/* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define BMS_CONTROL 0x224 #define BMS_S1_DELAY 0x225 #define BMS_OUTPUT0 0x230 #define BMS_OUTPUT1 0x231 #define BMS_TOLERANCES 0x232 #define BMS_TEST1 0x237 #define ADC_ARB_SECP_CNTRL 0x190 #define ADC_ARB_SECP_AMUX_CNTRL 0x191 #define ADC_ARB_SECP_ANA_PARAM 0x192 #define ADC_ARB_SECP_DIG_PARAM 0x193 #define ADC_ARB_SECP_RSV 0x194 #define ADC_ARB_SECP_DATA1 0x195 #define ADC_ARB_SECP_DATA0 0x196 #define ADC_ARB_BMS_CNTRL 0x18D #define AMUX_TRIM_2 0x322 #define TEST_PROGRAM_REV 0x339 #define TEMP_SOC_STORAGE 0x107 #define TEMP_IAVG_STORAGE 0x105 #define TEMP_IAVG_STORAGE_USE_MASK 0x0F #define PON_CNTRL_6 0x018 #define WD_BIT BIT(7) enum pmic_bms_interrupts { PM8921_BMS_SBI_WRITE_OK, PM8921_BMS_CC_THR, PM8921_BMS_VSENSE_THR, PM8921_BMS_VSENSE_FOR_R, PM8921_BMS_OCV_FOR_R, PM8921_BMS_GOOD_OCV, PM8921_BMS_VSENSE_AVG, PM_BMS_MAX_INTS, }; struct pm8921_soc_params { uint16_t last_good_ocv_raw; int cc; int last_good_ocv_uv; }; /** * struct pm8921_bms_chip - * @bms_output_lock: lock to prevent concurrent bms reads * * @last_ocv_uv_mutex: mutex to protect simultaneous invocations of calculate * state of charge, note that last_ocv_uv could be * changed as soc is adjusted. This mutex protects * simultaneous updates of last_ocv_uv as well. This mutex * also protects changes to *_at_100 variables used in * faking 100% SOC. */ struct pm8921_bms_chip { struct device *dev; struct dentry *dent; unsigned int r_sense; unsigned int v_cutoff; unsigned int fcc; struct single_row_lut *fcc_temp_lut; struct single_row_lut *fcc_sf_lut; struct pc_temp_ocv_lut *pc_temp_ocv_lut; struct sf_lut *pc_sf_lut; struct sf_lut *rbatt_sf_lut; int delta_rbatt_mohm; struct work_struct calib_hkadc_work; struct delayed_work calib_hkadc_delayed_work; struct mutex calib_mutex; unsigned int revision; unsigned int xoadc_v0625_usb_present; unsigned int xoadc_v0625_usb_absent; unsigned int xoadc_v0625; unsigned int xoadc_v125; unsigned int batt_temp_channel; unsigned int vbat_channel; unsigned int ref625mv_channel; unsigned int ref1p25v_channel; unsigned int batt_id_channel; unsigned int pmic_bms_irq[PM_BMS_MAX_INTS]; DECLARE_BITMAP(enabled_irqs, PM_BMS_MAX_INTS); struct mutex bms_output_lock; struct single_row_lut *adjusted_fcc_temp_lut; unsigned int charging_began; unsigned int start_percent; unsigned int end_percent; int charge_time_us; int catch_up_time_us; enum battery_type batt_type; uint16_t ocv_reading_at_100; int cc_reading_at_100; int max_voltage_uv; int chg_term_ua; int default_rbatt_mohm; int amux_2_trim_delta; uint16_t prev_last_good_ocv_raw; int rconn_mohm; struct mutex last_ocv_uv_mutex; int last_ocv_uv; int pon_ocv_uv; int last_cc_uah; unsigned long tm_sec; int enable_fcc_learning; int shutdown_soc; int shutdown_iavg_ma; struct delayed_work calculate_soc_delayed_work; struct timespec t_soc_queried; int shutdown_soc_valid_limit; int ignore_shutdown_soc; int prev_iavg_ua; int prev_uuc_iavg_ma; int prev_pc_unusable; int adjust_soc_low_threshold; int ibat_at_cv_ua; int soc_at_cv; int prev_chg_soc; int last_reported_soc; int eoc_check_soc; int soc_adjusted; int bms_support_wlc; int wlc_term_ua; int wlc_max_voltage_uv; int (*wlc_is_plugged)(void); int vbat_at_cv; int (*is_warm_reset)(void); int first_fixed_iavg_ma; }; /* * protects against simultaneous adjustment of ocv based on shutdown soc and * invalidating the shutdown soc */ static DEFINE_MUTEX(soc_invalidation_mutex); static int shutdown_soc_invalid; static struct pm8921_bms_chip *the_chip; #define DEFAULT_RBATT_MOHMS 200 #define DEFAULT_OCV_MICROVOLTS 3900000 #define DEFAULT_CHARGE_CYCLES 0 static int last_usb_cal_delta_uv = 1800; module_param(last_usb_cal_delta_uv, int, 0644); static int last_chargecycles = DEFAULT_CHARGE_CYCLES; static int last_charge_increase; module_param(last_chargecycles, int, 0644); module_param(last_charge_increase, int, 0644); static int calculated_soc = -EINVAL; static int last_soc = -EINVAL; static int last_real_fcc_mah = -EINVAL; static int last_real_fcc_batt_temp = -EINVAL; static int bms_ops_set(const char *val, const struct kernel_param *kp) { if (*(int *)kp->arg == -EINVAL) return param_set_int(val, kp); else return 0; } static struct kernel_param_ops bms_param_ops = { .set = bms_ops_set, .get = param_get_int, }; module_param_cb(last_soc, &bms_param_ops, &last_soc, 0644); /* * bms_fake_battery is set in setups where a battery emulator is used instead * of a real battery. This makes the bms driver report a different/fake value * regardless of the calculated state of charge. */ static int bms_fake_battery = -EINVAL; module_param(bms_fake_battery, int, 0644); /* bms_start_XXX and bms_end_XXX are read only */ static int bms_start_percent; static int bms_start_ocv_uv; static int bms_start_cc_uah; static int bms_end_percent; static int bms_end_ocv_uv; static int bms_end_cc_uah; static int bms_ro_ops_set(const char *val, const struct kernel_param *kp) { return -EINVAL; } static struct kernel_param_ops bms_ro_param_ops = { .set = bms_ro_ops_set, .get = param_get_int, }; module_param_cb(bms_start_percent, &bms_ro_param_ops, &bms_start_percent, 0644); module_param_cb(bms_start_ocv_uv, &bms_ro_param_ops, &bms_start_ocv_uv, 0644); module_param_cb(bms_start_cc_uah, &bms_ro_param_ops, &bms_start_cc_uah, 0644); module_param_cb(bms_end_percent, &bms_ro_param_ops, &bms_end_percent, 0644); module_param_cb(bms_end_ocv_uv, &bms_ro_param_ops, &bms_end_ocv_uv, 0644); module_param_cb(bms_end_cc_uah, &bms_ro_param_ops, &bms_end_cc_uah, 0644); static int interpolate_fcc(struct pm8921_bms_chip *chip, int batt_temp); static void readjust_fcc_table(void) { struct single_row_lut *temp, *old; int i, fcc, ratio; if (!the_chip->fcc_temp_lut) { pr_err("The static fcc lut table is NULL\n"); return; } temp = kzalloc(sizeof(struct single_row_lut), GFP_KERNEL); if (!temp) { pr_err("Cannot allocate memory for adjusted fcc table\n"); return; } fcc = interpolate_fcc(the_chip, last_real_fcc_batt_temp); temp->cols = the_chip->fcc_temp_lut->cols; for (i = 0; i < the_chip->fcc_temp_lut->cols; i++) { temp->x[i] = the_chip->fcc_temp_lut->x[i]; ratio = div_u64(the_chip->fcc_temp_lut->y[i] * 1000, fcc); temp->y[i] = (ratio * last_real_fcc_mah); temp->y[i] /= 1000; pr_debug("temp=%d, staticfcc=%d, adjfcc=%d, ratio=%d\n", temp->x[i], the_chip->fcc_temp_lut->y[i], temp->y[i], ratio); } old = the_chip->adjusted_fcc_temp_lut; the_chip->adjusted_fcc_temp_lut = temp; kfree(old); } static int bms_last_real_fcc_set(const char *val, const struct kernel_param *kp) { int rc = 0; if (last_real_fcc_mah == -EINVAL) rc = param_set_int(val, kp); if (rc) { pr_err("Failed to set last_real_fcc_mah rc=%d\n", rc); return rc; } if (last_real_fcc_batt_temp != -EINVAL) readjust_fcc_table(); return rc; } static struct kernel_param_ops bms_last_real_fcc_param_ops = { .set = bms_last_real_fcc_set, .get = param_get_int, }; module_param_cb(last_real_fcc_mah, &bms_last_real_fcc_param_ops, &last_real_fcc_mah, 0644); static int bms_last_real_fcc_batt_temp_set(const char *val, const struct kernel_param *kp) { int rc = 0; if (last_real_fcc_batt_temp == -EINVAL) rc = param_set_int(val, kp); if (rc) { pr_err("Failed to set last_real_fcc_batt_temp rc=%d\n", rc); return rc; } if (last_real_fcc_mah != -EINVAL) readjust_fcc_table(); return rc; } static struct kernel_param_ops bms_last_real_fcc_batt_temp_param_ops = { .set = bms_last_real_fcc_batt_temp_set, .get = param_get_int, }; module_param_cb(last_real_fcc_batt_temp, &bms_last_real_fcc_batt_temp_param_ops, &last_real_fcc_batt_temp, 0644); static int pm_bms_get_rt_status(struct pm8921_bms_chip *chip, int irq_id) { return pm8xxx_read_irq_stat(chip->dev->parent, chip->pmic_bms_irq[irq_id]); } static void pm8921_bms_enable_irq(struct pm8921_bms_chip *chip, int interrupt) { if (!__test_and_set_bit(interrupt, chip->enabled_irqs)) { dev_dbg(chip->dev, "%s %d\n", __func__, chip->pmic_bms_irq[interrupt]); enable_irq(chip->pmic_bms_irq[interrupt]); } } static void pm8921_bms_disable_irq(struct pm8921_bms_chip *chip, int interrupt) { if (__test_and_clear_bit(interrupt, chip->enabled_irqs)) { pr_debug("%d\n", chip->pmic_bms_irq[interrupt]); disable_irq_nosync(chip->pmic_bms_irq[interrupt]); } } static int pm_bms_masked_write(struct pm8921_bms_chip *chip, u16 addr, u8 mask, u8 val) { int rc; u8 reg; rc = pm8xxx_readb(chip->dev->parent, addr, ®); if (rc) { pr_err("read failed addr = %03X, rc = %d\n", addr, rc); return rc; } reg &= ~mask; reg |= val & mask; rc = pm8xxx_writeb(chip->dev->parent, addr, reg); if (rc) { pr_err("write failed addr = %03X, rc = %d\n", addr, rc); return rc; } return 0; } static int usb_chg_plugged_in(struct pm8921_bms_chip *chip) { int val = pm8921_is_usb_chg_plugged_in(); /* if the charger driver was not initialized, use the restart reason */ if (val == -EINVAL) { if (pm8xxx_restart_reason(chip->dev->parent) == PM8XXX_RESTART_CHG) val = 1; else val = 0; } if (chip->bms_support_wlc) val |= chip->wlc_is_plugged(); return val; } #define HOLD_OREG_DATA BIT(1) static int pm_bms_lock_output_data(struct pm8921_bms_chip *chip) { int rc; rc = pm_bms_masked_write(chip, BMS_CONTROL, HOLD_OREG_DATA, HOLD_OREG_DATA); if (rc) { pr_err("couldnt lock bms output rc = %d\n", rc); return rc; } return 0; } static int pm_bms_unlock_output_data(struct pm8921_bms_chip *chip) { int rc; rc = pm_bms_masked_write(chip, BMS_CONTROL, HOLD_OREG_DATA, 0); if (rc) { pr_err("fail to unlock BMS_CONTROL rc = %d\n", rc); return rc; } return 0; } #define SELECT_OUTPUT_DATA 0x1C #define SELECT_OUTPUT_TYPE_SHIFT 2 #define OCV_FOR_RBATT 0x0 #define VSENSE_FOR_RBATT 0x1 #define VBATT_FOR_RBATT 0x2 #define CC_MSB 0x3 #define CC_LSB 0x4 #define LAST_GOOD_OCV_VALUE 0x5 #define VSENSE_AVG 0x6 #define VBATT_AVG 0x7 static int pm_bms_read_output_data(struct pm8921_bms_chip *chip, int type, int16_t *result) { int rc; u8 reg; if (!result) { pr_err("result pointer null\n"); return -EINVAL; } *result = 0; if (type < OCV_FOR_RBATT || type > VBATT_AVG) { pr_err("invalid type %d asked to read\n", type); return -EINVAL; } rc = pm_bms_masked_write(chip, BMS_CONTROL, SELECT_OUTPUT_DATA, type << SELECT_OUTPUT_TYPE_SHIFT); if (rc) { pr_err("fail to select %d type in BMS_CONTROL rc = %d\n", type, rc); return rc; } rc = pm8xxx_readb(chip->dev->parent, BMS_OUTPUT0, ®); if (rc) { pr_err("fail to read BMS_OUTPUT0 for type %d rc = %d\n", type, rc); return rc; } *result = reg; rc = pm8xxx_readb(chip->dev->parent, BMS_OUTPUT1, ®); if (rc) { pr_err("fail to read BMS_OUTPUT1 for type %d rc = %d\n", type, rc); return rc; } *result |= reg << 8; pr_debug("type %d result %x", type, *result); return 0; } #define