/* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Per spec.max 40 bytes per received message */ #define SLIM_RX_MSGQ_BUF_LEN 40 #define SLIM_USR_MC_GENERIC_ACK 0x25 #define SLIM_USR_MC_MASTER_CAPABILITY 0x0 #define SLIM_USR_MC_REPORT_SATELLITE 0x1 #define SLIM_USR_MC_ADDR_QUERY 0xD #define SLIM_USR_MC_ADDR_REPLY 0xE #define SLIM_USR_MC_DEFINE_CHAN 0x20 #define SLIM_USR_MC_DEF_ACT_CHAN 0x21 #define SLIM_USR_MC_CHAN_CTRL 0x23 #define SLIM_USR_MC_RECONFIG_NOW 0x24 #define SLIM_USR_MC_REQ_BW 0x28 #define SLIM_USR_MC_CONNECT_SRC 0x2C #define SLIM_USR_MC_CONNECT_SINK 0x2D #define SLIM_USR_MC_DISCONNECT_PORT 0x2E /* MSM Slimbus peripheral settings */ #define MSM_SLIM_PERF_SUMM_THRESHOLD 0x8000 #define MSM_SLIM_NCHANS 32 #define MSM_SLIM_NPORTS 24 #define MSM_SLIM_AUTOSUSPEND MSEC_PER_SEC /* * Need enough descriptors to receive present messages from slaves * if received simultaneously. Present message needs 3 descriptors * and this size will ensure around 10 simultaneous reports. */ #define MSM_SLIM_DESC_NUM 32 #define SLIM_MSG_ASM_FIRST_WORD(l, mt, mc, dt, ad) \ ((l) | ((mt) << 5) | ((mc) << 8) | ((dt) << 15) | ((ad) << 16)) #define MSM_SLIM_NAME "msm_slim_ctrl" #define SLIM_ROOT_FREQ 24576000 #define MSM_CONCUR_MSG 8 #define SAT_CONCUR_MSG 8 #define DEF_WATERMARK (8 << 1) #define DEF_ALIGN 0 #define DEF_PACK (1 << 6) #define ENABLE_PORT 1 #define DEF_BLKSZ 0 #define DEF_TRANSZ 0 #define SAT_MAGIC_LSB 0xD9 #define SAT_MAGIC_MSB 0xC5 #define SAT_MSG_VER 0x1 #define SAT_MSG_PROT 0x1 #define MSM_SAT_SUCCSS 0x20 #define MSM_MAX_NSATS 2 #define MSM_MAX_SATCH 32 #define QC_MFGID_LSB 0x2 #define QC_MFGID_MSB 0x17 #define QC_CHIPID_SL 0x10 #define QC_DEVID_SAT1 0x3 #define QC_DEVID_SAT2 0x4 #define QC_DEVID_PGD 0x5 #define QC_MSM_DEVS 5 #define PGD_THIS_EE(r, v) ((v) ? PGD_THIS_EE_V2(r) : PGD_THIS_EE_V1(r)) #define PGD_PORT(r, p, v) ((v) ? PGD_PORT_V2(r, p) : PGD_PORT_V1(r, p)) #define CFG_PORT(r, v) ((v) ? CFG_PORT_V2(r) : CFG_PORT_V1(r)) #define PGD_THIS_EE_V2(r) (dev->base + (r ## _V2) + (dev->ee * 0x1000)) #define PGD_PORT_V2(r, p) (dev->base + (r ## _V2) + ((p) * 0x1000)) #define CFG_PORT_V2(r) ((r ## _V2)) /* Component registers */ enum comp_reg_v2 { COMP_CFG_V2 = 4, COMP_TRUST_CFG_V2 = 0x3000, }; /* Manager PGD registers */ enum pgd_reg_v2 { PGD_CFG_V2 = 0x800, PGD_STAT_V2 = 0x804, PGD_INT_EN_V2 = 0x810, PGD_INT_STAT_V2 = 0x814, PGD_INT_CLR_V2 = 0x818, PGD_OWN_EEn_V2 = 0x300C, PGD_PORT_INT_EN_EEn_V2 = 0x5000, PGD_PORT_INT_ST_EEn_V2 = 0x5004, PGD_PORT_INT_CL_EEn_V2 = 0x5008, PGD_PORT_CFGn_V2 = 0x14000, PGD_PORT_STATn_V2 = 0x14004, PGD_PORT_PARAMn_V2 = 0x14008, PGD_PORT_BLKn_V2 = 0x1400C, PGD_PORT_TRANn_V2 = 0x14010, PGD_PORT_MCHANn_V2 = 0x14014, PGD_PORT_PSHPLLn_V2 = 0x14018, PGD_PORT_PC_CFGn_V2 = 0x8000, PGD_PORT_PC_VALn_V2 = 0x8004, PGD_PORT_PC_VFR_TSn_V2 = 0x8008, PGD_PORT_PC_VFR_STn_V2 = 0x800C, PGD_PORT_PC_VFR_CLn_V2 = 0x8010, PGD_IE_STAT_V2 = 0x820, PGD_VE_STAT_V2 = 0x830, }; #define PGD_THIS_EE_V1(r) (dev->base + (r ## _V1) + (dev->ee * 16)) #define PGD_PORT_V1(r, p) (dev->base + (r ## _V1) + ((p) * 32)) #define CFG_PORT_V1(r) ((r ## _V1)) /* Component registers */ enum comp_reg_v1 { COMP_CFG_V1 = 0, COMP_TRUST_CFG_V1 = 0x14, }; /* Manager PGD registers */ enum pgd_reg_v1 { PGD_CFG_V1 = 0x1000, PGD_STAT_V1 = 0x1004, PGD_INT_EN_V1 = 0x1010, PGD_INT_STAT_V1 = 0x1014, PGD_INT_CLR_V1 = 0x1018, PGD_OWN_EEn_V1 = 0x1020, PGD_PORT_INT_EN_EEn_V1 = 0x1030, PGD_PORT_INT_ST_EEn_V1 = 0x1034, PGD_PORT_INT_CL_EEn_V1 = 0x1038, PGD_PORT_CFGn_V1 = 0x1080, PGD_PORT_STATn_V1 = 0x1084, PGD_PORT_PARAMn_V1 = 0x1088, PGD_PORT_BLKn_V1 = 0x108C, PGD_PORT_TRANn_V1 = 0x1090, PGD_PORT_MCHANn_V1 = 0x1094, PGD_PORT_PSHPLLn_V1 = 0x1098, PGD_PORT_PC_CFGn_V1 = 0x1600, PGD_PORT_PC_VALn_V1 = 0x1604, PGD_PORT_PC_VFR_TSn_V1 = 0x1608, PGD_PORT_PC_VFR_STn_V1 = 0x160C, PGD_PORT_PC_VFR_CLn_V1 = 0x1610, PGD_IE_STAT_V1 = 0x1700, PGD_VE_STAT_V1 = 0x1710, }; /* Manager registers */ enum mgr_reg { MGR_CFG = 0x200, MGR_STATUS = 0x204, MGR_RX_MSGQ_CFG = 0x208, MGR_INT_EN = 0x210, MGR_INT_STAT = 0x214, MGR_INT_CLR = 0x218, MGR_TX_MSG = 0x230, MGR_RX_MSG = 0x270, MGR_VE_STAT = 0x300, }; enum msg_cfg { MGR_CFG_ENABLE = 1, MGR_CFG_RX_MSGQ_EN = 1 << 1, MGR_CFG_TX_MSGQ_EN_HIGH = 1 << 2, MGR_CFG_TX_MSGQ_EN_LOW = 1 << 3, }; /* Message queue types */ enum msm_slim_msgq_type { MSGQ_RX = 0, MSGQ_TX_LOW = 1, MSGQ_TX_HIGH = 2, }; /* Framer registers */ enum frm_reg { FRM_CFG = 0x400, FRM_STAT = 0x404, FRM_INT_EN = 0x410, FRM_INT_STAT = 0x414, FRM_INT_CLR = 0x418, FRM_WAKEUP = 0x41C, FRM_CLKCTL_DONE = 0x420, FRM_IE_STAT = 0x430, FRM_VE_STAT = 0x440, }; /* Interface registers */ enum intf_reg { INTF_CFG = 0x600, INTF_STAT = 0x604, INTF_INT_EN = 0x610, INTF_INT_STAT = 0x614, INTF_INT_CLR = 0x618, INTF_IE_STAT = 0x630, INTF_VE_STAT = 0x640, }; enum rsc_grp { EE_MGR_RSC_GRP = 1 << 10, EE_NGD_2 = 2 << 6, EE_NGD_1 = 0, }; enum mgr_intr { MGR_INT_RECFG_DONE = 1 << 24, MGR_INT_TX_NACKED_2 = 1 << 25, MGR_INT_MSG_BUF_CONTE = 1 << 26, MGR_INT_RX_MSG_RCVD = 1 << 30, MGR_INT_TX_MSG_SENT = 1 << 31, }; enum frm_cfg { FRM_ACTIVE = 1, CLK_GEAR = 7, ROOT_FREQ = 11, REF_CLK_GEAR = 15, }; enum msm_ctrl_state { MSM_CTRL_AWAKE, MSM_CTRL_SLEEPING, MSM_CTRL_ASLEEP, }; struct msm_slim_sps_bam { u32 hdl; void __iomem *base; int irq; }; struct msm_slim_endp { struct sps_pipe *sps; struct sps_connect config; struct sps_register_event event; struct sps_mem_buffer buf; struct completion *xcomp; bool connected; }; struct msm_slim_ctrl { struct slim_controller ctrl; struct slim_framer framer; struct device *dev; void __iomem *base; struct resource *slew_mem; u32 curr_bw; u8 msg_cnt; u32 tx_buf[10]; u8 rx_msgs[MSM_CONCUR_MSG][SLIM_RX_MSGQ_BUF_LEN]; spinlock_t rx_lock; int head; int tail; int irq; int err; int ee; struct completion *wr_comp; struct msm_slim_sat *satd[MSM_MAX_NSATS]; struct msm_slim_endp pipes[7]; struct msm_slim_sps_bam bam; struct msm_slim_endp rx_msgq; struct completion rx_msgq_notify; struct task_struct *rx_msgq_thread; struct clk *rclk; struct mutex tx_lock; u8 pgdla; bool use_rx_msgqs; int pipe_b; struct completion reconf; bool reconf_busy; bool chan_active; enum msm_ctrl_state state; int nsats; u32 ver; }; struct msm_sat_chan { u8 chan; u16 chanh; int req_rem; int req_def; }; struct msm_slim_sat { struct slim_device satcl; struct msm_slim_ctrl *dev; struct workqueue_struct *wq; struct work_struct wd; u8 sat_msgs[SAT_CONCUR_MSG][40]; struct msm_sat_chan *satch; u8 nsatch; bool sent_capability; bool pending_reconf; bool pending_capability; int shead; int stail; spinlock_t lock; }; static struct msm_slim_sat *msm_slim_alloc_sat(struct msm_slim_ctrl *dev); static int msm_slim_rx_enqueue(struct msm_slim_ctrl *dev, u32 *buf, u8 len) { spin_lock(&dev->rx_lock); if ((dev->tail + 1) % MSM_CONCUR_MSG == dev->head) { spin_unlock(&dev->rx_lock); dev_err(dev->dev, "RX QUEUE full!"); return -EXFULL; } memcpy((u8 *)dev->rx_msgs[dev->tail], (u8 *)buf, len); dev->tail = (dev->tail + 1) % MSM_CONCUR_MSG; spin_unlock(&dev->rx_lock); return 0; } static int msm_slim_rx_dequeue(struct