/* * super.c * * PURPOSE * Super block routines for the OSTA-UDF(tm) filesystem. * * DESCRIPTION * OSTA-UDF(tm) = Optical Storage Technology Association * Universal Disk Format. * * This code is based on version 2.00 of the UDF specification, * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. * http://www.osta.org/ * http://www.ecma.ch/ * http://www.iso.org/ * * COPYRIGHT * This file is distributed under the terms of the GNU General Public * License (GPL). Copies of the GPL can be obtained from: * ftp://prep.ai.mit.edu/pub/gnu/GPL * Each contributing author retains all rights to their own work. * * (C) 1998 Dave Boynton * (C) 1998-2004 Ben Fennema * (C) 2000 Stelias Computing Inc * * HISTORY * * 09/24/98 dgb changed to allow compiling outside of kernel, and * added some debugging. * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 * 10/16/98 attempting some multi-session support * 10/17/98 added freespace count for "df" * 11/11/98 gr added novrs option * 11/26/98 dgb added fileset,anchor mount options * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced * vol descs. rewrote option handling based on isofs * 12/20/98 find the free space bitmap (if it exists) */ #include "udfdecl.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "udf_sb.h" #include "udf_i.h" #include #include #define VDS_POS_PRIMARY_VOL_DESC 0 #define VDS_POS_UNALLOC_SPACE_DESC 1 #define VDS_POS_LOGICAL_VOL_DESC 2 #define VDS_POS_PARTITION_DESC 3 #define VDS_POS_IMP_USE_VOL_DESC 4 #define VDS_POS_VOL_DESC_PTR 5 #define VDS_POS_TERMINATING_DESC 6 #define VDS_POS_LENGTH 7 #define UDF_DEFAULT_BLOCKSIZE 2048 enum { UDF_MAX_LINKS = 0xffff }; /* These are the "meat" - everything else is stuffing */ static int udf_fill_super(struct super_block *, void *, int); static void udf_put_super(struct super_block *); static int udf_sync_fs(struct super_block *, int); static int udf_remount_fs(struct super_block *, int *, char *); static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, struct kernel_lb_addr *); static void udf_load_fileset(struct super_block *, struct buffer_head *, struct kernel_lb_addr *); static void udf_open_lvid(struct super_block *); static void udf_close_lvid(struct super_block *); static unsigned int udf_count_free(struct super_block *); static int udf_statfs(struct dentry *, struct kstatfs *); static int udf_show_options(struct seq_file *, struct dentry *); struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi) { struct logicalVolIntegrityDesc *lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions); __u32 offset = number_of_partitions * 2 * sizeof(uint32_t)/sizeof(uint8_t); return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); } /* UDF filesystem type */ static struct dentry *udf_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); } static struct file_system_type udf_fstype = { .owner = THIS_MODULE, .name = "udf", .mount = udf_mount, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; static struct kmem_cache *udf_inode_cachep; static struct inode *udf_alloc_inode(struct super_block *sb) { struct udf_inode_info *ei; ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); if (!ei) return NULL; ei->i_unique = 0; ei->i_lenExtents = 0; ei->i_next_alloc_block = 0; ei->i_next_alloc_goal = 0; ei->i_strat4096 = 0; init_rwsem(&ei->i_data_sem); return &ei->vfs_inode; } static void udf_i_callback(struct rcu_head *head) { struct inode *inode = container_of(head, struct inode, i_rcu); kmem_cache_free(udf_inode_cachep, UDF_I(inode)); } static void udf_destroy_inode(struct inode *inode) { call_rcu(&inode->i_rcu, udf_i_callback); } static void init_once(void *foo) { struct udf_inode_info *ei = (struct udf_inode_info *)foo; ei->i_ext.i_data = NULL; inode_init_once(&ei->vfs_inode); } static int init_inodecache(void) { udf_inode_cachep = kmem_cache_create("udf_inode_cache", sizeof(struct udf_inode_info), 0, (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD), init_once); if (!udf_inode_cachep) return -ENOMEM; return 0; } static void destroy_inodecache(void) { kmem_cache_destroy(udf_inode_cachep); } /* Superblock operations */ static const struct super_operations udf_sb_ops = { .alloc_inode = udf_alloc_inode, .destroy_inode = udf_destroy_inode, .write_inode = udf_write_inode, .evict_inode = udf_evict_inode, .put_super = udf_put_super, .sync_fs = udf_sync_fs, .statfs = udf_statfs, .remount_fs = udf_remount_fs, .show_options = udf_show_options, }; struct udf_options { unsigned char novrs; unsigned int blocksize; unsigned int session; unsigned int lastblock; unsigned int anchor; unsigned int volume; unsigned short partition; unsigned int fileset; unsigned int rootdir; unsigned int flags; umode_t umask; gid_t gid; uid_t uid; umode_t fmode; umode_t dmode; struct nls_table *nls_map; }; static int __init init_udf_fs(void) { int err; err = init_inodecache(); if (err) goto out1; err = register_filesystem(&udf_fstype); if (err) goto out; return 0; out: destroy_inodecache(); out1: return err; } static void __exit exit_udf_fs(void) { unregister_filesystem(&udf_fstype); destroy_inodecache(); } module_init(init_udf_fs) module_exit(exit_udf_fs) static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) { struct udf_sb_info *sbi = UDF_SB(sb); sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), GFP_KERNEL); if (!sbi->s_partmaps) { udf_err(sb, "Unable to allocate space for %d partition maps\n", count); sbi->s_partitions = 0; return -ENOMEM; } sbi->s_partitions = count; return 0; } static int udf_show_options(struct seq_file *seq, struct dentry *root) { struct super_block *sb = root->d_sb; struct udf_sb_info *sbi = UDF_SB(sb); if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) seq_puts(seq, ",nostrict"); if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) seq_printf(seq, ",bs=%lu", sb->s_blocksize); if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) seq_puts(seq, ",unhide"); if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) seq_puts(seq, ",undelete"); if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) seq_puts(seq, ",noadinicb"); if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) seq_puts(seq, ",shortad"); if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) seq_puts(seq, ",uid=forget"); if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) seq_puts(seq, ",uid=ignore"); if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) seq_puts(seq, ",gid=forget"); if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) seq_puts(seq, ",gid=ignore"); if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) seq_printf(seq, ",uid=%u", sbi->s_uid); if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) seq_printf(seq, ",gid=%u", sbi->s_gid); if (sbi->s_umask != 0) seq_printf(seq, ",umask=%ho", sbi->s_umask); if (sbi->s_fmode != UDF_INVALID_MODE) seq_printf(seq, ",mode=%ho", sbi->s_fmode); if (sbi->s_dmode != UDF_INVALID_MODE) seq_printf(seq, ",dmode=%ho", sbi->s_dmode); if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) seq_printf(seq, ",session=%u", sbi->s_session); if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) seq_printf(seq, ",lastblock=%u", sbi->s_last_block); if (sbi->s_anchor != 0) seq_printf(seq, ",anchor=%u", sbi->s_anchor); /* * volume, partition, fileset and rootdir seem to be ignored * currently */ if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) seq_puts(seq, ",utf8"); if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); return 0; } /* * udf_parse_options * * PURPOSE * Parse mount options. * * DESCRIPTION * The following mount options are supported: * * gid= Set the default group. * umask= Set the default umask. * mode= Set the default file permissions. * dmode= Set the default directory permissions. * uid= Set the default user. * bs= Set the block size. * unhide Show otherwise hidden files. * undelete Show deleted files in lists. * adinicb Embed data in the inode (default) * noadinicb Don't embed data in the inode * shortad Use short ad's * longad Use long ad's (default) * nostrict Unset strict conformance * iocharset= Set the NLS character set * * The remaining are for debugging and disaster recovery: * * novrs Skip volume sequence recognition * * The following expect a offset from 0. * * session= Set the CDROM session (default= last session) * anchor= Override standard anchor location. (default= 256) * volume= Override the VolumeDesc location. (unused) * partition= Override the PartitionDesc location. (unused) * lastblock= Set the last block of the filesystem/ * * The following expect a offset from the partition root. * * fileset= Override the fileset block location. (unused) * rootdir= Override the root directory location. (unused) * WARNING: overriding the rootdir to a non-directory may * yield highly unpredictable results. * * PRE-CONDITIONS * options Pointer to mount options string. * uopts Pointer to mount options variable. * * POST-CONDITIONS * 1 Mount options parsed okay. * 0 Error parsing mount options. * * HISTORY * July 1, 1997 - Andrew E. Mileski * Written, tested, and released. */ enum { Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, Opt_rootdir, Opt_utf8, Opt_iocharset, Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, Opt_fmode, Opt_dmode }; static const match_table_t tokens = { {Opt_novrs, "novrs"}, {Opt_nostrict, "nostrict"}, {Opt_bs, "bs=%u"}, {Opt_unhide, "unhide"}, {Opt_undelete, "undelete"}, {Opt_noadinicb, "noadinicb"}, {Opt_adinicb, "adinicb"}, {Opt_shortad, "shortad"}, {Opt_longad, "longad"}, {Opt_uforget, "uid=forget"}, {Opt_uignore, "uid=ignore"}, {Opt_gforget, "gid=forget"}, {Opt_gignore, "gid=ignore"}, {Opt_gid, "gid=%u"}, {Opt_uid, "uid=%u"}, {Opt_umask, "umask=%o"}, {Opt_session, "session=%u"}, {Opt_lastblock, "lastblock=%u"}, {Opt_anchor, "anchor=%u"}, {Opt_volume, "volume=%u"}, {Opt_partition, "partition=%u"}, {Opt_fileset, "fileset=%u"}, {Opt_rootdir, "rootdir=%u"}, {Opt_utf8, "utf8"}, {Opt_iocharset, "iocharset=%s"}, {Opt_fmode, "mode=%o"}, {Opt_dmode, "dmode=%o"}, {Opt_err, NULL} }; static int udf_parse_options(char *options, struct udf_options *uopt, bool remount) { char *p; int option; uopt->novrs = 0; uopt->partition = 0xFFFF; uopt->session = 0xFFFFFFFF; uopt->lastblock = 0; uopt->anchor = 0; uopt->volume = 0xFFFFFFFF; uopt->rootdir = 0xFFFFFFFF; uopt->fileset = 0xFFFFFFFF; uopt->nls_map = NULL; if (!options) return 1; while ((p = strsep(&options, ",")) != NULL) { substring_t args[MAX_OPT_ARGS]; int token; if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case Opt_novrs: uopt->novrs = 1; break; case Opt_bs: if (match_int(&args[0], &option)) return 0; uopt->blocksize = option; uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); break; case Opt_unhide: uopt->flags |= (1 << UDF_FLAG_UNHIDE); break; case Opt_undelete: uopt->flags |= (1 << UDF_FLAG_UNDELETE); break; case Opt_noadinicb: uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); break; case Opt_adinicb: uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); break; case Opt_shortad: uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); break; case Opt_longad: uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); break; case Opt_gid: if (match_int(args, &option)) return 0; uopt->gid = option; uopt->flags |= (1 << UDF_FLAG_GID_SET); break; case Opt_uid: if (match_int(args, &option)) return 0; uopt->uid = option; uopt->flags |= (1 << UDF_FLAG_UID_SET); break; case Opt_umask: if (match_octal(args, &option)) return 0; uopt->umask = option; break; case Opt_nostrict: uopt->flags &= ~(1 << UDF_FLAG_STRICT); break; case Opt_session: if (match_int(args, &option)) return 0; uopt->session = option; if (!remount) uopt->flags |= (1 << UDF_FLAG_SESSION_SET); break; case Opt_lastblock: if (match_int(args, &option)) return 0; uopt->lastblock = option; if (!remount) uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); break; case Opt_anchor: if (match_int(args, &option)) return 0; uopt->anchor = option; break; case Opt_volume: if (match_int(args, &option)) return 0; uopt->volume = option; break; case Opt_partition: if (match_int(args, &option)) return 0; uopt->partition = option; break; case Opt_fileset: if (match_int(args, &option)) return 0; uopt->fileset = option; break; case Opt_rootdir: if (match_int(args, &option)) return 0; uopt->rootdir = option; break; case Opt_utf8: uopt->flags |= (1 << UDF_FLAG_UTF8); break; #ifdef CONFIG_UDF_NLS case Opt_iocharset: uopt->nls_map = load_nls(args[0].from); uopt->flags |= (1 << UDF_FLAG_NLS_MAP); break; #endif case Opt_uignore: uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); break; case Opt_uforget: uopt->flags |= (1 << UDF_FLAG_UID_FORGET); break; case