V_PER_BIT_MUL_FACTOR 97656 #define V_PER_BIT_DIV_FACTOR 1000 #define XOADC_INTRINSIC_OFFSET 0x6000 static int xoadc_reading_to_microvolt(unsigned int a) { if (a <= XOADC_INTRINSIC_OFFSET) return 0; return (a - XOADC_INTRINSIC_OFFSET) * V_PER_BIT_MUL_FACTOR / V_PER_BIT_DIV_FACTOR; } #define XOADC_CALIB_UV 625000 #define VBATT_MUL_FACTOR 3 static int adjust_xo_vbatt_reading(struct pm8921_bms_chip *chip, int usb_chg, unsigned int uv) { s64 numerator, denominator; int local_delta; if (uv == 0) return 0; /* dont adjust if not calibrated */ if (chip->xoadc_v0625 == 0 || chip->xoadc_v125 == 0) { pr_debug("No cal yet return %d\n", VBATT_MUL_FACTOR * uv); return VBATT_MUL_FACTOR * uv; } if (usb_chg) local_delta = last_usb_cal_delta_uv; else local_delta = 0; pr_debug("using delta = %d\n", local_delta); numerator = ((s64)uv - chip->xoadc_v0625 - local_delta) * XOADC_CALIB_UV; denominator = (s64)chip->xoadc_v125 - chip->xoadc_v0625 - local_delta; if (denominator == 0) return uv * VBATT_MUL_FACTOR; return (XOADC_CALIB_UV + local_delta + div_s64(numerator, denominator)) * VBATT_MUL_FACTOR; } #define CC_RESOLUTION_N 868056 #define CC_RESOLUTION_D 10000 static s64 cc_to_microvolt(struct pm8921_bms_chip *chip, s64 cc) { return div_s64(cc * CC_RESOLUTION_N, CC_RESOLUTION_D); } #define CC_READING_TICKS 56 #define SLEEP_CLK_HZ 32764 #define SECONDS_PER_HOUR 3600 /** * ccmicrovolt_to_nvh - * @cc_uv: coulumb counter converted to uV * * RETURNS: coulumb counter based charge in nVh * (nano Volt Hour) */ static s64 ccmicrovolt_to_nvh(s64 cc_uv) { return div_s64(cc_uv * CC_READING_TICKS * 1000, SLEEP_CLK_HZ * SECONDS_PER_HOUR); } /* returns the signed value read from the hardware */ static int read_cc(struct pm8921_bms_chip *chip, int *result) { int rc; uint16_t msw, lsw; rc = pm_bms_read_output_data(chip, CC_LSB, &lsw); if (rc) { pr_err("fail to read CC_LSB rc = %d\n", rc); return rc; } rc = pm_bms_read_output_data(chip, CC_MSB, &msw); if (rc) { pr_err("fail to read CC_MSB rc = %d\n", rc); return rc; } *result = msw << 16 | lsw; pr_debug("msw = %04x lsw = %04x cc = %d\n", msw, lsw, *result); return 0; } static int adjust_xo_vbatt_reading_for_mbg(struct pm8921_bms_chip *chip, int result) { int64_t numerator; int64_t denominator; if (chip->amux_2_trim_delta == 0) return result; numerator = (s64)result * 1000000; denominator = (1000000 + (410 * (s64)chip->amux_2_trim_delta)); return div_s64(numerator, denominator); } static int convert_vbatt_raw_to_uv(struct pm8921_bms_chip *chip, int usb_chg, uint16_t reading, int *result) { *result = xoadc_reading_to_microvolt(reading); pr_debug("raw = %04x vbatt = %u\n", reading, *result); *result = adjust_xo_vbatt_reading(chip, usb_chg, *result); pr_debug("after adj vbatt = %u\n", *result); *result = adjust_xo_vbatt_reading_for_mbg(chip, *result); return 0; } static int convert_vsense_to_uv(struct pm8921_bms_chip *chip, int16_t reading, int *result) { *result = pm8xxx_ccadc_reading_to_microvolt(chip->revision, reading); pr_debug("raw = %04x vsense = %d\n", reading, *result); *result = pm8xxx_cc_adjust_for_gain(*result); pr_debug("after adj vsense = %d\n", *result); return 0; } static int read_vsense_avg(struct pm8921_bms_chip *chip, int *result) { int rc; int16_t reading; rc = pm_bms_read_output_data(chip, VSENSE_AVG, &reading); if (rc) { pr_err("fail to read VSENSE_AVG rc = %d\n", rc); return rc; } convert_vsense_to_uv(chip, reading, result); return 0; } static int linear_interpolate(int y0, int x0, int y1, int x1, int x) { if (y0 == y1 || x == x0) return y0; if (x1 == x0 || x == x1) return y1; return y0 + ((y1 - y0) * (x - x0) / (x1 - x0)); } static int interpolate_single_lut(struct single_row_lut *lut, int x) { int i, result; if (x < lut->x[0]) { pr_debug("x %d less than known range return y = %d lut = %pS\n", x, lut->y[0], lut); return lut->y[0]; } if (x > lut->x[lut->cols - 1]) { pr_debug("x %d more than known range return y = %d lut = %pS\n", x, lut->y[lut->cols - 1], lut); return lut->y[lut->cols - 1]; } for (i = 0; i < lut->cols; i++) if (x <= lut->x[i]) break; if (x == lut->x[i]) { result = lut->y[i]; } else { result = linear_interpolate( lut->y[i - 1], lut->x[i - 1], lut->y[i], lut->x[i], x); } return result; } static int interpolate_fcc(struct pm8921_bms_chip *chip, int batt_temp) { /* batt_temp is in tenths of degC - convert it to degC for lookups */ batt_temp = batt_temp/10; return interpolate_single_lut(chip->fcc_temp_lut, batt_temp); } static int interpolate_fcc_adjusted(struct pm8921_bms_chip *chip, int batt_temp) { /* batt_temp is in tenths of degC - convert it to degC for lookups */ batt_temp = batt_temp/10; return interpolate_single_lut(chip->adjusted_fcc_temp_lut, batt_temp); } static int interpolate_scalingfactor_fcc(struct pm8921_bms_chip *chip, int cycles) { /* * sf table could be null when no battery aging data is available, in * that case return 100% */ if (chip->fcc_sf_lut) return interpolate_single_lut(chip->fcc_sf_lut, cycles); else return 100; } static int interpolate_scalingfactor(struct pm8921_bms_chip *chip, struct sf_lut *sf_lut, int row_entry, int pc) { int i, scalefactorrow1, scalefactorrow2, scalefactor; int rows, cols; int row1 = 0; int row2 = 0; /* * sf table could be null when no battery aging data is available, in * that case return 100% */ if (!sf_lut) return 100; rows = sf_lut->rows; cols = sf_lut->cols; if (pc > sf_lut->percent[0]) { pr_debug("pc %d greater than known pc ranges for sfd\n", pc); row1 = 0; row2 = 0; } if (pc < sf_lut->percent[rows - 1]) { pr_debug("pc %d less than known pc ranges for sf", pc); row1 = rows - 1; row2 = rows - 1; } for (i = 0; i < rows; i++) { if (pc == sf_lut->percent[i]) { row1 = i; row2 = i; break; } if (pc > sf_lut->percent[i]) { row1 = i - 1; row2 = i; break; } } if (row_entry < sf_lut->row_entries[0]) row_entry = sf_lut->row_entries[0]; if (row_entry > sf_lut->row_entries[cols - 1]) row_entry = sf_lut->row_entries[cols - 1]; for (i = 0; i < cols; i++) if (row_entry <= sf_lut->row_entries[i]) break; if (row_entry == sf_lut->row_entries[i]) { scalefactor = linear_interpolate( sf_lut->sf[row1][i], sf_lut->percent[row1], sf_lut->sf[row2][i], sf_lut->percent[row2], pc); return scalefactor; } scalefactorrow1 = linear_interpolate( sf_lut->sf[row1][i - 1], sf_lut->row_entries[i - 1], sf_lut->sf[row1][i], sf_lut->row_entries[i], row_entry); scalefactorrow2 = linear_interpolate( sf_lut->sf[row2][i - 1], sf_lut->row_entries[i - 1], sf_lut->sf[row2][i], sf_lut->row_entries[i], row_entry); scalefactor = linear_interpolate( scalefactorrow1, sf_lut->percent[row1], scalefactorrow2, sf_lut->percent[row2], pc); return scalefactor; } static int is_between(int left, int right, int value) { if (left >= right && left >= value && value >= right) return 1; if (left <= right && left <= value && value <= right) return 1; return 0; } /* get ocv given a soc -- reverse lookup */ static int interpolate_ocv(struct pm8921_bms_chip *chip, int batt_temp_degc, int pc) { int i, ocvrow1, ocvrow2, ocv; int rows, cols; int row1 = 0; int row2 = 0; rows = chip->pc_temp_ocv_lut->rows; cols = chip->pc_temp_ocv_lut->cols; if (pc > chip->pc_temp_ocv_lut->percent[0]) { pr_debug("pc %d greater than known pc ranges for sfd\n", pc); row1 = 0; row2 = 0; } if (pc < chip->pc_temp_ocv_lut->percent[rows - 1]) { pr_debug("pc %d less than known pc ranges for sf\n", pc); row1 = rows - 1; row2 = rows - 1; } for (i = 0; i < rows; i++) { if (pc == chip->pc_temp_ocv_lut->percent[i]) { row1 = i; row2 = i; break; } if (pc > chip->pc_temp_ocv_lut->percent[i]) { row1 = i - 1; row2 = i; break; } } if (batt_temp_degc < chip->pc_temp_ocv_lut->temp[0]) batt_temp_degc = chip->pc_temp_ocv_lut->temp[0]; if (batt_temp_degc > chip->pc_temp_ocv_lut->temp[cols - 1]) batt_temp_degc = chip->pc_temp_ocv_lut->temp[cols - 1]; for (i = 0; i < cols; i++) if (batt_temp_degc <= chip->pc_temp_ocv_lut->temp[i]) break; if (batt_temp_degc == chip->pc_temp_ocv_lut->temp[i]) { ocv = linear_interpolate( chip->pc_temp_ocv_lut->ocv[row1][i], chip->pc_temp_ocv_lut->percent[row1], chip->pc_temp_ocv_lut->ocv[row2][i], chip->pc_temp_ocv_lut->percent[row2], pc); return ocv; } ocvrow1 = linear_interpolate( chip->pc_temp_ocv_lut->ocv[row1][i - 1], chip->pc_temp_ocv_lut->temp[i - 1], chip->pc_temp_ocv_lut->ocv[row1][i], chip->pc_temp_ocv_lut->temp[i], batt_temp_degc); ocvrow2 = linear_interpolate( chip->pc_temp_ocv_lut->ocv[row2][i - 1], chip->pc_temp_ocv_lut->temp[i - 1], chip->pc_temp_ocv_lut->ocv[row2][i], chip->pc_temp_ocv_lut->temp[i], batt_temp_degc); ocv = linear_interpolate( ocvrow1, chip->pc_temp_ocv_lut->percent[row1], ocvrow2, chip->pc_temp_ocv_lut->percent[row2], pc); return ocv; } static int interpolate_pc(struct pm8921_bms_chip *chip, int batt_temp_degc, int ocv) { int i, j, pcj, pcj_minus_one, pc; int rows = chip->pc_temp_ocv_lut->rows; int cols = chip->pc_temp_ocv_lut->cols; if (batt_temp_degc < chip->pc_temp_ocv_lut->temp[0]) { pr_debug("batt_temp %d < known temp range\n", batt_temp_degc); batt_temp_degc = chip->pc_temp_ocv_lut->temp[0]; } if (batt_temp_degc > chip->pc_temp_ocv_lut->temp[cols - 1]) { pr_debug("batt_temp %d > known temp range\n", batt_temp_degc); batt_temp_degc = chip->pc_temp_ocv_lut->temp[cols - 1]; } for (j = 0; j < cols; j++) if (batt_temp_degc <= chip->pc_temp_ocv_lut->temp[j]) break; if (batt_temp_degc == chip->pc_temp_ocv_lut->temp[j]) { /* found an exact match for temp in the table */ if (ocv >= chip->pc_temp_ocv_lut->ocv[0][j]) return chip->pc_temp_ocv_lut->percent[0]; if (ocv <= chip->pc_temp_ocv_lut->ocv[rows - 1][j]) return chip->pc_temp_ocv_lut->percent[rows - 1]; for (i = 0; i < rows; i++) { if (ocv >= chip->pc_temp_ocv_lut->ocv[i][j]) { if (ocv == chip->pc_temp_ocv_lut->ocv[i][j]) return chip->pc_temp_ocv_lut->percent[i]; pc = linear_interpolate( chip->pc_temp_ocv_lut->percent[i], chip->pc_temp_ocv_lut->ocv[i][j], chip->pc_temp_ocv_lut->percent[i - 1], chip->pc_temp_ocv_lut->ocv[i - 1][j], ocv); return pc; } } } /* * batt_temp_degc is within temperature for * column j-1 and j */ if (ocv >= chip->pc_temp_ocv_lut->ocv[0][j]) return chip->pc_temp_ocv_lut->percent[0]; if (ocv <= chip->pc_temp_ocv_lut->ocv[rows - 1][j - 1]) return chip->pc_temp_ocv_lut->percent[rows - 1]; pcj_minus_one = 0; pcj = 0; for (i = 0; i < rows-1; i++) { if (pcj == 0 && is_between(chip->pc_temp_ocv_lut->ocv[i][j], chip->pc_temp_ocv_lut->ocv[i+1][j], ocv)) { pcj = linear_interpolate( chip->pc_temp_ocv_lut->percent[i], chip->pc_temp_ocv_lut->ocv[i][j], chip->pc_temp_ocv_lut->percent[i + 1], chip->pc_temp_ocv_lut->ocv[i+1][j], ocv); } if (pcj_minus_one == 0 && is_between(chip->pc_temp_ocv_lut->ocv[i][j-1], chip->pc_temp_ocv_lut->ocv[i+1][j-1], ocv)) { pcj_minus_one = linear_interpolate( chip->pc_temp_ocv_lut->percent[i], chip->pc_temp_ocv_lut->ocv[i][j-1], chip->pc_temp_ocv_lut->percent[i + 1], chip->pc_temp_ocv_lut->ocv[i+1][j-1], ocv); } if (pcj && pcj_minus_one) { pc = linear_interpolate( pcj_minus_one, chip->pc_temp_ocv_lut->temp[j-1], pcj, chip->pc_temp_ocv_lut->temp[j], batt_temp_degc); return pc; } } if (pcj) return pcj; if (pcj_minus_one) return pcj_minus_one; pr_debug("%d ocv wasn't found for temp %d in the LUT returning 100%%", ocv, batt_temp_degc); return 100; } #define BMS_MODE_BIT BIT(6) #define EN_VBAT_BIT BIT(5) #define OVERRIDE_MODE_DELAY_MS 20 int override_mode_simultaneous_battery_voltage_and_current(int *ibat_ua, int *vbat_uv) { int16_t vsense_raw; int16_t vbat_raw; int vsense_uv; int usb_chg; mutex_lock(&the_chip->bms_output_lock); pm8xxx_writeb(the_chip->dev->parent, BMS_S1_DELAY, 0x00); pm_bms_masked_write(the_chip, BMS_CONTROL, BMS_MODE_BIT | EN_VBAT_BIT, BMS_MODE_BIT | EN_VBAT_BIT); msleep(OVERRIDE_MODE_DELAY_MS); pm_bms_lock_output_data(the_chip); pm_bms_read_output_data(the_chip, VSENSE_AVG, &vsense_raw); pm_bms_read_output_data(the_chip, VBATT_AVG, &vbat_raw); pm_bms_unlock_output_data(the_chip); pm_bms_masked_write(the_chip, BMS_CONTROL, BMS_MODE_BIT | EN_VBAT_BIT, 0); pm8xxx_writeb(the_chip->dev->parent, BMS_S1_DELAY, 0x0B); mutex_unlock(&the_chip->bms_output_lock); usb_chg = usb_chg_plugged_in(the_chip); convert_vbatt_raw_to_uv(the_chip, usb_chg, vbat_raw, vbat_uv); convert_vsense_to_uv(the_chip, vsense_raw, &vsense_uv); *ibat_ua = vsense_uv * 1000 / (int)the_chip->r_sense; pr_debug("vsense_raw = 0x%x vbat_raw = 0x%x" " ibat_ua = %d vbat_uv = %d\n", (uint16_t)vsense_raw, (uint16_t)vbat_raw, *ibat_ua, *vbat_uv); return 0; } #define MBG_TRANSIENT_ERROR_RAW 51 static void adjust_pon_ocv_raw(struct pm8921_bms_chip *chip, struct pm8921_soc_params *raw) { /* in 8921 parts the PON ocv is taken when the MBG is not settled. * decrease the pon ocv by 15mV raw value to account for it * Since a 1/3rd of vbatt is supplied to the adc the raw value * needs to be adjusted by 5mV worth bits */ if (raw->last_good_ocv_raw >= MBG_TRANSIENT_ERROR_RAW) raw->last_good_ocv_raw -= MBG_TRANSIENT_ERROR_RAW; } #define SEL_ALT_OREG_BIT BIT(2) static int ocv_ir_compensation(struct pm8921_bms_chip *chip, int ocv) { int compensated_ocv; int ibatt_ua; int rbatt_mohm = chip->default_rbatt_mohm + chip->rconn_mohm; pm_bms_masked_write(chip, BMS_TEST1, SEL_ALT_OREG_BIT, SEL_ALT_OREG_BIT); /* since the SEL_ALT_OREG_BIT is set this will give us VSENSE_OCV */ pm8921_bms_get_battery_current(&ibatt_ua); compensated_ocv = ocv + div_s64((s64)ibatt_ua * rbatt_mohm, 1000); pr_info("comp ocv = %d, ocv = %d, ibatt_ua = %d, rbatt_mohm = %d\n", compensated_ocv, ocv, ibatt_ua, rbatt_mohm); pm_bms_masked_write(chip, BMS_TEST1, SEL_ALT_OREG_BIT, 0); return compensated_ocv; } static bool is_warm_restart(struct pm8921_bms_chip *chip) { u8 reg; int rc; rc = pm8xxx_readb(chip->dev->parent, PON_CNTRL_6, ®); if (rc) { pr_err("err reading pon 6 rc = %d\n", rc); return false; } return reg & WD_BIT; } static int read_soc_params_raw(struct pm8921_bms_chip *chip, struct pm8921_soc_params *raw) { int usb_chg; mutex_lock(&chip->bms_output_lock); pm_bms_lock_output_data(chip); pm_bms_read_output_data(chip, LAST_GOOD_OCV_VALUE, &raw->last_good_ocv_raw); read_cc(chip, &raw->cc); pm_bms_unlock_output_data(chip); mutex_unlock(&chip->bms_output_lock); usb_chg = usb_chg_plugged_in(chip); if (chip->prev_last_good_ocv_raw == 0) { chip->prev_last_good_ocv_raw = raw->last_good_ocv_raw; adjust_pon_ocv_raw(chip, raw); convert_vbatt_raw_to_uv(chip, usb_chg, raw->last_good_ocv_raw, &raw->last_good_ocv_uv); raw->last_good_ocv_uv = ocv_ir_compensation(chip, raw->last_good_ocv_uv); chip->last_ocv_uv = raw->last_good_ocv_uv; if (is_warm_restart(chip)) { shutdown_soc_invalid = 1; pr_info("discard shutdown soc! cc_raw = 0x%x\n", raw->cc); } pr_debug("PON_OCV_UV = %d\n", chip->last_ocv_uv); } else if (chip->prev_last_good_ocv_raw != raw->last_good_ocv_raw) { chip->prev_last_good_ocv_raw = raw->last_good_ocv_raw; convert_vbatt_raw_to_uv(chip, usb_chg, raw->last_good_ocv_raw, &raw->last_good_ocv_uv); chip->last_ocv_uv = raw->last_good_ocv_uv; /* forget the old cc value upon ocv */ chip->last_cc_uah = 0; } else { raw->last_good_ocv_uv = chip->last_ocv_uv; } /* fake a high OCV if we are just done charging */ if (chip->ocv_reading_at_100 != raw->last_good_ocv_raw) { chip->ocv_reading_at_100 = 0; chip->cc_reading_at_100 = 0; } else { /* * force 100% ocv by selecting the highest voltage the * battery could ever reach */ raw->last_good_ocv_uv = chip->max_voltage_uv; chip->last_ocv_uv = chip->max_voltage_uv; } pr_debug("0p625 = %duV\n", chip->xoadc_v0625); pr_debug("1p25 = %duV\n", chip->xoadc_v125); pr_debug("last_good_ocv_raw= 0x%x, last_good_ocv_uv= %duV\n", raw->last_good_ocv_raw, raw->last_good_ocv_uv); pr_debug("cc_raw= 0x%x\n", raw->cc); return 0; } static int get_rbatt(struct pm8921_bms_chip *chip, int soc_rbatt, int batt_temp) { int rbatt, scalefactor; rbatt = chip->default_rbatt_mohm; pr_debug("rbatt before scaling = %d\n", rbatt); if (chip->rbatt_sf_lut == NULL) { pr_debug("RBATT = %d\n", rbatt); return rbatt; } /* Convert the batt_temp to DegC from deciDegC */ batt_temp = batt_temp / 10; scalefactor = interpolate_scalingfactor(chip, chip->rbatt_sf_lut, batt_temp, soc_rbatt); pr_debug("rbatt sf = %d for batt_temp = %d, soc_rbatt = %d\n", scalefactor, batt_temp, soc_rbatt); rbatt = (rbatt * scalefactor) / 100; rbatt += the_chip->rconn_mohm; pr_debug("adding rconn_mohm = %d rbatt = %d\n", the_chip->rconn_mohm, rbatt); if (is_between(20, 10, soc_rbatt)) rbatt = rbatt + ((20 - soc_rbatt) * chip->delta_rbatt_mohm) / 10; else if (is_between(10, 0, soc_rbatt)) rbatt = rbatt + chip->delta_rbatt_mohm; pr_debug("RBATT = %d\n", rbatt); return rbatt; } static int calculate_fcc_uah(struct pm8921_bms_chip *chip, int batt_temp, int chargecycles) { int initfcc, result, scalefactor = 0; if (chip->adjusted_fcc_temp_lut == NULL) { initfcc = interpolate_fcc(chip, batt_temp); scalefactor = interpolate_scalingfactor_fcc(chip, chargecycles); /* Multiply the initial FCC value by the scale factor. */ result = (initfcc * scalefactor * 1000) / 100; pr_debug("fcc = %d uAh\n", result); return result; } else { return 1000 * interpolate_fcc_adjusted(chip, batt_temp); } } static int get_battery_uvolts(struct pm8921_bms_chip *chip, int *uvolts) { int rc; struct pm8xxx_adc_chan_result result; rc = pm8xxx_adc_read(chip->vbat_channel, &result); if (rc) { pr_err("error reading adc channel = %d, rc = %d\n", chip->vbat_channel, rc); return rc; } pr_debug("mvolts phy = %lld meas = 0x%llx", result.physical, result.measurement); *uvolts = (int)result.physical; return 0; } static int adc_based_ocv(struct pm8921_bms_chip *chip, int *ocv) { int vbatt, rbatt, ibatt_ua, rc; rc = get_battery_uvolts(chip, &vbatt); if (rc) { pr_err("failed to read vbatt from adc rc = %d\n", rc); return rc; } rc = pm8921_bms_get_battery_current(&ibatt_ua); if (rc) { pr_err("failed to read batt current rc = %d\n", rc); return rc; } rbatt = chip->default_rbatt_mohm; *ocv = vbatt + (ibatt_ua * rbatt)/1000; return 0; } static int calculate_pc(struct pm8921_bms_chip *chip, int ocv_uv, int batt_temp, int chargecycles) { int pc, scalefactor; pc = interpolate_pc(chip, batt_temp / 10, ocv_uv / 1000); pr_debug("pc = %u for ocv = %dmicroVolts batt_temp = %d\n", pc, ocv_uv, batt_temp); scalefactor = interpolate_scalingfactor(chip, chip->pc_sf_lut, chargecycles, pc); pr_debug("scalefactor = %u batt_temp = %d\n", scalefactor, batt_temp); /* Multiply the initial FCC value by the scale factor. */ pc = (pc * scalefactor) / 100; return pc; } /** * calculate_cc_uah - * @chip: the bms chip pointer * @cc: the cc reading from bms h/w * @val: return value * @coulumb_counter: adjusted coulumb counter for 100% * * RETURNS: in val pointer coulumb counter based charger in uAh * (micro Amp hour) */ static void calculate_cc_uah(struct pm8921_bms_chip *chip, int cc, int *val) { int64_t cc_voltage_uv, cc_nvh, cc_uah; cc_voltage_uv = cc; cc_voltage_uv -= chip->cc_reading_at_100; pr_debug("cc = %d. after subtracting 0x%x cc = %lld\n", cc, chip->cc_reading_at_100, cc_voltage_uv); cc_voltage_uv = cc_to_microvolt(chip, cc_voltage_uv); cc_voltage_uv = pm8xxx_cc_adjust_for_gain(cc_voltage_uv); pr_debug("cc_voltage_uv = %lld microvolts\n", cc_voltage_uv); cc_nvh = ccmicrovolt_to_nvh(cc_voltage_uv); pr_debug("cc_nvh = %lld nano_volt_hour\n", cc_nvh); cc_uah = div_s64(cc_nvh, chip->r_sense); *val = cc_uah; } int pm8921_bms_cc_uah(int *cc_uah) { int cc; *cc_uah = 0; if (!the_chip) return -EINVAL; read_cc(the_chip, &cc); calculate_cc_uah(the_chip, cc, cc_uah); return 0; } EXPORT_SYMBOL(pm8921_bms_cc_uah); static int calculate_termination_uuc(struct pm8921_bms_chip *chip, int batt_temp, int chargecycles, int fcc_uah, int i_ma, int *ret_pc_unusable) { int unusable_uv, pc_unusable, uuc; int i = 0; int ocv_mv; int batt_temp_degc = batt_temp / 10; int rbatt_mohm; int delta_uv; int prev_delta_uv = 0; int prev_rbatt_mohm = 0; int prev_ocv_mv = 0; int uuc_rbatt_uv; for (i = 0; i <= 100; i++) { ocv_mv = interpolate_ocv(chip, batt_temp_degc, i); rbatt_mohm = get_rbatt(chip, i, batt_temp); unusable_uv = (rbatt_mohm * i_ma) + (chip->v_cutoff * 1000); delta_uv = ocv_mv * 1000 - unusable_uv; pr_debug("soc = %d ocv = %d rbat = %d u_uv = %d delta_v = %d\n", i, ocv_mv, rbatt_mohm, unusable_uv, delta_uv); if (delta_uv > 0) break; prev_delta_uv = delta_uv; prev_rbatt_mohm = rbatt_mohm; prev_ocv_mv = ocv_mv; } uuc_rbatt_uv = linear_interpolate(rbatt_mohm, delta_uv, prev_rbatt_mohm, prev_delta_uv, 0); unusable_uv = (uuc_rbatt_uv * i_ma) + (chip->v_cutoff * 1000); pc_unusable = calculate_pc(chip, unusable_uv, batt_temp, chargecycles); uuc = (fcc_uah * pc_unusable) / 100; pr_debug("For i_ma = %d, unusable_rbatt = %d unusable_uv = %d unusable_pc = %d uuc = %d\n", i_ma, uuc_rbatt_uv, unusable_uv, pc_unusable, uuc); *ret_pc_unusable = pc_unusable; return uuc; } static int adjust_uuc(struct pm8921_bms_chip *chip, int fcc_uah, int new_pc_unusable, int new_uuc, int batt_temp, int rbatt, int *iavg_ma) { int new_unusable_mv; int batt_temp_degc = batt_temp / 10; if (chip->prev_pc_unusable == -EINVAL || abs(chip->prev_pc_unusable - new_pc_unusable) <= 1) { chip->prev_pc_unusable = new_pc_unusable; return new_uuc; } /* the uuc is trying to change more than 1% restrict it */ if (new_pc_unusable > chip->prev_pc_unusable) chip->prev_pc_unusable++; else chip->prev_pc_unusable--; new_uuc = (fcc_uah * chip->prev_pc_unusable) / 