/* * Helper routines for SuperH Clock Pulse Generator blocks (CPG). * * Copyright (C) 2010 Magnus Damm * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include static int sh_clk_mstp32_enable(struct clk *clk) { iowrite32(ioread32(clk->mapped_reg) & ~(1 << clk->enable_bit), clk->mapped_reg); return 0; } static void sh_clk_mstp32_disable(struct clk *clk) { iowrite32(ioread32(clk->mapped_reg) | (1 << clk->enable_bit), clk->mapped_reg); } static struct clk_ops sh_clk_mstp32_clk_ops = { .enable = sh_clk_mstp32_enable, .disable = sh_clk_mstp32_disable, .recalc = followparent_recalc, }; int __init sh_clk_mstp32_register(struct clk *clks, int nr) { struct clk *clkp; int ret = 0; int k; for (k = 0; !ret && (k < nr); k++) { clkp = clks + k; clkp->ops = &sh_clk_mstp32_clk_ops; ret |= clk_register(clkp); } return ret; } static long sh_clk_div_round_rate(struct clk *clk, unsigned long rate) { return clk_rate_table_round(clk, clk->freq_table, rate); } static int sh_clk_div6_divisors[64] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64 }; static struct clk_div_mult_table sh_clk_div6_table = { .divisors = sh_clk_div6_divisors, .nr_divisors = ARRAY_SIZE(sh_clk_div6_divisors), }; static unsigned long sh_clk_div6_recalc(struct clk *clk) { struct clk_div_mult_table *table = &sh_clk_div6_table; unsigned int idx; clk_rate_table_build(clk, clk->freq_table, table->nr_divisors, table, NULL); idx = __raw_readl(clk->enable_reg) & 0x003f; return clk->freq_table[idx].frequency; } static int sh_clk_div6_set_parent(struct clk *clk, struct clk *parent) { struct clk_div_mult_table *table = &sh_clk_div6_table; u32 value; int ret, i; if (!clk->parent_table || !clk->parent_num) return -EINVAL; /* Search the parent */ for (i = 0; i < clk->parent_num; i++) if (clk->parent_table[i] == parent) break; if (i == clk->parent_num) return -ENODEV; ret = clk_reparent(clk, parent); if (ret < 0) return ret; value = __raw_readl(clk->enable_reg) & ~(((1 << clk->src_width) - 1) << clk->src_shift); __raw_writel(value | (i << clk->src_shift), clk->enable_reg); /* Rebuild the frequency table */ clk_rate_table_build(clk, clk->freq_table, table->nr_divisors, table, NULL); return 0; } static int sh_clk_div6_set_rate(struct clk *clk, unsigned long rate) { unsigned long value; int idx; idx = clk_rate_table_find(clk, clk->freq_table, rate); if (idx < 0) return idx; value = __raw_readl(clk->enable_reg); value &= ~0x3f; value |= idx; __raw_writel(value, clk->enable_reg); return 0; } static int sh_clk_div6_enable(struct clk *clk) { unsigned long value; int ret; ret = sh_clk_div6_set_rate(clk, clk->rate); if (ret == 0) { value = __raw_readl(clk->enable_reg); value &= ~0x100; /* clear stop bit to enable clock */ __raw_writel(value, clk->enable_reg); } return ret; } static void sh_clk_div6_disable(struct clk *clk) { unsigned long value; value = __raw_readl(clk->enable_reg); value |= 0x100; /* stop clock */ value |= 0x3f; /* VDIV bits must be non-zero, overwrite divider */ __raw_writel(value, clk->enable_reg); } static struct clk_ops sh_clk_div6_clk_ops = { .recalc = sh_clk_div6_recalc, .round_rate = sh_clk_div_round_rate, .set_rate = sh_clk_div6_set_rate, .enable = sh_clk_div6_enable, .disable = sh_clk_div6_disable, }; static struct clk_ops sh_clk_div6_reparent_clk_ops = { .recalc = sh_clk_div6_recalc, .round_rate = sh_clk_div_round_rate, .set_rate = sh_clk_div6_set_rate, .enable = sh_clk_div6_enable, .disable = sh_clk_div6_disable, .set_parent = sh_clk_div6_set_parent, }; static int __init sh_clk_init_parent(struct clk *clk) { u32 val; if (clk->parent) return 0; if (!clk->parent_table || !clk->parent_num) return 0; if (!clk->src_width) { pr_err("sh_clk_init_parent: cannot select parent clock\n"); return -EINVAL; } val = (__raw_readl(clk->enable_reg) >> clk->src_shift); val &= (1 << clk->src_width) - 1; if (val >= clk->parent_num) { pr_err("sh_clk_init_parent: parent table size failed\n"); return -EINVAL; } clk->parent = clk->parent_table[val]; if (!clk->parent) { pr_err("sh_clk_init_parent: unable to set parent"); return -EINVAL; } return 0; } static int __init sh_clk_div6_register_ops(struct clk *clks, int nr, struct clk_ops *ops) { struct clk *clkp; void *freq_table; int nr_divs = sh_clk_div6_table.nr_divisors; int freq_table_size = sizeof(struct cpufreq_frequency_table); int ret = 0; int k; freq_table_size *= (nr_divs + 