/* * linux/mm/vmstat.c * * Manages VM statistics * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * zoned VM statistics * Copyright (C) 2006 Silicon Graphics, Inc., * Christoph Lameter */ #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_VM_EVENT_COUNTERS DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; EXPORT_PER_CPU_SYMBOL(vm_event_states); static void sum_vm_events(unsigned long *ret) { int cpu; int i; memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); for_each_online_cpu(cpu) { struct vm_event_state *this = &per_cpu(vm_event_states, cpu); for (i = 0; i < NR_VM_EVENT_ITEMS; i++) ret[i] += this->event[i]; } } /* * Accumulate the vm event counters across all CPUs. * The result is unavoidably approximate - it can change * during and after execution of this function. */ void all_vm_events(unsigned long *ret) { get_online_cpus(); sum_vm_events(ret); put_online_cpus(); } EXPORT_SYMBOL_GPL(all_vm_events); #ifdef CONFIG_HOTPLUG /* * Fold the foreign cpu events into our own. * * This is adding to the events on one processor * but keeps the global counts constant. */ void vm_events_fold_cpu(int cpu) { struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); int i; for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { count_vm_events(i, fold_state->event[i]); fold_state->event[i] = 0; } } #endif /* CONFIG_HOTPLUG */ #endif /* CONFIG_VM_EVENT_COUNTERS */ /* * Manage combined zone based / global counters * * vm_stat contains the global counters */ atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; EXPORT_SYMBOL(vm_stat); #ifdef CONFIG_SMP int calculate_pressure_threshold(struct zone *zone) { int threshold; int watermark_distance; /* * As vmstats are not up to date, there is drift between the estimated * and real values. For high thresholds and a high number of CPUs, it * is possible for the min watermark to be breached while the estimated * value looks fine. The pressure threshold is a reduced value such * that even the maximum amount of drift will not accidentally breach * the min watermark */ watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); threshold = max(1, (int)(watermark_distance / num_online_cpus())); /* * Maximum threshold is 125 */ threshold = min(125, threshold); return threshold; } int calculate_normal_threshold(struct zone *zone) { int threshold; int mem; /* memory in 128 MB units */ /* * The threshold scales with the number of processors and the amount * of memory per zone. More memory means that we can defer updates for * longer, more processors could lead to more contention. * fls() is used to have a cheap way of logarithmic scaling. * * Some sample thresholds: * * Threshold Processors (fls) Zonesize fls(mem+1) * ------------------------------------------------------------------ * 8 1 1 0.9-1 GB 4 * 16 2 2 0.9-1 GB 4 * 20 2 2 1-2 GB 5 * 24 2 2 2-4 GB 6 * 28 2 2 4-8 GB 7 * 32 2 2 8-16 GB 8 * 4 2 2 <128M 1 * 30 4 3 2-4 GB 5 * 48 4 3 8-16 GB 8 * 32 8 4 1-2 GB 4 * 32 8 4 0.9-1GB 4 * 10 16 5 <128M 1 * 40 16 5 900M 4 * 70 64 7 2-4 GB 5 * 84 64 7 4-8 GB 6 * 108 512 9 4-8 GB 6 * 125 1024 10 8-16 GB 8 * 125 1024 10 16-32 GB 9 */ mem = zone->present_pages >> (27 - PAGE_SHIFT); threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); /* * Maximum threshold is 125 */ threshold = min(125, threshold); return threshold; } /* * Refresh the thresholds for each zone. */ void refresh_zone_stat_thresholds(void) { struct zone *zone; int cpu; int threshold; for_each_populated_zone(zone) { unsigned long max_drift, tolerate_drift; threshold = calculate_normal_threshold(zone); for_each_online_cpu(cpu) per_cpu_ptr(zone->pageset, cpu)->stat_threshold = threshold; /* * Only set percpu_drift_mark if there is a danger that * NR_FREE_PAGES reports the low watermark is ok when in fact * the min watermark could be breached by an allocation */ tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); max_drift = num_online_cpus() * threshold; if (max_drift > tolerate_drift) zone->percpu_drift_mark = high_wmark_pages(zone) + max_drift; } } void set_pgdat_percpu_threshold(pg_data_t *pgdat, int (*calculate_pressure)(struct zone *)) { struct zone *zone; int cpu; int threshold; int i; for (i = 0; i < pgdat->nr_zones; i++) { zone = &pgdat->node_zones[i]; if (!zone->percpu_drift_mark) continue; threshold = (*calculate_pressure)(zone); for_each_possible_cpu(cpu) per_cpu_ptr(zone->pageset, cpu)->stat_threshold = threshold; } } /* * For use when we know that interrupts are disabled. */ void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, int delta) { struct per_cpu_pageset __percpu *pcp = zone->pageset; s8 __percpu *p = pcp->vm_stat_diff + item; long x; long t; x = delta + __this_cpu_read(*p); t = __this_cpu_read(pcp->stat_threshold); if (unlikely(x > t || x < -t)) { zone_page_state_add(x, zone, item); x = 0; } __this_cpu_write(*p, x); } EXPORT_SYMBOL(__mod_zone_page_state); /* * Optimized increment and decrement functions. * * These are only for a single page and therefore can take a struct page * * argument instead of struct zone *. This allows the inclusion of the code * generated for page_zone(page) into the optimized functions. * * No overflow check is necessary and therefore the differential can be * incremented or decremented in place which may allow the compilers to * generate better code. * The increment or decrement is known and therefore one boundary check can * be omitted. * * NOTE: These functions are very performance sensitive. Change only * with care. * * Some processors have inc/dec instructions that are atomic vs an interrupt. * However, the code must first determine the differential location in a zone * based on the processor number and then inc/dec the counter. There is no * guarantee without disabling preemption that the processor will not change * in between and therefore the atomicity vs. interrupt cannot be exploited * in a useful way here. */ void __inc_zone_state(struct zone *zone, enum zone_stat_item item) { struct per_cpu_pageset __percpu *pcp = zone->pageset; s8 __percpu *p = pcp->vm_stat_diff + item; s8 v, t; v = __this_cpu_inc_return(*p); t = __this_cpu_read(pcp->stat_threshold); if (unlikely(v > t)) { s8 overstep = t >> 1; zone_page_state_add(v + overstep, zone, item); __this_cpu_write(*p, -overstep); } } void __inc_zone_page_state(struct page *page, enum zone_stat_item item) { __inc_zone_state(page_zone(page), item); } EXPORT_SYMBOL(__inc_zone_page_state); void __dec_zone_state(struct zone *zone, enum zone_stat_item item) { struct per_cpu_pageset __percpu *pcp = zone->pageset; s8 __percpu *p = pcp->vm_stat_diff + item; s8 v, t; v = __this_cpu_dec_return(*p); t = __this_cpu_read(pcp->stat_threshold); if (unlikely(v < - t)) { s8 overstep = t >> 1; zone_page_state_add(v - overstep, zone, item); __this_cpu_write(*p, overstep); } } void __dec_zone_page_state(struct page *page, enum zone_stat_item item) { __dec_zone_state(page_zone(page), item); } EXPORT_SYMBOL(__dec_zone_page_state); #ifdef CONFIG_HAVE_CMPXCHG_LOCAL /* * If we have cmpxchg_local support then we do not need to incur the overhead * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. * * mod_state() modifies the zone counter state through atomic per cpu * operations. * * Overstep mode specifies how overstep should handled: * 0 No overstepping * 1 Overstepping half of threshold * -1 Overstepping minus half of threshold */ static inline void mod_state(struct zone *zone, enum zone_stat_item item, int delta, int overstep_mode) { struct per_cpu_pageset __percpu *pcp = zone->pageset; s8 __percpu *p = pcp->vm_stat_diff + item; long o, n, t, z; do { z = 0; /* overflow to zone counters */ /* * The fetching of the stat_threshold is racy. We may apply * a counter threshold to the wrong the cpu if we get * rescheduled while executing