100; /* also find update the iavg_ma accordingly */ new_unusable_mv = interpolate_ocv(chip, batt_temp_degc, chip->prev_pc_unusable); if (new_unusable_mv < chip->v_cutoff) new_unusable_mv = chip->v_cutoff; *iavg_ma = (new_unusable_mv - chip->v_cutoff) * 1000 / rbatt; if (*iavg_ma == 0) *iavg_ma = 1; pr_debug("Restricting UUC to %d (%d%%) unusable_mv = %d iavg_ma = %d\n", new_uuc, chip->prev_pc_unusable, new_unusable_mv, *iavg_ma); return new_uuc; } static void calculate_iavg_ua(struct pm8921_bms_chip *chip, int cc_uah, int *iavg_ua, int *delta_time_s) { int delta_cc_uah; struct rtc_time tm; struct rtc_device *rtc; unsigned long now_tm_sec = 0; int rc = 0; /* if anything fails report the previous iavg_ua */ *iavg_ua = chip->prev_iavg_ua; rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE); if (rtc == NULL) { pr_err("%s: unable to open rtc device (%s)\n", __FILE__, CONFIG_RTC_HCTOSYS_DEVICE); goto out; } rc = rtc_read_time(rtc, &tm); if (rc) { pr_err("Error reading rtc device (%s) : %d\n", CONFIG_RTC_HCTOSYS_DEVICE, rc); goto out; } rc = rtc_valid_tm(&tm); if (rc) { pr_err("Invalid RTC time (%s): %d\n", CONFIG_RTC_HCTOSYS_DEVICE, rc); goto out; } rtc_tm_to_time(&tm, &now_tm_sec); if (chip->tm_sec == 0) { *delta_time_s = 0; pm8921_bms_get_battery_current(iavg_ua); goto out; } *delta_time_s = (now_tm_sec - chip->tm_sec); /* use the previous iavg if called within 15 seconds */ if (*delta_time_s < 15) { *iavg_ua = chip->prev_iavg_ua; goto out; } delta_cc_uah = cc_uah - chip->last_cc_uah; *iavg_ua = div_s64((s64)delta_cc_uah * 3600, *delta_time_s); pr_debug("tm_sec = %ld, now_tm_sec = %ld delta_s = %d delta_cc = %d iavg_ua = %d\n", chip->tm_sec, now_tm_sec, *delta_time_s, delta_cc_uah, (int)*iavg_ua); out: /* remember the iavg */ chip->prev_iavg_ua = *iavg_ua; /* remember cc_uah */ chip->last_cc_uah = cc_uah; /* remember this time */ chip->tm_sec = now_tm_sec; } #define IAVG_SAMPLES 16 #define CHARGING_IAVG_MA 250 #define MIN_SECONDS_FOR_VALID_SAMPLE 20 static int calculate_unusable_charge_uah(struct pm8921_bms_chip *chip, int rbatt, int fcc_uah, int cc_uah, int soc_rbatt, int batt_temp, int chargecycles, int iavg_ua, int delta_time_s) { int uuc_uah_iavg; int i; int iavg_ma = iavg_ua / 1000; static int iavg_samples[IAVG_SAMPLES]; static int iavg_index; static int iavg_num_samples; static int firsttime = 1; int pc_unusable; /* * if we are called first time fill all the * samples with the the shutdown_iavg_ma */ if (firsttime && chip->shutdown_iavg_ma != 0) { pr_emerg("Using shutdown_iavg_ma = %d in all samples\n", chip->shutdown_iavg_ma); for (i = 0; i < IAVG_SAMPLES; i++) iavg_samples[i] = chip->shutdown_iavg_ma; iavg_index = 0; iavg_num_samples = IAVG_SAMPLES; } /* * if we are charging use a nominal avg current so that we keep * a reasonable UUC while charging */ if (iavg_ma < 0) iavg_ma = CHARGING_IAVG_MA; iavg_samples[iavg_index] = iavg_ma; iavg_index = (iavg_index + 1) % IAVG_SAMPLES; iavg_num_samples++; if (iavg_num_samples >= IAVG_SAMPLES) iavg_num_samples = IAVG_SAMPLES; /* now that this sample is added calcualte the average */ iavg_ma = 0; if (iavg_num_samples != 0) { for (i = 0; i < iavg_num_samples; i++) { pr_debug("iavg_samples[%d] = %d\n", i, iavg_samples[i]); iavg_ma += iavg_samples[i]; } iavg_ma = DIV_ROUND_CLOSEST(iavg_ma, iavg_num_samples); } uuc_uah_iavg = calculate_termination_uuc(chip, batt_temp, chargecycles, fcc_uah, iavg_ma, &pc_unusable); pr_debug("iavg = %d uuc_iavg = %d\n", iavg_ma, uuc_uah_iavg); /* restrict the uuc such that it can increase only by one percent */ uuc_uah_iavg = adjust_uuc(chip, fcc_uah, pc_unusable, uuc_uah_iavg, batt_temp, rbatt, &iavg_ma); /* find out what the avg current should be for this uuc */ chip->prev_uuc_iavg_ma = iavg_ma; firsttime = 0; return uuc_uah_iavg; } /* calculate remainging charge at the time of ocv */ static int calculate_remaining_charge_uah(struct pm8921_bms_chip *chip, struct pm8921_soc_params *raw, int fcc_uah, int batt_temp, int chargecycles) { int ocv, pc; ocv = raw->last_good_ocv_uv; pc = calculate_pc(chip, ocv, batt_temp, chargecycles); pr_debug("ocv = %d pc = %d\n", ocv, pc); return (fcc_uah * pc) / 100; } static void calculate_soc_params(struct pm8921_bms_chip *chip, struct pm8921_soc_params *raw, int batt_temp, int chargecycles, int *fcc_uah, int *unusable_charge_uah, int *remaining_charge_uah, int *cc_uah, int *rbatt, int *iavg_ua, int *delta_time_s) { int soc_rbatt; *fcc_uah = calculate_fcc_uah(chip, batt_temp, chargecycles); pr_debug("FCC = %uuAh batt_temp = %d, cycles = %d\n", *fcc_uah, batt_temp, chargecycles); /* calculate remainging charge */ *remaining_charge_uah = calculate_remaining_charge_uah(chip, raw, *fcc_uah, batt_temp, chargecycles); pr_debug("RC = %uuAh\n", *remaining_charge_uah); /* calculate cc micro_volt_hour */ calculate_cc_uah(chip, raw->cc, cc_uah); pr_debug("cc_uah = %duAh raw->cc = %x cc = %lld after subtracting %x\n", *cc_uah, raw->cc, (int64_t)raw->cc - chip->cc_reading_at_100, chip->cc_reading_at_100); soc_rbatt = ((*remaining_charge_uah - *cc_uah) * 100) / *fcc_uah; if (soc_rbatt < 0) soc_rbatt = 0; *rbatt = get_rbatt(chip, soc_rbatt, batt_temp); calculate_iavg_ua(chip, *cc_uah, iavg_ua, delta_time_s); *unusable_charge_uah = calculate_unusable_charge_uah(chip, *rbatt, *fcc_uah, *cc_uah, soc_rbatt, batt_temp, chargecycles, *iavg_ua, *delta_time_s); pr_debug("UUC = %uuAh\n", *unusable_charge_uah); } static int calculate_real_fcc_uah(struct pm8921_bms_chip *chip, struct pm8921_soc_params *raw, int batt_temp, int chargecycles, int *ret_fcc_uah) { int fcc_uah, unusable_charge_uah; int remaining_charge_uah; int cc_uah; int real_fcc_uah; int rbatt; int iavg_ua; int delta_time_s; calculate_soc_params(chip, raw, batt_temp, chargecycles, &fcc_uah, &unusable_charge_uah, &remaining_charge_uah, &cc_uah, &rbatt, &iavg_ua, &delta_time_s); real_fcc_uah = remaining_charge_uah - cc_uah; *ret_fcc_uah = fcc_uah; pr_debug("real_fcc = %d, RC = %d CC = %d fcc = %d\n", real_fcc_uah, remaining_charge_uah, cc_uah, fcc_uah); return real_fcc_uah; } int pm8921_bms_get_simultaneous_battery_voltage_and_current(int *ibat_ua, int *vbat_uv) { int rc; if (the_chip == NULL) { pr_err("Called too early\n"); return -EINVAL; } if (pm8921_is_batfet_closed()) { return override_mode_simultaneous_battery_voltage_and_current( ibat_ua, vbat_uv); } else { pr_debug("batfet is open using separate vbat and ibat meas\n"); rc = get_battery_uvolts(the_chip, vbat_uv); if (rc < 0) { pr_err("adc vbat failed err = %d\n", rc); return rc; } rc = pm8921_bms_get_battery_current(ibat_ua); if (rc < 0) { pr_err("bms ibat failed err = %d\n", rc); return rc; } } return 0; } EXPORT_SYMBOL(pm8921_bms_get_simultaneous_battery_voltage_and_current); static void find_ocv_for_soc(struct pm8921_bms_chip *chip, int batt_temp, int chargecycles, int fcc_uah, int uuc_uah, int cc_uah, int shutdown_soc, int *rc_uah, int *ocv_uv) { s64 rc; int pc, new_pc; int batt_temp_degc = batt_temp / 10; int ocv; rc = (s64)shutdown_soc * (fcc_uah - uuc_uah); rc = div_s64(rc, 100) + cc_uah + uuc_uah; pc = DIV_ROUND_CLOSEST((int)rc * 100, fcc_uah); pc = clamp(pc, 0, 100); ocv = interpolate_ocv(chip, batt_temp_degc, pc); pr_debug("s_soc = %d, fcc = %d uuc = %d rc = %d, pc = %d, ocv mv = %d\n", shutdown_soc, fcc_uah, uuc_uah, (int)rc, pc, ocv); new_pc = interpolate_pc(chip, batt_temp_degc, ocv); pr_debug("test revlookup pc = %d for ocv = %d\n", new_pc, ocv); while (abs(new_pc - pc) > 1) { int delta_mv = 5; if (new_pc > pc) delta_mv = -1 * delta_mv; ocv = ocv + delta_mv; new_pc = interpolate_pc(chip, batt_temp_degc, ocv); pr_debug("test revlookup pc = %d for ocv = %d\n", new_pc, ocv); } *ocv_uv = ocv * 1000; *rc_uah = (int)rc; } static void adjust_rc_and_uuc_for_specific_soc( struct pm8921_bms_chip *chip, int batt_temp, int chargecycles, int soc, int fcc_uah, int uuc_uah, int cc_uah, int rc_uah, int rbatt, int *ret_ocv, int *ret_rc, int *ret_uuc, int *ret_rbatt) { int ocv_uv; find_ocv_for_soc(chip, batt_temp, chargecycles, fcc_uah, uuc_uah, cc_uah, soc, &rc_uah, &ocv_uv); *ret_ocv = ocv_uv; *ret_rbatt = rbatt; *ret_rc = rc_uah; *ret_uuc = uuc_uah; } static int bound_soc(int soc) { soc = max(0, soc); soc = min(100, soc); return soc; } static int charging_adjustments(struct pm8921_bms_chip *chip, int soc, int vbat_uv, int ibat_ua, int batt_temp, int chargecycles, int fcc_uah, int cc_uah, int uuc_uah) { int chg_soc; int max_vol; int eoc_current; int vbat_batt_terminal_uv = vbat_uv + (ibat_ua * chip->rconn_mohm) / 1000; max_vol = chip->max_voltage_uv; eoc_current = -chip->chg_term_ua; if (chip->bms_support_wlc && chip->wlc_is_plugged()) { max_vol = chip->wlc_max_voltage_uv; eoc_current = -chip->wlc_term_ua; } if (chip->soc_at_cv == -EINVAL) { /* In constant current charging return the calc soc */ if (vbat_batt_terminal_uv <= max_vol) pr_debug("CC CHG SOC %d\n", soc); /* Note the CC to CV point */ if (vbat_batt_terminal_uv >= max_vol) { chip->soc_at_cv = soc; chip->prev_chg_soc = soc; chip->ibat_at_cv_ua = ibat_ua; chip->vbat_at_cv = max_vol; pr_debug("CC_TO_CV ibat_ua = %d CHG SOC %d\n", ibat_ua, soc); } else if(soc >= 95) { chip->soc_at_cv = soc; chip->prev_chg_soc = soc; chip->ibat_at_cv_ua = ibat_ua; chip->vbat_at_cv = vbat_batt_terminal_uv; pr_debug("Force CC_TO_CV ibat_ua = %d CHG SOC %d\n", ibat_ua, soc); } return soc; } /* * battery is in CV phase - begin liner inerpolation of soc based on * battery charge current */ /* * if voltage lessened (possibly because of a system load) * keep reporting the prev chg soc */ if (vbat_batt_terminal_uv <= chip->vbat_at_cv) { pr_debug("vbat %d < max = %d CC CHG SOC %d\n", vbat_batt_terminal_uv, chip->vbat_at_cv, chip->prev_chg_soc); return chip->prev_chg_soc; } if (chip->bms_support_wlc && chip->wlc_is_plugged() && chip->prev_chg_soc < 99 && ibat_ua > eoc_current) { pr_info("ibat < eoc_current ! soc = %d \n", chip->prev_chg_soc); return chip->prev_chg_soc; } chg_soc = linear_interpolate(chip->soc_at_cv, chip->ibat_at_cv_ua, 100, eoc_current, ibat_ua); if (chg_soc > 100) chg_soc = 100; /* always report a higher soc */ if (chg_soc > chip->prev_chg_soc) { int new_ocv_uv; int new_rc; chip->prev_chg_soc = chg_soc; find_ocv_for_soc(chip, batt_temp, chargecycles, fcc_uah, uuc_uah, cc_uah, chg_soc, &new_rc, &new_ocv_uv); the_chip->last_ocv_uv = new_ocv_uv; pr_debug("CC CHG ADJ OCV = %d CHG SOC %d\n", new_ocv_uv, chip->prev_chg_soc); } pr_debug("Reporting CHG SOC %d\n", chip->prev_chg_soc); return chip->prev_chg_soc; } static int last_soc_est = -EINVAL; static int adjust_soc(struct pm8921_bms_chip *chip, int soc, int batt_temp, int chargecycles, int rbatt, int fcc_uah, int uuc_uah, int