/* * linux/drivers/cpufreq/cpufreq_userspace.c * * Copyright (C) 2001 Russell King * (C) 2002 - 2004 Dominik Brodowski * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** * A few values needed by the userspace governor */ static DEFINE_PER_CPU(unsigned int, cpu_max_freq); static DEFINE_PER_CPU(unsigned int, cpu_min_freq); static DEFINE_PER_CPU(unsigned int, cpu_cur_freq); /* current CPU freq */ static DEFINE_PER_CPU(unsigned int, cpu_set_freq); /* CPU freq desired by userspace */ static DEFINE_PER_CPU(unsigned int, cpu_is_managed); static DEFINE_PER_CPU(struct cpufreq_policy *, temp_policy); static DEFINE_MUTEX(userspace_mutex); static int cpus_using_userspace_governor; /* keep track of frequency transitions */ static int userspace_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_freqs *freq = data; if (!per_cpu(cpu_is_managed, freq->cpu)) return 0; if (val == CPUFREQ_POSTCHANGE) { pr_debug("saving cpu_cur_freq of cpu %u to be %u kHz\n", freq->cpu, freq->new); per_cpu(cpu_cur_freq, freq->cpu) = freq->new; } return 0; } static struct notifier_block userspace_cpufreq_notifier_block = { .notifier_call = userspace_cpufreq_notifier }; //=========dvfs stress test =================== extern struct cpufreq_frequency_table * cpufreq_frequency_get_table(unsigned int cpu); struct cpufreq_frequency_table *cpu_freq_table=NULL; struct workqueue_struct *dvfs_test_work_queue=NULL; struct delayed_work stress_test; bool stress_test_enable=false; unsigned int max_cpu_freq_index=CPUFREQ_TABLE_END; int freq_index=0; static int cpufreq_set(struct cpufreq_policy *policy, unsigned int freq); static bool cpufreq_set_userspace_governor(void); void dvfs_stress_test(struct work_struct *work) { int cpu=0; static int start_testing=0; if(!start_testing){ cpufreq_set_userspace_governor(); start_testing=1; } cpu=0; if(stress_test_enable) mutex_lock(&userspace_mutex); for_each_online_cpu(cpu){ if(per_cpu(temp_policy,cpu) && per_cpu(cpu_is_managed, cpu)){ cpufreq_set(per_cpu(temp_policy,cpu), cpu_freq_table[freq_index].frequency); } } if(stress_test_enable) mutex_unlock(&userspace_mutex); freq_index--; if(freq_index<0) freq_index=max_cpu_freq_index; if(stress_test_enable) queue_delayed_work(dvfs_test_work_queue, &stress_test,1*HZ); return ; } static bool cpufreq_set_userspace_governor(void) { static char *cpufreq_sysfs_governor_path="/sys/devices/system/cpu/cpu%i/cpufreq/scaling_governor"; static char *cpufreq_sysfs_online_path="/sys/devices/system/cpu/cpu%i/online"; struct file *scaling_gov = NULL; struct file *cpux_online= NULL; static char *governor = "userspace"; static char cpu_on[1] = {'1'}; mm_segment_t old_fs; char buf[128]; int i; bool err=0; loff_t offset = 0; struct cpufreq_policy *policy =NULL; printk("cpufreq_set_userspace_governor+\n"); /* change to KERNEL_DS address limit */ old_fs = get_fs(); set_fs(KERNEL_DS); for(i = 1; i <= 3; i++) { sprintf(buf, cpufreq_sysfs_online_path, i); cpux_online = filp_open(buf, O_RDWR, 0); if (IS_ERR_OR_NULL(cpux_online)){ printk("cpufreq_set_userspace_governor: open %s fail\n", buf); err = true; goto error; } cpux_online->f_op->write(cpux_online, cpu_on, strlen(cpu_on), &offset); memset(buf,0,sizeof(buf)); sprintf(buf, cpufreq_sysfs_governor_path, i); scaling_gov = filp_open(buf, O_RDWR, 0); if (IS_ERR_OR_NULL(scaling_gov)) { printk("cpufreq_set_userspace_governor: open %s fail\n", buf); err = true; goto error; } policy =cpufreq_cpu_get(i); if(policy) { if(!strncmp(policy->governor->name, governor, 9)) { printk("cpufreq_set_userspace_governor cpu%u is userspace\n", i); if (policy) cpufreq_cpu_put(policy); continue; } cpufreq_cpu_put(policy); } if (scaling_gov->f_op != NULL && scaling_gov->f_op->write != NULL) { scaling_gov->f_op->write(scaling_gov, governor, strlen(governor), &offset); } else pr_err("f_op might be null\n"); filp_close(scaling_gov, NULL); filp_close(cpux_online, NULL); } printk("cpufreq_set_userspace_governor-\n"); error: set_fs(old_fs); return err; } static int start_test(struct cpufreq_policy *policy, unsigned int enable) { int i=0; if(policy->cpu==0 && enable ){ cpu_freq_table=cpufreq_frequency_get_table(0); for (i = 0; (cpu_freq_table[i].frequency != CPUFREQ_TABLE_END); i++) { if (cpu_freq_table[i].frequency == CPUFREQ_ENTRY_INVALID) continue; printk("start_test cpu_freq_table[%u].frequency=%u\n",i,cpu_freq_table[i].frequency); } freq_index=max_cpu_freq_index=i-1; stress_test_enable=true; queue_delayed_work(dvfs_test_work_queue, &stress_test,1*HZ); }else stress_test_enable=false; return true; } static ssize_t show_test(struct