1); freq_table = kzalloc(freq_table_size * nr, GFP_KERNEL); if (!freq_table) { pr_err("sh_clk_div6_register: unable to alloc memory\n"); return -ENOMEM; } for (k = 0; !ret && (k < nr); k++) { clkp = clks + k; clkp->ops = ops; clkp->freq_table = freq_table + (k * freq_table_size); clkp->freq_table[nr_divs].frequency = CPUFREQ_TABLE_END; ret = sh_clk_init_parent(clkp); if (ret < 0) break; ret = clk_register(clkp); } return ret; } int __init sh_clk_div6_register(struct clk *clks, int nr) { return sh_clk_div6_register_ops(clks, nr, &sh_clk_div6_clk_ops); } int __init sh_clk_div6_reparent_register(struct clk *clks, int nr) { return sh_clk_div6_register_ops(clks, nr, &sh_clk_div6_reparent_clk_ops); } static unsigned long sh_clk_div4_recalc(struct clk *clk) { struct clk_div4_table *d4t = clk->priv; struct clk_div_mult_table *table = d4t->div_mult_table; unsigned int idx; clk_rate_table_build(clk, clk->freq_table, table->nr_divisors, table, &clk->arch_flags); idx = (__raw_readl(clk->enable_reg) >> clk->enable_bit) & 0x000f; return clk->freq_table[idx].frequency; } static int sh_clk_div4_set_parent(struct clk *clk, struct clk *parent) { struct clk_div4_table *d4t = clk->priv; struct clk_div_mult_table *table = d4t->div_mult_table; u32 value; int ret; /* we really need a better way to determine parent index, but for * now assume internal parent comes with CLK_ENABLE_ON_INIT set, * no CLK_ENABLE_ON_INIT means external clock... */ if (parent->flags & CLK_ENABLE_ON_INIT) value = __raw_readl(clk->enable_reg) & ~(1 << 7); else value = __raw_readl(clk->enable_reg) | (1 << 7); ret = clk_reparent(clk, parent); if (ret < 0) return ret; __raw_writel(value, clk->enable_reg); /* Rebiuld the frequency table */ clk_rate_table_build(clk, clk->freq_table, table->nr_divisors, table, &clk->arch_flags); return 0; } static int sh_clk_div4_set_rate(struct clk *clk, unsigned long rate) { struct clk_div4_table *d4t = clk->priv; unsigned long value; int idx = clk_rate_table_find(clk, clk->freq_table, rate); if (idx < 0) return idx; value = __raw_readl(clk->enable_reg); value &= ~(0xf << clk->enable_bit); value |= (idx << clk->enable_bit); __raw_writel(value, clk->enable_reg); if (d4t->kick) d4t->kick(clk); return 0; } static int sh_clk_div4_enable(struct clk *clk) { __raw_writel(__raw_readl(clk->enable_reg) & ~(1 << 8), clk->enable_reg); return 0; } static void sh_clk_div4_disable(struct clk *clk) { __raw_writel(__raw_readl(clk->enable_reg) | (1 << 8), clk->enable_reg); } static struct clk_ops sh_clk_div4_clk_ops = { .recalc = sh_clk_div4_recalc, .set_rate = sh_clk_div4_set_rate, .round_rate = sh_clk_div_round_rate, }; static struct clk_ops sh_clk_div4_enable_clk_ops = { .recalc = sh_clk_div4_recalc, .set_rate = sh_clk_div4_set_rate, .round_rate = sh_clk_div_round_rate, .enable = sh_clk_div4_enable, .disable = sh_clk_div4_disable, }; static struct clk_ops sh_clk_div4_reparent_clk_ops = { .recalc = sh_clk_div4_recalc, .set_rate = sh_clk_div4_set_rate, .round_rate = sh_clk_div_round_rate, .enable = sh_clk_div4_enable, .disable = sh_clk_div4_disable, .set_parent = sh_clk_div4_set_parent, }; static int __init sh_clk_div4_register_ops(struct clk *clks, int nr, struct clk_div4_table *table, struct clk_ops *ops) { struct clk *clkp; void *freq_table; int nr_divs = table->div_mult_table->nr_divisors; int freq_table_size = sizeof(struct cpufreq_frequency_table); int ret = 0; int k; freq_table_size *= (nr_divs + 1); freq_table = kzalloc(freq_table_size * nr, GFP_KERNEL); if (!freq_table) { pr_err("sh_clk_div4_register: unable to alloc memory\n"); return -ENOMEM; } for (k = 0; !ret && (k < nr); k++) { clkp = clks + k; clkp->ops = ops; clkp->priv = table; clkp->freq_table = freq_table + (k * freq_table_size); clkp->freq_table[nr_divs].frequency = CPUFREQ_TABLE_END; ret = clk_register(clkp); } return ret; } int __init sh_clk_div4_register(struct clk *clks, int nr, struct clk_div4_table *table) { return sh_clk_div4_register_ops(clks, nr, table, &sh_clk_div4_clk_ops); } int __init sh_clk_div4_enable_register(struct clk *clks, int nr, struct clk_div4_table *table) { return sh_clk_div4_register_ops(clks, nr, table, &sh_clk_div4_enable_clk_ops); } int __init sh_clk_div4_reparent_register(struct clk *clks, int nr, struct clk_div4_table *table) { return sh_clk_div4_register_ops(clks, nr, table, &sh_clk_div4_reparent_clk_ops); }