 | buf[1] << 8 | buf[0])); snprintf(what, sizeof(what), "V' H4"); ret = hdmi_msm_ddc_read(0x74, 0x30, buf, 4, 5, what, TRUE); if (ret) { DEV_ERR("%s: Read %s failed", __func__, what); return ret; } DEV_DBG("buf[0]= %x , buf[1] = %x , buf[2] = %x , buf[3] = %x\n ", buf[0] , buf[1] , buf[2] , buf[3]); /* 0x0164 HDCP_RCVPORT_DATA11 [31:0] V_H4 */ HDMI_OUTP(0x0164, (buf[3] << 24 | buf[2] << 16 | buf[1] << 8 | buf[0])); return 0; } static int hdcp_authentication_part2(void) { int ret = 0; uint32 timeout_count; int i = 0; int cnt = 0; uint bstatus; uint8 bcaps; uint32 down_stream_devices; uint32 ksv_bytes; static uint8 buf[0xFF]; static uint8 kvs_fifo[5 * 127]; boolean max_devs_exceeded = 0; boolean max_cascade_exceeded = 0; boolean ksv_done = FALSE; if (!hdmi_msm_state->hdcp_enable) { DEV_DBG("%s: HDCP not enabled\n", __func__); return 0; } memset(buf, 0, sizeof(buf)); memset(kvs_fifo, 0, sizeof(kvs_fifo)); /* wait until READY bit is set in bcaps */ timeout_count = 50; do { timeout_count--; /* read bcaps 1 Byte at offset 0x40 */ ret = hdmi_msm_ddc_read(0x74, 0x40, &bcaps, 1, 1, "Bcaps", FALSE); if (ret) { DEV_ERR("%s(%d): Read Bcaps failed", __func__, __LINE__); goto error; } msleep(100); } while ((0 == (bcaps & 0x20)) && timeout_count); /* READY (Bit 5) */ if (!timeout_count) { ret = -ETIMEDOUT; DEV_ERR("%s:timedout(1)", __func__); goto error; } /* read bstatus 2 bytes at offset 0x41 */ ret = hdmi_msm_ddc_read(0x74, 0x41, buf, 2, 5, "Bstatus", FALSE); if (ret) { DEV_ERR("%s(%d): Read Bstatus failed", __func__, __LINE__); goto error; } bstatus = buf[1]; bstatus = (bstatus << 8) | buf[0]; /* 0x0168 DCP_RCVPORT_DATA12 [7:0] BCAPS [23:8 BSTATUS */ HDMI_OUTP(0x0168, bcaps | (bstatus << 8)); /* BSTATUS [6:0] DEVICE_COUNT Number of HDMI device attached to repeater * - see HDCP spec */ down_stream_devices = bstatus & 0x7F; if (down_stream_devices == 0x0) { /* There isn't any devices attaced to the Repeater */ DEV_ERR("%s: there isn't any devices attached to the " "Repeater\n", __func__); ret = -EINVAL; goto error; } /* * HDCP Compliance 1B-05: * Check if no. of devices connected to repeater * exceed max_devices_connected from bit 7 of Bstatus. */ max_devs_exceeded = (bstatus & 0x80) >> 7; if (max_devs_exceeded == 0x01) { DEV_ERR("%s: Number of devs connected to repeater " "exceeds max_devs\n", __func__); ret = -EINVAL; goto hdcp_error; } /* * HDCP Compliance 1B-06: * Check if no. of cascade connected to repeater * exceed max_cascade_connected from bit 11 of Bstatus. */ max_cascade_exceeded = (bstatus & 0x800) >> 11; if (max_cascade_exceeded == 0x01) { DEV_ERR("%s: Number of cascade connected to repeater " "exceeds max_cascade\n", __func__); ret = -EINVAL; goto hdcp_error; } /* Read KSV FIFO over DDC * Key Slection vector FIFO * Used to pull downstream KSVs from HDCP Repeaters. * All bytes (DEVICE_COUNT * 5) must be read in a single, * auto incrementing access. * All bytes read as 0x00 for HDCP Receivers that are not * HDCP Repeaters (REPEATER == 0). */ ksv_bytes = 5 * down_stream_devices; /* Reading KSV FIFO / KSV FIFO */ ksv_done = FALSE; ret = hdmi_msm_ddc_read(0x74, 0x43, kvs_fifo, ksv_bytes, 5, "KSV FIFO", TRUE); do { if (ret) { DEV_ERR("%s(%d): Read KSV FIFO failed", __func__, __LINE__); /* * HDCP Compliace Test case 1B-01: * Wait here until all the ksv bytes have been * read from the KSV FIFO register. */ msleep(25); } else { ksv_done = TRUE; } cnt++; } while (!ksv_done && cnt != 20); if (ksv_done == FALSE) goto error; ret = hdmi_msm_transfer_v_h(); if (ret) goto error; /* Next: Write KSV FIFO to HDCP_SHA_DATA. * This is done 1 byte at time starting with the LSB. * On the very last byte write, * the HDCP_SHA_DATA_DONE bit[0] */ /* 0x023C HDCP_SHA_CTRL [0] RESET [0] Enable, [1] Reset [4] SELECT [0] DIGA_HDCP, [1] DIGB_HDCP */ /* reset SHA engine */ HDMI_OUTP(0x023C, 1); /* enable SHA engine, SEL=DIGA_HDCP */ HDMI_OUTP(0x023C, 0); for (i = 0; i < ksv_bytes - 1; i++) { /* Write KSV byte and do not set DONE bit[0] */ HDMI_OUTP_ND(0x0244, kvs_fifo[i] << 16); /* Once 64 bytes have been written, we need to poll for * HDCP_SHA_BLOCK_DONE before writing any further */ if (i && !((i+1)%64)) { timeout_count = 100; while (!(HDMI_INP_ND(0x0240) & 0x1) && (--timeout_count)) { DEV_DBG("HDCP Auth Part II: Waiting for the " "computation of the current 64 byte to " "complete. HDCP_SHA_STATUS=%08x. " "timeout_count=%d\n", HDMI_INP_ND(0x0240), timeout_count); msleep(20); } if (!timeout_count) { ret = -ETIMEDOUT; DEV_ERR("%s(%d): timedout", __func__, __LINE__); goto error; } } } /* Write l to DONE bit[0] */ HDMI_OUTP_ND(0x0244, (kvs_fifo[ksv_bytes - 1] << 16) | 0x1); /* 0x0240 HDCP_SHA_STATUS [4] COMP_DONE */ /* Now wait for HDCP_SHA_COMP_DONE */ timeout_count = 100; while ((0x10 != (HDMI_INP_ND(0x0240) & 0xFFFFFF10)) && --timeout_count) msleep(20); if (!timeout_count) { ret = -ETIMEDOUT; DEV_ERR("%s(%d): timedout", __func__, __LINE__); goto error; } /* 0x011C HDCP_LINK0_STATUS [20] V_MATCHES */ timeout_count = 100; while (((HDMI_INP_ND(0x011C) & (1 << 20)) != (1 << 20)) && --timeout_count) { msleep(20); } if (!timeout_count) { ret = -ETIMEDOUT; DEV_ERR("%s(%d): timedout", __func__, __LINE__); goto error; } DEV_INFO("HDCP: authentication part II, successful\n"); hdcp_error: error: return ret; } static int hdcp_authentication_part3(uint32 found_repeater) { int ret = 0; int poll = 3000; if (!hdmi_msm_state->hdcp_enable) { DEV_DBG("%s: HDCP not enabled\n", __func__); return 0; } while (poll) { /* 0x011C HDCP_LINK0_STATUS [30:28] KEYS_STATE = 3 = "Valid" [24] RO_COMPUTATION_DONE [0] Not Done, [1] Done [20] V_MATCHES [0] Mismtach, [1] Match [12] RI_MATCHES [0] Mismatch, [1] Match [0] AUTH_SUCCESS */ if (HDMI_INP_ND(0x011C) != (0x31001001 | (found_repeater << 20))) { DEV_ERR("HDCP: autentication part III, FAILED, " "Link Status=%08x\n", HDMI_INP(0x011C)); ret = -EINVAL; goto error; } poll--; } DEV_INFO("HDCP: authentication part III, successful\n"); error: return ret; } static void hdmi_msm_hdcp_enable(void) { int ret = 0; uint8 bcaps; uint32 found_repeater = 0x0; char *envp[2]; if (!hdmi_msm_state->hdcp_enable) { DEV_INFO("%s: HDCP NOT ENABLED\n", __func__); return; } mutex_lock(&hdmi_msm_state_mutex); hdmi_msm_state->hdcp_activating = TRUE; mutex_unlock(&hdmi_msm_state_mutex); mutex_lock(&hdcp_auth_state_mutex); /* This flag prevents other threads from re-authenticating * after we've just authenticated (i.e., finished part3) * We probably need to protect this in a mutex lock */ hdmi_msm_state->full_auth_done = FALSE; mutex_unlock(&hdcp_auth_state_mutex); /* Disable HDCP before we start part1 */ HDMI_OUTP(0x0110, 0x0); /* PART I Authentication*/ ret = hdcp_authentication_part1(); if (ret) goto error; /* PART II Authentication*/ /* read Bcaps at 0x40 in HDCP Port */ ret = hdmi_msm_ddc_read(0x74, 0x40, &bcaps, 1, 5, "Bcaps", FALSE); if (ret) { DEV_ERR("%s(%d): Read Bcaps failed\n", __func__, __LINE__); goto error; } DEV_DBG("HDCP: Bcaps=0x%02x (%s)\n", bcaps, (bcaps & BIT(6)) ? "repeater" : "no repeater"); /* if REPEATER (Bit 6), perform Part2 Authentication */ if (bcaps & BIT(6)) { found_repeater = 0x1; ret = hdcp_authentication_part2(); if (ret) goto error; } else DEV_INFO("HDCP: authentication part II skipped, no repeater\n"); /* PART III Authentication*/ ret = hdcp_authentication_part3(found_repeater); if (ret) goto error; mutex_lock(&hdmi_msm_state_mutex); hdmi_msm_state->hdcp_activating = FALSE; mutex_unlock(&hdmi_msm_state_mutex); mutex_lock(&hdcp_auth_state_mutex); /* * This flag prevents other threads from re-authenticating * after we've just authenticated (i.e., finished part3) */ hdmi_msm_state->full_auth_done = TRUE; external_common_state->hdcp_active = TRUE; mutex_unlock(&hdcp_auth_state_mutex); if (!hdmi_msm_is_dvi_mode()) { DEV_INFO("HDMI HPD: sense : send HDCP_PASS\n"); envp[0] = "HDCP_STATE=PASS"; envp[1] = NULL; kobject_uevent_env(external_common_state->uevent_kobj, KOBJ_CHANGE, envp); SWITCH_SET_HDMI_AUDIO(1, 0); } return; error: if (hdmi_msm_state->hpd_during_auth) { DEV_WARN("Calling Deauthentication: HPD occured during " "authentication from [%s]\n", __func__); hdcp_deauthenticate(); mutex_lock(&hdcp_auth_state_mutex); hdmi_msm_state->hpd_during_auth = FALSE; mutex_unlock(&hdcp_auth_state_mutex); } else { DEV_WARN("[DEV_DBG]: Calling reauth from [%s]\n", __func__); if (hdmi_msm_state->panel_power_on) queue_work(hdmi_work_queue, &hdmi_msm_state->hdcp_reauth_work); } mutex_lock(&hdmi_msm_state_mutex); hdmi_msm_state->hdcp_activating = FALSE; mutex_unlock(&hdmi_msm_state_mutex); } static void hdmi_msm_video_setup(int video_format) { uint32 total_v = 0; uint32 total_h = 0; uint32 start_h = 0; uint32 end_h = 0; uint32 start_v = 0; uint32 end_v = 0; const struct hdmi_disp_mode_timing_type *timing = hdmi_common_get_supported_mode(video_format); /* timing register setup */ if (timing == NULL) { DEV_ERR("video format not supported: %d\n", video_format); return; } /* Hsync Total and Vsync Total */ total_h = timing->active_h + timing->front_porch_h + timing->back_porch_h + timing->pulse_width_h - 1; total_v = timing->active_v + timing->front_porch_v + timing->back_porch_v + timing->pulse_width_v - 1; /* 0x02C0 HDMI_TOTAL [27:16] V_TOTAL Vertical Total [11:0] H_TOTAL Horizontal Total */ HDMI_OUTP(0x02C0, ((total_v << 16) & 0x0FFF0000) | ((total_h << 0) & 0x00000FFF)); /* Hsync Start and Hsync End */ start_h = timing->back_porch_h + timing->pulse_width_h; end_h = (total_h + 1) - timing->front_porch_h; /* 0x02B4 HDMI_ACTIVE_H [27:16] END Horizontal end [11:0] START Horizontal start */ HDMI_OUTP(0x02B4, ((end_h << 16) & 0x0FFF0000) | ((start_h << 0) & 0x00000FFF)); start_v = timing->back_porch_v + timing->pulse_width_v - 1; end_v = total_v - timing->front_porch_v; /* 0x02B8 HDMI_ACTIVE_V [27:16] END Vertical end [11:0] START Vertical start */ HDMI_OUTP(0x02B8, ((end_v << 16) & 0x0FFF0000) | ((start_v << 0) & 0x00000FFF)); if (timing->interlaced) { /* 0x02C4 HDMI_V_TOTAL_F2 [11:0] V_TOTAL_F2 Vertical total for field2 */ HDMI_OUTP(0x02C4, ((total_v + 1) << 0) & 0x00000FFF); /* 0x02BC HDMI_ACTIVE_V_F2 [27:16] END_F2 Vertical end for field2 [11:0] START_F2 Vertical start for Field2 */ HDMI_OUTP(0x02BC, (((start_v + 1) << 0) & 0x00000FFF) | (((end_v + 1) << 16) & 0x0FFF0000)); } else { /* HDMI_V_TOTAL_F2 */ HDMI_OUTP(0x02C4, 0); /* HDMI_ACTIVE_V_F2 */ HDMI_OUTP(0x02BC, 0); } hdmi_frame_ctrl_cfg(timing); } struct hdmi_msm_audio_acr { uint32 n; /* N parameter for clock regeneration */ uint32 cts; /* CTS parameter for clock regeneration */ }; struct hdmi_msm_audio_arcs { uint32 pclk; struct hdmi_msm_audio_acr lut[MSM_HDMI_SAMPLE_RATE_MAX]; }; #define HDMI_MSM_AUDIO_ARCS(pclk, ...) { pclk, __VA_ARGS__ } /* Audio constants lookup table for hdmi_msm_audio_acr_setup */ /* Valid Pixel-Clock rates: 25.2MHz, 27MHz, 27.03MHz, 74.25MHz, 148.5MHz */ static const struct hdmi_msm_audio_arcs hdmi_msm_audio_acr_lut[] = { /* 25.200MHz */ HDMI_MSM_AUDIO_ARCS(25200, { {4096, 25200}, {6272, 28000}, {6144, 25200}, {12544, 28000}, {12288, 25200}, {25088, 28000}, {24576, 25200} }), /* 27.000MHz */ HDMI_MSM_AUDIO_ARCS(27000, { {4096, 27000}, {6272, 30000}, {6144, 27000}, {12544, 30000}, {12288, 27000}, {25088, 30000}, {24576, 27000} }), /* 27.027MHz */ HDMI_MSM_AUDIO_ARCS(27030, { {4096, 27027}, {6272, 30030}, {6144, 27027}, {12544, 30030}, {12288, 27027}, {25088, 30030}, {24576, 27027} }), /* 74.250MHz */ HDMI_MSM_AUDIO_ARCS(74250, { {4096, 74250}, {6272, 82500}, {6144, 74250}, {12544, 82500}, {12288, 74250}, {25088, 82500}, {24576, 74250} }), /* 148.500MHz */ HDMI_MSM_AUDIO_ARCS(148500, { {4096, 148500}, {6272, 165000}, {6144, 148500}, {12544, 165000}, {12288, 148500}, {25088, 165000}, {24576, 148500} }), }; static void hdmi_msm_audio_acr_setup(boolean enabled, int video_format, int audio_sample_rate, int num_of_channels) { /* Read first before writing */ /* HDMI_ACR_PKT_CTRL[0x0024] */ uint32 acr_pck_ctrl_reg = HDMI_INP(0x0024); /* Clear N/CTS selection bits */ acr_pck_ctrl_reg &= ~(3 << 4); if (enabled) { const struct hdmi_disp_mode_timing_type *timing = hdmi_common_get_supported_mode(video_format); const struct hdmi_msm_audio_arcs *audio_arc = &hdmi_msm_audio_acr_lut[0]; const int lut_size = sizeof(hdmi_msm_audio_acr_lut) /sizeof(*hdmi_msm_audio_acr_lut); uint32 i, n, cts, layout, multiplier, aud_pck_ctrl_2_reg; if (timing == NULL) { DEV_WARN("%s: video format %d not supported\n", __func__, video_format); return; } for (i = 0; i < lut_size; audio_arc = &hdmi_msm_audio_acr_lut[++i]) { if (audio_arc->pclk == timing->pixel_freq) break; } if (i >= lut_size) { DEV_WARN("%s: pixel clock %d not supported\n", __func__, timing->pixel_freq); return; } n = audio_arc->lut[audio_sample_rate].n; cts = audio_arc->lut[audio_sample_rate].cts; layout = (MSM_HDMI_AUDIO_CHANNEL_2 == num_of_channels) ? 0 : 1; if ((MSM_HDMI_SAMPLE_RATE_192KHZ == audio_sample_rate) || (MSM_HDMI_SAMPLE_RATE_176_4KHZ == audio_sample_rate)) { multiplier = 4; n >>= 2; /* divide N by 4 and use multiplier */ } else if ((MSM_HDMI_SAMPLE_RATE_96KHZ == audio_sample_rate) || (MSM_HDMI_SAMPLE_RATE_88_2KHZ == audio_sample_rate)) { multiplier = 2; n >>= 1; /* divide N by 2 and use multiplier */ } else { multiplier = 1; } DEV_DBG("%s: n=%u, cts=%u, layout=%u\n", __func__, n, cts, layout); /* AUDIO_PRIORITY | SOURCE */ acr_pck_ctrl_reg |= 0x80000100; /* N_MULTIPLE(multiplier) */ acr_pck_ctrl_reg |= (multiplier & 7) << 16; if ((MSM_HDMI_SAMPLE_RATE_48KHZ == audio_sample_rate) || (MSM_HDMI_SAMPLE_RATE_96KHZ == audio_sample_rate) || (MSM_HDMI_SAMPLE_RATE_192KHZ == audio_sample_rate)) { /* SELECT(3) */ acr_pck_ctrl_reg |= 3 << 4; /* CTS_48 */ cts <<= 12; /* CTS: need to determine how many fractional bits */ /* HDMI_ACR_48_0 */ HDMI_OUTP(0x00D4, cts); /* N */ /* HDMI_ACR_48_1 */ HDMI_OUTP(0x00D8, n); } else if ((MSM_HDMI_SAMPLE_RATE_44_1KHZ == audio_sample_rate) || (MSM_HDMI_SAMPLE_RATE_88_2KHZ == audio_sample_rate) || (MSM_HDMI_SAMPLE_RATE_176_4KHZ == audio_sample_rate)) { /* SELECT(2) */ acr_pck_ctrl_reg |= 2 << 4; /* CTS_44 */ cts <<= 12; /* CTS: need to determine how many fractional bits */ /* HDMI_ACR_44_0 */ HDMI_OUTP(0x00CC, cts); /* N */ /* HDMI_ACR_44_1 */ HDMI_OUTP(0x00D0, n); } else { /* default to 32k */ /* SELECT(1) */ acr_pck_ctrl_reg |= 1 << 4; /* CTS_32 */ cts <<= 12; /* CTS: need to