cpufreq_policy *policy, char *buf) { return sprintf(buf, "%u\n", stress_test_enable); } //=========dvfs stress test =================== /** * cpufreq_set - set the CPU frequency * @policy: pointer to policy struct where freq is being set * @freq: target frequency in kHz * * Sets the CPU frequency to freq. */ static int cpufreq_set(struct cpufreq_policy *policy, unsigned int freq) { int ret = -EINVAL; printk("cpufreq_set for cpu %u, freq %u kHz\n", policy->cpu, freq); if(!stress_test_enable) mutex_lock(&userspace_mutex); if (!per_cpu(cpu_is_managed, policy->cpu)) goto err; per_cpu(cpu_set_freq, policy->cpu) = freq; if (freq < per_cpu(cpu_min_freq, policy->cpu)) freq = per_cpu(cpu_min_freq, policy->cpu); if (freq > per_cpu(cpu_max_freq, policy->cpu)) freq = per_cpu(cpu_max_freq, policy->cpu); /* * We're safe from concurrent calls to ->target() here * as we hold the userspace_mutex lock. If we were calling * cpufreq_driver_target, a deadlock situation might occur: * A: cpufreq_set (lock userspace_mutex) -> * cpufreq_driver_target(lock policy->lock) * B: cpufreq_set_policy(lock policy->lock) -> * __cpufreq_governor -> * cpufreq_governor_userspace (lock userspace_mutex) */ ret = __cpufreq_driver_target(policy, freq, CPUFREQ_RELATION_L); err: if(!stress_test_enable) mutex_unlock(&userspace_mutex); return ret; } static ssize_t show_speed(struct cpufreq_policy *policy, char *buf) { return sprintf(buf, "%u\n", per_cpu(cpu_cur_freq, policy->cpu)); } static int cpufreq_governor_userspace(struct cpufreq_policy *policy, unsigned int event) { unsigned int cpu = policy->cpu; int rc = 0; switch (event) { case CPUFREQ_GOV_START: if (!cpu_online(cpu)) return -EINVAL; per_cpu(temp_policy, cpu) =policy; BUG_ON(!policy->cur); mutex_lock(&userspace_mutex); if (cpus_using_userspace_governor == 0) { cpufreq_register_notifier( &userspace_cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); } cpus_using_userspace_governor++; per_cpu(cpu_is_managed, cpu) = 1; per_cpu(cpu_min_freq, cpu) = policy->min; per_cpu(cpu_max_freq, cpu) = policy->max; per_cpu(cpu_cur_freq, cpu) = policy->cur; per_cpu(cpu_set_freq, cpu) = policy->cur; pr_debug("managing cpu %u started " "(%u - %u kHz, currently %u kHz)\n", cpu, per_cpu(cpu_min_freq, cpu), per_cpu(cpu_max_freq, cpu), per_cpu(cpu_cur_freq, cpu)); mutex_unlock(&userspace_mutex); break; case CPUFREQ_GOV_STOP: mutex_lock(&userspace_mutex); cpus_using_userspace_governor--; if (cpus_using_userspace_governor == 0) { cpufreq_unregister_notifier( &userspace_cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); } per_cpu(cpu_is_managed, cpu) = 0; per_cpu(cpu_min_freq, cpu) = 0; per_cpu(cpu_max_freq, cpu) = 0; per_cpu(cpu_set_freq, cpu) = 0; per_cpu(temp_policy, cpu) =NULL; pr_debug("managing cpu %u stopped\n", cpu); mutex_unlock(&userspace_mutex); break; case CPUFREQ_GOV_LIMITS: mutex_lock(&userspace_mutex); pr_debug("limit event for cpu %u: %u - %u kHz, " "currently %u kHz, last set to %u kHz\n", cpu, policy->min, policy->max, per_cpu(cpu_cur_freq, cpu), per_cpu(cpu_set_freq, cpu)); if (policy->max < per_cpu(cpu_set_freq, cpu)) { __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H); } else if (policy->min > per_cpu(cpu_set_freq, cpu)) { __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L); } else { __cpufreq_driver_target(policy, per_cpu(cpu_set_freq, cpu), CPUFREQ_RELATION_L); } per_cpu(cpu_min_freq, cpu) = policy->min; per_cpu(cpu_max_freq, cpu) = policy->max; per_cpu(cpu_cur_freq, cpu) = policy->cur; mutex_unlock(&userspace_mutex); break; } return rc; } #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_USERSPACE static #endif struct cpufreq_governor cpufreq_gov_userspace = { .name = "userspace", .governor = cpufreq_governor_userspace, .store_setspeed = cpufreq_set, .show_setspeed = show_speed, .start_dvfs_test = start_test, .show_dvfs_test = show_test, .owner = THIS_MODULE, }; static int __init cpufreq_gov_userspace_init(void) { INIT_DELAYED_WORK(&stress_test, dvfs_stress_test) ; dvfs_test_work_queue = create_singlethread_workqueue("dvfs_test_workqueue"); return cpufreq_register_governor(&cpufreq_gov_userspace); } static void __exit cpufreq_gov_userspace_exit(void) { cpufreq_unregister_governor(&cpufreq_gov_userspace); } MODULE_AUTHOR("Dominik Brodowski , " "Russell King "); MODULE_DESCRIPTION("CPUfreq policy governor 'userspace'"); MODULE_LICENSE("GPL"); #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_USERSPACE fs_initcall(cpufreq_gov_userspace_init); #else module_init(cpufreq_gov_userspace_init); #endif module_exit(cpufreq_gov_userspace_exit);