cc_uah) { int ibat_ua = 0, vbat_uv = 0; int ocv_est_uv = 0, soc_est = 0, pc_est = 0, pc = 0; int delta_ocv_uv = 0; int n = 0; int rc_new_uah = 0; int pc_new = 0; int soc_new = 0; int m = 0; int rc = 0; int delta_ocv_uv_limit = 0; rc = pm8921_bms_get_simultaneous_battery_voltage_and_current( &ibat_ua, &vbat_uv); if (rc < 0) { pr_err("simultaneous vbat ibat failed err = %d\n", rc); goto out; } delta_ocv_uv_limit = DIV_ROUND_CLOSEST(ibat_ua, 1000); ocv_est_uv = vbat_uv + (ibat_ua * rbatt)/1000; pc_est = calculate_pc(chip, ocv_est_uv, batt_temp, last_chargecycles); soc_est = div_s64((s64)fcc_uah * pc_est - uuc_uah*100, (s64)fcc_uah - uuc_uah); soc_est = bound_soc(soc_est); if (ibat_ua < 0) { soc = charging_adjustments(chip, soc, vbat_uv, ibat_ua, batt_temp, chargecycles, fcc_uah, cc_uah, uuc_uah); goto out; } /* * do not adjust * if soc is same as what bms calculated * if soc_est is between 45 and 25, this is the flat portion of the * curve where soc_est is not so accurate. We generally don't want to * adjust when soc_est is inaccurate except for the cases when soc is * way far off (higher than 50 or lesser than 20). * Also don't adjust soc if it is above 90 becuase we might pull it low * and cause a bad user experience */ if (soc_est == soc || (is_between(45, chip->adjust_soc_low_threshold, soc_est) && is_between(50, chip->adjust_soc_low_threshold - 5, soc)) || soc >= 90) goto out; if (last_soc_est == -EINVAL) last_soc_est = soc; n = min(200, max(1 , soc + soc_est + last_soc_est)); /* remember the last soc_est in last_soc_est */ last_soc_est = soc_est; pc = calculate_pc(chip, chip->last_ocv_uv, batt_temp, last_chargecycles); if (pc > 0) { pc_new = calculate_pc(chip, chip->last_ocv_uv - (++m * 1000), batt_temp, last_chargecycles); while (pc_new == pc) { /* start taking 10mV steps */ m = m + 10; pc_new = calculate_pc(chip, chip->last_ocv_uv - (m * 1000), batt_temp, last_chargecycles); } } else { /* * pc is already at the lowest point, * assume 1 millivolt translates to 1% pc */ pc = 1; pc_new = 0; m = 1; } delta_ocv_uv = div_s64((soc - soc_est) * (s64)m * 1000, n * (pc - pc_new)); if (abs(delta_ocv_uv) > delta_ocv_uv_limit) { pr_debug("limiting delta ocv %d limit = %d\n", delta_ocv_uv, delta_ocv_uv_limit); if (delta_ocv_uv > 0) delta_ocv_uv = delta_ocv_uv_limit; else delta_ocv_uv = -1 * delta_ocv_uv_limit; pr_debug("new delta ocv = %d\n", delta_ocv_uv); } chip->last_ocv_uv -= delta_ocv_uv; if (chip->last_ocv_uv >= chip->max_voltage_uv) chip->last_ocv_uv = chip->max_voltage_uv; /* calculate the soc based on this new ocv */ pc_new = calculate_pc(chip, chip->last_ocv_uv, batt_temp, last_chargecycles); rc_new_uah = (fcc_uah * pc_new) / 100; soc_new = (rc_new_uah - cc_uah - uuc_uah)*100 / (fcc_uah - uuc_uah); soc_new = bound_soc(soc_new); /* * if soc_new is ZERO force it higher so that phone doesnt report soc=0 * soc = 0 should happen only when soc_est == 0 */ if (soc_new == 0 && soc_est != 0) soc_new = 2; soc = soc_new; out: pr_info("ibat_ua = %d, vbat_uv = %d, soc = %d, batt_temp=%d\n", ibat_ua, vbat_uv, soc, batt_temp); return soc; } #define IGNORE_SOC_TEMP_DECIDEG 50 #define IAVG_STEP_SIZE_MA 50 #define IAVG_START 600 #define SOC_ZERO 0xFF static void backup_soc_and_iavg(struct pm8921_bms_chip *chip, int batt_temp, int soc) { u8 temp; int iavg_ma = chip->prev_uuc_iavg_ma; if (iavg_ma > IAVG_START) temp = (iavg_ma - IAVG_START) / IAVG_STEP_SIZE_MA; else temp = 0; pm_bms_masked_write(chip, TEMP_IAVG_STORAGE, TEMP_IAVG_STORAGE_USE_MASK, temp); /* since only 6 bits are available for SOC, we store half the soc */ if (soc == 0) temp = SOC_ZERO; else temp = soc; /* don't store soc if temperature is below 5degC */ if (batt_temp > IGNORE_SOC_TEMP_DECIDEG) pm8xxx_writeb(the_chip->dev->parent, TEMP_SOC_STORAGE, temp); } static void read_shutdown_soc_and_iavg(struct pm8921_bms_chip *chip) { int rc; u8 temp; rc = pm8xxx_readb(chip->dev->parent, TEMP_IAVG_STORAGE, &temp); if (rc) { pr_err("failed to read addr = %d %d assuming %d\n", TEMP_IAVG_STORAGE, rc, IAVG_START); chip->shutdown_iavg_ma = IAVG_START; } else { temp &= TEMP_IAVG_STORAGE_USE_MASK; if (temp == 0) { chip->shutdown_iavg_ma = IAVG_START; } else { chip->shutdown_iavg_ma = IAVG_START + IAVG_STEP_SIZE_MA * (temp + 1); } } rc = pm8xxx_readb(chip->dev->parent, TEMP_SOC_STORAGE, &temp); if (rc) { pr_err("failed to read addr = %d %d\n", TEMP_SOC_STORAGE, rc); } else { chip->shutdown_soc = temp; if (chip->shutdown_soc == 0) { pr_debug("No shutdown soc available\n"); shutdown_soc_invalid = 1; chip->shutdown_iavg_ma = 0; } else if (chip->shutdown_soc == SOC_ZERO) { chip->shutdown_soc = 0; } } if (chip->ignore_shutdown_soc) { shutdown_soc_invalid = 1; chip->shutdown_soc = 0; chip->shutdown_iavg_ma = 0; } if (chip->first_fixed_iavg_ma && !chip->ignore_shutdown_soc) { chip->shutdown_iavg_ma = chip->first_fixed_iavg_ma; } pr_debug("shutdown_soc = %d shutdown_iavg = %d shutdown_soc_invalid = %d\n", chip->shutdown_soc, chip->shutdown_iavg_ma, shutdown_soc_invalid); } #define SOC_CATCHUP_SEC_MAX 600 #define SOC_CATCHUP_SEC_PER_PERCENT 60 #define MAX_CATCHUP_SOC (SOC_CATCHUP_SEC_MAX/SOC_CATCHUP_SEC_PER_PERCENT) static int scale_soc_while_chg(struct pm8921_bms_chip *chip, int delta_time_us, int new_soc, int prev_soc) { int chg_time_sec; int catch_up_sec; int scaled_soc; int numerator; /* * The device must be charging for reporting a higher soc, if * not ignore this soc and continue reporting the prev_soc. * Also don't report a high value immediately slowly scale the * value from prev_soc to the new soc based on a charge time * weighted average */ /* if we are not charging return last soc */ if (the_chip->start_percent == -EINVAL) return prev_soc; chg_time_sec = DIV_ROUND_UP(the_chip->charge_time_us, USEC_PER_SEC); catch_up_sec = DIV_ROUND_UP(the_chip->catch_up_time_us, USEC_PER_SEC); if (catch_up_sec == 0) return new_soc; pr_debug("cts= %d catch_up_sec = %d\n", chg_time_sec, catch_up_sec); /* * if we have been charging for more than catch_up time simply return * new soc */ if (chg_time_sec > catch_up_sec) return new_soc; numerator = (catch_up_sec - chg_time_sec) * prev_soc + chg_time_sec * new_soc; scaled_soc = numerator / catch_up_sec; pr_debug("cts = %d new_soc = %d prev_soc = %d scaled_soc = %d\n", chg_time_sec, new_soc, prev_soc, scaled_soc); return scaled_soc; } static bool is_shutdown_soc_within_limits(struct pm8921_bms_chip *chip, int soc) { if (shutdown_soc_invalid) { pr_debug("NOT forcing shutdown soc = %d\n", chip->shutdown_soc); return 0; } if (abs(chip->shutdown_soc - soc) > chip->shutdown_soc_valid_limit) { pr_debug("rejecting shutdown soc = %d, soc = %d limit = %d\n", chip->shutdown_soc, soc, chip->shutdown_soc_valid_limit); shutdown_soc_invalid = 1; return 0; } return 1; } static int is_eoc_adjust(struct pm8921_bms_chip *chip, int soc) { int batt_state = pm8921_get_batt_state(); int ret = 0; if (soc != 100) return 0; switch (batt_state) { case POWER_SUPPLY_STATUS_CHARGING: if (chip->start_percent != -EINVAL && chip->start_percent != 100) ret = 1; break; case POWER_SUPPLY_STATUS_DISCHARGING: case POWER_SUPPLY_STATUS_NOT_CHARGING: if (chip->soc_adjusted == 1) ret = 1; break; default: break; } return ret; } static int is_recharging(struct pm8921_bms_chip *chip, int soc) { if (soc == -EINVAL) return 0; if ((pm8921_get_batt_state() == POWER_SUPPLY_STATUS_FULL) && (soc < 100) && (pm8921_get_batt_health() != POWER_SUPPLY_HEALTH_OVERHEAT)) return 1; return 0; } /* * Remaining Usable Charge = remaining_charge (charge at ocv instance) * - coloumb counter charge * - unusable charge (due to battery resistance) * SOC% = (remaining usable charge/ fcc - usable_charge); */ static int calculate_state_of_charge(struct pm8921_bms_chip *chip, struct pm8921_soc_params *raw, int batt_temp, int chargecycles) { int remaining_usable_charge_uah, fcc_uah, unusable_charge_uah; int remaining_charge_uah, soc; int cc_uah; int rbatt; int iavg_ua; int delta_time_s; int new_ocv; int new_rc_uah; int new_ucc_uah; int new_rbatt; int shutdown_soc; static int firsttime = 1; calculate_soc_params(chip, raw, batt_temp, chargecycles, &fcc_uah, &unusable_charge_uah, &remaining_charge_uah, &cc_uah, &rbatt, &iavg_ua, &delta_time_s); /* calculate remaining usable charge */ remaining_usable_charge_uah = remaining_charge_uah - cc_uah - unusable_charge_uah; pr_debug("RUC = %duAh\n", remaining_usable_charge_uah); if (fcc_uah - unusable_charge_uah <= 0) { pr_warn("FCC = %duAh, UUC = %duAh forcing soc = 0\n", fcc_uah, unusable_charge_uah); soc = 0; } else { soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100), (fcc_uah - unusable_charge_uah)); } if (firsttime && soc < 0) { /* * first time calcualtion and the pon ocv is too low resulting * in a bad soc. Adjust ocv such that we get 0 soc */ pr_debug("soc is %d, adjusting pon ocv to make it 0\n", soc); adjust_rc_and_uuc_for_specific_soc( chip, batt_temp, chargecycles, 0, fcc_uah, unusable_charge_uah, cc_uah, remaining_charge_uah, rbatt, &new_ocv, &new_rc_uah, &new_ucc_uah, &new_rbatt); chip->last_ocv_uv = new_ocv; remaining_charge_uah = new_rc_uah; unusable_charge_uah = new_ucc_uah; rbatt = new_rbatt; remaining_usable_charge_uah = remaining_charge_uah - cc_uah - unusable_charge_uah; soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100), (fcc_uah - unusable_charge_uah)); pr_debug("DONE for O soc is %d, pon ocv adjusted to %duV\n", soc, chip->last_ocv_uv); } if (soc > 100) soc = 100; if (soc < 0) { pr_err("bad rem_usb_chg = %d rem_chg %d," "cc_uah %d, unusb_chg %d\n", remaining_usable_charge_uah, remaining_charge_uah, cc_uah, unusable_charge_uah); pr_err("for bad rem_usb_chg last_ocv_uv = %d" "chargecycles = %d, batt_temp = %d" "fcc = %d soc =%d\n", chip->last_ocv_uv, chargecycles, batt_temp, fcc_uah, soc); soc = 0; } mutex_lock(&soc_invalidation_mutex); shutdown_soc = chip->shutdown_soc; if (firsttime && soc != shutdown_soc && is_shutdown_soc_within_limits(chip, soc)) { /* * soc for the first time - use shutdown soc * to adjust pon ocv since it is a small percent away from * the real soc */ pr_debug("soc = %d before forcing shutdown_soc = %d\n", soc, shutdown_soc); adjust_rc_and_uuc_for_specific_soc( chip, batt_temp, chargecycles, shutdown_soc, fcc_uah, unusable_charge_uah, cc_uah, remaining_charge_uah, rbatt, &new_ocv, &new_rc_uah, &new_ucc_uah, &new_rbatt); chip->pon_ocv_uv = chip->last_ocv_uv; chip->last_ocv_uv = new_ocv; unusable_charge_uah = new_ucc_uah; rbatt = new_rbatt; if ((new_rc_uah - remaining_charge_uah) > fcc_uah*5/100) remaining_charge_uah = new_rc_uah - fcc_uah*1/100; else remaining_charge_uah = new_rc_uah; remaining_usable_charge_uah = remaining_charge_uah - cc_uah - unusable_charge_uah; soc = (remaining_usable_charge_uah * 100)/ (fcc_uah - unusable_charge_uah); pr_debug("DONE for shutdown_soc = %d soc is %d, adjusted ocv to %duV\n", shutdown_soc, soc, chip->last_ocv_uv); } mutex_unlock(&soc_invalidation_mutex); pr_debug("SOC before adjustment = %d\n", soc); calculated_soc = adjust_soc(chip, soc, batt_temp, chargecycles, rbatt, fcc_uah, unusable_charge_uah, cc_uah); pr_debug("calculated SOC = %d\n", calculated_soc); firsttime = 0; return calculated_soc; } #define CALCULATE_SOC_MS 20000 static void calculate_soc_work(struct work_struct *work) { struct pm8921_bms_chip *chip = container_of(work, struct pm8921_bms_chip, calculate_soc_delayed_work.work); int batt_temp, rc; struct pm8xxx_adc_chan_result result; struct pm8921_soc_params raw; int soc; rc = pm8xxx_adc_read(chip->batt_temp_channel, &result); if (rc) { pr_err("error reading adc channel = %d, rc = %d\n", chip->batt_temp_channel, rc); return; } pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical, result.measurement); batt_temp = (int)result.physical; mutex_lock(&chip->last_ocv_uv_mutex); read_soc_params_raw(chip, &raw); soc = calculate_state_of_charge(chip, &raw, batt_temp, last_chargecycles); if (chip->eoc_check_soc && is_recharging(chip, chip->last_reported_soc)) { pm8921_force_start_charging(); pr_info("Recharging is started\n"); } mutex_unlock(&chip->last_ocv_uv_mutex); schedule_delayed_work(&chip->calculate_soc_delayed_work, round_jiffies_relative(msecs_to_jiffies (CALCULATE_SOC_MS))); } static int report_state_of_charge(struct pm8921_bms_chip *chip) { int soc = calculated_soc; int delta_time_us; struct timespec now; struct pm8xxx_adc_chan_result result; int batt_temp; int rc; if (bms_fake_battery != -EINVAL) { pr_debug("Returning Fake SOC = %d%%\n", bms_fake_battery); return bms_fake_battery; } rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result); if (rc) { pr_err("error reading adc channel = %d, rc = %d\n", the_chip->batt_temp_channel, rc); return rc; } pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical, result.measurement); batt_temp = (int)result.physical; do_posix_clock_monotonic_gettime(&now); if (chip->t_soc_queried.tv_sec != 0) { delta_time_us = (now.tv_sec - chip->t_soc_queried.tv_sec) * USEC_PER_SEC + (now.tv_nsec - chip->t_soc_queried.tv_nsec) / 1000; } else { /* calculation for the first time */ delta_time_us = 0; } /* * account for charge time - limit it to SOC_CATCHUP_SEC to * avoid overflows when charging continues for extended periods */ if (the_chip->start_percent != -EINVAL) { if (the_chip->charge_time_us == 0) { /* * calculating soc for the first time * after start of chg. Initialize catchup time */ if (abs(soc - last_soc) < MAX_CATCHUP_SOC) the_chip->catch_up_time_us = (soc - last_soc) * SOC_CATCHUP_SEC_PER_PERCENT * USEC_PER_SEC; else the_chip->catch_up_time_us = SOC_CATCHUP_SEC_MAX * USEC_PER_SEC; if (the_chip->catch_up_time_us < 0) the_chip->catch_up_time_us = 0; } /* add charge time */ if (the_chip->charge_time_us < SOC_CATCHUP_SEC_MAX * USEC_PER_SEC) chip->charge_time_us += delta_time_us; /* end catchup if calculated soc and last soc are same */ if (last_soc == soc) the_chip->catch_up_time_us = 0; } /* last_soc < soc ... scale and catch up */ if (last_soc != -EINVAL && last_soc < soc && (soc != 100 || pm8921_is_chg_auto_enable())) soc = scale_soc_while_chg(chip, delta_time_us, soc, last_soc); if (chip->eoc_check_soc && is_eoc_adjust(chip, soc)) { soc = soc - 1; chip->soc_adjusted = 1; } else { chip->soc_adjusted = 0; } last_soc = soc; backup_soc_and_iavg(chip, batt_temp, last_soc); pr_debug("Reported SOC = %d\n", last_soc); chip->t_soc_queried = now; chip->last_reported_soc = last_soc; return last_soc; } void pm8921_bms_invalidate_shutdown_soc(void) { int calculate_soc = 0; struct pm8921_bms_chip *chip = the_chip; int batt_temp, rc; struct pm8xxx_adc_chan_result result; struct pm8921_soc_params raw; int soc; pr_debug("Invalidating shutdown soc - the battery was removed\n"); if (shutdown_soc_invalid) return; mutex_lock(&soc_invalidation_mutex); shutdown_soc_invalid = 1; last_soc = -EINVAL; if (the_chip) { /* reset to pon ocv undoing what the adjusting did */ if (the_chip->pon_ocv_uv) { the_chip->last_ocv_uv = the_chip->pon_ocv_uv; calculate_soc = 1; pr_debug("resetting ocv to pon_ocv = %d\n", the_chip->pon_ocv_uv); } } mutex_unlock(&soc_invalidation_mutex); if (!calculate_soc) return; rc = pm8xxx_adc_read(chip->batt_temp_channel, &result); if (rc) { pr_err("error reading adc channel = %d, rc = %d\n", chip->batt_temp_channel, rc); return; } pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical, result.measurement); batt_temp = (int)result.physical; mutex_lock(&chip->last_ocv_uv_mutex); read_soc_params_raw(chip, &raw); soc = calculate_state_of_charge(chip, &raw, batt_temp, last_chargecycles); mutex_unlock(&chip->last_ocv_uv_mutex); } EXPORT_SYMBOL(pm8921_bms_invalidate_shutdown_soc); #define MIN_DELTA_625_UV 1000 static void calib_hkadc(struct pm8921_bms_chip *chip) { int voltage, rc; struct pm8xxx_adc_chan_result result; int usb_chg; int this_delta; mutex_lock(&chip->calib_mutex); rc = pm8xxx_adc_read(the_chip->ref1p25v_channel, &result); if (rc) { pr_err("ADC failed for 1.25volts rc = %d\n", rc); goto out; } voltage = xoadc_reading_to_microvolt(result.adc_code); pr_debug("result 1.25v = 0x%x, voltage = %duV adc_meas = %lld\n", result.adc_code, voltage, result.measurement); chip->xoadc_v125 = voltage; rc = pm8xxx_adc_read(the_chip->ref625mv_channel, &result); if (rc) { pr_err("ADC failed for 1.25volts rc = %d\n", rc); goto out; } voltage = xoadc_reading_to_microvolt(result.adc_code); usb_chg = usb_chg_plugged_in(chip); pr_debug("result 0.625V = 0x%x, voltage = %duV adc_meas = %lld " "usb_chg = %d\n", result.adc_code, voltage, result.measurement, usb_chg); if (usb_chg) chip->xoadc_v0625_usb_present = voltage; else chip->xoadc_v0625_usb_absent = voltage; chip->xoadc_v0625 = voltage; if (chip->xoadc_v0625_usb_present && chip->xoadc_v0625_usb_absent) { this_delta = chip->xoadc_v0625_usb_present - chip->xoadc_v0625_usb_absent; pr_debug("this_delta= %duV\n", this_delta); if (this_delta > MIN_DELTA_625_UV) last_usb_cal_delta_uv = this_delta; pr_debug("625V_present= %d, 625V_absent= %d, delta = %duV\n", chip->xoadc_v0625_usb_present, chip->xoadc_v0625_usb_absent, last_usb_cal_delta_uv); } out: mutex_unlock(&chip->calib_mutex); } static void calibrate_hkadc_work(struct work_struct *work) { struct pm8921_bms_chip *chip = container_of(work, struct pm8921_bms_chip, calib_hkadc_work); calib_hkadc(chip); } void pm8921_bms_calibrate_hkadc(void) { schedule_work(&the_chip->calib_hkadc_work); } #define HKADC_CALIB_DELAY_MS 600000 static void calibrate_hkadc_delayed_work(struct work_struct *work) { struct pm8921_bms_chip *chip = container_of(work, struct pm8921_bms_chip, calib_hkadc_delayed_work.work); calib_hkadc(chip); schedule_delayed_work(&chip->calib_hkadc_delayed_work, round_jiffies_relative(msecs_to_jiffies (HKADC_CALIB_DELAY_MS))); } int pm8921_bms_get_vsense_avg(int *result) { int rc = -EINVAL; if (the_chip) { mutex_lock(&the_chip->bms_output_lock); pm_bms_lock_output_data(the_chip); rc = read_vsense_avg(the_chip, result); pm_bms_unlock_output_data(the_chip); mutex_unlock(&the_chip->bms_output_lock); } pr_err("called before initialization\n"); return rc; } EXPORT_SYMBOL(pm8921_bms_get_vsense_avg); int pm8921_bms_get_battery_current(int *result_ua) { int vsense; if (!the_chip) { pr_err("called before initialization\n"); return -EINVAL; } if (the_chip->r_sense == 0) { pr_err("r_sense is zero\n"); return -EINVAL; } mutex_lock(&the_chip->bms_output_lock); pm_bms_lock_output_data(the_chip); read_vsense_avg(the_chip, &vsense); pm_bms_unlock_output_data(the_chip); mutex_unlock(&the_chip->bms_output_lock); pr_debug("vsense=%duV\n", vsense); /* cast for signed division */ *result_ua = vsense * 1000 / (int)the_chip->r_sense; pr_debug("ibat=%duA\n", *result_ua); return 0; } EXPORT_SYMBOL(pm8921_bms_get_battery_current); int pm8921_bms_get_percent_charge(void) { if (!the_chip) { pr_err("called before initialization\n"); return -EINVAL; } return report_state_of_charge(the_chip); } EXPORT_SYMBOL_GPL(pm8921_bms_get_percent_charge); int pm8921_bms_get_rbatt(void) { int batt_temp, rc; struct pm8xxx_adc_chan_result result; struct pm8921_soc_params raw; int fcc_uah; int unusable_charge_uah; int remaining_charge_uah; int cc_uah; int rbatt; int iavg_ua; int delta_time_s; if (!the_chip) { pr_err("called before initialization\n"); return -EINVAL; } rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result); if (rc) { pr_err("error reading adc channel = %d, rc = %d\n", the_chip->batt_temp_channel, rc); return rc; } pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical, result.measurement); batt_temp = (int)result.physical; mutex_lock(&the_chip->last_ocv_uv_mutex); read_soc_params_raw(the_chip, &raw); calculate_soc_params(the_chip, &raw, batt_temp, last_chargecycles, &fcc_uah, &unusable_charge_uah, &remaining_charge_uah, &cc_uah, &rbatt, &iavg_ua, &delta_time_s); mutex_unlock(&the_chip->last_ocv_uv_mutex); return rbatt; } EXPORT_SYMBOL_GPL(pm8921_bms_get_rbatt); int pm8921_bms_get_fcc(void) { int batt_temp, rc; struct pm8xxx_adc_chan_result result; if (!the_chip) { pr_err("called before initialization\n"); return -EINVAL; } rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result); if (rc) { pr_err("error reading adc channel = %d, rc = %d\n", the_chip->batt_temp_channel, rc); return rc; } pr_debug("batt_temp phy = %lld meas = 0x%llx", result.physical, result.measurement); batt_temp = (int)result.physical; return calculate_fcc_uah(the_chip, batt_temp, last_chargecycles); } EXPORT_SYMBOL_GPL(pm8921_bms_get_fcc); #define IBAT_TOL_MASK 0x0F #define OCV_TOL_MASK 0xF0 #define IBAT_TOL_DEFAULT 0x03 #define IBAT_TOL_NOCHG 0x0F #define OCV_TOL_DEFAULT 0x20 #define OCV_TOL_NO_OCV 0x00 void pm8921_bms_charging_began(void) { struct pm8921_soc_params raw; mutex_lock(&the_chip->last_ocv_uv_mutex); read_soc_params_raw(the_chip, &raw); mutex_unlock(&the_chip->last_ocv_uv_mutex); the_chip->start_percent = report_state_of_charge(the_chip); bms_start_percent = the_chip->start_percent; bms_start_ocv_uv = raw.last_good_ocv_uv; calculate_cc_uah(the_chip, raw.cc, &bms_start_cc_uah); pm_bms_masked_write(the_chip, BMS_TOLERANCES, IBAT_TOL_MASK, IBAT_TOL_DEFAULT); the_chip->charge_time_us = 0; the_chip->catch_up_time_us = 0; the_chip->soc_at_cv = -EINVAL; the_chip->prev_chg_soc = -EINVAL; pr_debug("start_percent = %u%%\n", the_chip->start_percent); } EXPORT_SYMBOL_GPL(pm8921_bms_charging_began); #define DELTA_FCC_PERCENT 