determine how many fractional bits */ /* HDMI_ACR_32_0 */ HDMI_OUTP(0x00C4, cts); /* N */ /* HDMI_ACR_32_1 */ HDMI_OUTP(0x00C8, n); } /* Payload layout depends on number of audio channels */ /* LAYOUT_SEL(layout) */ aud_pck_ctrl_2_reg = 1 | (layout << 1); /* override | layout */ /* HDMI_AUDIO_PKT_CTRL2[0x00044] */ HDMI_OUTP(0x00044, aud_pck_ctrl_2_reg); /* SEND | CONT */ acr_pck_ctrl_reg |= 0x00000003; } else { /* ~(SEND | CONT) */ acr_pck_ctrl_reg &= ~0x00000003; } /* HDMI_ACR_PKT_CTRL[0x0024] */ HDMI_OUTP(0x0024, acr_pck_ctrl_reg); } static void hdmi_msm_outpdw_chk(uint32 offset, uint32 data) { uint32 check, i = 0; #ifdef DEBUG HDMI_OUTP(offset, data); #endif do { outpdw(MSM_HDMI_BASE+offset, data); check = inpdw(MSM_HDMI_BASE+offset); } while (check != data && i++ < 10); if (check != data) DEV_ERR("%s: failed addr=%08x, data=%x, check=%x", __func__, offset, data, check); } static void hdmi_msm_rmw32or(uint32 offset, uint32 data) { uint32 reg_data; reg_data = inpdw(MSM_HDMI_BASE+offset); reg_data = inpdw(MSM_HDMI_BASE+offset); hdmi_msm_outpdw_chk(offset, reg_data | data); } #define HDMI_AUDIO_CFG 0x01D0 #define HDMI_AUDIO_ENGINE_ENABLE 1 #define HDMI_AUDIO_FIFO_MASK 0x000000F0 #define HDMI_AUDIO_FIFO_WATERMARK_SHIFT 4 #define HDMI_AUDIO_FIFO_MAX_WATER_MARK 8 int hdmi_audio_enable(bool on , u32 fifo_water_mark) { u32 hdmi_audio_config; hdmi_audio_config = HDMI_INP(HDMI_AUDIO_CFG); if (on) { if (fifo_water_mark > HDMI_AUDIO_FIFO_MAX_WATER_MARK) { pr_err("%s : HDMI audio fifo water mark can not be more" " than %u\n", __func__, HDMI_AUDIO_FIFO_MAX_WATER_MARK); return -EINVAL; } /* * Enable HDMI Audio engine. * MUST be enabled after Audio DMA is enabled. */ hdmi_audio_config &= ~(HDMI_AUDIO_FIFO_MASK); hdmi_audio_config |= (HDMI_AUDIO_ENGINE_ENABLE | (fifo_water_mark << HDMI_AUDIO_FIFO_WATERMARK_SHIFT)); } else hdmi_audio_config &= ~(HDMI_AUDIO_ENGINE_ENABLE); HDMI_OUTP(HDMI_AUDIO_CFG, hdmi_audio_config); mb(); pr_info("%s :HDMI_AUDIO_CFG 0x%08x\n", __func__, HDMI_INP(HDMI_AUDIO_CFG)); return 0; } EXPORT_SYMBOL(hdmi_audio_enable); #define HDMI_AUDIO_PKT_CTRL 0x0020 #define HDMI_AUDIO_SAMPLE_SEND_ENABLE 1 int hdmi_audio_packet_enable(bool on) { u32 hdmi_audio_pkt_ctrl; hdmi_audio_pkt_ctrl = HDMI_INP(HDMI_AUDIO_PKT_CTRL); if (on) hdmi_audio_pkt_ctrl |= HDMI_AUDIO_SAMPLE_SEND_ENABLE; else hdmi_audio_pkt_ctrl &= ~(HDMI_AUDIO_SAMPLE_SEND_ENABLE); HDMI_OUTP(HDMI_AUDIO_PKT_CTRL, hdmi_audio_pkt_ctrl); mb(); pr_info("%s : HDMI_AUDIO_PKT_CTRL 0x%08x\n", __func__, HDMI_INP(HDMI_AUDIO_PKT_CTRL)); return 0; } EXPORT_SYMBOL(hdmi_audio_packet_enable); /* TO-DO: return -EINVAL when num_of_channels and channel_allocation * does not match CEA 861-D spec. */ int hdmi_msm_audio_info_setup(bool enabled, u32 num_of_channels, u32 channel_allocation, u32 level_shift, bool down_mix) { uint32 channel_count = 1; /* Default to 2 channels -> See Table 17 in CEA-D spec */ uint32 check_sum, audio_info_0_reg, audio_info_1_reg; uint32 audio_info_ctrl_reg; u32 aud_pck_ctrl_2_reg; u32 layout; layout = (MSM_HDMI_AUDIO_CHANNEL_2 == num_of_channels) ? 0 : 1; aud_pck_ctrl_2_reg = 1 | (layout << 1); HDMI_OUTP(0x00044, aud_pck_ctrl_2_reg); /* Please see table 20 Audio InfoFrame in HDMI spec FL = front left FC = front Center FR = front right FLC = front left center FRC = front right center RL = rear left RC = rear center RR = rear right RLC = rear left center RRC = rear right center LFE = low frequency effect */ /* Read first then write because it is bundled with other controls */ /* HDMI_INFOFRAME_CTRL0[0x002C] */ audio_info_ctrl_reg = HDMI_INP(0x002C); if (enabled) { switch (num_of_channels) { case MSM_HDMI_AUDIO_CHANNEL_2: channel_allocation = 0; /* Default to FR,FL */ break; case MSM_HDMI_AUDIO_CHANNEL_4: channel_count = 3; /* FC,LFE,FR,FL */ channel_allocation = 0x3; break; case MSM_HDMI_AUDIO_CHANNEL_6: channel_count = 5; /* RR,RL,FC,LFE,FR,FL */ channel_allocation = 0xB; break; case MSM_HDMI_AUDIO_CHANNEL_8: channel_count = 7; /* FRC,FLC,RR,RL,FC,LFE,FR,FL */ channel_allocation = 0x1f; break; default: pr_err("%s(): Unsupported num_of_channels = %u\n", __func__, num_of_channels); return -EINVAL; break; } /* Program the Channel-Speaker allocation */ audio_info_1_reg = 0; /* CA(channel_allocation) */ audio_info_1_reg |= channel_allocation & 0xff; /* Program the Level shifter */ /* LSV(level_shift) */ audio_info_1_reg |= (level_shift << 11) & 0x00007800; /* Program the Down-mix Inhibit Flag */ /* DM_INH(down_mix) */ audio_info_1_reg |= (down_mix << 15) & 0x00008000; /* HDMI_AUDIO_INFO1[0x00E8] */ HDMI_OUTP(0x00E8, audio_info_1_reg); /* Calculate CheckSum Sum of all the bytes in the Audio Info Packet bytes (See table 8.4 in HDMI spec) */ check_sum = 0; /* HDMI_AUDIO_INFO_FRAME_PACKET_HEADER_TYPE[0x84] */ check_sum += 0x84; /* HDMI_AUDIO_INFO_FRAME_PACKET_HEADER_VERSION[0x01] */ check_sum += 1; /* HDMI_AUDIO_INFO_FRAME_PACKET_LENGTH[0x0A] */ check_sum += 0x0A; check_sum += channel_count; check_sum += channel_allocation; /* See Table 8.5 in HDMI spec */ check_sum += (level_shift & 0xF) << 3 | (down_mix & 0x1) << 7; check_sum &= 0xFF; check_sum = (uint8) (256 - check_sum); audio_info_0_reg = 0; /* CHECKSUM(check_sum) */ audio_info_0_reg |= check_sum & 0xff; /* CC(channel_count) */ audio_info_0_reg |= (channel_count << 8) & 0x00000700; /* HDMI_AUDIO_INFO0[0x00E4] */ HDMI_OUTP(0x00E4, audio_info_0_reg); /* Set these flags */ /* AUDIO_INFO_UPDATE | AUDIO_INFO_SOURCE | AUDIO_INFO_CONT | AUDIO_INFO_SEND */ audio_info_ctrl_reg |= 0x000000F0; } else { /* Clear these flags */ /* ~(AUDIO_INFO_UPDATE | AUDIO_INFO_SOURCE | AUDIO_INFO_CONT | AUDIO_INFO_SEND) */ audio_info_ctrl_reg &= ~0x000000F0; } /* HDMI_INFOFRAME_CTRL0[0x002C] */ HDMI_OUTP(0x002C, audio_info_ctrl_reg); hdmi_msm_dump_regs("HDMI-AUDIO-ON: "); return 0; } EXPORT_SYMBOL(hdmi_msm_audio_info_setup); static void hdmi_msm_en_gc_packet(boolean av_mute_is_requested) { /* HDMI_GC[0x0040] */ HDMI_OUTP(0x0040, av_mute_is_requested ? 1 : 0); /* GC packet enable (every frame) */ /* HDMI_VBI_PKT_CTRL[0x0028] */ hdmi_msm_rmw32or(0x0028, 3 << 4); } #ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_ISRC_ACP_SUPPORT static void hdmi_msm_en_isrc_packet(boolean isrc_is_continued) { static const char isrc_psuedo_data[] = "ISRC1:0123456789isrc2=ABCDEFGHIJ"; const uint32 * isrc_data = (const uint32 *) isrc_psuedo_data; /* ISRC_STATUS =0b010 | ISRC_CONTINUE | ISRC_VALID */ /* HDMI_ISRC1_0[0x00048] */ HDMI_OUTP(0x00048, 2 | (isrc_is_continued ? 