here. However, the next * counter update will apply the threshold again and * therefore bring the counter under the threshold again. * * Most of the time the thresholds are the same anyways * for all cpus in a zone. */ t = this_cpu_read(pcp->stat_threshold); o = this_cpu_read(*p); n = delta + o; if (n > t || n < -t) { int os = overstep_mode * (t >> 1) ; /* Overflow must be added to zone counters */ z = n + os; n = -os; } } while (this_cpu_cmpxchg(*p, o, n) != o); if (z) zone_page_state_add(z, zone, item); } void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, int delta) { mod_state(zone, item, delta, 0); } EXPORT_SYMBOL(mod_zone_page_state); void inc_zone_state(struct zone *zone, enum zone_stat_item item) { mod_state(zone, item, 1, 1); } void inc_zone_page_state(struct page *page, enum zone_stat_item item) { mod_state(page_zone(page), item, 1, 1); } EXPORT_SYMBOL(inc_zone_page_state); void dec_zone_page_state(struct page *page, enum zone_stat_item item) { mod_state(page_zone(page), item, -1, -1); } EXPORT_SYMBOL(dec_zone_page_state); #else /* * Use interrupt disable to serialize counter updates */ void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, int delta) { unsigned long flags; local_irq_save(flags); __mod_zone_page_state(zone, item, delta); local_irq_restore(flags); } EXPORT_SYMBOL(mod_zone_page_state); void inc_zone_state(struct zone *zone, enum zone_stat_item item) { unsigned long flags; local_irq_save(flags); __inc_zone_state(zone, item); local_irq_restore(flags); } void inc_zone_page_state(struct page *page, enum zone_stat_item item) { unsigned long flags; struct zone *zone; zone = page_zone(page); local_irq_save(flags); __inc_zone_state(zone, item); local_irq_restore(flags); } EXPORT_SYMBOL(inc_zone_page_state); void dec_zone_page_state(struct page *page, enum zone_stat_item item) { unsigned long flags; local_irq_save(flags); __dec_zone_page_state(page, item); local_irq_restore(flags); } EXPORT_SYMBOL(dec_zone_page_state); #endif /* * Update the zone counters for one cpu. * * The cpu specified must be either the current cpu or a processor that * is not online. If it is the current cpu then the execution thread must * be pinned to the current cpu. * * Note that refresh_cpu_vm_stats strives to only access * node local memory. The per cpu pagesets on remote zones are placed * in the memory local to the processor using that pageset. So the * loop over all zones will access a series of cachelines local to * the processor. * * The call to zone_page_state_add updates the cachelines with the * statistics in the remote zone struct as well as the global cachelines * with the global counters. These could cause remote node cache line * bouncing and will have to be only done when necessary. */ void refresh_cpu_vm_stats(int cpu) { struct zone *zone; int i; int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; for_each_populated_zone(zone) { struct per_cpu_pageset *p; p = per_cpu_ptr(zone->pageset, cpu); for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) if (p->vm_stat_diff[i]) { unsigned long flags; int v; local_irq_save(flags); v = p->vm_stat_diff[i]; p->vm_stat_diff[i] = 0; local_irq_restore(flags); atomic_long_add(v, &zone->vm_stat[i]); global_diff[i] += v; #ifdef CONFIG_NUMA /* 3 seconds idle till flush */ p->expire = 3; #endif } cond_resched(); #ifdef CONFIG_NUMA /* * Deal with draining the remote pageset of this * processor * * Check if there are pages remaining in this pageset * if not then there is nothing to expire. */ if (!p->expire || !p->pcp.count) continue; /* * We never drain zones local to this processor. */ if (zone_to_nid(zone) == numa_node_id()) { p->expire = 0; continue; } p->expire--; if (p->expire) continue; if (p->pcp.count) drain_zone_pages(zone, &p->pcp); #endif } for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) if (global_diff[i]) atomic_long_add(global_diff[i], &vm_stat[i]); } #endif #ifdef CONFIG_NUMA /* * zonelist = the list of zones passed to the allocator * z = the zone from which the allocation occurred. * * Must be called with interrupts disabled. * * When __GFP_OTHER_NODE is set assume the node of the preferred * zone is the local node. This is useful for daemons who allocate * memory on behalf of other processes. */ void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags) { if (z->zone_pgdat == preferred_zone->zone_pgdat) { __inc_zone_state(z, NUMA_HIT); } else { __inc_zone_state(z, NUMA_MISS); __inc_zone_state(preferred_zone, NUMA_FOREIGN); } if (z->node == ((flags & __GFP_OTHER_NODE) ? preferred_zone->node : numa_node_id())) __inc_zone_state(z, NUMA_LOCAL); else __inc_zone_state(z, NUMA_OTHER); } #endif #ifdef CONFIG_COMPACTION struct contig_page_info { unsigned long free_pages; unsigned long free_blocks_total; unsigned long free_blocks_suitable; }; /* * Calculate the number of free pages in a zone, how many contiguous * pages are free and how many are large enough to satisfy an allocation of * the target size. Note that this function makes no attempt to estimate * how many suitable free blocks there *might* be if MOVABLE pages were * migrated. Calculating that is possible, but expensive and can be * figured out from userspace */ static void fill_contig_page_info(struct zone *zone, unsigned int suitable_order, struct contig_page_info *info) { unsigned int order; info->free_pages = 0; info->free_blocks_total = 0; info->free_blocks_suitable = 0; for (order = 0; order < MAX_ORDER; order++) { unsigned long blocks; /* Count number of free blocks */ blocks = zone->free_area[order].nr_free; info->free_blocks_total += blocks; /* Count free base pages */ info->free_pages += blocks << order; /* Count the suitable free blocks */ if (order >= suitable_order) info->free_blocks_suitable += blocks << (order - suitable_order); } } /* * A fragmentation index only makes sense if an allocation of a requested * size would fail. If that is true, the fragmentation index indicates * whether external fragmentation or a lack of memory was the problem. * The value can be used to determine if page reclaim or compaction * should be used */ static int __fragmentation_index(unsigned int order, struct contig_page_info *info) { unsigned long requested = 1UL << order; if (!info->free_blocks_total) return 0; /* Fragmentation index only makes sense when a request would fail */ if (info->free_blocks_suitable) return -1000; /* * Index is between 0 and 1 so return within 3 decimal places * * 0 => allocation would fail due to lack of memory * 1 => allocation would fail due to fragmentation */ return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); } /* Same as __fragmentation index but allocs contig_page_info on stack */ int fragmentation_index(struct zone *zone, unsigned int order) { struct contig_page_info info; fill_contig_page_info(zone, order, &info); return __fragmentation_index(order, &info); } #endif #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION) #include #include static char * const migratetype_names[MIGRATE_TYPES] = { "Unmovable", "Reclaimable", "Movable", "Reserve", #ifdef CONFIG_CMA "CMA", #endif "Isolate", }; static void *frag_start(struct seq_file *m, loff_t *pos) { pg_data_t *pgdat; loff_t node = *pos; for (pgdat = first_online_pgdat(); pgdat && node; pgdat = next_online_pgdat(pgdat)) --node; return pgdat; } static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) { pg_data_t *pgdat = (pg_data_t *)arg; (*pos)++; return next_online_pgdat(pgdat); } static void frag_stop(struct seq_file *m, void *arg) { } /* Walk all the zones in a node and print using a callback */ static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) { struct zone *zone; struct zone *node_zones = pgdat->node_zones; unsigned long flags; for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { if (!populated_zone(zone)) continue; spin_lock_irqsave(&zone->lock, flags); print(m, pgdat, zone); spin_unlock_irqrestore(&zone->lock, flags); } } #endif #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) #ifdef CONFIG_ZONE_DMA #define TEXT_FOR_DMA(xx) xx "_dma", #else #define TEXT_FOR_DMA(xx) #endif #ifdef CONFIG_ZONE_DMA32 #define TEXT_FOR_DMA32(xx) xx "_dma32", #else #define TEXT_FOR_DMA32(xx) #endif #ifdef CONFIG_HIGHMEM #define TEXT_FOR_HIGHMEM(xx) xx "_high", #else #define TEXT_FOR_HIGHMEM(xx) #endif #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ TEXT_FOR_HIGHMEM(xx) xx "_movable", const char * const vmstat_text[] = { /* Zoned VM counters */ "nr_free_pages", "nr_inactive_anon", "nr_active_anon", "nr_inactive_file", "nr_active_file", "nr_unevictable", "nr_mlock", "nr_anon_pages", "nr_mapped", "nr_file_pages", "nr_dirty", "nr_writeback", "nr_slab_reclaimable", "nr_slab_unreclaimable", "nr_page_table_pages", "nr_kernel_stack", "nr_unstable", "nr_bounce", "nr_vmscan_write", "nr_vmscan_immediate_reclaim", "nr_writeback_temp", "nr_isolated_anon", "nr_isolated_file", "nr_shmem", "nr_dirtied", "nr_written", #ifdef CONFIG_NUMA "numa_hit", "numa_miss", "numa_foreign", "numa_interleave", "numa_local", "numa_other", #endif "nr_anon_transparent_hugepages", "nr_free_cma", "nr_dirty_threshold", "nr_dirty_background_threshold", #ifdef CONFIG_VM_EVENT_COUNTERS "pgpgin", "pgpgout", "pswpin", "pswpout", TEXTS_FOR_ZONES("pgalloc") "pgfree", "pgactivate", "pgdeactivate", "pgfault", "pgmajfault", TEXTS_FOR_ZONES("pgrefill") TEXTS_FOR_ZONES("pgsteal_kswapd") TEXTS_FOR_ZONES("pgsteal_direct") TEXTS_FOR_ZONES("pgscan_kswapd") TEXTS_FOR_ZONES("pgscan_direct") #ifdef CONFIG_NUMA "zone_reclaim_failed", #endif "pginodesteal", "slabs_scanned", "kswapd_inodesteal", "kswapd_low_wmark_hit_quickly", "kswapd_high_wmark_hit_quickly", "kswapd_skip_congestion_wait", "pageoutrun", "allocstall", "pgrotated", #ifdef CONFIG_COMPACTION "compact_blocks_moved", "compact_pages_moved", "compact_pagemigrate_failed", "compact_stall", "compact_fail", "compact_success", #endif #ifdef CONFIG_HUGETLB_PAGE "htlb_buddy_alloc_success", "htlb_buddy_alloc_fail", #endif "unevictable_pgs_culled", "unevictable_pgs_scanned", "unevictable_pgs_rescued", "unevictable_pgs_mlocked", "unevictable_pgs_munlocked", "unevictable_pgs_cleared", "unevictable_pgs_stranded", "unevictable_pgs_mlockfreed", #ifdef CONFIG_TRANSPARENT_HUGEPAGE "thp_fault_alloc", "thp_fault_fallback", "thp_collapse_alloc", "thp_collapse_alloc_failed", "thp_split", #endif #endif /* CONFIG_VM_EVENTS_COUNTERS */ }; #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ #ifdef CONFIG_PROC_FS static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, struct zone *zone) { int order; seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); for (order = 0; order < MAX_ORDER; ++order) seq_printf(m, "%6lu ", zone->free_area[order].nr_free); seq_putc(m, '\n'); } /* * This walks the free areas for each zone. */ static int frag_show(struct seq_file *m, void *arg) { pg_data_t *pgdat = (pg_data_t *)arg; walk_zones_in_node(m, pgdat, frag_show_print); return 0; } static void pagetypeinfo_showfree_print(struct seq_file *m, pg_data_t *pgdat, struct zone *zone) { int order, mtype; for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { seq_printf(m, "Node %4d, zone %8s, type %12s ", pgdat->node_id, zone->name, migratetype_names[mtype]); for (order = 0; order < MAX_ORDER; ++order) { unsigned long freecount = 0; struct free_area *area; struct list_head *curr; area = &(zone->free_area[order]); list_for_each(curr, &area->free_list[mtype]) freecount++; seq_printf(m, "%6lu ", freecount); } seq_putc(m, '\n'); } } /* Print out the free pages at each order for each migatetype */ static int pagetypeinfo_showfree(struct seq_file *m, void *arg) { int order; pg_data_t *pgdat = (pg_data_t *)arg; /* Print header */ seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); for (order = 0; order < MAX_ORDER; ++order) seq_printf(m, "%6d ", order); seq_putc(m, '\n'); walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); return 0; } static void pagetypeinfo_showblockcount_print(struct seq_file *m, pg_data_t *pgdat, struct zone *zone) { int mtype; unsigned long pfn; unsigned long start_pfn = zone->zone_start_pfn; unsigned long end_pfn = start_pfn + zone->spanned_pages; unsigned long count[MIGRATE_TYPES] = { 0, }; for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { struct page *page; if (!pfn_valid(pfn)) continue; page = pfn_to_page(pfn); /* Watch for unexpected holes punched in the memmap */ if (!memmap_valid_within(pfn, page, zone)) continue; mtype = get_pageblock_migratetype(page); if (mtype < MIGRATE_TYPES) count[mtype]++; } /* Print counts */ seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) seq_printf(m, "%12lu ", count[mtype]); seq_putc(m, '\n'); } /* Print out the free pages at each order for each migratetype */ static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) { int mtype; pg_data_t *pgdat = (pg_data_t *)arg; seq_printf(m, "\n%-23s", "Number of blocks type "); for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) seq_printf(m, "%12s ", migratetype_names[mtype]); seq_putc(m, '\n'); walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); return 0; } /* * This prints out statistics in relation to grouping pages by mobility. * It is expensive to collect so do not constantly read the file. */ static int pagetypeinfo_show(struct seq_file *m, void *arg) { pg_data_t *pgdat = (pg_data_t *)arg; /* check memoryless node */ if (!node_state(pgdat->node_id, N_HIGH_MEMORY)) return 0; seq_printf(m, "Page block order: %d\n", pageblock_order); seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); seq_putc(m, '\n'); pagetypeinfo_showfree(m, pgdat); pagetypeinfo_showblockcount(m, pgdat); return 0; } static const struct seq_operations fragmentation_op = { .start = frag_start, .next = frag_next, .stop = frag_stop, .show = frag_show, }; static int fragmentation_open(struct inode *inode, struct file *file) { return seq_open(file, &fragmentation_op); } static const struct file_operations fragmentation_file_operations = { .open = fragmentation_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static const struct seq_operations pagetypeinfo_op = { .start = frag_start, .next = frag_next, .stop = frag_stop, .show = pagetypeinfo_show, }; static int pagetypeinfo_open(struct inode *inode, struct file *file) { return seq_open(file, &pagetypeinfo_op); } static const struct file_operations pagetypeinfo_file_ops = { .open = pagetypeinfo_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, struct zone *zone) { int i; seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); seq_printf(m, "\n pages free %lu" "\n min %lu" "\n low %lu" "\n high %lu" "\n scanned %lu" "\n spanned %lu" "\n present %lu", zone_page_state(zone, NR_FREE_PAGES), min_wmark_pages(zone), low_wmark_pages(zone), high_wmark_pages(zone), zone->pages_scanned, zone->spanned_pages, zone->present_pages); for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) seq_printf(m, "\n %-12s %lu", vmstat_text[i], zone_page_state(zone, i)); seq_printf(m, "\n protection: (%lu", zone->lowmem_reserve[0]); for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) seq_printf(m, ", %lu", zone->lowmem_reserve[i]); seq_printf(m, ")" "\n pagesets"); for_each_online_cpu(i) { struct per_cpu_pageset *pageset; pageset = per_cpu_ptr(zone->pageset, i); seq_printf(m, "\n cpu: %i" "\n count: %i" "\n high: %i" "\n batch: %i", i, pageset->pcp.count, pageset->pcp.high, pageset->pcp.batch); #ifdef CONFIG_SMP seq_printf(m, "\n vm stats threshold: %d", pageset->stat_threshold); #endif } seq_printf(m, "\n all_unreclaimable: %u" "\n start_pfn: %lu" "\n inactive_ratio: %u", zone->all_unreclaimable, zone->zone_start_pfn, zone->inactive_ratio); seq_putc(m, '\n'); } /* * Output information about zones in @pgdat. */ static int zoneinfo_show(struct seq_file *m, void *arg) { pg_data_t *pgdat = (pg_data_t *)arg; walk_zones_in_node(m, pgdat, zoneinfo_show_print); return 0; } static const struct seq_operations zoneinfo_op = { .start = frag_start, /* iterate over all zones. The same as in * fragmentation. */ .next = frag_next, .stop = frag_stop, .show = zoneinfo_show, }; static int zoneinfo_open(struct inode *inode, struct file *file) { return seq_open(file, &zoneinfo_op); } static const struct file_operations proc_zoneinfo_file_operations = { .open = zoneinfo_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; enum writeback_stat_item { NR_DIRTY_THRESHOLD, NR_DIRTY_BG_THRESHOLD, NR_VM_WRITEBACK_STAT_ITEMS, }; static void *vmstat_start(struct seq_file *m, loff_t *pos) { unsigned long *v; int i, stat_items_size; if (*pos >= ARRAY_SIZE(vmstat_text)) return NULL; stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); #ifdef CONFIG_VM_EVENT_COUNTERS stat_items_size += sizeof(struct vm_event_state); #endif v = kmalloc(stat_items_size, GFP_KERNEL); m->private = v; if (!v) return ERR_PTR(-ENOMEM); for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) v[i] = global_page_state(i); v += NR_VM_ZONE_STAT_ITEMS; global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, v + NR_DIRTY_THRESHOLD); v += NR_VM_WRITEBACK_STAT_ITEMS; #ifdef CONFIG_VM_EVENT_COUNTERS all_vm_events(v); v[PGPGIN] /= 2; /* sectors -> kbytes */ v[PGPGOUT] /= 2; #endif return (unsigned long *)m->private + *pos; } static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) { (*pos)++; if (*pos >= ARRAY_SIZE(vmstat_text)) return NULL; return (unsigned long *)m->private + *pos; } static int vmstat_show(struct seq_file *m, void *arg) { unsigned long *l = arg; unsigned long off = l - (unsigned long *)m->private; seq_printf(m, "%s %lu\n", vmstat_text[off], *l); return 0; } static void vmstat_stop(struct seq_file *m, void *arg) { kfree(m->private); m->private = NULL; } static const struct seq_operations vmstat_op = { .start = vmstat_start, .next = vmstat_next, .stop = vmstat_stop, .show = vmstat_show, }; static int vmstat_open(struct inode *inode, struct file *file) { return seq_open(file, &vmstat_op); } static const struct file_operations proc_vmstat_file_operations = { .open = vmstat_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; #endif /* CONFIG_PROC_FS */ #ifdef CONFIG_SMP static struct workqueue_struct *vmstat_wq; static DEFINE_PER_CPU(struct delayed_work, vmstat_work); int sysctl_stat_interval __read_mostly = HZ; static void vmstat_update(struct work_struct *w) { refresh_cpu_vm_stats(smp_processor_id()); queue_delayed_work(vmstat_wq, &__get_cpu_var(vmstat_work), round_jiffies_relative(sysctl_stat_interval)); } static void __cpuinit start_cpu_timer(int cpu) { struct delayed_work *work = &per_cpu(vmstat_work, cpu); INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update); queue_delayed_work_on(cpu, vmstat_wq, work, __round_jiffies_relative(HZ, cpu)); } /* * Use the cpu notifier to insure that the thresholds are recalculated * when necessary. */ static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { long cpu = (long)hcpu; switch (action) { case CPU_ONLINE: case CPU_ONLINE_FROZEN: refresh_zone_stat_thresholds(); start_cpu_timer(cpu); node_set_state(cpu_to_node(cpu), N_CPU); break; case CPU_DOWN_PREPARE: case CPU_DOWN_PREPARE_FROZEN: cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); per_cpu(vmstat_work, cpu).work.func = NULL; break; case CPU_DOWN_FAILED: case CPU_DOWN_FAILED_FROZEN: start_cpu_timer(cpu); break; case CPU_DEAD: case CPU_DEAD_FROZEN: refresh_zone_stat_thresholds(); break; default: break; } return NOTIFY_OK; } static struct notifier_block __cpuinitdata vmstat_notifier = { &vmstat_cpuup_callback, NULL, 0 }; #endif