msm_slim_ctrl *dev, u8 *buf) { unsigned long flags; spin_lock_irqsave(&dev->rx_lock, flags); if (dev->tail == dev->head) { spin_unlock_irqrestore(&dev->rx_lock, flags); return -ENODATA; } memcpy(buf, (u8 *)dev->rx_msgs[dev->head], 40); dev->head = (dev->head + 1) % MSM_CONCUR_MSG; spin_unlock_irqrestore(&dev->rx_lock, flags); return 0; } static int msm_sat_enqueue(struct msm_slim_sat *sat, u32 *buf, u8 len) { struct msm_slim_ctrl *dev = sat->dev; spin_lock(&sat->lock); if ((sat->stail + 1) % SAT_CONCUR_MSG == sat->shead) { spin_unlock(&sat->lock); dev_err(dev->dev, "SAT QUEUE full!"); return -EXFULL; } memcpy(sat->sat_msgs[sat->stail], (u8 *)buf, len); sat->stail = (sat->stail + 1) % SAT_CONCUR_MSG; spin_unlock(&sat->lock); return 0; } static int msm_sat_dequeue(struct msm_slim_sat *sat, u8 *buf) { unsigned long flags; spin_lock_irqsave(&sat->lock, flags); if (sat->stail == sat->shead) { spin_unlock_irqrestore(&sat->lock, flags); return -ENODATA; } memcpy(buf, sat->sat_msgs[sat->shead], 40); sat->shead = (sat->shead + 1) % SAT_CONCUR_MSG; spin_unlock_irqrestore(&sat->lock, flags); return 0; } static void msm_get_eaddr(u8 *e_addr, u32 *buffer) { e_addr[0] = (buffer[1] >> 24) & 0xff; e_addr[1] = (buffer[1] >> 16) & 0xff; e_addr[2] = (buffer[1] >> 8) & 0xff; e_addr[3] = buffer[1] & 0xff; e_addr[4] = (buffer[0] >> 24) & 0xff; e_addr[5] = (buffer[0] >> 16) & 0xff; } static bool msm_is_sat_dev(u8 *e_addr) { if (e_addr[5] == QC_MFGID_LSB && e_addr[4] == QC_MFGID_MSB && e_addr[2] != QC_CHIPID_SL && (e_addr[1] == QC_DEVID_SAT1 || e_addr[1] == QC_DEVID_SAT2)) return true; return false; } static int msm_slim_get_ctrl(struct msm_slim_ctrl *dev) { #ifdef CONFIG_PM_RUNTIME int ref = 0; int ret = pm_runtime_get_sync(dev->dev); if (ret >= 0) { ref = atomic_read(&dev->dev->power.usage_count); if (ref <= 0) { dev_err(dev->dev, "reference count -ve:%d", ref); ret = -ENODEV; } } return ret; #else return -ENODEV; #endif } static void msm_slim_put_ctrl(struct msm_slim_ctrl *dev) { #ifdef CONFIG_PM_RUNTIME int ref; pm_runtime_mark_last_busy(dev->dev); ref = atomic_read(&dev->dev->power.usage_count); if (ref <= 0) dev_err(dev->dev, "reference count mismatch:%d", ref); else pm_runtime_put(dev->dev); #endif } static struct msm_slim_sat *addr_to_sat(struct msm_slim_ctrl *dev, u8 laddr) { struct msm_slim_sat *sat = NULL; int i = 0; while (!sat && i < dev->nsats) { if (laddr == dev->satd[i]->satcl.laddr) sat = dev->satd[i]; i++; } return sat; } static irqreturn_t msm_slim_interrupt(int irq, void *d) { struct msm_slim_ctrl *dev = d; u32 pstat; u32 stat = readl_relaxed(dev->base + MGR_INT_STAT); if (stat & MGR_INT_TX_MSG_SENT || stat & MGR_INT_TX_NACKED_2) { if (stat & MGR_INT_TX_MSG_SENT) writel_relaxed(MGR_INT_TX_MSG_SENT, dev->base + MGR_INT_CLR); else { writel_relaxed(MGR_INT_TX_NACKED_2, dev->base + MGR_INT_CLR); dev->err = -EIO; } /* * Guarantee that interrupt clear bit write goes through before * signalling completion/exiting ISR */ mb(); if (dev->wr_comp) complete(dev->wr_comp); } if (stat & MGR_INT_RX_MSG_RCVD) { u32 rx_buf[10]; u32 mc, mt; u8 len, i; rx_buf[0] = readl_relaxed(dev->base + MGR_RX_MSG); len = rx_buf[0] & 0x1F; for (i = 1; i < ((len + 3) >> 2); i++) { rx_buf[i] = readl_relaxed(dev->base + MGR_RX_MSG + (4 * i)); dev_dbg(dev->dev, "reading data: %x\n", rx_buf[i]); } mt = (rx_buf[0] >> 5) & 0x7; mc = (rx_buf[0] >> 8) & 0xff; dev_dbg(dev->dev, "MC: %x, MT: %x\n", mc, mt); if (mt == SLIM_MSG_MT_DEST_REFERRED_USER || mt == SLIM_MSG_MT_SRC_REFERRED_USER) { u8 laddr = (u8)((rx_buf[0] >> 16) & 0xFF); struct msm_slim_sat *sat = addr_to_sat(dev, laddr); if (sat) msm_sat_enqueue(sat, rx_buf, len); else dev_err(dev->dev, "unknown sat:%d message", laddr); writel_relaxed(MGR_INT_RX_MSG_RCVD, dev->base + MGR_INT_CLR); /* * Guarantee that CLR bit write goes through before * queuing work */ mb(); if (sat) queue_work(sat->wq, &sat->wd); } else if (mt == SLIM_MSG_MT_CORE && mc == SLIM_MSG_MC_REPORT_PRESENT) { u8 e_addr[6]; msm_get_eaddr(e_addr, rx_buf); msm_slim_rx_enqueue(dev, rx_buf, len); writel_relaxed(MGR_INT_RX_MSG_RCVD, dev->base + MGR_INT_CLR); /* * Guarantee that CLR bit write goes through * before signalling completion */ mb(); complete(&dev->rx_msgq_notify); } else if (mc == SLIM_MSG_MC_REPLY_INFORMATION || mc == SLIM_MSG_MC_REPLY_VALUE) { msm_slim_rx_enqueue(dev, rx_buf, len); writel_relaxed(MGR_INT_RX_MSG_RCVD, dev->base + MGR_INT_CLR); /* * Guarantee that CLR bit write goes through * before signalling completion */ mb(); complete(&dev->rx_msgq_notify); } else if (mc == SLIM_MSG_MC_REPORT_INFORMATION) { u8 *buf = (u8 *)rx_buf; u8 l_addr = buf[2]; u16 ele = (u16)buf[4] << 4; ele |= ((buf[3] & 0xf0) >> 4); dev_err(dev->dev, "Slim-dev:%d report inf element:0x%x", l_addr, ele); for (i = 0; i < len - 5; i++) dev_err(dev->dev, "offset:0x%x:bit mask:%x", i, buf[i+5]); writel_relaxed(MGR_INT_RX_MSG_RCVD, dev->base + MGR_INT_CLR); /* * Guarantee that CLR bit write goes through * before exiting */ mb(); } else { dev_err(dev->dev, "Unexpected MC,%x MT:%x, len:%d", mc, mt, len); for (i = 0; i < ((len + 3) >> 2); i++) dev_err(dev->dev, "error msg: %x", rx_buf[i]); writel_relaxed(MGR_INT_RX_MSG_RCVD, dev->base + MGR_INT_CLR); /* * Guarantee that CLR bit write goes through * before exiting */ mb(); } } if (stat & MGR_INT_RECFG_DONE) { writel_relaxed(MGR_INT_RECFG_DONE, dev->base + MGR_INT_CLR); /* * Guarantee that CLR bit write goes through * before exiting ISR */ mb(); complete(&dev->reconf); } pstat = readl_relaxed(PGD_THIS_EE(PGD_PORT_INT_ST_EEn, dev->ver)); if (pstat != 0) { int i = 0; for (i = dev->pipe_b; i < MSM_SLIM_NPORTS; i++) { if (pstat & 1 << i) { u32 val = readl_relaxed(PGD_PORT(PGD_PORT_STATn, i, dev->ver)); if (val & (1 << 19)) { dev->ctrl.ports[i].err = SLIM_P_DISCONNECT; dev->pipes[i-dev->pipe_b].connected = false; /* * SPS will call completion since * ERROR flags are registered */ } else if (val & (1 << 2)) dev->ctrl.ports[i].err = SLIM_P_OVERFLOW; else if (val & (1 << 3)) dev->ctrl.ports[i].err = SLIM_P_UNDERFLOW; } writel_relaxed(1, PGD_THIS_EE(PGD_PORT_INT_CL_EEn, dev->ver)); } /* * Guarantee that port interrupt bit(s) clearing writes go * through before exiting ISR */ mb(); } return IRQ_HANDLED; } static int msm_slim_init_endpoint(struct msm_slim_ctrl *dev, struct msm_slim_endp *ep) { int ret; struct sps_pipe *endpoint; struct sps_connect *config = &ep->config; /* Allocate the endpoint */ endpoint = sps_alloc_endpoint(); if (!endpoint) { dev_err(dev->dev, "sps_alloc_endpoint failed\n"); return -ENOMEM; } /* Get default connection configuration for an endpoint */ ret = sps_get_config(endpoint, config); if (ret) { dev_err(dev->dev, "sps_get_config failed 0x%x\n", ret); goto sps_config_failed; } ep->sps = endpoint; return 0; sps_config_failed: sps_free_endpoint(endpoint); return ret; } static void msm_slim_free_endpoint(struct msm_slim_endp *ep) { sps_free_endpoint(ep->sps); ep->sps = NULL; } static int msm_slim_sps_mem_alloc( struct msm_slim_ctrl *dev, struct sps_mem_buffer *mem, u32 len) { dma_addr_t