1 : 0) << 6 | 0 << 7); /* HDMI_ISRC1_1[0x004C] */ HDMI_OUTP(0x004C, *isrc_data++); /* HDMI_ISRC1_2[0x0050] */ HDMI_OUTP(0x0050, *isrc_data++); /* HDMI_ISRC1_3[0x0054] */ HDMI_OUTP(0x0054, *isrc_data++); /* HDMI_ISRC1_4[0x0058] */ HDMI_OUTP(0x0058, *isrc_data++); /* HDMI_ISRC2_0[0x005C] */ HDMI_OUTP(0x005C, *isrc_data++); /* HDMI_ISRC2_1[0x0060] */ HDMI_OUTP(0x0060, *isrc_data++); /* HDMI_ISRC2_2[0x0064] */ HDMI_OUTP(0x0064, *isrc_data++); /* HDMI_ISRC2_3[0x0068] */ HDMI_OUTP(0x0068, *isrc_data); /* HDMI_VBI_PKT_CTRL[0x0028] */ /* ISRC Send + Continuous */ hdmi_msm_rmw32or(0x0028, 3 << 8); } #else static void hdmi_msm_en_isrc_packet(boolean isrc_is_continued) { /* * Until end-to-end support for various audio packets */ } #endif #ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_ISRC_ACP_SUPPORT static void hdmi_msm_en_acp_packet(uint32 byte1) { /* HDMI_ACP[0x003C] */ HDMI_OUTP(0x003C, 2 | 1 << 8 | byte1 << 16); /* HDMI_VBI_PKT_CTRL[0x0028] */ /* ACP send, s/w source */ hdmi_msm_rmw32or(0x0028, 3 << 12); } #else static void hdmi_msm_en_acp_packet(uint32 byte1) { /* * Until end-to-end support for various audio packets */ } #endif int hdmi_msm_audio_get_sample_rate(void) { return msm_hdmi_sample_rate; } EXPORT_SYMBOL(hdmi_msm_audio_get_sample_rate); void hdmi_msm_audio_sample_rate_reset(int rate) { if (msm_hdmi_sample_rate == rate) return; msm_hdmi_sample_rate = rate; if (hdmi_msm_state->hdcp_enable) hdcp_deauthenticate(); else hdmi_msm_turn_on(); } EXPORT_SYMBOL(hdmi_msm_audio_sample_rate_reset); static void hdmi_msm_audio_setup(void) { const int channels = MSM_HDMI_AUDIO_CHANNEL_2; /* (0) for clr_avmute, (1) for set_avmute */ hdmi_msm_en_gc_packet(0); /* (0) for isrc1 only, (1) for isrc1 and isrc2 */ hdmi_msm_en_isrc_packet(1); /* arbitrary bit pattern for byte1 */ hdmi_msm_en_acp_packet(0x5a); DEV_DBG("Not setting ACP, ISRC1, ISRC2 packets\n"); hdmi_msm_audio_acr_setup(TRUE, external_common_state->video_resolution, msm_hdmi_sample_rate, channels); hdmi_msm_audio_info_setup(TRUE, channels, 0, 0, FALSE); /* Turn on Audio FIFO and SAM DROP ISR */ HDMI_OUTP(0x02CC, HDMI_INP(0x02CC) | BIT(1) | BIT(3)); DEV_INFO("HDMI Audio: Enabled\n"); } static int hdmi_msm_audio_off(void) { uint32 audio_cfg; int i, timeout_val = 50; for (i = 0; (i < timeout_val) && ((audio_cfg = HDMI_INP_ND(0x01D0)) & BIT(0)); i++) { DEV_DBG("%s: %d times: AUDIO CFG is %08xi\n", __func__, i+1, audio_cfg); if (!((i+1) % 10)) { DEV_ERR("%s: audio still on after %d sec. try again\n", __func__, (i+1)/10); SWITCH_SET_HDMI_AUDIO(0, 1); } msleep(100); } if (i == timeout_val) DEV_ERR("%s: Error: cannot turn off audio engine\n", __func__); hdmi_msm_audio_info_setup(FALSE, 0, 0, 0, FALSE); hdmi_msm_audio_acr_setup(FALSE, 0, 0, 0); DEV_INFO("HDMI Audio: Disabled\n"); return 0; } static uint8 hdmi_msm_avi_iframe_lut[][16] = { /* 480p60 480i60 576p50 576i50 720p60 720p50 1080p60 1080i60 1080p50 1080i50 1080p24 1080p30 1080p25 640x480p 480p60_16_9 576p50_4_3 */ {0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10}, /*00*/ {0x18, 0x18, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x18, 0x28, 0x18}, /*01*/ {0x00, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x88, 0x00, 0x04}, /*02*/ {0x02, 0x06, 0x11, 0x15, 0x04, 0x13, 0x10, 0x05, 0x1F, 0x14, 0x20, 0x22, 0x21, 0x01, 0x03, 0x11}, /*03*/ {0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*04*/ {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*05*/ {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*06*/ {0xE1, 0xE1, 0x41, 0x41, 0xD1, 0xd1, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0x39, 0xe1, 0xE1, 0x41}, /*07*/ {0x01, 0x01, 0x02, 0x02, 0x02, 0x02, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x01, 0x01, 0x02}, /*08*/ {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*09*/ {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*10*/ {0xD1, 0xD1, 0xD1, 0xD1, 0x01, 0x01, 0x81, 0x81, 0x81, 0x81, 0x81, 0x81, 0x81, 0x81, 0xD1, 0xD1}, /*11*/ {0x02, 0x02, 0x02, 0x02, 0x05, 0x05, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x02, 0x02, 0x02} /*12*/ }; static void hdmi_msm_avi_info_frame(void) { /* two header + length + 13 data */ uint8 aviInfoFrame[16]; uint8 checksum; uint32 sum; uint32 regVal; int i; int mode = 0; boolean use_ce_scan_info = TRUE; switch (external_common_state->video_resolution) { case HDMI_VFRMT_720x480p60_4_3: mode = 0; break; case HDMI_VFRMT_720x480i60_16_9: mode = 1; break; case HDMI_VFRMT_720x576p50_16_9: mode = 2; break; case HDMI_VFRMT_720x576i50_16_9: mode = 3; break; case HDMI_VFRMT_1280x720p60_16_9: mode = 4; break; case HDMI_VFRMT_1280x720p50_16_9: mode = 5; break; case HDMI_VFRMT_1920x1080p60_16_9: mode = 6; break; case HDMI_VFRMT_1920x1080i60_16_9: mode = 7; break; case HDMI_VFRMT_1920x1080p50_16_9: mode = 8; break; case HDMI_VFRMT_1920x1080i50_16_9: mode = 9; break; case HDMI_VFRMT_1920x1080p24_16_9: mode = 10; break; case HDMI_VFRMT_1920x1080p30_16_9: mode = 11; break; case HDMI_VFRMT_1920x1080p25_16_9: mode = 12; break; case HDMI_VFRMT_640x480p60_4_3: mode = 13; break; case HDMI_VFRMT_720x480p60_16_9: mode = 14; break; case HDMI_VFRMT_720x576p50_4_3: mode = 15; break; default: DEV_INFO("%s: mode %d not supported\n", __func__, external_common_state->video_resolution); return; } /* InfoFrame Type = 82 */ aviInfoFrame[0] = 0x82; /* Version = 2 */ aviInfoFrame[1] = 2; /* Length of AVI InfoFrame = 13 */ aviInfoFrame[2] = 13; /* Data Byte 01: 0 Y1 Y0 A0 B1 B0 S1 S0 */ aviInfoFrame[3] = hdmi_msm_avi_iframe_lut[0][mode]; /* * If the sink specified support for both underscan/overscan * then, by default, set the underscan bit. * Only checking underscan support for preferred format and cea formats */ if ((external_common_state->video_resolution == external_common_state->preferred_video_format)) { use_ce_scan_info = FALSE; switch (external_common_state->pt_scan_info) { case 0: /* * Need to use the info specified for the corresponding * IT or CE format */ DEV_DBG("%s: No underscan information specified for the" " preferred video format\n", __func__); use_ce_scan_info = TRUE; break; case 3: DEV_DBG("%s: Setting underscan bit for the preferred" " video format\n", __func__); aviInfoFrame[3] |= 0x02; break; default: DEV_DBG("%s: Underscan information not set for the" " preferred video format\n", __func__); break; } } if (use_ce_scan_info) { if (3 == external_common_state->ce_scan_info) { DEV_DBG("%s: Setting underscan bit for the CE video" " format\n", __func__); aviInfoFrame[3] |= 0x02; } else { DEV_DBG("%s: Not setting underscan bit for the CE video" " format\n", __func__); } } /* Data Byte 02: C1 C0 M1 M0 R3 R2 R1 R0 */ aviInfoFrame[4] = hdmi_msm_avi_iframe_lut[1][mode]; /* Data Byte 03: ITC EC2 EC1 EC0 Q1 Q0 SC1 SC0 */ aviInfoFrame[5] = hdmi_msm_avi_iframe_lut[2][mode]; /* Data Byte 04: 0 VIC6 VIC5 VIC4 VIC3 VIC2 VIC1 VIC0 */ aviInfoFrame[6] = hdmi_msm_avi_iframe_lut[3][mode]; /* Data Byte 05: 0 0 0 0 PR3 PR2 PR1 PR0 */ aviInfoFrame[7] = hdmi_msm_avi_iframe_lut[4][mode]; /* Data Byte 06: LSB Line No of End of Top Bar */ aviInfoFrame[8] = hdmi_msm_avi_iframe_lut[5][mode]; /* Data Byte 07: MSB Line No of End of Top Bar */ aviInfoFrame[9] = hdmi_msm_avi_iframe_lut[6][mode]; /* Data Byte 08: LSB Line No of Start of Bottom Bar */ aviInfoFrame[10] = hdmi_msm_avi_iframe_lut[7][mode]; /* Data Byte 09: MSB Line No of Start of Bottom Bar */ aviInfoFrame[11] = hdmi_msm_avi_iframe_lut[8][mode]; /* Data Byte 10: LSB Pixel Number of End of Left Bar */ aviInfoFrame[12] = hdmi_msm_avi_iframe_lut[9][mode]; /* Data Byte 11: MSB Pixel Number of End of Left Bar */ aviInfoFrame[13] = hdmi_msm_avi_iframe_lut[10][mode]; /* Data Byte 12: LSB Pixel Number of Start of Right Bar */ aviInfoFrame[14] = hdmi_msm_avi_iframe_lut[11][mode]; /* Data Byte 13: MSB Pixel Number of Start of Right Bar */ aviInfoFrame[15] = hdmi_msm_avi_iframe_lut[12][mode]; sum = 0; for (i = 0; i < 16; i++) sum += aviInfoFrame[i]; sum &= 0xFF; sum = 256 - sum; checksum = (uint8) sum; regVal = aviInfoFrame[5]; regVal = regVal << 8 | aviInfoFrame[4]; regVal = regVal << 8 | aviInfoFrame[3]; regVal = regVal << 8 | checksum; HDMI_OUTP(0x006C, regVal); regVal = aviInfoFrame[9]; regVal = regVal << 8 | aviInfoFrame[8]; regVal = regVal << 8 | aviInfoFrame[7]; regVal = regVal << 8 | aviInfoFrame[6]; HDMI_OUTP(0x0070, regVal); regVal = aviInfoFrame[13]; regVal = regVal << 8 | aviInfoFrame[12]; regVal = regVal << 8 | aviInfoFrame[11]; regVal = regVal << 8 | aviInfoFrame[10]; HDMI_OUTP(0x0074, regVal); regVal = aviInfoFrame[1]; regVal = regVal << 16 | aviInfoFrame[15]; regVal = regVal << 8 | aviInfoFrame[14]; HDMI_OUTP(0x0078, regVal); /* INFOFRAME_CTRL0[0x002C] */ /* 0x3 for AVI InfFrame enable (every frame) */ HDMI_OUTP(0x002C, HDMI_INP(0x002C) | 0x00000003L); } #ifdef CONFIG_FB_MSM_HDMI_3D static void hdmi_msm_vendor_infoframe_packetsetup(void) { uint32 packet_header = 0; uint32 check_sum = 0; uint32 packet_payload = 0; if (!external_common_state->format_3d) { HDMI_OUTP(0x0034, 0); return; } /* 0x0084 GENERIC0_HDR * HB0 7:0 NUM * HB1 15:8 NUM * HB2 23:16 NUM */ /* Setup Packet header and payload */ /* 0x81 VS_INFO_FRAME_ID 0x01 VS_INFO_FRAME_VERSION 0x1B VS_INFO_FRAME_PAYLOAD_LENGTH */ packet_header = 0x81 | (0x01 << 8) | (0x1B << 16); HDMI_OUTP(0x0084, packet_header); check_sum = packet_header & 0xff; check_sum += (packet_header >> 8) & 0xff; check_sum += (packet_header >> 16) & 0xff; /* 0x008C GENERIC0_1 * BYTE4 7:0 NUM * BYTE5 15:8 NUM * BYTE6 23:16 NUM * BYTE7 31:24 NUM */ /* 0x02 VS_INFO_FRAME_3D_PRESENT */ packet_payload = 0x02 << 5; switch (external_common_state->format_3d) { case 1: /* 0b1000 VIDEO_3D_FORMAT_SIDE_BY_SIDE_HALF */ packet_payload |= (0x08 << 8) << 4; break; case 2: /* 0b0110 VIDEO_3D_FORMAT_TOP_AND_BOTTOM_HALF */ packet_payload |= (0x06 << 8) << 4; break; } HDMI_OUTP(0x008C, packet_payload); check_sum += packet_payload & 0xff; check_sum += (packet_payload >> 8) & 0xff; #define IEEE_REGISTRATION_ID 0xC03 /* Next 3 bytes are IEEE Registration Identifcation */ /* 0x0088 GENERIC0_0 * BYTE0 7:0 NUM (checksum) * BYTE1 15:8 NUM * BYTE2 23:16 NUM * BYTE3 31:24 NUM */ check_sum += IEEE_REGISTRATION_ID & 0xff; check_sum += (IEEE_REGISTRATION_ID >> 8) & 0xff; check_sum += (IEEE_REGISTRATION_ID >> 16) & 0xff; HDMI_OUTP(0x0088, (0x100 - (0xff & check_sum)) | ((IEEE_REGISTRATION_ID & 0xff) << 8) | (((IEEE_REGISTRATION_ID >> 8) & 0xff) << 16) | (((IEEE_REGISTRATION_ID >> 16) & 0xff) << 24)); /* 0x0034 GEN_PKT_CTRL * GENERIC0_SEND 0 0 = Disable Generic0 Packet Transmission * 1 = Enable Generic0 Packet Transmission * GENERIC0_CONT 1 0 = Send Generic0 Packet on next frame only * 1 = Send Generic0 Packet on every frame * GENERIC0_UPDATE 2 NUM * GENERIC1_SEND 4 0 = Disable Generic1 Packet Transmission * 1 = Enable Generic1 Packet Transmission * GENERIC1_CONT 5 0 = Send Generic1 Packet on next frame only * 1 = Send Generic1 Packet on every frame * GENERIC0_LINE 21:16 NUM * GENERIC1_LINE 29:24 NUM */ /* GENERIC0_LINE | GENERIC0_UPDATE | GENERIC0_CONT | GENERIC0_SEND * Setup HDMI TX generic packet control * Enable this packet to transmit every frame * Enable this packet to transmit every frame * Enable HDMI TX engine to transmit Generic packet 0 */ HDMI_OUTP(0x0034, (1 << 16) | (1 << 2) | BIT(1) | BIT(0)); } static void hdmi_msm_switch_3d(boolean on) { mutex_lock(&external_common_state_hpd_mutex); if (external_common_state->hpd_state) hdmi_msm_vendor_infoframe_packetsetup(); mutex_unlock(&external_common_state_hpd_mutex); } #endif #define IFRAME_CHECKSUM_32(d) \ ((d & 0xff) + ((d >> 8) & 0xff) + \ ((d >> 16) & 0xff) + ((d >> 24) & 0xff)) static void hdmi_msm_spd_infoframe_packetsetup(void) { uint32 packet_header = 0; uint32 check_sum = 0; uint32 packet_payload = 0; uint32 packet_control = 0; uint8 *vendor_name = external_common_state->spd_vendor_name; uint8 *product_description = external_common_state->spd_product_description; /* 0x00A4 GENERIC1_HDR * HB0 7:0 NUM * HB1 15:8 NUM * HB2 23:16 NUM */ /* Setup Packet header and payload */ /* 0x83 InfoFrame Type Code 0x01 InfoFrame Version Number 0x19 Length of Source Product Description InfoFrame */ packet_header = 0x83 | (0x01 << 8) | (0x19 << 16); HDMI_OUTP(0x00A4, packet_header); check_sum += IFRAME_CHECKSUM_32(packet_header); /* 0x00AC GENERIC1_1 * BYTE4 7:0 VENDOR_NAME[3] * BYTE5 15:8 VENDOR_NAME[4] * BYTE6 23:16 VENDOR_NAME[5] * BYTE7 31:24 VENDOR_NAME[6] */ packet_payload = (vendor_name[3] & 0x7f) | ((vendor_name[4] & 0x7f) << 8) | ((vendor_name[5] & 0x7f) << 16) | ((vendor_name[6] & 0x7f) << 24); HDMI_OUTP(0x00AC, packet_payload); check_sum += IFRAME_CHECKSUM_32(packet_payload); /* Product Description (7-bit ASCII code) */ /* 0x00B0 GENERIC1_2 * BYTE8 7:0 VENDOR_NAME[7] * BYTE9 15:8 PRODUCT_NAME[ 0] * BYTE10 23:16 PRODUCT_NAME[ 1] * BYTE11 31:24 PRODUCT_NAME[ 2] */ packet_payload = (vendor_name[7] & 0x7f) | ((product_description[0] & 0x7f) << 8) | ((product_description[1] & 0x7f) << 16) | ((product_description[2] & 0x7f) << 24); HDMI_OUTP(0x00B0, packet_payload); check_sum += IFRAME_CHECKSUM_32(packet_payload); /* 0x00B4 GENERIC1_3 * BYTE12 7:0 PRODUCT_NAME[ 3] * BYTE13 15:8 PRODUCT_NAME[ 4] * BYTE14 23:16 PRODUCT_NAME[ 5] * BYTE15 31:24 PRODUCT_NAME[ 6] */ packet_payload = (product_description[3] & 0x7f) | ((product_description[4] & 0x7f) << 8) | ((product_description[5] & 0x7f) << 16) | ((product_description[6] & 0x7f) << 24); HDMI_OUTP(0x00B4, packet_payload); check_sum += IFRAME_CHECKSUM_32(packet_payload); /* 0x00B8 GENERIC1_4 * BYTE16 7:0 PRODUCT_NAME[ 7] * BYTE17 15:8 PRODUCT_NAME[ 8] * BYTE18 23:16 PRODUCT_NAME[ 9] * BYTE19 31:24 PRODUCT_NAME[10] */ packet_payload = (product_description[7] & 0x7f) | ((product_description[8] & 0x7f) << 8) | ((product_description[9] & 0x7f) << 16) | ((product_description[10] & 0x7f) << 24); HDMI_OUTP(0x00B8, packet_payload); check_sum += IFRAME_CHECKSUM_32(packet_payload); /* 0x00BC GENERIC1_5 * BYTE20 7:0 PRODUCT_NAME[11] * BYTE21 15:8 PRODUCT_NAME[12] * BYTE22 23:16 PRODUCT_NAME[13] * BYTE23 31:24 PRODUCT_NAME[14] */ packet_payload = (product_description[11] & 0x7f) | ((product_description[12] & 0x7f) << 8) | ((product_description[13] & 0x7f) << 16) | ((product_description[14] & 0x7f) << 24); HDMI_OUTP(0x00BC, packet_payload); check_sum += IFRAME_CHECKSUM_32(packet_payload); /* 0x00C0 GENERIC1_6 * BYTE24 7:0 PRODUCT_NAME[15] * BYTE25 15:8 Source Device Information * BYTE26 23:16 NUM * BYTE27 31:24 NUM */ /* Source Device Information * 00h unknown * 01h Digital STB * 02h DVD * 03h D-VHS * 04h HDD Video * 05h DVC * 06h DSC * 07h Video CD * 08h Game * 09h PC general */ packet_payload = (product_description[15] & 0x7f) | 0x00 << 8; HDMI_OUTP(0x00C0, packet_payload); check_sum += IFRAME_CHECKSUM_32(packet_payload); /* Vendor Name (7bit ASCII code) */ /* 0x00A8 GENERIC1_0 * BYTE0 7:0 CheckSum * BYTE1 15:8 VENDOR_NAME[0] * BYTE2 23:16 VENDOR_NAME[1] * BYTE3 31:24 VENDOR_NAME[2] */ packet_payload = ((vendor_name[0] & 0x7f) << 8) | ((vendor_name[1] & 0x7f) << 16) | ((vendor_name[2] & 