Opt_gignore: uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); break; case Opt_gforget: uopt->flags |= (1 << UDF_FLAG_GID_FORGET); break; case Opt_fmode: if (match_octal(args, &option)) return 0; uopt->fmode = option & 0777; break; case Opt_dmode: if (match_octal(args, &option)) return 0; uopt->dmode = option & 0777; break; default: pr_err("bad mount option \"%s\" or missing value\n", p); return 0; } } return 1; } static int udf_remount_fs(struct super_block *sb, int *flags, char *options) { struct udf_options uopt; struct udf_sb_info *sbi = UDF_SB(sb); int error = 0; sync_filesystem(sb); uopt.flags = sbi->s_flags; uopt.uid = sbi->s_uid; uopt.gid = sbi->s_gid; uopt.umask = sbi->s_umask; uopt.fmode = sbi->s_fmode; uopt.dmode = sbi->s_dmode; if (!udf_parse_options(options, &uopt, true)) return -EINVAL; write_lock(&sbi->s_cred_lock); sbi->s_flags = uopt.flags; sbi->s_uid = uopt.uid; sbi->s_gid = uopt.gid; sbi->s_umask = uopt.umask; sbi->s_fmode = uopt.fmode; sbi->s_dmode = uopt.dmode; write_unlock(&sbi->s_cred_lock); if (sbi->s_lvid_bh) { int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev); if (write_rev > UDF_MAX_WRITE_VERSION) *flags |= MS_RDONLY; } if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) goto out_unlock; if (*flags & MS_RDONLY) udf_close_lvid(sb); else udf_open_lvid(sb); out_unlock: return error; } /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ static loff_t udf_check_vsd(struct super_block *sb) { struct volStructDesc *vsd = NULL; loff_t sector = 32768; int sectorsize; struct buffer_head *bh = NULL; int nsr02 = 0; int nsr03 = 0; struct udf_sb_info *sbi; sbi = UDF_SB(sb); if (sb->s_blocksize < sizeof(struct volStructDesc)) sectorsize = sizeof(struct volStructDesc); else sectorsize = sb->s_blocksize; sector += (sbi->s_session << sb->s_blocksize_bits); udf_debug("Starting at sector %u (%ld byte sectors)\n", (unsigned int)(sector >> sb->s_blocksize_bits), sb->s_blocksize); /* Process the sequence (if applicable) */ for (; !nsr02 && !nsr03; sector += sectorsize) { /* Read a block */ bh = udf_tread(sb, sector >> sb->s_blocksize_bits); if (!bh) break; /* Look for ISO descriptors */ vsd = (struct volStructDesc *)(bh->b_data + (sector & (sb->s_blocksize - 1))); if (vsd->stdIdent[0] == 0) { brelse(bh); break; } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) { switch (vsd->structType) { case 0: udf_debug("ISO9660 Boot Record found\n"); break; case 1: udf_debug("ISO9660 Primary Volume Descriptor found\n"); break; case 2: udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); break; case 3: udf_debug("ISO9660 Volume Partition Descriptor found\n"); break; case 255: udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); break; default: udf_debug("ISO9660 VRS (%u) found\n", vsd->structType); break; } } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN)) ; /* nothing */ else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, VSD_STD_ID_LEN)) { brelse(bh); break; } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN)) nsr02 = sector; else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN)) nsr03 = sector; brelse(bh); } if (nsr03) return nsr03; else if (nsr02) return nsr02; else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768) return -1; else return 0; } static int udf_find_fileset(struct super_block *sb, struct kernel_lb_addr *fileset, struct kernel_lb_addr *root) { struct buffer_head *bh = NULL; long lastblock; uint16_t ident; struct udf_sb_info *sbi; if (fileset->logicalBlockNum != 0xFFFFFFFF || fileset->partitionReferenceNum != 0xFFFF) { bh = udf_read_ptagged(sb, fileset, 0, &ident); if (!bh) { return 1; } else if (ident != TAG_IDENT_FSD) { brelse(bh); return 1; } } sbi = UDF_SB(sb); if (!bh) { /* Search backwards through the partitions */ struct kernel_lb_addr newfileset; /* --> cvg: FIXME - is it reasonable? */ return 1; for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; (newfileset.partitionReferenceNum != 0xFFFF && fileset->logicalBlockNum == 0xFFFFFFFF && fileset->partitionReferenceNum == 0xFFFF); newfileset.partitionReferenceNum--) { lastblock = sbi->s_partmaps [newfileset.partitionReferenceNum] .s_partition_len; newfileset.logicalBlockNum = 0; do { bh = udf_read_ptagged(sb, &newfileset, 0, &ident); if (!bh) { newfileset.logicalBlockNum++; continue; } switch (ident) { case TAG_IDENT_SBD: { struct spaceBitmapDesc *sp; sp = (struct spaceBitmapDesc *) bh->b_data; newfileset.logicalBlockNum += 1 + ((le32_to_cpu(sp->numOfBytes) + sizeof(struct spaceBitmapDesc) - 1) >> sb->s_blocksize_bits); brelse(bh); break; } case TAG_IDENT_FSD: *fileset = newfileset; break; default: newfileset.logicalBlockNum++; brelse(bh); bh = NULL; break; } } while (newfileset.logicalBlockNum < lastblock && fileset->logicalBlockNum == 0xFFFFFFFF && fileset->partitionReferenceNum == 0xFFFF); } } if ((fileset->logicalBlockNum != 0xFFFFFFFF || fileset->partitionReferenceNum != 0xFFFF) && bh) { udf_debug("Fileset at block=%d, partition=%d\n", fileset->logicalBlockNum, fileset->partitionReferenceNum); sbi->s_partition = fileset->partitionReferenceNum; udf_load_fileset(sb, bh, root); brelse(bh); return 0; } return 1; } static int udf_load_pvoldesc(struct super_block *sb, sector_t block) { struct primaryVolDesc *pvoldesc; struct ustr *instr, *outstr; struct buffer_head *bh; uint16_t ident; int ret = 1; instr = kmalloc(sizeof(struct ustr), GFP_NOFS); if (!instr) return 1; outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); if (!outstr) goto out1; bh = udf_read_tagged(sb, block, block, &ident); if (!bh) goto out2; BUG_ON(ident != TAG_IDENT_PVD); pvoldesc = (struct primaryVolDesc *)bh->b_data; if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, pvoldesc->recordingDateAndTime)) { #ifdef UDFFS_DEBUG struct timestamp *ts = &pvoldesc->recordingDateAndTime; udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, ts->minute, le16_to_cpu(ts->typeAndTimezone)); #endif } if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) if (udf_CS0toUTF8(outstr, instr)) { strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, outstr->u_len > 31 ? 