3 #define MIN_START_PERCENT_FOR_LEARNING 30 void pm8921_bms_charging_end(int is_battery_full) { int batt_temp, rc; struct pm8xxx_adc_chan_result result; struct pm8921_soc_params raw; if (the_chip == NULL) return; rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result); if (rc) { pr_err("error reading adc channel = %d, rc = %d\n", the_chip->batt_temp_channel, rc); return; } pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical, result.measurement); batt_temp = (int)result.physical; mutex_lock(&the_chip->last_ocv_uv_mutex); read_soc_params_raw(the_chip, &raw); calculate_cc_uah(the_chip, raw.cc, &bms_end_cc_uah); bms_end_ocv_uv = raw.last_good_ocv_uv; if (is_battery_full && the_chip->enable_fcc_learning && the_chip->start_percent <= MIN_START_PERCENT_FOR_LEARNING) { int fcc_uah, new_fcc_uah, delta_fcc_uah; new_fcc_uah = calculate_real_fcc_uah(the_chip, &raw, batt_temp, last_chargecycles, &fcc_uah); delta_fcc_uah = new_fcc_uah - fcc_uah; if (delta_fcc_uah < 0) delta_fcc_uah = -delta_fcc_uah; if (delta_fcc_uah * 100 > (DELTA_FCC_PERCENT * fcc_uah)) { /* new_fcc_uah is outside the scope limit it */ if (new_fcc_uah > fcc_uah) new_fcc_uah = (fcc_uah + (DELTA_FCC_PERCENT * fcc_uah) / 100); else new_fcc_uah = (fcc_uah - (DELTA_FCC_PERCENT * fcc_uah) / 100); pr_debug("delta_fcc=%d > %d percent of fcc=%d" "restring it to %d\n", delta_fcc_uah, DELTA_FCC_PERCENT, fcc_uah, new_fcc_uah); } last_real_fcc_mah = new_fcc_uah/1000; last_real_fcc_batt_temp = batt_temp; readjust_fcc_table(); } if (is_battery_full) { the_chip->ocv_reading_at_100 = raw.last_good_ocv_raw; the_chip->cc_reading_at_100 = raw.cc; the_chip->last_ocv_uv = the_chip->max_voltage_uv; raw.last_good_ocv_uv = the_chip->max_voltage_uv; /* * since we are treating this as an ocv event * forget the old cc value */ the_chip->last_cc_uah = 0; pr_debug("EOC BATT_FULL ocv_reading = 0x%x cc = 0x%x\n", the_chip->ocv_reading_at_100, the_chip->cc_reading_at_100); } the_chip->end_percent = calculate_state_of_charge(the_chip, &raw, batt_temp, last_chargecycles); mutex_unlock(&the_chip->last_ocv_uv_mutex); bms_end_percent = the_chip->end_percent; if (the_chip->end_percent > the_chip->start_percent) { last_charge_increase += the_chip->end_percent - the_chip->start_percent; if (last_charge_increase > 100) { last_chargecycles++; last_charge_increase = last_charge_increase % 100; } } pr_debug("end_percent = %u%% last_charge_increase = %d" "last_chargecycles = %d\n", the_chip->end_percent, last_charge_increase, last_chargecycles); the_chip->start_percent = -EINVAL; the_chip->end_percent = -EINVAL; the_chip->charge_time_us = 0; the_chip->catch_up_time_us = 0; the_chip->soc_at_cv = -EINVAL; the_chip->prev_chg_soc = -EINVAL; pm_bms_masked_write(the_chip, BMS_TOLERANCES, IBAT_TOL_MASK, IBAT_TOL_NOCHG); } EXPORT_SYMBOL_GPL(pm8921_bms_charging_end); int pm8921_bms_stop_ocv_updates(struct pm8921_bms_chip *chip) { pr_debug("stopping ocv updates\n"); return pm_bms_masked_write(chip, BMS_TOLERANCES, OCV_TOL_MASK, OCV_TOL_NO_OCV); } EXPORT_SYMBOL_GPL(pm8921_bms_stop_ocv_updates); int pm8921_bms_start_ocv_updates(struct pm8921_bms_chip *chip) { pr_debug("stopping ocv updates\n"); return pm_bms_masked_write(chip, BMS_TOLERANCES, OCV_TOL_MASK, OCV_TOL_DEFAULT); } EXPORT_SYMBOL_GPL(pm8921_bms_start_ocv_updates); static irqreturn_t pm8921_bms_sbi_write_ok_handler(int irq, void *data) { pr_debug("irq = %d triggered", irq); return IRQ_HANDLED; } static irqreturn_t pm8921_bms_cc_thr_handler(int irq, void *data) { pr_debug("irq = %d triggered", irq); return IRQ_HANDLED; } static irqreturn_t pm8921_bms_vsense_thr_handler(int irq, void *data) { pr_debug("irq = %d triggered", irq); return IRQ_HANDLED; } static irqreturn_t pm8921_bms_vsense_for_r_handler(int irq, void *data) { pr_debug("irq = %d triggered", irq); return IRQ_HANDLED; } static irqreturn_t pm8921_bms_ocv_for_r_handler(int irq, void *data) { struct pm8921_bms_chip *chip = data; pr_debug("irq = %d triggered", irq); schedule_work(&chip->calib_hkadc_work); return IRQ_HANDLED; } static irqreturn_t pm8921_bms_good_ocv_handler(int irq, void *data) { struct pm8921_bms_chip *chip = data; pr_debug("irq = %d triggered", irq); schedule_work(&chip->calib_hkadc_work); return IRQ_HANDLED; } static irqreturn_t pm8921_bms_vsense_avg_handler(int irq, void *data) { pr_debug("irq = %d triggered", irq); return IRQ_HANDLED; } struct pm_bms_irq_init_data { unsigned int irq_id; char *name; unsigned long flags; irqreturn_t (*handler)(int, void *); }; #define BMS_IRQ(_id, _flags, _handler) \ { \ .irq_id = _id, \ .name = #_id, \ .flags = _flags, \ .handler = _handler, \ } struct pm_bms_irq_init_data bms_irq_data[] = { BMS_IRQ(PM8921_BMS_SBI_WRITE_OK, IRQF_TRIGGER_RISING, pm8921_bms_sbi_write_ok_handler), BMS_IRQ(PM8921_BMS_CC_THR, IRQF_TRIGGER_RISING, pm8921_bms_cc_thr_handler), BMS_IRQ(PM8921_BMS_VSENSE_THR, IRQF_TRIGGER_RISING, pm8921_bms_vsense_thr_handler), BMS_IRQ(PM8921_BMS_VSENSE_FOR_R, IRQF_TRIGGER_RISING, pm8921_bms_vsense_for_r_handler), BMS_IRQ(PM8921_BMS_OCV_FOR_R, IRQF_TRIGGER_RISING, pm8921_bms_ocv_for_r_handler), BMS_IRQ(PM8921_BMS_GOOD_OCV, IRQF_TRIGGER_RISING, pm8921_bms_good_ocv_handler), BMS_IRQ(PM8921_BMS_VSENSE_AVG, IRQF_TRIGGER_RISING, pm8921_bms_vsense_avg_handler), }; static void free_irqs(struct pm8921_bms_chip *chip) { int i; for (i = 0; i < PM_BMS_MAX_INTS; i++) if (chip->pmic_bms_irq[i]) { free_irq(chip->pmic_bms_irq[i], NULL); chip->pmic_bms_irq[i] = 0; } } static int __devinit request_irqs(struct pm8921_bms_chip *chip, struct platform_device *pdev) { struct resource *res; int ret, i; ret = 0; bitmap_fill(chip->enabled_irqs, PM_BMS_MAX_INTS); for (i = 0; i < ARRAY_SIZE(bms_irq_data); i++) { res = platform_get_resource_byname(pdev, IORESOURCE_IRQ, bms_irq_data[i].name); if (res == NULL) { pr_err("couldn't find %s\n", bms_irq_data[i].name); goto err_out; } ret = request_irq(res->start, bms_irq_data[i].handler, bms_irq_data[i].flags, bms_irq_data[i].name, chip); if (ret < 0) { pr_err("couldn't request %d (%s) %d\n", res->start, bms_irq_data[i].name, ret); goto err_out; } chip->pmic_bms_irq[bms_irq_data[i].irq_id] = res->start; pm8921_bms_disable_irq(chip, bms_irq_data[i].irq_id); } return 0; err_out: free_irqs(chip); return -EINVAL; } #define EN_BMS_BIT BIT(7) #define EN_PON_HS_BIT BIT(0) static int __devinit pm8921_bms_hw_init(struct pm8921_bms_chip *chip) { int rc; rc = pm_bms_masked_write(chip, BMS_CONTROL, EN_BMS_BIT | EN_PON_HS_BIT, EN_BMS_BIT | EN_PON_HS_BIT); if (rc) { pr_err("failed to enable pon and bms addr = %d %d", BMS_CONTROL, rc); } /* The charger will call start charge later if usb is present */ pm_bms_masked_write(chip, BMS_TOLERANCES, IBAT_TOL_MASK, IBAT_TOL_NOCHG); return 0; } static void check_initial_ocv(struct pm8921_bms_chip *chip) { int ocv_uv, rc; int16_t ocv_raw; int usb_chg; /* * Check if a ocv is available in bms hw, * if not compute it here at boot time and save it * in the last_ocv_uv. */ ocv_uv = 0; pm_bms_read_output_data(chip, LAST_GOOD_OCV_VALUE, &ocv_raw); usb_chg = usb_chg_plugged_in(chip); rc = convert_vbatt_raw_to_uv(chip, usb_chg, ocv_raw, &ocv_uv); if (rc || ocv_uv == 0) { rc = adc_based_ocv(chip, &ocv_uv); if (rc) { pr_err("failed to read adc based ocv_uv rc = %d\n", rc); ocv_uv = DEFAULT_OCV_MICROVOLTS; } } chip->last_ocv_uv = ocv_uv; pr_debug("ocv_uv = %d last_ocv_uv = %d\n", ocv_uv, chip->last_ocv_uv); } static int64_t read_battery_id(struct pm8921_bms_chip *chip) { int rc; struct pm8xxx_adc_chan_result result; rc = pm8xxx_adc_read(chip->batt_id_channel, &result); if (rc) { pr_err("error reading batt id channel = %d, rc = %d\n", chip->vbat_channel, rc); return rc; } pr_debug("batt_id phy = %lld meas = 0x%llx\n", result.physical, result.measurement); return result.adc_code; } #define PALLADIUM_ID_MIN 0x7F40 #define PALLADIUM_ID_MAX 0x7F5A #define DESAY_5200_ID_MIN 0x7F7F #define DESAY_5200_ID_MAX 0x802F static int set_battery_data(struct pm8921_bms_chip *chip) { int64_t battery_id; if (chip->batt_type == BATT_DESAY) goto desay; else if (chip->batt_type == BATT_PALLADIUM) goto palladium; else if (chip->batt_type == BATT_LGE) goto lge; battery_id = read_battery_id(chip); if (battery_id < 0) { pr_err("cannot read battery id err = %lld\n", battery_id); return battery_id; } if (is_between(PALLADIUM_ID_MIN, PALLADIUM_ID_MAX, battery_id)) { goto palladium; } else if (is_between(DESAY_5200_ID_MIN, DESAY_5200_ID_MAX, battery_id)) { goto desay; } else { pr_warn("invalid battid, palladium 1500 assumed batt_id %llx\n", battery_id); goto palladium; } palladium: chip->fcc = palladium_1500_data.fcc; chip->fcc_temp_lut = palladium_1500_data.fcc_temp_lut; chip->fcc_sf_lut = palladium_1500_data.fcc_sf_lut; chip->pc_temp_ocv_lut = palladium_1500_data.pc_temp_ocv_lut; chip->pc_sf_lut = palladium_1500_data.pc_sf_lut; chip->rbatt_sf_lut = palladium_1500_data.rbatt_sf_lut; chip->default_rbatt_mohm = palladium_1500_data.default_rbatt_mohm; chip->delta_rbatt_mohm = palladium_1500_data.delta_rbatt_mohm; return 0; desay: chip->fcc = desay_5200_data.fcc; chip->fcc_temp_lut = desay_5200_data.fcc_temp_lut; chip->pc_temp_ocv_lut = desay_5200_data.pc_temp_ocv_lut; chip->pc_sf_lut = desay_5200_data.pc_sf_lut; chip->rbatt_sf_lut = desay_5200_data.rbatt_sf_lut; chip->default_rbatt_mohm = desay_5200_data.default_rbatt_mohm; chip->delta_rbatt_mohm = desay_5200_data.delta_rbatt_mohm; return 0; lge: chip->fcc = lge_2100_mako_data.fcc; chip->fcc_temp_lut = lge_2100_mako_data.fcc_temp_lut; chip->fcc_sf_lut = lge_2100_mako_data.fcc_sf_lut; chip->pc_temp_ocv_lut = lge_2100_mako_data.pc_temp_ocv_lut; chip->pc_sf_lut = lge_2100_mako_data.pc_sf_lut; chip->rbatt_sf_lut = lge_2100_mako_data.rbatt_sf_lut; chip->default_rbatt_mohm = lge_2100_mako_data.default_rbatt_mohm; chip->delta_rbatt_mohm = lge_2100_mako_data.delta_rbatt_mohm; return 0; } enum bms_request_operation { CALC_FCC, CALC_PC, CALC_SOC, CALIB_HKADC, CALIB_CCADC, GET_VBAT_VSENSE_SIMULTANEOUS, STOP_OCV, START_OCV, }; static int test_batt_temp = 5; static int test_chargecycle = 150; static int test_ocv = 3900000; enum { TEST_BATT_TEMP, TEST_CHARGE_CYCLE, TEST_OCV, }; static int get_test_param(void *data, u64 * val) { switch ((int)data) { case TEST_BATT_TEMP: *val = test_batt_temp; break; case TEST_CHARGE_CYCLE: *val = test_chargecycle; break; case TEST_OCV: *val = test_ocv; break; default: return -EINVAL; } return 0; } static int set_test_param(void *data, u64 val) { switch ((int)data) { case TEST_BATT_TEMP: test_batt_temp = (int)val; break; case TEST_CHARGE_CYCLE: test_chargecycle = (int)val; break; case TEST_OCV: test_ocv = (int)val; break; default: return -EINVAL; } return 