static int __init setup_vmstat(void) { #ifdef CONFIG_SMP int cpu; register_cpu_notifier(&vmstat_notifier); vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0); for_each_online_cpu(cpu) start_cpu_timer(cpu); #endif #ifdef CONFIG_PROC_FS proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); #endif return 0; } module_init(setup_vmstat) #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) #include static struct dentry *extfrag_debug_root; /* * Return an index indicating how much of the available free memory is * unusable for an allocation of the requested size. */ static int unusable_free_index(unsigned int order, struct contig_page_info *info) { /* No free memory is interpreted as all free memory is unusable */ if (info->free_pages == 0) return 1000; /* * Index should be a value between 0 and 1. Return a value to 3 * decimal places. * * 0 => no fragmentation * 1 => high fragmentation */ return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); } static void unusable_show_print(struct seq_file *m, pg_data_t *pgdat, struct zone *zone) { unsigned int order; int index; struct contig_page_info info; seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); for (order = 0; order < MAX_ORDER; ++order) { fill_contig_page_info(zone, order, &info); index = unusable_free_index(order, &info); seq_printf(m, "%d.%03d ", index / 1000, index % 1000); } seq_putc(m, '\n'); } /* * Display unusable free space index * * The unusable free space index measures how much of the available free * memory cannot be used to satisfy an allocation of a given size and is a * value between 0 and 1. The higher the value, the more of free memory is * unusable and by implication, the worse the external fragmentation is. This * can be expressed as a percentage by multiplying by 100. */ static int unusable_show(struct seq_file *m, void *arg) { pg_data_t *pgdat = (pg_data_t *)arg; /* check memoryless node */ if (!node_state(pgdat->node_id, N_HIGH_MEMORY)) return 0; walk_zones_in_node(m, pgdat, unusable_show_print); return 0; } static const struct seq_operations unusable_op = { .start = frag_start, .next = frag_next, .stop = frag_stop, .show = unusable_show, }; static int unusable_open(struct inode *inode, struct file *file) { return seq_open(file, &unusable_op); } static const struct file_operations unusable_file_ops = { .open = unusable_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static void extfrag_show_print(struct seq_file *m, pg_data_t *pgdat, struct zone *zone) { unsigned int order; int index; /* Alloc on stack as interrupts are disabled for zone walk */ struct contig_page_info info; seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); for (order = 0; order < MAX_ORDER; ++order) { fill_contig_page_info(zone, order, &info); index = __fragmentation_index(order, &info); seq_printf(m, "%d.%03d ", index / 1000, index % 1000); } seq_putc(m, '\n'); } /* * Display fragmentation index for orders that allocations would fail for */ static int extfrag_show(struct seq_file *m, void *arg) { pg_data_t *pgdat = (pg_data_t *)arg; walk_zones_in_node(m, pgdat, extfrag_show_print); return 0; } static const struct seq_operations extfrag_op = { .start = frag_start, .next = frag_next, .stop = frag_stop, .show = extfrag_show, }; static int extfrag_open(struct inode *inode, struct file *file) { return seq_open(file, &extfrag_op); } static const struct file_operations extfrag_file_ops = { .open = extfrag_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static int __init extfrag_debug_init(void) { extfrag_debug_root = debugfs_create_dir("extfrag", NULL); if (!extfrag_debug_root) return -ENOMEM; if (!debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL, &unusable_file_ops)) return -ENOMEM; if (!debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL, &extfrag_file_ops)) return -ENOMEM; return 0; } module_init(extfrag_debug_init); #endif