31 : outstr->u_len); udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); } if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) if (udf_CS0toUTF8(outstr, instr)) udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); brelse(bh); ret = 0; out2: kfree(outstr); out1: kfree(instr); return ret; } struct inode *udf_find_metadata_inode_efe(struct super_block *sb, u32 meta_file_loc, u32 partition_num) { struct kernel_lb_addr addr; struct inode *metadata_fe; addr.logicalBlockNum = meta_file_loc; addr.partitionReferenceNum = partition_num; metadata_fe = udf_iget(sb, &addr); if (metadata_fe == NULL) udf_warn(sb, "metadata inode efe not found\n"); else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); iput(metadata_fe); metadata_fe = NULL; } return metadata_fe; } static int udf_load_metadata_files(struct super_block *sb, int partition) { struct udf_sb_info *sbi = UDF_SB(sb); struct udf_part_map *map; struct udf_meta_data *mdata; struct kernel_lb_addr addr; map = &sbi->s_partmaps[partition]; mdata = &map->s_type_specific.s_metadata; /* metadata address */ udf_debug("Metadata file location: block = %d part = %d\n", mdata->s_meta_file_loc, map->s_partition_num); mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, map->s_partition_num); if (mdata->s_metadata_fe == NULL) { /* mirror file entry */ udf_debug("Mirror metadata file location: block = %d part = %d\n", mdata->s_mirror_file_loc, map->s_partition_num); mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, map->s_partition_num); if (mdata->s_mirror_fe == NULL) { udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); goto error_exit; } } /* * bitmap file entry * Note: * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) */ if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { addr.logicalBlockNum = mdata->s_bitmap_file_loc; addr.partitionReferenceNum = map->s_partition_num; udf_debug("Bitmap file location: block = %d part = %d\n", addr.logicalBlockNum, addr.partitionReferenceNum); mdata->s_bitmap_fe = udf_iget(sb, &addr); if (mdata->s_bitmap_fe == NULL) { if (sb->s_flags & MS_RDONLY) udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); else { udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); goto error_exit; } } } udf_debug("udf_load_metadata_files Ok\n"); return 0; error_exit: return 1; } static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, struct kernel_lb_addr *root) { struct fileSetDesc *fset; fset = (struct fileSetDesc *)bh->b_data; *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); udf_debug("Rootdir at block=%d, partition=%d\n", root->logicalBlockNum, root->partitionReferenceNum); } int udf_compute_nr_groups(struct super_block *sb, u32 partition) { struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; return DIV_ROUND_UP(map->s_partition_len + (sizeof(struct spaceBitmapDesc) << 3), sb->s_blocksize * 8); } static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) { struct udf_bitmap *bitmap; int nr_groups; int size; nr_groups = udf_compute_nr_groups(sb, index); size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * nr_groups); if (size <= PAGE_SIZE) bitmap = kzalloc(size, GFP_KERNEL); else bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ if (bitmap == NULL) return NULL; bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1); bitmap->s_nr_groups = nr_groups; return bitmap; } static int udf_fill_partdesc_info(struct super_block *sb, struct partitionDesc *p, int p_index) { struct udf_part_map *map; struct udf_sb_info *sbi = UDF_SB(sb); struct partitionHeaderDesc *phd; map = &sbi->s_partmaps[p_index]; map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n", p_index, map->s_partition_type, map->s_partition_root, map->s_partition_len); if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) return 0; phd = (struct partitionHeaderDesc *)p->partitionContentsUse; if (phd->unallocSpaceTable.extLength) { struct kernel_lb_addr loc = { .logicalBlockNum = le32_to_cpu( phd->unallocSpaceTable.extPosition), .partitionReferenceNum = p_index, }; map->s_uspace.s_table = udf_iget(sb, &loc); if (!map->s_uspace.s_table) { udf_debug("cannot load unallocSpaceTable (part %d)\n", p_index); return 1; } map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; udf_debug("unallocSpaceTable (part %d) @ %ld\n", p_index, map->s_uspace.s_table->i_ino); } if (phd->unallocSpaceBitmap.extLength) { struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); if (!bitmap) return 1; map->s_uspace.s_bitmap = bitmap; bitmap->s_extLength = le32_to_cpu( phd->unallocSpaceBitmap.extLength); bitmap->s_extPosition = le32_to_cpu( phd->unallocSpaceBitmap.extPosition); map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index, bitmap->s_extPosition); } if (phd->partitionIntegrityTable.extLength) udf_debug("partitionIntegrityTable (part %d)\n", p_index); if (phd->freedSpaceTable.extLength) { struct kernel_lb_addr loc = { .logicalBlockNum = le32_to_cpu( phd->freedSpaceTable.extPosition), .partitionReferenceNum = p_index, }; map->s_fspace.s_table = udf_iget(sb, &loc); if (!map->s_fspace.s_table) { udf_debug("cannot load freedSpaceTable (part %d)\n", p_index); return 1; } map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; udf_debug("freedSpaceTable (part %d) @ %ld\n", p_index, map->s_fspace.s_table->i_ino); } if (phd->freedSpaceBitmap.extLength) { struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); if (!bitmap) return 1; map->s_fspace.s_bitmap = bitmap; bitmap->s_extLength = le32_to_cpu( phd->freedSpaceBitmap.extLength); bitmap->s_extPosition = le32_to_cpu( phd->freedSpaceBitmap.extPosition); map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index, bitmap->s_extPosition); } return 0; } static void udf_find_vat_block(struct super_block *sb, int p_index, int type1_index, sector_t start_block) { struct udf_sb_info *sbi = UDF_SB(sb); struct udf_part_map *map = &sbi->s_partmaps[p_index]; sector_t vat_block; struct kernel_lb_addr ino; /* * VAT file entry is in the last recorded block. Some broken disks have * it a few blocks before so try a bit harder... */ ino.partitionReferenceNum = type1_index; for (vat_block = start_block; vat_block >= map->s_partition_root && vat_block >= start_block - 3 && !sbi->s_vat_inode; vat_block--) { ino.logicalBlockNum = vat_block - map->s_partition_root; sbi->s_vat_inode = udf_iget(sb, &ino); } } static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) { struct udf_sb_info *sbi = UDF_SB(sb); struct udf_part_map *map = &sbi->s_partmaps[p_index]; struct buffer_head *bh = NULL; struct udf_inode_info *vati; uint32_t pos; struct virtualAllocationTable20 *vat20; sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); if (!sbi->s_vat_inode && sbi->s_last_block != blocks - 1) { pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", (unsigned long)sbi->s_last_block, (unsigned long)blocks - 1); udf_find_vat_block(sb, p_index, type1_index, blocks - 1); } if (!sbi->s_vat_inode) return 1; if (map->s_partition_type == UDF_VIRTUAL_MAP15) { map->s_type_specific.s_virtual.s_start_offset = 0; map->s_type_specific.s_virtual.s_num_entries = (sbi->s_vat_inode->i_size - 36) >> 2; } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { vati = UDF_I(sbi->s_vat_inode); if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { pos = udf_block_map(sbi->s_vat_inode, 0); bh = sb_bread(sb, pos); if (!bh) return 1; vat20 = (struct virtualAllocationTable20 *)bh->b_data; } else { vat20 = (struct virtualAllocationTable20 *) vati->i_ext.i_data; } map->s_type_specific.s_virtual.s_start_offset = le16_to_cpu(vat20->lengthHeader); map->s_type_specific.s_virtual.s_num_entries = (sbi->s_vat_inode->i_size - map->s_type_specific.s_virtual. s_start_offset) >> 2; brelse(bh); } return 0; } static int udf_load_partdesc(struct super_block *sb, sector_t block) { struct buffer_head *bh; struct partitionDesc *p; struct udf_part_map *map; struct udf_sb_info *sbi = UDF_SB(sb); int i, type1_idx; uint16_t partitionNumber; uint16_t ident; int ret = 0; bh = udf_read_tagged(sb, block, block, &ident); if (!bh) return 1; if (ident != TAG_IDENT_PD) goto out_bh; p = (struct partitionDesc *)bh->b_data; partitionNumber = le16_to_cpu(p->partitionNumber); /* First scan for TYPE1, SPARABLE and METADATA partitions */ for (i = 0; i < sbi->s_partitions; i++) { map = &sbi->s_partmaps[i]; udf_debug("Searching map: (%d == %d)\n", map->s_partition_num, partitionNumber); if (map->s_partition_num == partitionNumber && (map->s_partition_type == UDF_TYPE1_MAP15 || map->s_partition_type == UDF_SPARABLE_MAP15)) break; } if (i >= sbi->s_partitions) { udf_debug("Partition (%d) not found in partition map\n", partitionNumber); goto out_bh; } ret = udf_fill_partdesc_info(sb, p, i); /* * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and * PHYSICAL partitions are already set up */ type1_idx = i; for (i = 0; i < sbi->s_partitions; i++) { map = &sbi->s_partmaps[i]; if (map->s_partition_num == partitionNumber && (map->s_partition_type == UDF_VIRTUAL_MAP15 || map->s_partition_type == UDF_VIRTUAL_MAP20 || map->s_partition_type == UDF_METADATA_MAP25)) break; } if (i >= sbi->s_partitions) goto out_bh; ret = udf_fill_partdesc_info(sb, p, i); if (ret) goto out_bh; if (map->s_partition_type == UDF_METADATA_MAP25) { ret = udf_load_metadata_files(sb, i); if (ret) { udf_err(sb, "error loading MetaData partition map %d\n", i); goto out_bh; } } else { ret = udf_load_vat(sb, i, type1_idx); if (ret) goto out_bh; /* * Mark filesystem read-only if we have a partition with * virtual map since we don't handle writing to it (we * overwrite blocks instead of relocating them). */ sb->s_flags |= MS_RDONLY; pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n"); } out_bh: /* In case loading failed, we handle cleanup in udf_fill_super */ brelse(bh); return ret; } static int udf_load_sparable_map(struct super_block *sb, struct udf_part_map *map, struct sparablePartitionMap *spm) { uint32_t loc; uint16_t ident; struct sparingTable *st; struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; int i; struct buffer_head *bh; map->s_partition_type = UDF_SPARABLE_MAP15; sdata->s_packet_len = le16_to_cpu(spm->packetLength); if (!is_power_of_2(sdata->s_packet_len)) { udf_err(sb, "error loading logical volume descriptor: " "Invalid packet length %u\n", (unsigned)sdata->s_packet_len); return -EIO; } if (spm->numSparingTables > 4) { udf_err(sb, "error loading logical volume descriptor: " "Too many sparing tables (%d)\n", (int)spm->numSparingTables); return -EIO; } for (i = 0; i < spm->numSparingTables; i++) { loc = le32_to_cpu(spm->locSparingTable[i]); bh = udf_read_tagged(sb, loc, loc, &ident); if (!bh) continue; st = (struct sparingTable *)bh->b_data; if (ident != 0 || strncmp(st->sparingIdent.ident, UDF_ID_SPARING, strlen(UDF_ID_SPARING)) || sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > sb->s_blocksize) { brelse(bh); continue; } sdata->s_spar_map[i] = bh; } map->s_partition_func = udf_get_pblock_spar15; return 0; } static int udf_load_logicalvol(struct super_block *sb, sector_t block, struct kernel_lb_addr *fileset) { struct logicalVolDesc *lvd; int i, offset; uint8_t type; struct udf_sb_info *sbi = UDF_SB(sb); struct genericPartitionMap *gpm; uint16_t ident; struct buffer_head *bh; unsigned int table_len; int ret = 0; bh = udf_read_tagged(sb, block, block, &ident); if (!bh) return 1; BUG_ON(ident != TAG_IDENT_LVD); lvd = (struct logicalVolDesc *)bh->b_data; table_len = le32_to_cpu(lvd->mapTableLength); if (table_len > sb->s_blocksize - sizeof(*lvd)) { udf_err(sb, "error loading logical volume descriptor: " "Partition table too long (%u > %lu)\n", table_len, sb->s_blocksize - sizeof(*lvd)); ret = 1; goto out_bh; } ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); if (ret) goto out_bh; for (i = 0, offset = 0; i < sbi->s_partitions && offset < table_len; i++, offset += gpm->partitionMapLength) { struct udf_part_map *map = &sbi->s_partmaps[i]; gpm = (struct genericPartitionMap *) &(lvd->partitionMaps[offset]); type = gpm->partitionMapType; if (type == 1) { struct genericPartitionMap1 *gpm1 = (struct genericPartitionMap1 *)gpm; map->s_partition_type = UDF_TYPE1_MAP15; map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); map->s_partition_num = le16_to_cpu(gpm1->partitionNum); map->s_partition_func = NULL; } else if (type == 2) { struct udfPartitionMap2 *upm2 = (struct udfPartitionMap2 *)gpm; if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, strlen(UDF_ID_VIRTUAL))) { u16 suf = le16_to_cpu(((__le16 *)upm2->partIdent. identSuffix)[0]); if (suf < 0x0200) { map->s_partition_type = UDF_VIRTUAL_MAP15; map->s_partition_func = udf_get_pblock_virt15; } else { map->s_partition_type = UDF_VIRTUAL_MAP20; map->s_partition_func = udf_get_pblock_virt20; } } else if (!strncmp(upm2->partIdent.ident, UDF_ID_SPARABLE, strlen(UDF_ID_SPARABLE))) { if (udf_load_sparable_map(sb, map, (struct sparablePartitionMap *)gpm) < 0) { ret = 1; goto out_bh; } } else if (!strncmp(upm2->partIdent.ident, UDF_ID_METADATA, strlen(UDF_ID_METADATA))) { struct udf_meta_data *mdata = &map->s_type_specific.s_metadata; struct metadataPartitionMap *mdm = (struct metadataPartitionMap *) &(lvd->partitionMaps[offset]); udf_debug("Parsing Logical vol part %d type %d id=%s\n", i, type, UDF_ID_METADATA); map->s_partition_type = UDF_METADATA_MAP25; map->s_partition_func = udf_get_pblock_meta25; mdata->s_meta_file_loc = le32_to_cpu(mdm->metadataFileLoc); mdata->s_mirror_file_loc = le32_to_cpu(mdm->metadataMirrorFileLoc); mdata->s_bitmap_file_loc = le32_to_cpu(mdm->metadataBitmapFileLoc); mdata->s_alloc_unit_size = le32_to_cpu(mdm->allocUnitSize); mdata->s_align_unit_size = le16_to_cpu(mdm->alignUnitSize); if (mdm->flags & 0x01) mdata->s_flags |= MF_DUPLICATE_MD; udf_debug("Metadata Ident suffix=0x%x\n", le16_to_cpu(*(__le16 *) mdm->partIdent.identSuffix)); udf_debug("Metadata part num=%d\n", le16_to_cpu(mdm->partitionNum)); udf_debug("Metadata part alloc unit size=%d\n", le32_to_cpu(mdm->allocUnitSize)); udf_debug("Metadata file loc=%d\n", le32_to_cpu(mdm->metadataFileLoc)); udf_debug("Mirror file loc=%d\n", le32_to_cpu(mdm->metadataMirrorFileLoc)); udf_debug("Bitmap file loc=%d\n", le32_to_cpu(mdm->metadataBitmapFileLoc)); udf_debug("Flags: %d %d\n", mdata->s_flags, mdm->flags); } else { udf_debug("Unknown ident: %s\n", upm2->partIdent.ident); continue; } map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); map->s_partition_num = le16_to_cpu(upm2->partitionNum); } udf_debug("Partition (%d:%d) type %d on volume %d\n", i, map->s_partition_num, type, map->s_volumeseqnum); } if (fileset) { struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); *fileset = lelb_to_cpu(la->extLocation); udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n", fileset->logicalBlockNum, fileset->partitionReferenceNum); } if (lvd->integritySeqExt.extLength) udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); out_bh: brelse(bh); return ret; } /* * udf_load_logicalvolint * */ static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) { struct buffer_head *bh = NULL; uint16_t ident; struct udf_sb_info *sbi = UDF_SB(sb); struct logicalVolIntegrityDesc *lvid; while (loc.extLength > 0 && (bh = udf_read_tagged(sb, loc.extLocation, loc.extLocation, &ident)) && ident == TAG_IDENT_LVID) { sbi->s_lvid_bh = bh; lvid = (struct logicalVolIntegrityDesc *)bh->b_data; if (lvid->nextIntegrityExt.extLength) udf_load_logicalvolint(sb, leea_to_cpu(lvid->nextIntegrityExt)); if (sbi->s_lvid_bh != bh) brelse(bh); loc.extLength -= sb->s_blocksize; loc.extLocation++; } if (sbi->s_lvid_bh != bh) brelse(bh); } /* * udf_process_sequence * * PURPOSE * Process a main/reserve volume descriptor sequence. * * PRE-CONDITIONS * sb Pointer to _locked_ superblock. * block First block of first extent of the sequence. * lastblock Lastblock of first extent of the sequence. * * HISTORY * July 1, 1997 - Andrew E. Mileski * Written, tested, and released. */ static noinline int udf_process_sequence(struct super_block *sb, long block, long lastblock, struct kernel_lb_addr *fileset) { struct buffer_head *bh = NULL; struct udf_vds_record vds[VDS_POS_LENGTH]; struct udf_vds_record *curr; struct generic_desc *gd; struct volDescPtr *vdp; int done = 0; uint32_t vdsn; uint16_t ident; long next_s = 0, next_e = 0; memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); /* * Read the main descriptor sequence and find which descriptors * are in it. */ for (; (!done && block <= lastblock); block++) { bh = udf_read_tagged(sb, block, block, &ident); if (!bh) { udf_err(sb, "Block %llu of volume descriptor sequence is corrupted or we could not read it\n", (unsigned long long)block); return 1; } /* Process each descriptor (ISO 13346 3/8.3-8.4) */ gd = (struct generic_desc *)bh->b_data; vdsn = le32_to_cpu(gd->volDescSeqNum); switch (ident) { case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; if (vdsn >= curr->volDescSeqNum) { curr->volDescSeqNum = vdsn; curr->block = block; } break; case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ curr = &vds[VDS_POS_VOL_DESC_PTR]; if (vdsn >= curr->volDescSeqNum) { curr->volDescSeqNum = vdsn; curr->block = block; vdp = (struct volDescPtr *)bh->b_data; next_s = le32_to_cpu( vdp->nextVolDescSeqExt.extLocation); next_e = le32_to_cpu( vdp->nextVolDescSeqExt.extLength); next_e = next_e >> sb->s_blocksize_bits; next_e += next_s; } break; case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; if (vdsn >= curr->volDescSeqNum) { curr->volDescSeqNum = vdsn; curr->block = block; } break; case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ curr = &vds[VDS_POS_PARTITION_DESC]; if (!curr->block) curr->block = block; break; case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; if (vdsn >= curr->volDescSeqNum) { curr->volDescSeqNum = vdsn; curr->block = block; } break; case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; if (vdsn >= curr->volDescSeqNum) { curr->volDescSeqNum = vdsn; curr->block = block; } break; case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ vds[VDS_POS_TERMINATING_DESC].block = block; if (next_e) { block = next_s; lastblock = next_e; next_s = next_e = 0; } else done = 1; break; } brelse(bh); } /* * Now read interesting descriptors again and process them * in a suitable order */ if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { udf_err(sb, "Primary Volume Descriptor not found!