0; } DEFINE_SIMPLE_ATTRIBUTE(temp_fops, get_test_param, set_test_param, "%llu\n"); static int get_calc(void *data, u64 * val) { int param = (int)data; int ret = 0; int ibat_ua, vbat_uv; struct pm8921_soc_params raw; read_soc_params_raw(the_chip, &raw); *val = 0; /* global irq number passed in via data */ switch (param) { case CALC_FCC: *val = calculate_fcc_uah(the_chip, test_batt_temp, test_chargecycle); break; case CALC_PC: *val = calculate_pc(the_chip, test_ocv, test_batt_temp, test_chargecycle); break; case CALC_SOC: *val = calculate_state_of_charge(the_chip, &raw, test_batt_temp, test_chargecycle); break; case CALIB_HKADC: /* reading this will trigger calibration */ *val = 0; calib_hkadc(the_chip); break; case CALIB_CCADC: /* reading this will trigger calibration */ *val = 0; pm8xxx_calib_ccadc(); break; case GET_VBAT_VSENSE_SIMULTANEOUS: /* reading this will call simultaneous vbat and vsense */ *val = pm8921_bms_get_simultaneous_battery_voltage_and_current( &ibat_ua, &vbat_uv); default: ret = -EINVAL; } return ret; } static int set_calc(void *data, u64 val) { int param = (int)data; int ret = 0; switch (param) { case STOP_OCV: pm8921_bms_stop_ocv_updates(the_chip); break; case START_OCV: pm8921_bms_start_ocv_updates(the_chip); break; default: ret = -EINVAL; } return ret; } DEFINE_SIMPLE_ATTRIBUTE(calc_fops, get_calc, set_calc, "%llu\n"); static int get_reading(void *data, u64 * val) { int param = (int)data; int ret = 0; struct pm8921_soc_params raw; read_soc_params_raw(the_chip, &raw); *val = 0; switch (param) { case CC_MSB: case CC_LSB: *val = raw.cc; break; case LAST_GOOD_OCV_VALUE: *val = raw.last_good_ocv_uv; break; case VSENSE_AVG: read_vsense_avg(the_chip, (uint *)val); break; default: ret = -EINVAL; } return ret; } DEFINE_SIMPLE_ATTRIBUTE(reading_fops, get_reading, NULL, "%lld\n"); static int get_rt_status(void *data, u64 * val) { int i = (int)data; int ret; /* global irq number passed in via data */ ret = pm_bms_get_rt_status(the_chip, i); *val = ret; return 0; } DEFINE_SIMPLE_ATTRIBUTE(rt_fops, get_rt_status, NULL, "%llu\n"); static int get_reg(void *data, u64 * val) { int addr = (int)data; int ret; u8 temp; ret = pm8xxx_readb(the_chip->dev->parent, addr, &temp); if (ret) { pr_err("pm8xxx_readb to %x value = %d errored = %d\n", addr, temp, ret); return -EAGAIN; } *val = temp; return 0; } static int set_reg(void *data, u64 val) { int addr = (int)data; int ret; u8 temp; temp = (u8) val; ret = pm8xxx_writeb(the_chip->dev->parent, addr, temp); if (ret) { pr_err("pm8xxx_writeb to %x value = %d errored = %d\n", addr, temp, ret); return -EAGAIN; } return 0; } DEFINE_SIMPLE_ATTRIBUTE(reg_fops, get_reg, set_reg, "0x%02llx\n"); static void create_debugfs_entries(struct pm8921_bms_chip *chip) { int i; chip->dent = debugfs_create_dir("pm8921-bms", NULL); if (IS_ERR(chip->dent)) { pr_err("pmic bms couldnt create debugfs dir\n"); return; } debugfs_create_file("BMS_CONTROL", 0644, chip->dent, (void *)BMS_CONTROL, ®_fops); debugfs_create_file("BMS_OUTPUT0", 0644, chip->dent, (void *)BMS_OUTPUT0, ®_fops); debugfs_create_file("BMS_OUTPUT1", 0644, chip->dent, (void *)BMS_OUTPUT1, ®_fops); debugfs_create_file("BMS_TEST1", 0644, chip->dent, (void *)BMS_TEST1, ®_fops); debugfs_create_file("test_batt_temp", 0644, chip->dent, (void *)TEST_BATT_TEMP, &temp_fops); debugfs_create_file("test_chargecycle", 0644, chip->dent, (void *)TEST_CHARGE_CYCLE, &temp_fops); debugfs_create_file("test_ocv", 0644, chip->dent, (void *)TEST_OCV, &temp_fops); debugfs_create_file("read_cc", 0644, chip->dent, (void *)CC_MSB, &reading_fops); debugfs_create_file("read_last_good_ocv", 0644, chip->dent, (void *)LAST_GOOD_OCV_VALUE, &reading_fops); debugfs_create_file("read_vbatt_for_rbatt", 0644, chip->dent, (void *)VBATT_FOR_RBATT, &reading_fops); debugfs_create_file("read_vsense_for_rbatt", 0644, chip->dent, (void *)VSENSE_FOR_RBATT, &reading_fops); debugfs_create_file("read_ocv_for_rbatt", 0644, chip->dent, (void *)OCV_FOR_RBATT, &reading_fops); debugfs_create_file("read_vsense_avg", 0644, chip->dent, (void *)VSENSE_AVG, &reading_fops); debugfs_create_file("show_fcc", 0644, chip->dent, (void *)CALC_FCC, &calc_fops); debugfs_create_file("show_pc", 0644, chip->dent, (void *)CALC_PC, &calc_fops); debugfs_create_file("show_soc", 0644, chip->dent, (void *)CALC_SOC, &calc_fops); debugfs_create_file("calib_hkadc", 0644, chip->dent, (void *)CALIB_HKADC, &calc_fops); debugfs_create_file("calib_ccadc", 0644, chip->dent, (void *)CALIB_CCADC, &calc_fops); debugfs_create_file("stop_ocv", 0644, chip->dent, (void *)STOP_OCV, &calc_fops); debugfs_create_file("start_ocv", 0644, chip->dent, (void *)START_OCV, &calc_fops); debugfs_create_file("simultaneous", 0644, chip->dent, (void *)GET_VBAT_VSENSE_SIMULTANEOUS, &calc_fops); for (i = 0; i < ARRAY_SIZE(bms_irq_data); i++) { if (chip->pmic_bms_irq[bms_irq_data[i].irq_id]) debugfs_create_file(bms_irq_data[i].name, 0444, chip->dent, (void *)bms_irq_data[i].irq_id, &rt_fops); } } #define REG_SBI_CONFIG 0x04F #define PAGE3_ENABLE_MASK 0x6 #define PROGRAM_REV_MASK 0x0F #define PROGRAM_REV 0x9 static int read_ocv_trim(struct pm8921_bms_chip *chip) { int rc; u8 reg, sbi_config; rc = pm8xxx_readb(chip->dev->parent, REG_SBI_CONFIG, &sbi_config); if (rc) { pr_err("error = %d reading sbi config reg\n", rc); return rc; } reg = sbi_config | PAGE3_ENABLE_MASK; rc = pm8xxx_writeb(chip->dev->parent, REG_SBI_CONFIG, reg); if (rc) { pr_err("error = %d writing sbi config reg\n", rc); return rc; } rc = pm8xxx_readb(chip->dev->parent, TEST_PROGRAM_REV, ®); if (rc) pr_err("Error %d reading %d addr %d\n", rc, reg, TEST_PROGRAM_REV); pr_err("program rev reg is 0x%x\n", reg); reg &= PROGRAM_REV_MASK; /* If the revision is equal or higher do not adjust trim delta */ if (reg >= PROGRAM_REV) { chip->amux_2_trim_delta = 0; goto restore_sbi_config; } rc = pm8xxx_readb(chip->dev->parent, AMUX_TRIM_2, ®); if (rc) { pr_err("error = %d reading trim reg\n", rc); return rc; } pr_err("trim reg is 0x%x\n", reg); chip->amux_2_trim_delta = abs(0x49 - reg); pr_err("trim delta is %d\n", chip->amux_2_trim_delta); restore_sbi_config: rc = pm8xxx_writeb(chip->dev->parent, REG_SBI_CONFIG, sbi_config); if (rc) { pr_err("error = %d writing sbi config reg\n", rc); return rc; } return 0; } static int __devinit pm8921_bms_probe(struct platform_device *pdev) { int rc = 0; int vbatt = 0; struct pm8921_bms_chip *chip; const struct pm8921_bms_platform_data *pdata = pdev->dev.platform_data; if (!pdata) { pr_err("missing platform data\n"); return -EINVAL; } chip = kzalloc(sizeof(struct pm8921_bms_chip), GFP_KERNEL); if (!chip) { pr_err("Cannot allocate pm_bms_chip\n"); return -ENOMEM; } mutex_init(&chip->bms_output_lock); mutex_init(&chip->last_ocv_uv_mutex); chip->dev = &pdev->dev; chip->r_sense = pdata->r_sense; chip->v_cutoff = pdata->v_cutoff; chip->max_voltage_uv = pdata->max_voltage_uv; chip->chg_term_ua = pdata->chg_term_ua; chip->batt_type = pdata->battery_type; chip->rconn_mohm = pdata->rconn_mohm; chip->start_percent = -EINVAL; chip->end_percent = -EINVAL; chip->shutdown_soc_valid_limit = pdata->shutdown_soc_valid_limit; chip->adjust_soc_low_threshold = pdata->adjust_soc_low_threshold; if (chip->adjust_soc_low_threshold >= 45) chip->adjust_soc_low_threshold = 45; chip->prev_pc_unusable = -EINVAL; chip->soc_at_cv = -EINVAL; chip->ignore_shutdown_soc = pdata->ignore_shutdown_soc; rc = set_battery_data(chip); if (rc) { pr_err("%s bad battery data %d\n", __func__, rc); goto free_chip; } if (chip->pc_temp_ocv_lut == NULL) { pr_err("temp ocv lut table is NULL\n"); rc = -EINVAL; goto free_chip; } /* set defaults in the battery data */ if (chip->default_rbatt_mohm <= 0) chip->default_rbatt_mohm = DEFAULT_RBATT_MOHMS; chip->batt_temp_channel = pdata->bms_cdata.batt_temp_channel; chip->vbat_channel = pdata->bms_cdata.vbat_channel; chip->ref625mv_channel = pdata->bms_cdata.ref625mv_channel; chip->ref1p25v_channel = pdata->bms_cdata.ref1p25v_channel; chip->batt_id_channel = pdata->bms_cdata.batt_id_channel; chip->revision = pm8xxx_get_revision(chip->dev->parent); chip->enable_fcc_learning = pdata->enable_fcc_learning; chip->last_reported_soc = -EINVAL; chip->eoc_check_soc = pdata->eoc_check_soc; chip->soc_adjusted = 0; chip->bms_support_wlc = pdata->bms_support_wlc; if (chip->bms_support_wlc) { chip->wlc_term_ua = pdata->wlc_term_ua; chip->wlc_max_voltage_uv = pdata->wlc_max_voltage_uv; chip->wlc_is_plugged = pdata->wlc_is_plugged; } chip->vbat_at_cv = -EINVAL; chip->first_fixed_iavg_ma = pdata->first_fixed_iavg_ma; mutex_init(&chip->calib_mutex); INIT_WORK(&chip->calib_hkadc_work, calibrate_hkadc_work); INIT_DELAYED_WORK(&chip->calib_hkadc_delayed_work, calibrate_hkadc_delayed_work); INIT_DELAYED_WORK(&chip->calculate_soc_delayed_work, calculate_soc_work); rc = request_irqs(chip, pdev); if (rc) { pr_err("couldn't register interrupts rc = %d\n", rc); goto free_chip; } rc = pm8921_bms_hw_init(chip); if (rc) { pr_err("couldn't init hardware rc = %d\n", rc); goto free_irqs; } read_shutdown_soc_and_iavg(chip); platform_set_drvdata(pdev, chip); the_chip = chip; create_debugfs_entries(chip); rc = read_ocv_trim(chip); if (rc) { pr_err("couldn't adjust ocv_trim rc= %d\n", rc); goto free_irqs; } check_initial_ocv(chip); /* start periodic hkadc calibration */ schedule_delayed_work(&chip->calib_hkadc_delayed_work, 0); /* enable the vbatt reading interrupts for scheduling hkadc calib */ pm8921_bms_enable_irq(chip, PM8921_BMS_GOOD_OCV); pm8921_bms_enable_irq(chip, PM8921_BMS_OCV_FOR_R); calculate_soc_work(&(chip->calculate_soc_delayed_work.work)); get_battery_uvolts(chip, &vbatt); pr_info("OK battery_capacity_at_boot=%d volt = %d ocv = %d\n", pm8921_bms_get_percent_charge(), vbatt, chip->last_ocv_uv); return 0; free_irqs: free_irqs(chip); free_chip: kfree(chip); return rc; } static int __devexit pm8921_bms_remove(struct platform_device *pdev) { struct pm8921_bms_chip *chip = platform_get_drvdata(pdev); free_irqs(chip); kfree(chip->adjusted_fcc_temp_lut); platform_set_drvdata(pdev, NULL); the_chip = NULL; kfree(chip); return 0; } static struct platform_driver pm8921_bms_driver = { .probe = pm8921_bms_probe, .remove = __devexit_p(pm8921_bms_remove), .driver = { .name = PM8921_BMS_DEV_NAME, .owner = THIS_MODULE, }, }; static int __init pm8921_bms_init(void) { return platform_driver_register(&pm8921_bms_driver); } static void __exit pm8921_bms_exit(void) { platform_driver_unregister(&pm8921_bms_driver); } late_initcall(pm8921_bms_init); module_exit(pm8921_bms_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("PMIC8921 bms driver"); MODULE_VERSION("1.0"); MODULE_ALIAS("platform:" PM8921_BMS_DEV_NAME);