phys; mem->size = len; mem->min_size = 0; mem->base = dma_alloc_coherent(dev->dev, mem->size, &phys, GFP_KERNEL); if (!mem->base) { dev_err(dev->dev, "dma_alloc_coherent(%d) failed\n", len); return -ENOMEM; } mem->phys_base = phys; memset(mem->base, 0x00, mem->size); return 0; } static void msm_slim_sps_mem_free(struct msm_slim_ctrl *dev, struct sps_mem_buffer *mem) { dma_free_coherent(dev->dev, mem->size, mem->base, mem->phys_base); mem->size = 0; mem->base = NULL; mem->phys_base = 0; } static void msm_hw_set_port(struct msm_slim_ctrl *dev, u8 pn) { u32 set_cfg = DEF_WATERMARK | DEF_ALIGN | DEF_PACK | ENABLE_PORT; u32 int_port = readl_relaxed(PGD_THIS_EE(PGD_PORT_INT_EN_EEn, dev->ver)); writel_relaxed(set_cfg, PGD_PORT(PGD_PORT_CFGn, pn, dev->ver)); writel_relaxed(DEF_BLKSZ, PGD_PORT(PGD_PORT_BLKn, pn, dev->ver)); writel_relaxed(DEF_TRANSZ, PGD_PORT(PGD_PORT_TRANn, pn, dev->ver)); writel_relaxed((int_port | 1 << pn) , PGD_THIS_EE(PGD_PORT_INT_EN_EEn, dev->ver)); /* Make sure that port registers are updated before returning */ mb(); } static int msm_slim_connect_pipe_port(struct msm_slim_ctrl *dev, u8 pn) { struct msm_slim_endp *endpoint = &dev->pipes[pn]; struct sps_connect *cfg = &endpoint->config; u32 stat; int ret = sps_get_config(dev->pipes[pn].sps, cfg); if (ret) { dev_err(dev->dev, "sps pipe-port get config error%x\n", ret); return ret; } cfg->options = SPS_O_DESC_DONE | SPS_O_ERROR | SPS_O_ACK_TRANSFERS | SPS_O_AUTO_ENABLE; if (dev->pipes[pn].connected) { ret = sps_set_config(dev->pipes[pn].sps, cfg); if (ret) { dev_err(dev->dev, "sps pipe-port set config erro:%x\n", ret); return ret; } } stat = readl_relaxed(PGD_PORT(PGD_PORT_STATn, (pn + dev->pipe_b), dev->ver)); if (dev->ctrl.ports[pn].flow == SLIM_SRC) { cfg->destination = dev->bam.hdl; cfg->source = SPS_DEV_HANDLE_MEM; cfg->dest_pipe_index = ((stat & (0xFF << 4)) >> 4); cfg->src_pipe_index = 0; dev_dbg(dev->dev, "flow src:pipe num:%d", cfg->dest_pipe_index); cfg->mode = SPS_MODE_DEST; } else { cfg->source = dev->bam.hdl; cfg->destination = SPS_DEV_HANDLE_MEM; cfg->src_pipe_index = ((stat & (0xFF << 4)) >> 4); cfg->dest_pipe_index = 0; dev_dbg(dev->dev, "flow dest:pipe num:%d", cfg->src_pipe_index); cfg->mode = SPS_MODE_SRC; } /* Space for desciptor FIFOs */ cfg->desc.size = MSM_SLIM_DESC_NUM * sizeof(struct sps_iovec); cfg->config = SPS_CONFIG_DEFAULT; ret = sps_connect(dev->pipes[pn].sps, cfg); if (!ret) { dev->pipes[pn].connected = true; msm_hw_set_port(dev, pn + dev->pipe_b); } return ret; } static u32 *msm_get_msg_buf(struct slim_controller *ctrl, int len) { struct msm_slim_ctrl *dev = slim_get_ctrldata(ctrl); /* * Currently we block a transaction until the current one completes. * In case we need multiple transactions, use message Q */ return dev->tx_buf; } static int msm_send_msg_buf(struct slim_controller *ctrl, u32 *buf, u8 len) { int i; struct msm_slim_ctrl *dev = slim_get_ctrldata(ctrl); for (i = 0; i < (len + 3) >> 2; i++) { dev_dbg(dev->dev, "TX data:0x%x\n", buf[i]); writel_relaxed(buf[i], dev->base + MGR_TX_MSG + (i * 4)); } /* Guarantee that message is sent before returning */ mb(); return 0; } static int msm_xfer_msg(struct slim_controller *ctrl, struct slim_msg_txn *txn) { DECLARE_COMPLETION_ONSTACK(done); struct msm_slim_ctrl *dev = slim_get_ctrldata(ctrl); u32 *pbuf; u8 *puc; int timeout; int msgv = -1; u8 la = txn->la; u8 mc = (u8)(txn->mc & 0xFF); /* * Voting for runtime PM: Slimbus has 2 possible use cases: * 1. messaging * 2. Data channels * Messaging case goes through messaging slots and data channels * use their own slots * This "get" votes for messaging bandwidth */ if (!(txn->mc & SLIM_MSG_CLK_PAUSE_SEQ_FLG)) msgv = msm_slim_get_ctrl(dev); mutex_lock(&dev->tx_lock); if (dev->state == MSM_CTRL_ASLEEP || ((!(txn->mc & SLIM_MSG_CLK_PAUSE_SEQ_FLG)) && dev->state == MSM_CTRL_SLEEPING)) { dev_err(dev->dev, "runtime or system PM suspended state"); mutex_unlock(&dev->tx_lock); if (msgv >= 0) msm_slim_put_ctrl(dev); return -EBUSY; } if (txn->mt == SLIM_MSG_MT_CORE && mc == SLIM_MSG_MC_BEGIN_RECONFIGURATION) { if (dev->reconf_busy) { wait_for_completion(&dev->reconf); dev->reconf_busy = false; } /* This "get" votes for data channels */ if (dev->ctrl.sched.usedslots != 0 && !dev->chan_active) { int chv = msm_slim_get_ctrl(dev); if (chv >= 0) dev->chan_active = true; } } txn->rl--; pbuf = msm_get_msg_buf(ctrl, txn->rl); dev->wr_comp = NULL; dev->err = 0; if (txn->dt == SLIM_MSG_DEST_ENUMADDR) { mutex_unlock(&dev->tx_lock); if (msgv >= 0) msm_slim_put_ctrl(dev); return -EPROTONOSUPPORT; } if (txn->mt == SLIM_MSG_MT_CORE && txn->la == 0xFF && (mc == SLIM_MSG_MC_CONNECT_SOURCE || mc == SLIM_MSG_MC_CONNECT_SINK || mc == SLIM_MSG_MC_DISCONNECT_PORT)) la = dev->pgdla; if (txn->dt == SLIM_MSG_DEST_LOGICALADDR) *pbuf = SLIM_MSG_ASM_FIRST_WORD(txn->rl, txn->mt, mc, 0, la); else *pbuf = SLIM_MSG_ASM_FIRST_WORD(txn->rl, txn->mt, mc, 1, la); if (txn->dt == SLIM_MSG_DEST_LOGICALADDR) puc = ((u8 *)pbuf) + 3; else puc = ((u8 *)pbuf) + 2; if (txn->rbuf) *(puc++) = txn->tid; if ((txn->mt == SLIM_MSG_MT_CORE) && ((mc >= SLIM_MSG_MC_REQUEST_INFORMATION && mc <= SLIM_MSG_MC_REPORT_INFORMATION) || (mc >= SLIM_MSG_MC_REQUEST_VALUE && mc <= SLIM_MSG_MC_CHANGE_VALUE))) { *(puc++) = (txn->ec & 0xFF); *(puc++) = (txn->ec >> 8)&0xFF; } if (txn->wbuf) memcpy(puc, txn->wbuf, txn->len); if (txn->mt == SLIM_MSG_MT_CORE && txn->la == 0xFF && (mc == SLIM_MSG_MC_CONNECT_SOURCE || mc == SLIM_MSG_MC_CONNECT_SINK || mc == SLIM_MSG_MC_DISCONNECT_PORT)) { if (mc != SLIM_MSG_MC_DISCONNECT_PORT) dev->err = msm_slim_connect_pipe_port(dev, *puc); else { struct msm_slim_endp *endpoint = &dev->pipes[*puc]; struct sps_register_event sps_event; memset(&sps_event, 0, sizeof(sps_event)); sps_register_event(endpoint->sps, &sps_event); sps_disconnect(endpoint->sps); /* * Remove channel disconnects master-side ports from * channel. No need to send that again on the bus */ dev->pipes[*puc].connected = false; mutex_unlock(&dev->tx_lock); if (msgv >= 0) msm_slim_put_ctrl(dev); return 0; } if (dev->err) { dev_err(dev->dev, "pipe-port connect err:%d", dev->err); mutex_unlock(&dev->tx_lock); if (msgv >= 0) msm_slim_put_ctrl(dev); return dev->err; } *(puc) = *(puc) + dev->pipe_b; } if (txn->mt == SLIM_MSG_MT_CORE && mc == SLIM_MSG_MC_BEGIN_RECONFIGURATION) dev->reconf_busy = true; dev->wr_comp = &done; msm_send_msg_buf(ctrl, pbuf, txn->rl); timeout = wait_for_completion_timeout(&done, HZ); if (mc == SLIM_MSG_MC_RECONFIGURE_NOW) { if ((txn->mc == (SLIM_MSG_MC_RECONFIGURE_NOW | SLIM_MSG_CLK_PAUSE_SEQ_FLG)) && timeout) { timeout = wait_for_completion_timeout(&dev->reconf, HZ); dev->reconf_busy = false; if (timeout) { clk_disable_unprepare(dev->rclk); disable_irq(dev->irq); } } if ((txn->mc == (SLIM_MSG_MC_RECONFIGURE_NOW | SLIM_MSG_CLK_PAUSE_SEQ_FLG)) && !timeout) { dev->reconf_busy = false; dev_err(dev->dev, "clock pause failed"); mutex_unlock(&dev->tx_lock); return -ETIMEDOUT; } if (txn->mt == SLIM_MSG_MT_CORE && txn->mc == SLIM_MSG_MC_RECONFIGURE_NOW) { if (dev->ctrl.sched.usedslots == 0 && dev->chan_active) { dev->chan_active = false; msm_slim_put_ctrl(dev); } } } mutex_unlock(&dev->tx_lock); if (msgv >= 0) msm_slim_put_ctrl(dev); if (!timeout) dev_err(dev->dev, "TX timed out:MC:0x%x,mt:0x%x", txn->mc, txn->mt); return timeout ? dev->err : -ETIMEDOUT; } static int msm_set_laddr(struct slim_controller *ctrl, const u8 *ea, u8 elen, u8 laddr) { struct msm_slim_ctrl *dev = slim_get_ctrldata(ctrl); DECLARE_COMPLETION_ONSTACK(done); int timeout; u32 *buf; mutex_lock(&dev->tx_lock); buf = msm_get_msg_buf(ctrl, 9); buf[0] = SLIM_MSG_ASM_FIRST_WORD(9, SLIM_MSG_MT_CORE, SLIM_MSG_MC_ASSIGN_LOGICAL_ADDRESS, SLIM_MSG_DEST_LOGICALADDR, ea[5] | ea[4] << 8); buf[1] = ea[3] | (ea[2] << 8) | (ea[1] << 16) | (ea[0] << 24); buf[2] = laddr; dev->wr_comp = &done; msm_send_msg_buf(ctrl, buf, 9); timeout = wait_for_completion_timeout(&done, HZ); mutex_unlock(&dev->tx_lock); return timeout ? dev->err : -ETIMEDOUT; } static int msm_clk_pause_wakeup(struct slim_controller *ctrl) { struct msm_slim_ctrl *dev = slim_get_ctrldata(ctrl); enable_irq(dev->irq); clk_prepare_enable(dev->rclk); writel_relaxed(1, dev->base + FRM_WAKEUP); /* Make sure framer wakeup write goes through before exiting function */ mb(); /* * Workaround: Currently, slave is reporting lost-sync messages * after slimbus comes out of clock pause. * Transaction with slave fail before slave reports that message * Give some time for that report to come * Slimbus wakes up in clock gear 10 at 24.576MHz. With each superframe * being 250 usecs, we wait for 20 superframes here to ensure * we get the message */ usleep_range(5000, 5000); return 0; } static int msm_config_port(struct slim_controller *ctrl, u8 pn) { struct msm_slim_ctrl *dev = slim_get_ctrldata(ctrl); struct msm_slim_endp *endpoint; int ret = 0; if (ctrl->ports[pn].req == SLIM_REQ_HALF_DUP || ctrl->ports[pn].req == SLIM_REQ_MULTI_CH) return -EPROTONOSUPPORT; if (pn >= (MSM_SLIM_NPORTS - dev->pipe_b)) return -ENODEV; endpoint = &dev->pipes[pn]; ret = msm_slim_init_endpoint(dev, endpoint); dev_dbg(dev->dev, "sps register bam error code:%x\n", ret); return ret; } static enum slim_port_err msm_slim_port_xfer_status(struct slim_controller *ctr, u8 pn, u8 **done_buf, u32 *done_len) { struct msm_slim_ctrl *dev = slim_get_ctrldata(ctr); struct sps_iovec sio; int ret; if (done_len) *done_len = 0; if (done_buf) *done_buf = NULL; if (!dev->pipes[pn].connected) return SLIM_P_DISCONNECT; ret = sps_get_iovec(dev->pipes[pn].sps, &sio); if (!ret) { if (done_len) *done_len = sio.size; if (done_buf) *done_buf = (u8 *)sio.addr; } dev_dbg(dev->dev, "get iovec returned %d\n", ret); return SLIM_P_INPROGRESS; } static int msm_slim_port_xfer(struct slim_controller *ctrl, u8 pn, u8 *iobuf, u32 len, struct completion *comp) { struct sps_register_event sreg; int ret; struct msm_slim_ctrl *dev = slim_get_ctrldata(ctrl); if (pn >= 7) return -ENODEV; ctrl->ports[pn].xcomp = comp; sreg.options = (SPS_EVENT_DESC_DONE|SPS_EVENT_ERROR); sreg.mode = SPS_TRIGGER_WAIT; sreg.xfer_done = comp; sreg.callback = NULL; sreg.user = &ctrl->ports[pn]; ret = sps_register_event(dev->pipes[pn].sps, &sreg); if (ret) { dev_dbg(dev->dev, "sps register event error:%x\n", ret); return ret; } ret = sps_transfer_one(dev->pipes[pn].sps, (u32)iobuf, len, NULL, SPS_IOVEC_FLAG_INT); dev_dbg(dev->dev, "sps submit xfer error code:%x\n", ret); return ret; } static int msm_sat_define_ch(struct msm_slim_sat *sat, u8 *buf, u8 len, u8 mc) { struct msm_slim_ctrl *dev = sat->dev; enum slim_ch_control oper; int i; int ret = 0; if (mc == SLIM_USR_MC_CHAN_CTRL) { for (i = 0; i < sat->nsatch; i++) { if (buf[5] == sat->satch[i].chan) break; } if (i >= sat->nsatch) return -ENOTCONN; oper = ((buf[3] & 0xC0) >> 6); /* part of grp. activating/removing 1 will take care of rest */ ret = slim_control_ch(&sat->satcl, sat->satch[i].chanh, oper, false); if (!ret) { for (i = 5; i < len; i++) { int j; for (j = 0; j < sat->nsatch; j++) { if (buf[i] == sat->satch[j].chan) { if (oper == SLIM_CH_REMOVE) sat->satch[j].req_rem++; else sat->satch[j].req_def++; break; } } } } } else { u16 chh[40]; struct slim_ch prop; u32 exp; u8 coeff, cc; u8 prrate = buf[6]; if (len <= 8) return -EINVAL; for (i = 8; i < len; i++) { int j = 0; for (j = 0; j < sat->nsatch; j++) { if (sat->satch[j].chan == buf[i]) { chh[i - 8] = sat->satch[j].chanh; break; } } if (j < sat->nsatch) { u16 dummy; ret = slim_query_ch(&sat->satcl, buf[i], &dummy); if (ret) return ret; if (mc == SLIM_USR_MC_DEF_ACT_CHAN) sat->satch[j].req_def++; continue; } if (sat->nsatch >= MSM_MAX_SATCH) return -EXFULL; ret = slim_query_ch(&sat->satcl, buf[i], &chh[i - 8]); if (ret) return ret; sat->satch[j].chan = buf[i]; sat->satch[j].chanh = chh[i - 8]; if (mc == SLIM_USR_MC_DEF_ACT_CHAN) sat->satch[j].req_def++; sat->nsatch++; } prop.dataf = (enum slim_ch_dataf)((buf[3] & 0xE0) >> 5); prop.auxf = (enum slim_ch_auxf)((buf[4] & 0xC0) >> 5); prop.baser = SLIM_RATE_4000HZ; if (prrate & 0x8) prop.baser = SLIM_RATE_11025HZ; else prop.baser = SLIM_RATE_4000HZ; prop.prot = (enum slim_ch_proto)(buf[5] & 0x0F); prop.sampleszbits = (buf[4] & 0x1F)*SLIM_CL_PER_SL; exp = (u32)((buf[5] & 0xF0) >> 4); coeff = (buf[4] & 0x20) >> 5; cc = (coeff ? 3 : 1); prop.ratem = cc * (1 << exp); if (i > 9) ret = slim_define_ch(&sat->satcl, &prop, chh, len - 8, true, &chh[0]); else ret = slim_define_ch(&sat->satcl, &prop, &chh[0], 1, false, NULL); dev_dbg(dev->dev, "define sat grp returned:%d", ret); if (ret) return ret; /* part of group so activating 1 will take care of rest */ if (mc == SLIM_USR_MC_DEF_ACT_CHAN) ret = slim_control_ch(&sat->satcl, chh[0], SLIM_CH_ACTIVATE, false); } return ret; } static void msm_slim_rxwq(struct msm_slim_ctrl *dev) { u8 buf[40]; u8 mc, mt, len; int i, ret; if ((msm_slim_rx_dequeue(dev, (u8 *)buf)) != -ENODATA) { len = buf[0] & 0x1F; mt = (buf[0] >> 5) & 0x7; mc = buf[1]; if (mt == SLIM_MSG_MT_CORE && mc == SLIM_MSG_MC_REPORT_PRESENT) { u8 laddr; u8 e_addr[6]; for (i = 0; i < 6; i++) e_addr[i] = buf[7-i]; ret = slim_assign_laddr(&dev->ctrl, e_addr, 6, &laddr); /* Is this Qualcomm ported generic device? */ if (!ret && e_addr[5] == QC_MFGID_LSB && e_addr[4] == QC_MFGID_MSB && e_addr[1] == QC_DEVID_PGD && e_addr[2] != QC_CHIPID_SL) dev->pgdla = laddr; if (!ret && !pm_runtime_enabled(dev->dev) && laddr == (QC_MSM_DEVS - 1)) pm_runtime_enable(dev->dev); if (!ret && msm_is_sat_dev(e_addr)) { struct msm_slim_sat *sat = addr_to_sat(dev, laddr); if (!sat) sat = msm_slim_alloc_sat(dev); if (!sat) return; sat->satcl.laddr = laddr; msm_sat_enqueue(sat, (u32 *)buf, len); queue_work(sat->wq, &sat->wd); } } else if (mc == SLIM_MSG_MC_REPLY_INFORMATION || mc == SLIM_MSG_MC_REPLY_VALUE) { u8 tid = buf[3]; dev_dbg(dev->dev, "tid:%d, len:%d\n", tid, len - 4); slim_msg_response(&dev->ctrl, &buf[4], tid, len - 4); pm_runtime_mark_last_busy(dev->dev); } else if (mc == SLIM_MSG_MC_REPORT_INFORMATION) { u8 l_addr = buf[2]; u16 ele = (u16)buf[4] << 4; ele |= ((buf[3] & 0xf0) >> 4); dev_err(dev->dev, "Slim-dev:%d report inf element:0x%x", l_addr, ele); for (i = 0; i < len - 5; i++) dev_err(dev->dev, "offset:0x%x:bit mask:%x", i, buf[i+5]); } else { dev_err(dev->dev, "unexpected message:mc:%x, mt:%x", mc, mt); for (i = 0; i < len; i++) dev_err(dev->dev, "error msg: %x", buf[i]); } } else dev_err(dev->dev, "rxwq called and no dequeue"); } static void slim_sat_rxprocess(struct work_struct *work) { struct msm_slim_sat *sat = container_of(work, struct msm_slim_sat, wd); struct msm_slim_ctrl *dev = sat->dev; u8 buf[40]; while ((msm_sat_dequeue(sat, buf)) != -ENODATA) { struct slim_msg_txn txn; u8 len, mc, mt; u32 bw_sl; int ret = 0; int satv = -1; bool gen_ack = false; u8 tid; u8 wbuf[8]; int i; txn.mt = SLIM_MSG_MT_SRC_REFERRED_USER; txn.dt = SLIM_MSG_DEST_LOGICALADDR; txn.ec = 0; txn.rbuf = NULL; txn.la = sat->satcl.laddr; /* satellite handling */ len = buf[0] & 0x1F; mc = buf[1]; mt = (buf[0] >> 5) & 0x7; if (mt == SLIM_MSG_MT_CORE && mc == SLIM_MSG_MC_REPORT_PRESENT) { u8 laddr; u8 e_addr[6]; for (i = 0; i < 6; i++) e_addr[i] = buf[7-i]; if (pm_runtime_enabled(dev->dev)) { satv = msm_slim_get_ctrl(dev); if (satv >= 0) sat->pending_capability = true; } slim_assign_laddr(&dev->ctrl, e_addr, 6, &laddr); sat->satcl.laddr = laddr; /* * Since capability message is already sent, present * message will indicate subsystem hosting this * satellite has restarted. * Remove all active channels of this satellite * when this is detected */ if (sat->sent_capability) { for (i = 0; i < sat->nsatch; i++) { enum slim_ch_state chs = slim_get_ch_state(&sat->satcl, sat->satch[i].chanh); pr_err("Slim-SSR, sat:%d, rm chan:%d", laddr, sat->satch[i].chan); if (chs == SLIM_CH_ACTIVE) slim_control_ch(&sat->satcl, sat->satch[i].chanh, SLIM_CH_REMOVE, true); } } } else if (mt != SLIM_MSG_MT_CORE && mc != SLIM_MSG_MC_REPORT_PRESENT) { satv = msm_slim_get_ctrl(dev); } switch (mc) { case SLIM_MSG_MC_REPORT_PRESENT: /* Remove runtime_pm vote once satellite acks */ if (mt != SLIM_MSG_MT_CORE) { if (pm_runtime_enabled(dev->dev) && sat->pending_capability) { msm_slim_put_ctrl(dev); sat->pending_capability = false; } continue; } /* send a Manager capability msg */ if (sat->sent_capability) { if (mt == SLIM_MSG_MT_CORE) goto send_capability; else continue; } ret = slim_add_device(&dev->ctrl, &sat->satcl); if (ret) { dev_err(dev->dev, "Satellite-init failed"); continue; } /* Satellite-channels */ sat->satch = kzalloc(MSM_MAX_SATCH * sizeof(struct msm_sat_chan), GFP_KERNEL); send_capability: txn.mc = SLIM_USR_MC_MASTER_CAPABILITY; txn.mt = SLIM_MSG_MT_SRC_REFERRED_USER; txn.la = sat->satcl.laddr; txn.rl = 8; wbuf[0] = SAT_MAGIC_LSB; wbuf[1] = SAT_MAGIC_MSB; wbuf[2] = SAT_MSG_VER; wbuf[3] = SAT_MSG_PROT; txn.wbuf = wbuf; txn.len = 4; sat->sent_capability = true; msm_xfer_msg(&dev->ctrl, &txn); break; case SLIM_USR_MC_ADDR_QUERY: memcpy(&wbuf[1], &buf[4], 6); ret = slim_get_logical_addr(&sat->satcl, &wbuf[1], 6, &wbuf[7]); if (ret) memset(&wbuf[1], 0, 6); wbuf[0] = buf[3]; txn.mc = SLIM_USR_MC_ADDR_REPLY; txn.rl = 12; txn.len = 8; txn.wbuf = wbuf; msm_xfer_msg(&dev->ctrl, &txn); break; case SLIM_USR_MC_DEFINE_CHAN: case SLIM_USR_MC_DEF_ACT_CHAN: case SLIM_USR_MC_CHAN_CTRL: if (mc != SLIM_USR_MC_CHAN_CTRL) tid = buf[7]; else tid = buf[4]; gen_ack = true; ret = msm_sat_define_ch(sat, buf, len, mc); if (ret) { dev_err(dev->dev, "SAT define_ch returned:%d", ret); } if (!sat->pending_reconf) { int chv = msm_slim_get_ctrl(dev); if (chv >= 0) sat->pending_reconf = true; } break; case SLIM_USR_MC_RECONFIG_NOW: tid = buf[3]; gen_ack = true; ret = slim_reconfigure_now(&sat->satcl); for (i = 0; i < sat->nsatch; i++) { struct msm_sat_chan *sch = &sat->satch[i]; if (sch->req_rem) { if (!ret) slim_dealloc_ch(&sat->satcl, sch->chanh); sch->req_rem--; } else if (sch->req_def) { if (ret) slim_dealloc_ch(&sat->satcl, sch->chanh); sch->req_def--; } } if (sat->pending_reconf) { msm_slim_put_ctrl(dev); sat->pending_reconf = false; } break; case SLIM_USR_MC_REQ_BW: /* what we get is in SLOTS */ bw_sl = (u32)buf[4] << 3 | ((buf[3] & 0xE0) >> 5); sat->satcl.pending_msgsl = bw_sl; tid = buf[5]; gen_ack = true; break; case SLIM_USR_MC_CONNECT_SRC: case SLIM_USR_MC_CONNECT_SINK: if (mc == SLIM_USR_MC_CONNECT_SRC) txn.mc = SLIM_MSG_MC_CONNECT_SOURCE; else txn.mc = SLIM_MSG_MC_CONNECT_SINK; wbuf[0] = buf[4] & 0x1F; wbuf[1] = buf[5]; tid = buf[6]; txn.la = buf[3]; txn.mt = SLIM_MSG_MT_CORE; txn.rl = 6; txn.len = 2; txn.wbuf = wbuf; gen_ack = true; ret = msm_xfer_msg(&dev->ctrl, &txn); break; case SLIM_USR_MC_DISCONNECT_PORT: txn.mc = SLIM_MSG_MC_DISCONNECT_PORT; wbuf[0] = buf[4] & 0x1F; tid = buf[5]; txn.la = buf[3]; txn.rl = 5; txn.len = 1; txn.mt = SLIM_MSG_MT_CORE; txn.wbuf = wbuf; gen_ack = true; ret = msm_xfer_msg(&dev->ctrl, &txn); default: break; } if (!gen_ack) { if (mc != SLIM_MSG_MC_REPORT_PRESENT && satv >= 0) msm_slim_put_ctrl(dev); continue; } wbuf[0] = tid; if (!ret) wbuf[1] = MSM_SAT_SUCCSS; else wbuf[1] = 0; txn.mc = SLIM_USR_MC_GENERIC_ACK; txn.la = sat->satcl.laddr; txn.rl = 6; txn.len = 2; txn.wbuf = wbuf; txn.mt = SLIM_MSG_MT_SRC_REFERRED_USER; msm_xfer_msg(&dev->ctrl, &txn); if (satv >= 0) msm_slim_put_ctrl(dev); } } static struct msm_slim_sat *msm_slim_alloc_sat(struct msm_slim_ctrl *dev) { struct msm_slim_sat *sat; char *name; if (dev->nsats >= MSM_MAX_NSATS) return NULL; sat = kzalloc(sizeof(struct msm_slim_sat), GFP_KERNEL); if (!sat) { dev_err(dev->dev, "no memory for satellite"); return NULL; } name = kzalloc(SLIMBUS_NAME_SIZE, GFP_KERNEL); if (!name) { dev_err(dev->dev, "no memory for satellite name"); kfree(sat); return NULL; } dev->satd[dev->nsats] = sat; sat->dev = dev; snprintf(name, SLIMBUS_NAME_SIZE, "msm_sat%d", dev->nsats); sat->satcl.name = name; spin_lock_init(&sat->lock); INIT_WORK(&sat->wd, slim_sat_rxprocess); sat->wq = create_singlethread_workqueue(sat->satcl.name); if (!sat->wq) { kfree(name); kfree(sat); return NULL; } /* * Both sats will be allocated from RX thread and RX thread will * process messages sequentially. No synchronization necessary */ dev->nsats++; return sat; } static void msm_slim_rx_msgq_event(struct msm_slim_ctrl *dev, struct sps_event_notify *ev) { u32 *buf = ev->data.transfer.user; struct sps_iovec *iovec = &ev->data.transfer.iovec; /* * Note the virtual address needs to be offset by the same index * as the physical address or just pass in the actual virtual address * if the sps_mem_buffer is not needed. Note that if completion is * used, the virtual address won't be available and will need to be * calculated based on the offset of the physical address */ if (ev->event_id == SPS_EVENT_DESC_DONE) { pr_debug("buf = 0x%p, data = 0x%x\n", buf, *buf); pr_debug("iovec = (0x%x 0x%x 0x%x)\n", iovec->addr, iovec->size, iovec->flags); } else { dev_err(dev->dev, "%s: unknown event %d\n", __func__, ev->event_id); } } static void msm_slim_rx_msgq_cb(struct sps_event_notify *notify) { struct msm_slim_ctrl *dev = (struct msm_slim_ctrl *)notify->user; msm_slim_rx_msgq_event(dev, notify); } /* Queue up Rx message buffer */ static inline int msm_slim_post_rx_msgq(struct