\n"); return 1; } if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block)) return 1; if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb, vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset)) return 1; if (vds[VDS_POS_PARTITION_DESC].block) { /* * We rescan the whole descriptor sequence to find * partition descriptor blocks and process them. */ for (block = vds[VDS_POS_PARTITION_DESC].block; block < vds[VDS_POS_TERMINATING_DESC].block; block++) if (udf_load_partdesc(sb, block)) return 1; } return 0; } static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, struct kernel_lb_addr *fileset) { struct anchorVolDescPtr *anchor; long main_s, main_e, reserve_s, reserve_e; anchor = (struct anchorVolDescPtr *)bh->b_data; /* Locate the main sequence */ main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); main_e = main_e >> sb->s_blocksize_bits; main_e += main_s; /* Locate the reserve sequence */ reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); reserve_e = reserve_e >> sb->s_blocksize_bits; reserve_e += reserve_s; /* Process the main & reserve sequences */ /* responsible for finding the PartitionDesc(s) */ if (!udf_process_sequence(sb, main_s, main_e, fileset)) return 1; return !udf_process_sequence(sb, reserve_s, reserve_e, fileset); } /* * Check whether there is an anchor block in the given block and * load Volume Descriptor Sequence if so. */ static int udf_check_anchor_block(struct super_block *sb, sector_t block, struct kernel_lb_addr *fileset) { struct buffer_head *bh; uint16_t ident; int ret; if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && udf_fixed_to_variable(block) >= sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) return 0; bh = udf_read_tagged(sb, block, block, &ident); if (!bh) return 0; if (ident != TAG_IDENT_AVDP) { brelse(bh); return 0; } ret = udf_load_sequence(sb, bh, fileset); brelse(bh); return ret; } /* Search for an anchor volume descriptor pointer */ static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock, struct kernel_lb_addr *fileset) { sector_t last[6]; int i; struct udf_sb_info *sbi = UDF_SB(sb); int last_count = 0; /* First try user provided anchor */ if (sbi->s_anchor) { if (udf_check_anchor_block(sb, sbi->s_anchor, fileset)) return lastblock; } /* * according to spec, anchor is in either: * block 256 * lastblock-256 * lastblock * however, if the disc isn't closed, it could be 512. */ if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset)) return lastblock; /* * The trouble is which block is the last one. Drives often misreport * this so we try various possibilities. */ last[last_count++] = lastblock; if (lastblock >= 1) last[last_count++] = lastblock - 1; last[last_count++] = lastblock + 1; if (lastblock >= 2) last[last_count++] = lastblock - 2; if (lastblock >= 150) last[last_count++] = lastblock - 150; if (lastblock >= 152) last[last_count++] = lastblock - 152; for (i = 0; i < last_count; i++) { if (last[i] >= sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) continue; if (udf_check_anchor_block(sb, last[i], fileset)) return last[i]; if (last[i] < 256) continue; if (udf_check_anchor_block(sb, last[i] - 256, fileset)) return last[i]; } /* Finally try block 512 in case media is open */ if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset)) return last[0]; return 0; } /* * Find an anchor volume descriptor and load Volume Descriptor Sequence from * area specified by it. The function expects sbi->s_lastblock to be the last * block on the media. * * Return 1 if ok, 0 if not found. * */ static int udf_find_anchor(struct super_block *sb, struct kernel_lb_addr *fileset) { sector_t lastblock; struct udf_sb_info *sbi = UDF_SB(sb); lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); if (lastblock) goto out; /* No anchor found? Try VARCONV conversion of block numbers */ UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); /* Firstly, we try to not convert number of the last block */ lastblock = udf_scan_anchors(sb, udf_variable_to_fixed(sbi->s_last_block), fileset); if (lastblock) goto out; /* Secondly, we try with converted number of the last block */ lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); if (!lastblock) { /* VARCONV didn't help. Clear it. */ UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); return 0; } out: sbi->s_last_block = lastblock; return 1; } /* * Check Volume Structure Descriptor, find Anchor block and load Volume * Descriptor Sequence */ static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, int silent, struct kernel_lb_addr *fileset) { struct udf_sb_info *sbi = UDF_SB(sb); loff_t nsr_off; if (!sb_set_blocksize(sb, uopt->blocksize)) { if (!silent) udf_warn(sb, "Bad block size\n"); return 0; } sbi->s_last_block = uopt->lastblock; if (!uopt->novrs) { /* Check that it is NSR02 compliant */ nsr_off = udf_check_vsd(sb); if (!nsr_off) { if (!silent) udf_warn(sb, "No VRS found\n"); return 0; } if (nsr_off == -1) udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n"); if (!sbi->s_last_block) sbi->s_last_block = udf_get_last_block(sb); } else { udf_debug("Validity check skipped because of novrs option\n"); } /* Look for anchor block and load Volume Descriptor Sequence */ sbi->s_anchor = uopt->anchor; if (!udf_find_anchor(sb, fileset)) { if (!silent) udf_warn(sb, "No anchor found\n"); return 0; } return 1; } static void udf_open_lvid(struct super_block *sb) { struct udf_sb_info *sbi = UDF_SB(sb); struct buffer_head *bh = sbi->s_lvid_bh; struct logicalVolIntegrityDesc *lvid; struct logicalVolIntegrityDescImpUse *lvidiu; if (!bh) return; mutex_lock(&sbi->s_alloc_mutex); lvid = (struct logicalVolIntegrityDesc *)bh->b_data; lvidiu = udf_sb_lvidiu(sbi); lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); lvid->descTag.descCRC = cpu_to_le16( crc_itu_t(0, (char *)lvid + sizeof(struct tag), le16_to_cpu(lvid->descTag.descCRCLength))); lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); mark_buffer_dirty(bh); sbi->s_lvid_dirty = 0; mutex_unlock(&sbi->s_alloc_mutex); } static void udf_close_lvid(struct super_block *sb) { struct udf_sb_info *sbi = UDF_SB(sb); struct buffer_head *bh = sbi->s_lvid_bh; struct logicalVolIntegrityDesc *lvid; struct logicalVolIntegrityDescImpUse *lvidiu; if (!bh) return; mutex_lock(&sbi->s_alloc_mutex); lvid = (struct logicalVolIntegrityDesc *)bh->b_data; lvidiu = udf_sb_lvidiu(sbi); lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); lvid->descTag.descCRC = cpu_to_le16( crc_itu_t(0, (char *)lvid + sizeof(struct tag), le16_to_cpu(lvid->descTag.descCRCLength))); lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); /* * We set buffer uptodate unconditionally here to avoid spurious * warnings from mark_buffer_dirty() when previous EIO has marked * the buffer as !uptodate */ set_buffer_uptodate(bh); mark_buffer_dirty(bh); sbi->s_lvid_dirty = 0; mutex_unlock(&sbi->s_alloc_mutex); } u64 lvid_get_unique_id(struct super_block *sb) { struct buffer_head *bh; struct udf_sb_info *sbi = UDF_SB(sb); struct logicalVolIntegrityDesc *lvid; struct logicalVolHeaderDesc *lvhd; u64 uniqueID; u64 ret; bh = sbi->s_lvid_bh; if (!bh) return 0; lvid = (struct logicalVolIntegrityDesc *)bh->b_data; lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; mutex_lock(&sbi->s_alloc_mutex); ret = uniqueID = le64_to_cpu(lvhd->uniqueID); if (!