0x7f) << 24); check_sum += IFRAME_CHECKSUM_32(packet_payload); packet_payload |= ((0x100 - (0xff & check_sum)) & 0xff); HDMI_OUTP(0x00A8, packet_payload); /* GENERIC1_LINE | GENERIC1_CONT | GENERIC1_SEND * Setup HDMI TX generic packet control * Enable this packet to transmit every frame * Enable HDMI TX engine to transmit Generic packet 1 */ packet_control = HDMI_INP_ND(0x0034); packet_control |= ((0x1 << 24) | (1 << 5) | (1 << 4)); HDMI_OUTP(0x0034, packet_control); } int hdmi_msm_clk(int on) { int rc; DEV_DBG("HDMI Clk: %s\n", on ? "Enable" : "Disable"); if (on) { rc = clk_prepare_enable(hdmi_msm_state->hdmi_app_clk); if (rc) { DEV_ERR("'hdmi_app_clk' clock enable failed, rc=%d\n", rc); return rc; } rc = clk_prepare_enable(hdmi_msm_state->hdmi_m_pclk); if (rc) { DEV_ERR("'hdmi_m_pclk' clock enable failed, rc=%d\n", rc); return rc; } rc = clk_prepare_enable(hdmi_msm_state->hdmi_s_pclk); if (rc) { DEV_ERR("'hdmi_s_pclk' clock enable failed, rc=%d\n", rc); return rc; } } else { clk_disable_unprepare(hdmi_msm_state->hdmi_app_clk); clk_disable_unprepare(hdmi_msm_state->hdmi_m_pclk); clk_disable_unprepare(hdmi_msm_state->hdmi_s_pclk); } return 0; } static void hdmi_msm_turn_on(void) { uint32 audio_pkt_ctrl, audio_cfg; /* * Number of wait iterations for QDSP to disable Audio Engine * before resetting HDMI core */ int i = 10; audio_pkt_ctrl = HDMI_INP_ND(0x0020); audio_cfg = HDMI_INP_ND(0x01D0); /* * Checking BIT[0] of AUDIO PACKET CONTROL and * AUDIO CONFIGURATION register */ while (((audio_pkt_ctrl & 0x00000001) || (audio_cfg & 0x00000001)) && (i--)) { audio_pkt_ctrl = HDMI_INP_ND(0x0020); audio_cfg = HDMI_INP_ND(0x01D0); DEV_DBG("%d times :: HDMI AUDIO PACKET is %08x and " "AUDIO CFG is %08x", i, audio_pkt_ctrl, audio_cfg); msleep(20); } hdmi_msm_set_mode(FALSE); mutex_lock(&hdcp_auth_state_mutex); hdmi_msm_reset_core(); mutex_unlock(&hdcp_auth_state_mutex); hdmi_msm_init_phy(external_common_state->video_resolution); /* HDMI_USEC_REFTIMER[0x0208] */ HDMI_OUTP(0x0208, 0x0001001B); hdmi_msm_set_mode(TRUE); hdmi_msm_video_setup(external_common_state->video_resolution); if (!hdmi_msm_is_dvi_mode()) { hdmi_msm_audio_setup(); /* * Send the audio switch device notification if HDCP is * not enabled. Otherwise, the notification would be * sent after HDCP authentication is successful. */ if (!hdmi_msm_state->hdcp_enable) SWITCH_SET_HDMI_AUDIO(1, 0); } hdmi_msm_avi_info_frame(); #ifdef CONFIG_FB_MSM_HDMI_3D hdmi_msm_vendor_infoframe_packetsetup(); #endif hdmi_msm_spd_infoframe_packetsetup(); if (hdmi_msm_state->hdcp_enable && hdmi_msm_state->reauth) { hdmi_msm_hdcp_enable(); hdmi_msm_state->reauth = FALSE ; } #ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT /* re-initialize CEC if enabled */ mutex_lock(&hdmi_msm_state_mutex); if (hdmi_msm_state->cec_enabled == true) { hdmi_msm_cec_init(); hdmi_msm_cec_write_logical_addr( hdmi_msm_state->cec_logical_addr); } mutex_unlock(&hdmi_msm_state_mutex); #endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT */ DEV_INFO("HDMI Core: Initialized\n"); } static void hdmi_msm_hdcp_timer(unsigned long data) { if (!hdmi_msm_state->hdcp_enable) { DEV_DBG("%s: HDCP not enabled\n", __func__); return; } queue_work(hdmi_work_queue, &hdmi_msm_state->hdcp_work); } #ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT static void hdmi_msm_cec_read_timer_func(unsigned long data) { queue_work(hdmi_work_queue, &hdmi_msm_state->cec_latch_detect_work); } #endif static void hdmi_msm_hpd_polarity_setup(bool polarity, bool trigger) { u32 cable_sense; if (polarity) HDMI_OUTP(0x0254, BIT(2) | BIT(1)); else HDMI_OUTP(0x0254, BIT(2)); cable_sense = (HDMI_INP(0x0250) & BIT(1)) >> 1; DEV_DBG("%s: listen=%s, sense=%s\n", __func__, polarity ? "connect" : "disconnect", cable_sense ? "connect" : "disconnect"); if (trigger && (cable_sense == polarity)) { u32 reg_val = HDMI_INP(0x0258); /* Toggle HPD circuit to trigger HPD sense */ HDMI_OUTP(0x0258, reg_val & ~BIT(28)); HDMI_OUTP(0x0258, reg_val | BIT(28)); } } static void hdmi_msm_hpd_off(void) { int rc = 0; if (!hdmi_msm_state->hpd_initialized) { DEV_DBG("%s: HPD is already OFF, returning\n", __func__); return; } DEV_DBG("%s: (timer, 5V, IRQ off)\n", __func__); disable_irq(hdmi_msm_state->irq); /* Disable HPD interrupt */ HDMI_OUTP(0x0254, 0); DEV_DBG("%s: Disabling HPD_CTRLd\n", __func__); hdmi_msm_set_mode(FALSE); hdmi_msm_state->pd->enable_5v(0); hdmi_msm_clk(0); rc = hdmi_msm_state->pd->gpio_config(0); if (rc != 0) DEV_INFO("%s: Failed to disable GPIOs. Error=%d\n", __func__, rc); hdmi_msm_state->hpd_initialized = FALSE; } static void hdmi_msm_dump_regs(const char *prefix) { #ifdef REG_DUMP print_hex_dump(KERN_INFO, prefix, DUMP_PREFIX_OFFSET, 32, 4, (void *)MSM_HDMI_BASE, 0x0334, false); #endif } static int hdmi_msm_hpd_on(void) { static int phy_reset_done; uint32 hpd_ctrl; int rc = 0; if (hdmi_msm_state->hpd_initialized) { DEV_DBG("%s: HPD is already ON\n", __func__); } else { rc = hdmi_msm_state->pd->gpio_config(1); if (rc) { DEV_ERR("%s: Failed to enable GPIOs. Error=%d\n", __func__, rc); goto error1; } rc = hdmi_msm_clk(1); if (rc) { DEV_ERR("%s: Failed to enable clocks. Error=%d\n", __func__, rc); goto error2; } rc = hdmi_msm_state->pd->enable_5v(1); if (rc) { DEV_ERR("%s: Failed to enable 5V regulator. Error=%d\n", __func__, rc); goto error3; } hdmi_msm_dump_regs("HDMI-INIT: "); hdmi_msm_set_mode(FALSE); if (!phy_reset_done) { hdmi_phy_reset(); phy_reset_done = 1; } hdmi_msm_set_mode(TRUE); /* HDMI_USEC_REFTIMER[0x0208] */ HDMI_OUTP(0x0208, 0x0001001B); /* Set up HPD state variables */ mutex_lock(&external_common_state_hpd_mutex); external_common_state->hpd_state = 0; mutex_unlock(&external_common_state_hpd_mutex); mutex_lock(&hdmi_msm_state_mutex); mutex_unlock(&hdmi_msm_state_mutex); enable_irq(hdmi_msm_state->irq); hdmi_msm_state->hpd_initialized = TRUE; /* set timeout to 4.1ms (max) for hardware debounce */ hpd_ctrl = HDMI_INP(0x0258) | 0x1FFF; /* Turn on HPD HW circuit */ HDMI_OUTP(0x0258, hpd_ctrl | BIT(28)); /* Set up HPD_CTRL to sense HPD event */ hdmi_msm_hpd_polarity_setup(HPD_CONNECT_POLARITY, true); } DEV_DBG("%s: (IRQ, 5V on)\n", __func__); return 0; error3: hdmi_msm_clk(0); error2: hdmi_msm_state->pd->gpio_config(0); error1: return rc; } static int hdmi_msm_power_ctrl(boolean enable) { int rc = 0; if (enable) { /* * Enable HPD only if the UI option is on or if * HDMI is configured as the primary display */ if (hdmi_prim_display || external_common_state->hpd_feature_on) { DEV_DBG("%s: Turning HPD ciruitry on\n", __func__); rc = hdmi_msm_hpd_on(); } } else { DEV_DBG("%s: Turning HPD ciruitry off\n", __func__); hdmi_msm_hpd_off(); } return rc; } static int hdmi_msm_power_on(struct platform_device *pdev) { struct msm_fb_data_type *mfd = platform_get_drvdata(pdev); bool changed; if (!hdmi_msm_state || !hdmi_msm_state->hdmi_app_clk || !MSM_HDMI_BASE) return -ENODEV; if (!hdmi_msm_state->hpd_initialized || !external_common_state->hpd_state) { DEV_DBG("%s: HPD not initialized/cable not conn. Returning\n", __func__); return 0; } DEV_INFO("power: ON (%dx%d %d)\n", mfd->var_xres, mfd->var_yres, mfd->var_pixclock); /* Only