msm_slim_ctrl *dev, int ix) { int ret; u32 flags = SPS_IOVEC_FLAG_INT; struct msm_slim_endp *endpoint = &dev->rx_msgq; struct sps_mem_buffer *mem = &endpoint->buf; struct sps_pipe *pipe = endpoint->sps; /* Rx message queue buffers are 4 bytes in length */ u8 *virt_addr = mem->base + (4 * ix); u32 phys_addr = mem->phys_base + (4 * ix); pr_debug("index:%d, phys:0x%x, virt:0x%p\n", ix, phys_addr, virt_addr); ret = sps_transfer_one(pipe, phys_addr, 4, virt_addr, flags); if (ret) dev_err(dev->dev, "transfer_one() failed 0x%x, %d\n", ret, ix); return ret; } static inline int msm_slim_rx_msgq_get(struct msm_slim_ctrl *dev, u32 *data, int offset) { struct msm_slim_endp *endpoint = &dev->rx_msgq; struct sps_mem_buffer *mem = &endpoint->buf; struct sps_pipe *pipe = endpoint->sps; struct sps_iovec iovec; int index; int ret; ret = sps_get_iovec(pipe, &iovec); if (ret) { dev_err(dev->dev, "sps_get_iovec() failed 0x%x\n", ret); goto err_exit; } pr_debug("iovec = (0x%x 0x%x 0x%x)\n", iovec.addr, iovec.size, iovec.flags); BUG_ON(iovec.addr < mem->phys_base); BUG_ON(iovec.addr >= mem->phys_base + mem->size); /* Calculate buffer index */ index = (iovec.addr - mem->phys_base) / 4; *(data + offset) = *((u32 *)mem->base + index); pr_debug("buf = 0x%p, data = 0x%x\n", (u32 *)mem->base + index, *data); /* Add buffer back to the queue */ (void)msm_slim_post_rx_msgq(dev, index); err_exit: return ret; } static int msm_slim_rx_msgq_thread(void *data) { struct msm_slim_ctrl *dev = (struct msm_slim_ctrl *)data; struct completion *notify = &dev->rx_msgq_notify; struct msm_slim_sat *sat = NULL; u32 mc = 0; u32 mt = 0; u32 buffer[10]; int index = 0; u8 msg_len = 0; int ret; dev_dbg(dev->dev, "rx thread started"); while (!kthread_should_stop()) { set_current_state(TASK_INTERRUPTIBLE); ret = wait_for_completion_interruptible(notify); if (ret) dev_err(dev->dev, "rx thread wait error:%d", ret); /* 1 irq notification per message */ if (!dev->use_rx_msgqs) { msm_slim_rxwq(dev); continue; } ret = msm_slim_rx_msgq_get(dev, buffer, index); if (ret) { dev_err(dev->dev, "rx_msgq_get() failed 0x%x\n", ret); continue; } pr_debug("message[%d] = 0x%x\n", index, *buffer); /* Decide if we use generic RX or satellite RX */ if (index++ == 0) { msg_len = *buffer & 0x1F; pr_debug("Start of new message, len = %d\n", msg_len); mt = (buffer[0] >> 5) & 0x7; mc = (buffer[0] >> 8) & 0xff; dev_dbg(dev->dev, "MC: %x, MT: %x\n", mc, mt); if (mt == SLIM_MSG_MT_DEST_REFERRED_USER || mt == SLIM_MSG_MT_SRC_REFERRED_USER) { u8 laddr; laddr = (u8)((buffer[0] >> 16) & 0xff); sat = addr_to_sat(dev, laddr); } } else if ((index * 4) >= msg_len) { index = 0; if (sat) { msm_sat_enqueue(sat, buffer, msg_len); queue_work(sat->wq, &sat->wd); sat = NULL; } else { msm_slim_rx_enqueue(dev, buffer, msg_len); msm_slim_rxwq(dev); } } } return 0; } static int __devinit msm_slim_init_rx_msgq(struct msm_slim_ctrl *dev) { int i, ret; u32 pipe_offset; struct msm_slim_endp *endpoint = &dev->rx_msgq; struct sps_connect *config = &endpoint->config; struct sps_mem_buffer *descr = &config->desc; struct sps_mem_buffer *mem = &endpoint->buf; struct completion *notify = &dev->rx_msgq_notify; struct sps_register_event sps_error_event; /* SPS_ERROR */ struct sps_register_event sps_descr_event; /* DESCR_DONE */ init_completion(notify); if (!dev->use_rx_msgqs) goto rx_thread_create; /* Allocate the endpoint */ ret = msm_slim_init_endpoint(dev, endpoint); if (ret) { dev_err(dev->dev, "init_endpoint failed 0x%x\n", ret); goto sps_init_endpoint_failed; } /* Get the pipe indices for the message queues */ pipe_offset = (readl_relaxed(dev->base + MGR_STATUS) & 0xfc) >> 2; dev_dbg(dev->dev, "Message queue pipe offset %d\n", pipe_offset); config->mode = SPS_MODE_SRC; config->source = dev->bam.hdl; config->destination = SPS_DEV_HANDLE_MEM; config->src_pipe_index = pipe_offset; config->options = SPS_O_DESC_DONE | SPS_O_ERROR | SPS_O_ACK_TRANSFERS | SPS_O_AUTO_ENABLE; /* Allocate memory for the FIFO descriptors */ ret = msm_slim_sps_mem_alloc(dev, descr, MSM_SLIM_DESC_NUM * sizeof(struct sps_iovec)); if (ret) { dev_err(dev->dev, "unable to allocate SPS descriptors\n"); goto alloc_descr_failed; } ret = sps_connect(endpoint->sps, config); if (ret) { dev_err(dev->dev, "sps_connect failed 0x%x\n", ret); goto sps_connect_failed; } /* Register completion for DESC_DONE */ init_completion(notify); memset(&sps_descr_event, 0x00, sizeof(sps_descr_event)); sps_descr_event.mode = SPS_TRIGGER_CALLBACK; sps_descr_event.options = SPS_O_DESC_DONE; sps_descr_event.user = (void *)dev; sps_descr_event.xfer_done = notify; ret = sps_register_event(endpoint->sps, &sps_descr_event); if (ret) { dev_err(dev->dev, "sps_connect() failed 0x%x\n", ret); goto sps_reg_event_failed; } /* Register callback for errors */ memset(&sps_error_event, 0x00, sizeof(sps_error_event)); sps_error_event.mode = SPS_TRIGGER_CALLBACK; sps_error_event.options = SPS_O_ERROR; sps_error_event.user = (void *)dev; sps_error_event.callback = msm_slim_rx_msgq_cb; ret = sps_register_event(endpoint->sps, &sps_error_event); if (ret) { dev_err(dev->dev, "sps_connect() failed 0x%x\n", ret); goto sps_reg_event_failed; } /* Allocate memory for the message buffer(s), N descrs, 4-byte mesg */ ret = msm_slim_sps_mem_alloc(dev, mem, MSM_SLIM_DESC_NUM * 4); if (ret) { dev_err(dev->dev, "dma_alloc_coherent failed\n"); goto alloc_buffer_failed; } /* * Call transfer_one for each 4-byte buffer * Use (buf->size/4) - 1 for the number of buffer to post */ /* Setup the transfer */ for (i = 0; i < (MSM_SLIM_DESC_NUM - 1); i++) { ret = msm_slim_post_rx_msgq(dev, i); if (ret) { dev_err(dev->dev, "post_rx_msgq() failed 0x%x\n", ret); goto sps_transfer_failed; } } rx_thread_create: /* Fire up the Rx message queue thread */ dev->rx_msgq_thread = kthread_run(msm_slim_rx_msgq_thread, dev, MSM_SLIM_NAME "_rx_msgq_thread"); if (!dev->rx_msgq_thread) { dev_err(dev->dev, "Failed to start Rx message queue thread\n"); /* Tear-down BAMs or return? */ if (!dev->use_rx_msgqs) return -EIO; else ret = -EIO; } else return 0; sps_transfer_failed: msm_slim_sps_mem_free(dev, mem); alloc_buffer_failed: memset(&sps_error_event, 0x00, sizeof(sps_error_event)); sps_register_event(endpoint->sps, &sps_error_event); sps_reg_event_failed: sps_disconnect(endpoint->sps); sps_connect_failed: msm_slim_sps_mem_free(dev, descr); alloc_descr_failed: msm_slim_free_endpoint(endpoint); sps_init_endpoint_failed: dev->use_rx_msgqs = 0; return ret; } /* Registers BAM h/w resource with SPS driver and initializes msgq endpoints */ static int __devinit msm_slim_sps_init(struct msm_slim_ctrl *dev, struct resource *bam_mem) { int i, ret; u32 bam_handle; struct sps_bam_props bam_props = {0}; static struct sps_bam_sec_config_props sec_props = { .ees = { [0] = { /* LPASS */ .vmid = 0, .pipe_mask = 0xFFFF98, }, [1] = { /* Krait Apps */ .vmid = 1, .pipe_mask = 0x3F000007, }, [2] = { /* Modem */ .vmid = 2, .pipe_mask = 0x00000060, }, }, }; if (!dev->use_rx_msgqs) goto init_rx_msgq; bam_props.ee = dev->ee; bam_props.virt_addr = dev->bam.base; bam_props.phys_addr = bam_mem->start; bam_props.irq = dev->bam.irq; bam_props.manage = SPS_BAM_MGR_LOCAL; bam_props.summing_threshold = MSM_SLIM_PERF_SUMM_THRESHOLD; bam_props.sec_config = SPS_BAM_SEC_DO_CONFIG; bam_props.p_sec_config_props = &sec_props; bam_props.options = SPS_O_DESC_DONE | SPS_O_ERROR | SPS_O_ACK_TRANSFERS | SPS_O_AUTO_ENABLE; /* First 7 bits are for message Qs */ for (i = 7; i < 32; i++) { /* Check what pipes are owned by Apps. */ if ((sec_props.ees[dev->ee].pipe_mask >> i) & 0x1) break; } dev->pipe_b = i - 7; /* Register the BAM device with the SPS driver */ ret = sps_register_bam_device(&bam_props, &bam_handle); if (ret) { dev_err(dev->dev, "disabling BAM: reg-bam failed 0x%x\n", ret); dev->use_rx_msgqs = 0; goto init_rx_msgq; } dev->bam.hdl = bam_handle; dev_dbg(dev->dev, "SLIM BAM registered, handle = 0x%x\n", bam_handle); init_rx_msgq: ret = msm_slim_init_rx_msgq(dev); if (ret) dev_err(dev->dev, "msm_slim_init_rx_msgq failed 0x%x\n", ret); if (!dev->use_rx_msgqs && bam_handle) { sps_deregister_bam_device(bam_handle); dev->bam.hdl = 0L; } return ret; } static void msm_slim_sps_exit(struct msm_slim_ctrl *dev) { if (dev->use_rx_msgqs) { struct msm_slim_endp *endpoint = &dev->rx_msgq; struct sps_connect *config = &endpoint->config; struct sps_mem_buffer *descr = &config->desc; struct sps_mem_buffer *mem = &endpoint->buf; struct sps_register_event sps_event; memset(&sps_event, 0x00, sizeof(sps_event)); msm_slim_sps_mem_free(dev, mem); sps_register_event(endpoint->sps, &sps_event); sps_disconnect(endpoint->sps); msm_slim_sps_mem_free(dev, descr); msm_slim_free_endpoint(endpoint); sps_deregister_bam_device(dev->bam.hdl); } } static void msm_slim_prg_slew(struct platform_device *pdev, struct msm_slim_ctrl *dev) { struct resource *slew_io; void __iomem *slew_reg; /* SLEW RATE register for this slimbus */ dev->slew_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "slimbus_slew_reg"); if (!dev->slew_mem) { dev_dbg(&pdev->dev, "no slimbus slew resource\n"); return; } slew_io = request_mem_region(dev->slew_mem->start, resource_size(dev->slew_mem), pdev->name); if (!slew_io) { dev_dbg(&pdev->dev, "slimbus-slew mem claimed\n"); dev->slew_mem = NULL; return; } slew_reg = ioremap(dev->slew_mem->start, resource_size(dev->slew_mem)); if (!slew_reg) { dev_dbg(dev->dev, "slew register mapping failed"); release_mem_region(dev->slew_mem->start, resource_size(dev->slew_mem)); dev->slew_mem = NULL; return; } writel_relaxed(1, slew_reg); /* Make sure slimbus-slew rate enabling goes through */ wmb(); iounmap(slew_reg); } static int __devinit msm_slim_probe(struct platform_device *pdev) { struct msm_slim_ctrl *dev; int ret; struct resource *bam_mem, *bam_io; struct resource *slim_mem, *slim_io; struct resource *irq, *bam_irq; slim_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "slimbus_physical"); if (!slim_mem) { dev_err(&pdev->dev, "no slimbus physical memory resource\n"); return -ENODEV; } slim_io = request_mem_region(slim_mem->start, resource_size(slim_mem), pdev->name); if (!slim_io) { dev_err(&pdev->dev, "slimbus memory already claimed\n"); return -EBUSY; } bam_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "slimbus_bam_physical"); if (!bam_mem) { dev_err(&pdev->dev, "no slimbus BAM memory resource\n"); ret = -ENODEV; goto err_get_res_bam_failed; } bam_io = request_mem_region(bam_mem->start, resource_size(bam_mem), pdev->name); if (!bam_io) { release_mem_region(slim_mem->start, resource_size(slim_mem)); dev_err(&pdev->dev, "slimbus BAM memory already claimed\n"); ret = -EBUSY; goto err_get_res_bam_failed; } irq = platform_get_resource_byname(pdev, IORESOURCE_IRQ, "slimbus_irq"); if (!irq) { dev_err(&pdev->dev, "no slimbus IRQ resource\n"); ret = -ENODEV; goto err_get_res_failed; } bam_irq = platform_get_resource_byname(pdev, IORESOURCE_IRQ, "slimbus_bam_irq"); if (!bam_irq) { dev_err(&pdev->dev, "no slimbus BAM IRQ resource\n"); ret = -ENODEV; goto err_get_res_failed; } dev = kzalloc(sizeof(struct msm_slim_ctrl), GFP_KERNEL); if (!dev) { dev_err(&pdev->dev, "no memory for MSM slimbus controller\n"); ret = -ENOMEM; goto err_get_res_failed; } dev->dev = &pdev->dev; platform_set_drvdata(pdev, dev); slim_set_ctrldata(&dev->ctrl, dev); dev->base = ioremap(slim_mem->start, resource_size(slim_mem)); if (!dev->base) { dev_err(&pdev->dev, "IOremap failed\n"); ret = -ENOMEM; goto err_ioremap_failed; } dev->bam.base = ioremap(bam_mem->start, resource_size(bam_mem)); if (!dev->bam.base) { dev_err(&pdev->dev, "BAM IOremap failed\n"); ret = -ENOMEM; goto err_ioremap_bam_failed; } if (pdev->dev.of_node) { ret = of_property_read_u32(pdev->dev.of_node, "cell-index", &dev->ctrl.nr); if (ret) { dev_err(&pdev->dev, "Cell index not specified:%d", ret); goto err_of_init_failed; } /* Optional properties */ ret = of_property_read_u32(pdev->dev.of_node, "qcom,min-clk-gear", &dev->ctrl.min_cg); ret = of_property_read_u32(pdev->dev.of_node, "qcom,max-clk-gear", &dev->ctrl.max_cg); pr_err("min_cg:%d, max_cg:%d, ret:%d", dev->ctrl.min_cg, dev->ctrl.max_cg, ret); } else { dev->ctrl.nr = pdev->id; } dev->ctrl.nchans = MSM_SLIM_NCHANS; dev->ctrl.nports = MSM_SLIM_NPORTS; dev->ctrl.set_laddr = msm_set_laddr; dev->ctrl.xfer_msg = msm_xfer_msg; dev->ctrl.wakeup = msm_clk_pause_wakeup; dev->ctrl.config_port = msm_config_port; dev->ctrl.port_xfer = msm_slim_port_xfer; dev->ctrl.port_xfer_status = msm_slim_port_xfer_status; /* Reserve some messaging BW for satellite-apps driver communication */ dev->ctrl.sched.pending_msgsl = 30; init_completion(&dev->reconf); mutex_init(&dev->tx_lock); spin_lock_init(&dev->rx_lock); dev->ee = 1; dev->use_rx_msgqs = 1; dev->irq = irq->start; dev->bam.irq = bam_irq->start; ret = msm_slim_sps_init(dev, bam_mem); if (ret != 0) { dev_err(dev->dev, "error SPS init\n"); goto err_sps_init_failed; } dev->framer.rootfreq = SLIM_ROOT_FREQ >> 3; dev->framer.superfreq = dev->framer.rootfreq / SLIM_CL_PER_SUPERFRAME_DIV8; dev->ctrl.a_framer = &dev->framer; dev->ctrl.clkgear = SLIM_MAX_CLK_GEAR; dev->ctrl.dev.parent = &pdev->dev; dev->ctrl.dev.of_node = pdev->dev.of_node; ret = request_irq(dev->irq, msm_slim_interrupt, IRQF_TRIGGER_HIGH, "msm_slim_irq", dev); if (ret) { dev_err(&pdev->dev, "request IRQ failed\n"); goto err_request_irq_failed; } msm_slim_prg_slew(pdev, dev); /* Register with framework before enabling frame, clock */ ret = slim_add_numbered_controller(&dev->ctrl); if (ret) { dev_err(dev->dev, "error adding controller\n"); goto err_ctrl_failed; } dev->rclk = clk_get(dev->dev, "core_clk"); if (!dev->rclk) { dev_err(dev->dev, "slimbus clock not found"); goto err_clk_get_failed; } clk_set_rate(dev->rclk, SLIM_ROOT_FREQ); clk_prepare_enable(dev->rclk); dev->ver = readl_relaxed(dev->base); /* Version info in 16 MSbits */ dev->ver >>= 16; /* Component register initialization */ writel_relaxed(1, dev->base + CFG_PORT(COMP_CFG, dev->ver)); writel_relaxed((EE_MGR_RSC_GRP | EE_NGD_2 | EE_NGD_1), dev->base + CFG_PORT(COMP_TRUST_CFG, dev->ver)); /* * Manager register initialization * If RX msg Q is used, disable RX_MSG_RCVD interrupt */ if (dev->use_rx_msgqs) writel_relaxed((MGR_INT_RECFG_DONE | MGR_INT_TX_NACKED_2 | MGR_INT_MSG_BUF_CONTE | /* MGR_INT_RX_MSG_RCVD | */ MGR_INT_TX_MSG_SENT), dev->base + MGR_INT_EN); else writel_relaxed((MGR_INT_RECFG_DONE | MGR_INT_TX_NACKED_2 | MGR_INT_MSG_BUF_CONTE | MGR_INT_RX_MSG_RCVD | MGR_INT_TX_MSG_SENT), dev->base + MGR_INT_EN); writel_relaxed(1, dev->base + MGR_CFG); /* * Framer registers are beyond 1K memory region after Manager and/or * component registers. Make sure those writes are ordered * before framer register writes */ wmb(); /* Framer register initialization */ writel_relaxed((0xA << REF_CLK_GEAR) | (0xA << CLK_GEAR) | (1 << ROOT_FREQ) | (1 << FRM_ACTIVE) | 1, dev->base + FRM_CFG); /* * Make sure that framer wake-up and enabling writes go through * before any other component is enabled. Framer is responsible for * clocking the bus and enabling framer first will ensure that other * devices can report presence when they are enabled */ mb(); /* Enable RX msg Q */ if (dev->use_rx_msgqs) writel_relaxed(MGR_CFG_ENABLE | MGR_CFG_RX_MSGQ_EN, dev->base + MGR_CFG); else writel_relaxed(MGR_CFG_ENABLE, dev->base + MGR_CFG); /* * Make sure that manager-enable is written through before interface * device is enabled */ mb(); writel_relaxed(1, dev->base + INTF_CFG); /* * Make sure that interface-enable is written through before enabling * ported generic device inside MSM manager */ mb(); writel_relaxed(1, dev->base + CFG_PORT(PGD_CFG, dev->ver)); writel_relaxed(0x3F<<17, dev->base + CFG_PORT(PGD_OWN_EEn, dev->ver) + (4 * dev->ee)); /* * Make sure that ported generic device is enabled and port-EE settings * are written through before finally enabling the component */ mb(); writel_relaxed(1, dev->base + CFG_PORT(COMP_CFG, dev->ver)); /* * Make sure that all writes have gone through before exiting this * function */ mb(); if (pdev->dev.of_node) of_register_slim_devices(&dev->ctrl); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_set_autosuspend_delay(&pdev->dev, MSM_SLIM_AUTOSUSPEND); pm_runtime_set_active(&pdev->dev); dev_dbg(dev->dev, "MSM SB controller is up!\n"); return 0; err_ctrl_failed: writel_relaxed(0, dev->base + CFG_PORT(COMP_CFG, dev->ver)); err_clk_get_failed: kfree(dev->satd); err_request_irq_failed: msm_slim_sps_exit(dev); err_sps_init_failed: err_of_init_failed: iounmap(dev->bam.base); err_ioremap_bam_failed: iounmap(dev->base); err_ioremap_failed: kfree(dev); err_get_res_failed: release_mem_region(bam_mem->start, resource_size(bam_mem)); err_get_res_bam_failed: release_mem_region(slim_mem->start, resource_size(slim_mem)); return ret; } static int __devexit msm_slim_remove(struct platform_device *pdev) { struct msm_slim_ctrl *dev = platform_get_drvdata(pdev); struct resource *bam_mem; struct resource *slim_mem; struct resource *slew_mem = dev->slew_mem; int i; for (i = 0; i < dev->nsats; i++) { struct msm_slim_sat *sat = dev->satd[i]; int j; for (j = 0; j < sat->nsatch; j++) slim_dealloc_ch(&sat->satcl, sat->satch[j].chanh); slim_remove_device(&sat->satcl); kfree(sat->satch); destroy_workqueue(sat->wq); kfree(sat->satcl.name); kfree(sat); } pm_runtime_disable(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); free_irq(dev->irq, dev); slim_del_controller(&dev->ctrl); clk_put(dev->rclk); msm_slim_sps_exit(dev); kthread_stop(dev->rx_msgq_thread); iounmap(dev->bam.base); iounmap(dev->base); kfree(dev); bam_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "slimbus_bam_physical"); if (bam_mem) release_mem_region(bam_mem->start, resource_size(bam_mem)); if (slew_mem) release_mem_region(slew_mem->start, resource_size(slew_mem)); slim_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "slimbus_physical"); if (slim_mem) release_mem_region(slim_mem->start, resource_size(slim_mem)); return 0; } #ifdef CONFIG_PM_RUNTIME static int msm_slim_runtime_idle(struct device *device) { dev_dbg(device, "pm_runtime: idle...\n"); pm_request_autosuspend(device); return -EAGAIN; } #endif /* * If PM_RUNTIME is not defined, these 2 functions become helper * functions to be called from system suspend/resume. So they are not * inside ifdef CONFIG_PM_RUNTIME */ #ifdef CONFIG_PM_SLEEP static int msm_slim_runtime_suspend(struct device *device) { struct platform_device *pdev = to_platform_device(device); struct msm_slim_ctrl *dev = platform_get_drvdata(pdev); int ret; dev_dbg(device, "pm_runtime: suspending...\n"); dev->state = MSM_CTRL_SLEEPING; ret = slim_ctrl_clk_pause(&dev->ctrl, false, SLIM_CLK_UNSPECIFIED); if (ret) { dev_err(device, "clk pause not entered:%d", ret); dev->state = MSM_CTRL_AWAKE; } else { dev->state = MSM_CTRL_ASLEEP; } return ret; } static int msm_slim_runtime_resume(struct device *device) { struct platform_device *pdev = to_platform_device(device); struct msm_slim_ctrl *dev = platform_get_drvdata(pdev); int ret = 0; dev_dbg(device, "pm_runtime: resuming...\n"); if (dev->state == MSM_CTRL_ASLEEP) ret = slim_ctrl_clk_pause(&dev->ctrl, true, 0); if (ret) { dev_err(device, "clk pause not exited:%d", ret); dev->state = MSM_CTRL_ASLEEP; } else { dev->state = MSM_CTRL_AWAKE; } return ret; } static int msm_slim_suspend(struct device *dev) { int ret = 0; if (!pm_runtime_enabled(dev) || !pm_runtime_suspended(dev)) { dev_dbg(dev, "system suspend"); ret = msm_slim_runtime_suspend(dev); } if (ret == -EBUSY) { /* * If the clock pause failed due to active channels, there is * a possibility that some audio stream is active during suspend * We dont want to return suspend failure in that case so that * display and relevant components can still go to suspend. * If there is some other error, then it should be passed-on * to system level suspend */ ret = 0; } return ret; } static int msm_slim_resume(struct device *dev) { /* If runtime_pm is enabled, this resume shouldn't do anything */ if (!pm_runtime_enabled(dev) || !pm_runtime_suspended(dev)) { int ret; dev_dbg(dev, "system resume"); ret = msm_slim_runtime_resume(dev); if (!ret) { pm_runtime_mark_last_busy(dev); pm_request_autosuspend(dev); } return ret; } return 0; } #endif /* CONFIG_PM_SLEEP */ static const struct dev_pm_ops msm_slim_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS( msm_slim_suspend, msm_slim_resume ) SET_RUNTIME_PM_OPS( msm_slim_runtime_suspend, msm_slim_runtime_resume, msm_slim_runtime_idle ) }; static struct of_device_id msm_slim_dt_match[] = { { .compatible = "qcom,slim-msm", }, {} }; static struct platform_driver msm_slim_driver = { .probe = msm_slim_probe, .remove = msm_slim_remove, .driver = { .name = MSM_SLIM_NAME, .owner = THIS_MODULE, .pm = &msm_slim_dev_pm_ops, .of_match_table = msm_slim_dt_match, }, }; static int msm_slim_init(void) { return platform_driver_register(&msm_slim_driver); } subsys_initcall(msm_slim_init); static void msm_slim_exit(void) { platform_driver_unregister(&msm_slim_driver); } module_exit(msm_slim_exit); MODULE_LICENSE("GPL v2"); MODULE_VERSION("0.1"); MODULE_DESCRIPTION("MSM Slimbus controller"); MODULE_ALIAS("platform:msm-slim");