start transmission with supported resolution */ changed = hdmi_common_get_video_format_from_drv_data(mfd); if (changed || external_common_state->default_res_supported) { hdmi_msm_audio_info_setup(TRUE, 0, 0, 0, FALSE); mutex_lock(&external_common_state_hpd_mutex); hdmi_msm_state->panel_power_on = TRUE; if (external_common_state->hpd_state && hdmi_msm_is_power_on()) { DEV_DBG("%s: Turning HDMI on\n", __func__); mutex_unlock(&external_common_state_hpd_mutex); hdmi_msm_turn_on(); if (hdmi_msm_state->hdcp_enable) { /* Kick off HDCP Authentication */ mutex_lock(&hdcp_auth_state_mutex); hdmi_msm_state->reauth = FALSE; hdmi_msm_state->full_auth_done = FALSE; mutex_unlock(&hdcp_auth_state_mutex); mod_timer(&hdmi_msm_state->hdcp_timer, jiffies + HZ/2); } } else { mutex_unlock(&external_common_state_hpd_mutex); } hdmi_msm_dump_regs("HDMI-ON: "); DEV_INFO("power=%s DVI= %s\n", hdmi_msm_is_power_on() ? "ON" : "OFF" , hdmi_msm_is_dvi_mode() ? "ON" : "OFF"); } else { DEV_ERR("%s: Video fmt %d not supp. Returning\n", __func__, external_common_state->video_resolution); } /* Enable HPD interrupt and listen to disconnect interrupts */ hdmi_msm_hpd_polarity_setup(HPD_DISCONNECT_POLARITY, external_common_state->hpd_state); return 0; } void mhl_connect_api(boolean on) { char *envp[2]; /* Simulating a HPD event based on MHL event */ if (on) { hdmi_msm_read_edid(); hdmi_msm_state->reauth = FALSE ; /* Build EDID table */ hdmi_msm_turn_on(); DEV_INFO("HDMI HPD: CONNECTED: send ONLINE\n"); kobject_uevent(external_common_state->uevent_kobj, KOBJ_ONLINE); envp[0] = 0; if (!hdmi_msm_state->hdcp_enable) { /* Send Audio for HDMI Compliance Cases*/ envp[0] = "HDCP_STATE=PASS"; envp[1] = NULL; DEV_INFO("HDMI HPD: sense : send HDCP_PASS\n"); kobject_uevent_env(external_common_state->uevent_kobj, KOBJ_CHANGE, envp); switch_set_state(&external_common_state->sdev, 1); DEV_INFO("%s: hdmi state switched to %d\n", __func__, external_common_state->sdev.state); } else { hdmi_msm_hdcp_enable(); } } else { DEV_INFO("HDMI HPD: DISCONNECTED: send OFFLINE\n"); kobject_uevent(external_common_state->uevent_kobj, KOBJ_OFFLINE); switch_set_state(&external_common_state->sdev, 0); DEV_INFO("%s: hdmi state switched to %d\n", __func__, external_common_state->sdev.state); } } EXPORT_SYMBOL(mhl_connect_api); /* Note that power-off will also be called when the cable-remove event is * processed on the user-space and as a result the framebuffer is powered * down. However, we are still required to be able to detect a cable-insert * event; so for now leave the HDMI engine running; so that the HPD IRQ is * still being processed. */ static int hdmi_msm_power_off(struct platform_device *pdev) { if (!hdmi_msm_state->hdmi_app_clk) return -ENODEV; if (!hdmi_msm_state->panel_power_on) { DEV_DBG("%s: panel not on. returning\n", __func__); return 0; } if (hdmi_msm_state->hdcp_enable) { if (hdmi_msm_state->hdcp_activating) { /* * Let the HDCP work know that we got an HPD * disconnect so that it can stop the * reauthentication loop. */ mutex_lock(&hdcp_auth_state_mutex); hdmi_msm_state->hpd_during_auth = TRUE; mutex_unlock(&hdcp_auth_state_mutex); } /* * Cancel any pending reauth attempts. * If one is ongoing, wait for it to finish */ cancel_work_sync(&hdmi_msm_state->hdcp_reauth_work); cancel_work_sync(&hdmi_msm_state->hdcp_work); del_timer_sync(&hdmi_msm_state->hdcp_timer); hdcp_deauthenticate(); } SWITCH_SET_HDMI_AUDIO(0, 0); if (!hdmi_msm_is_dvi_mode()) hdmi_msm_audio_off(); hdmi_msm_powerdown_phy(); hdmi_msm_state->panel_power_on = FALSE; DEV_INFO("power: OFF (audio off)\n"); /* Enable HPD interrupt and listen to connect interrupts */ hdmi_msm_hpd_polarity_setup(HPD_CONNECT_POLARITY, !external_common_state->hpd_state); return 0; } void hdmi_msm_config_hdcp_feature(void) { if (hdcp_feature_on && hdmi_msm_has_hdcp()) { init_timer(&hdmi_msm_state->hdcp_timer); hdmi_msm_state->hdcp_timer.function = hdmi_msm_hdcp_timer; hdmi_msm_state->hdcp_timer.data = (uint32)NULL; hdmi_msm_state->hdcp_timer.expires = 0xffffffffL; init_completion(&hdmi_msm_state->hdcp_success_done); INIT_WORK(&hdmi_msm_state->hdcp_reauth_work, hdmi_msm_hdcp_reauth_work); INIT_WORK(&hdmi_msm_state->hdcp_work, hdmi_msm_hdcp_work); hdmi_msm_state->hdcp_enable = TRUE; } else { del_timer(&hdmi_msm_state->hdcp_timer); hdmi_msm_state->hdcp_enable = FALSE; } external_common_state->present_hdcp = hdmi_msm_state->hdcp_enable; DEV_INFO("%s: HDCP Feature: %s\n", __func__, hdmi_msm_state->hdcp_enable ? "Enabled" : "Disabled"); } static int __devinit hdmi_msm_probe(struct platform_device *pdev) { int rc; struct platform_device *fb_dev; if (!hdmi_msm_state) { pr_err("%s: hdmi_msm_state is NULL\n", __func__); return -ENOMEM; } external_common_state->dev = &pdev->dev; DEV_DBG("probe\n"); if (pdev->id == 0) { struct resource *res; #define GET_RES(name, mode) do { \ res = platform_get_resource_byname(pdev, mode, name); \ if (!res) { \ DEV_ERR("'" name "' resource not found\n"); \ rc = -ENODEV; \ goto error; \ } \ } while (0) #define IO_REMAP(var, name) do { \ GET_RES(name, IORESOURCE_MEM); \ var = ioremap(res->start, resource_size(res)); \ if (!var) { \ DEV_ERR("'" name "' ioremap failed\n"); \ rc = -ENOMEM; \ goto error; \ } \ } while (0) #define GET_IRQ(var, name) do { \ GET_RES(name, IORESOURCE_IRQ); \ var = res->start; \ } while (0) IO_REMAP(hdmi_msm_state->qfprom_io, "hdmi_msm_qfprom_addr"); hdmi_msm_state->hdmi_io = MSM_HDMI_BASE; GET_IRQ(hdmi_msm_state->irq, "hdmi_msm_irq"); hdmi_msm_state->pd = pdev->dev.platform_data; #undef GET_RES #undef IO_REMAP #undef GET_IRQ return 0; } hdmi_msm_state->hdmi_app_clk = clk_get(&pdev->dev, "core_clk"); if (IS_ERR(hdmi_msm_state->hdmi_app_clk)) { DEV_ERR("'core_clk' clk not found\n"); rc = IS_ERR(hdmi_msm_state->hdmi_app_clk); goto error; } hdmi_msm_state->hdmi_m_pclk = clk_get(&pdev->dev, "master_iface_clk"); if (IS_ERR(hdmi_msm_state->hdmi_m_pclk)) { DEV_ERR("'master_iface_clk' clk not found\n"); rc = IS_ERR(hdmi_msm_state->hdmi_m_pclk); goto error; } hdmi_msm_state->hdmi_s_pclk = clk_get(&pdev->dev, "slave_iface_clk"); if (IS_ERR(hdmi_msm_state->hdmi_s_pclk)) { DEV_ERR("'slave_iface_clk' clk not found\n"); rc = IS_ERR(hdmi_msm_state->hdmi_s_pclk); goto error; } hdmi_msm_state->is_mhl_enabled = hdmi_msm_state->pd->is_mhl_enabled; rc = check_hdmi_features(); if (rc) { DEV_ERR("Init FAILED: check_hdmi_features rc=%d\n", rc); goto error; } if (!hdmi_msm_state->pd->core_power) { DEV_ERR("Init FAILED: core_power function missing\n"); rc = -ENODEV; goto error; } if (!hdmi_msm_state->pd->enable_5v) { DEV_ERR("Init FAILED: enable_5v function missing\n"); rc = -ENODEV; goto error; } if (!hdmi_msm_state->pd->cec_power) { DEV_ERR("Init FAILED: cec_power function missing\n"); rc = -ENODEV; goto error; } rc = request_threaded_irq(hdmi_msm_state->irq, NULL, &hdmi_msm_isr, IRQF_TRIGGER_HIGH | IRQF_ONESHOT, "hdmi_msm_isr", NULL); if (rc) { DEV_ERR("Init FAILED: IRQ request, rc=%d\n", rc); goto error; } disable_irq(hdmi_msm_state->irq); #ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT init_timer(&hdmi_msm_state->cec_read_timer); hdmi_msm_state->cec_read_timer.function = hdmi_msm_cec_read_timer_func; hdmi_msm_state->cec_read_timer.data = (uint32)NULL; hdmi_msm_state->cec_read_timer.expires = 0xffffffffL; #endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT */ fb_dev = msm_fb_add_device(pdev); if (fb_dev) { rc = external_common_state_create(fb_dev); if (rc) { DEV_ERR("Init FAILED: hdmi_msm_state_create, rc=%d\n", rc); goto error; } } else DEV_ERR("Init FAILED: failed to add fb device\n"); if (hdmi_prim_display) { rc = hdmi_msm_hpd_on(); if (rc) goto error; } hdmi_msm_config_hdcp_feature(); /* Initialize hdmi node and register with switch driver */ if (hdmi_prim_display) external_common_state->sdev.name = "hdmi_as_primary"; else external_common_state->sdev.name = "hdmi"; if (switch_dev_register(&external_common_state->sdev) < 0) { DEV_ERR("Hdmi switch registration failed\n"); rc = -ENODEV; goto error; } external_common_state->audio_sdev.name = "hdmi_audio"; if (switch_dev_register(&external_common_state->audio_sdev) < 0) { DEV_ERR("Hdmi audio switch registration failed\n"); switch_dev_unregister(&external_common_state->sdev); rc = -ENODEV; goto error; } return 0; error: if (hdmi_msm_state->qfprom_io) iounmap(hdmi_msm_state->qfprom_io); hdmi_msm_state->qfprom_io = NULL; if (hdmi_msm_state->hdmi_io) iounmap(hdmi_msm_state->hdmi_io); hdmi_msm_state->hdmi_io = NULL; external_common_state_remove(); if (hdmi_msm_state->hdmi_app_clk) clk_put(hdmi_msm_state->hdmi_app_clk); if (hdmi_msm_state->hdmi_m_pclk) clk_put(hdmi_msm_state->hdmi_m_pclk); if (hdmi_msm_state->hdmi_s_pclk) clk_put(hdmi_msm_state->hdmi_s_pclk); hdmi_msm_state->hdmi_app_clk = NULL; hdmi_msm_state->hdmi_m_pclk = NULL; hdmi_msm_state->hdmi_s_pclk = NULL; return rc; } static int __devexit hdmi_msm_remove(struct platform_device *pdev) { DEV_INFO("HDMI device: remove\n"); DEV_INFO("HDMI HPD: OFF\n"); /* Unregister hdmi node from switch driver */ switch_dev_unregister(&external_common_state->sdev); switch_dev_unregister(&external_common_state->audio_sdev); hdmi_msm_hpd_off(); free_irq(hdmi_msm_state->irq, NULL); if (hdmi_msm_state->qfprom_io) iounmap(hdmi_msm_state->qfprom_io); hdmi_msm_state->qfprom_io = NULL; if (hdmi_msm_state->hdmi_io) iounmap(hdmi_msm_state->hdmi_io); hdmi_msm_state->hdmi_io = NULL; external_common_state_remove(); if (hdmi_msm_state->hdmi_app_clk) clk_put(hdmi_msm_state->hdmi_app_clk); if (hdmi_msm_state->hdmi_m_pclk) clk_put(hdmi_msm_state->hdmi_m_pclk); if (hdmi_msm_state->hdmi_s_pclk) clk_put(hdmi_msm_state->hdmi_s_pclk); hdmi_msm_state->hdmi_app_clk = NULL; hdmi_msm_state->hdmi_m_pclk = NULL; hdmi_msm_state->hdmi_s_pclk = NULL; kfree(hdmi_msm_state); hdmi_msm_state = NULL; return 0; } static int hdmi_msm_hpd_feature(int on) { int rc = 0; DEV_INFO("%s: %d\n", __func__, on); if (on) { rc = hdmi_msm_hpd_on(); } else { external_common_state->hpd_state = 0; hdmi_msm_hpd_off(); SWITCH_SET_HDMI_AUDIO(0, 0); /* Set HDMI switch node to 0 on HPD feature disable */ switch_set_state(&external_common_state->sdev, 0); DEV_INFO("%s: hdmi state switched to %d\n", __func__, external_common_state->sdev.state); } return rc; } static struct platform_driver this_driver = { .probe = hdmi_msm_probe, .remove = hdmi_msm_remove, .driver.name = "hdmi_msm", }; static struct msm_fb_panel_data hdmi_msm_panel_data = { .on = hdmi_msm_power_on, .off = hdmi_msm_power_off, .power_ctrl = hdmi_msm_power_ctrl, }; static struct platform_device this_device = { .name = "hdmi_msm", .id = 1, .dev.platform_data = &hdmi_msm_panel_data, }; static int __init hdmi_msm_init(void) { int rc; if (msm_fb_detect_client("hdmi_msm")) return 0; #ifdef CONFIG_FB_MSM_HDMI_AS_PRIMARY hdmi_prim_display = 1; #endif hdmi_msm_setup_video_mode_lut(); hdmi_msm_state = kzalloc(sizeof(*hdmi_msm_state), GFP_KERNEL); if (!hdmi_msm_state) { pr_err("hdmi_msm_init FAILED: out of memory\n"); rc = -ENOMEM; goto init_exit; } external_common_state = &hdmi_msm_state->common; if (hdmi_prim_display && hdmi_prim_resolution) external_common_state->video_resolution = hdmi_prim_resolution - 1; else external_common_state->video_resolution = HDMI_VFRMT_1920x1080p60_16_9; #ifdef CONFIG_FB_MSM_HDMI_3D external_common_state->switch_3d = hdmi_msm_switch_3d; #endif memset(external_common_state->spd_vendor_name, 0, sizeof(external_common_state->spd_vendor_name)); memset(external_common_state->spd_product_description, 0, sizeof(external_common_state->spd_product_description)); #ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT hdmi_msm_state->cec_queue_start = kzalloc(sizeof(struct hdmi_msm_cec_msg)*CEC_QUEUE_SIZE, GFP_KERNEL); if (!hdmi_msm_state->cec_queue_start) { pr_err("hdmi_msm_init FAILED: CEC queue out of memory\n"); rc = -ENOMEM; goto init_exit; } hdmi_msm_state->cec_queue_wr = hdmi_msm_state->cec_queue_start; hdmi_msm_state->cec_queue_rd = hdmi_msm_state->cec_queue_start; hdmi_msm_state->cec_queue_full = false; #endif /* * Create your work queue * allocs and returns ptr */ hdmi_work_queue = create_workqueue("hdmi_hdcp"); external_common_state->hpd_feature = hdmi_msm_hpd_feature; rc = platform_driver_register(&this_driver); if (rc) { pr_err("hdmi_msm_init FAILED: platform_driver_register rc=%d\n", rc); goto init_exit; } hdmi_common_init_panel_info(&hdmi_msm_panel_data.panel_info); init_completion(&hdmi_msm_state->ddc_sw_done); INIT_WORK(&hdmi_msm_state->hpd_state_work, hdmi_msm_hpd_state_work); #ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT INIT_WORK(&hdmi_msm_state->cec_latch_detect_work, hdmi_msm_cec_latch_work); init_completion(&hdmi_msm_state->cec_frame_wr_done); init_completion(&hdmi_msm_state->cec_line_latch_wait); #endif rc = platform_device_register(&this_device); if (rc) { pr_err("hdmi_msm_init FAILED: platform_device_register rc=%d\n", rc); platform_driver_unregister(&this_driver); goto init_exit; } pr_debug("%s: success:" #ifdef DEBUG " DEBUG" #else " RELEASE" #endif " AUDIO EDID HPD HDCP" " DVI" #ifndef CONFIG_FB_MSM_HDMI_MSM_PANEL_DVI_SUPPORT ":0" #endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_DVI_SUPPORT */ "\n", __func__); return 0; init_exit: kfree(hdmi_msm_state); hdmi_msm_state = NULL; return rc; } static void __exit hdmi_msm_exit(void) { platform_device_unregister(&this_device); platform_driver_unregister(&this_driver); } static int set_hdcp_feature_on(const char *val, const struct kernel_param *kp) { int rv = param_set_bool(val, kp); if (rv) return rv; pr_debug("%s: HDCP feature = %d\n", __func__, hdcp_feature_on); if (hdmi_msm_state) { if ((HDMI_INP(0x0250) & 0x2)) { pr_err("%s: Unable to set HDCP feature", __func__); pr_err("%s: HDMI panel is currently turned on", __func__); } else if (hdcp_feature_on != hdmi_msm_state->hdcp_enable) { hdmi_msm_config_hdcp_feature(); } } return 0; } static struct kernel_param_ops hdcp_feature_on_param_ops = { .set = set_hdcp_feature_on, .get = param_get_bool, }; module_param_cb(hdcp, &hdcp_feature_on_param_ops, &hdcp_feature_on, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(hdcp, "Enable or Disable HDCP"); module_init(hdmi_msm_init); module_exit(hdmi_msm_exit); MODULE_LICENSE("GPL v2"); MODULE_VERSION("0.3"); MODULE_AUTHOR("Qualcomm Innovation Center, Inc."); MODULE_DESCRIPTION("HDMI MSM TX driver");