(++uniqueID & 0xFFFFFFFF)) uniqueID += 16; lvhd->uniqueID = cpu_to_le64(uniqueID); mutex_unlock(&sbi->s_alloc_mutex); mark_buffer_dirty(bh); return ret; } static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) { int i; int nr_groups = bitmap->s_nr_groups; int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * nr_groups); for (i = 0; i < nr_groups; i++) if (bitmap->s_block_bitmap[i]) brelse(bitmap->s_block_bitmap[i]); if (size <= PAGE_SIZE) kfree(bitmap); else vfree(bitmap); } static void udf_free_partition(struct udf_part_map *map) { int i; struct udf_meta_data *mdata; if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) iput(map->s_uspace.s_table); if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) iput(map->s_fspace.s_table); if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) udf_sb_free_bitmap(map->s_uspace.s_bitmap); if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) udf_sb_free_bitmap(map->s_fspace.s_bitmap); if (map->s_partition_type == UDF_SPARABLE_MAP15) for (i = 0; i < 4; i++) brelse(map->s_type_specific.s_sparing.s_spar_map[i]); else if (map->s_partition_type == UDF_METADATA_MAP25) { mdata = &map->s_type_specific.s_metadata; iput(mdata->s_metadata_fe); mdata->s_metadata_fe = NULL; iput(mdata->s_mirror_fe); mdata->s_mirror_fe = NULL; iput(mdata->s_bitmap_fe); mdata->s_bitmap_fe = NULL; } } static int udf_fill_super(struct super_block *sb, void *options, int silent) { int i; int ret; struct inode *inode = NULL; struct udf_options uopt; struct kernel_lb_addr rootdir, fileset; struct udf_sb_info *sbi; uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); uopt.uid = -1; uopt.gid = -1; uopt.umask = 0; uopt.fmode = UDF_INVALID_MODE; uopt.dmode = UDF_INVALID_MODE; sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); if (!sbi) return -ENOMEM; sb->s_fs_info = sbi; mutex_init(&sbi->s_alloc_mutex); if (!udf_parse_options((char *)options, &uopt, false)) goto error_out; if (uopt.flags & (1 << UDF_FLAG_UTF8) && uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { udf_err(sb, "utf8 cannot be combined with iocharset\n"); goto error_out; } #ifdef CONFIG_UDF_NLS if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { uopt.nls_map = load_nls_default(); if (!uopt.nls_map) uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); else udf_debug("Using default NLS map\n"); } #endif if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) uopt.flags |= (1 << UDF_FLAG_UTF8); fileset.logicalBlockNum = 0xFFFFFFFF; fileset.partitionReferenceNum = 0xFFFF; sbi->s_flags = uopt.flags; sbi->s_uid = uopt.uid; sbi->s_gid = uopt.gid; sbi->s_umask = uopt.umask; sbi->s_fmode = uopt.fmode; sbi->s_dmode = uopt.dmode; sbi->s_nls_map = uopt.nls_map; rwlock_init(&sbi->s_cred_lock); if (uopt.session == 0xFFFFFFFF) sbi->s_session = udf_get_last_session(sb); else sbi->s_session = uopt.session; udf_debug("Multi-session=%d\n", sbi->s_session); /* Fill in the rest of the superblock */ sb->s_op = &udf_sb_ops; sb->s_export_op = &udf_export_ops; sb->s_dirt = 0; sb->s_magic = UDF_SUPER_MAGIC; sb->s_time_gran = 1000; if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { ret = udf_load_vrs(sb, &uopt, silent, &fileset); } else { uopt.blocksize = bdev_logical_block_size(sb->s_bdev); ret = udf_load_vrs(sb, &uopt, silent, &fileset); if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { if (!silent) pr_notice("Rescanning with blocksize %d\n", UDF_DEFAULT_BLOCKSIZE); uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; ret = udf_load_vrs(sb, &uopt, silent, &fileset); } } if (!ret) { udf_warn(sb, "No partition found (1)\n"); goto error_out; } udf_debug("Lastblock=%d\n", sbi->s_last_block); if (sbi->s_lvid_bh) { struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sbi); uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); /* uint16_t maxUDFWriteRev = le16_to_cpu(lvidiu->maxUDFWriteRev); */ if (minUDFReadRev > UDF_MAX_READ_VERSION) { udf_err(sb, "minUDFReadRev=%x (max is %x)\n", le16_to_cpu(lvidiu->minUDFReadRev), UDF_MAX_READ_VERSION); goto error_out; } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) sb->s_flags |= MS_RDONLY; sbi->s_udfrev = minUDFWriteRev; if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); if (minUDFReadRev >= UDF_VERS_USE_STREAMS) UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); } if (!sbi->s_partitions) { udf_warn(sb, "No partition found (2)\n"); goto error_out; } if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & UDF_PART_FLAG_READ_ONLY) { pr_notice("Partition marked readonly; forcing readonly mount\n"); sb->s_flags |= MS_RDONLY; } if (udf_find_fileset(sb, &fileset, &rootdir)) { udf_warn(sb, "No fileset found\n"); goto error_out; } if (!silent) { struct timestamp ts; udf_time_to_disk_stamp(&ts, sbi->s_record_time); udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day, ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); } if (!(sb->s_flags & MS_RDONLY)) udf_open_lvid(sb); /* Assign the root inode */ /* assign inodes by physical block number */ /* perhaps it's not extensible enough, but for now ... */ inode = udf_iget(sb, &rootdir); if (!inode) { udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n", rootdir.logicalBlockNum, rootdir.partitionReferenceNum); goto error_out; } /* Allocate a dentry for the root inode */ sb->s_root = d_make_root(inode); if (!sb->s_root) { udf_err(sb, "Couldn't allocate root dentry\n"); goto error_out; } sb->s_maxbytes = MAX_LFS_FILESIZE; sb->s_max_links = UDF_MAX_LINKS; return 0; error_out: if (sbi->s_vat_inode) iput(sbi->s_vat_inode); if (sbi->s_partitions) for (i = 0; i < sbi->s_partitions; i++) udf_free_partition(&sbi->s_partmaps[i]); #ifdef CONFIG_UDF_NLS if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) unload_nls(sbi->s_nls_map); #endif if (!(sb->s_flags & MS_RDONLY)) udf_close_lvid(sb); brelse(sbi->s_lvid_bh); kfree(sbi->s_partmaps); kfree(sbi); sb->s_fs_info = NULL; return -EINVAL; } void _udf_err(struct super_block *sb, const char *function, const char *fmt, ...) { struct va_format vaf; va_list args; /* mark sb error */ if (!(sb->s_flags & MS_RDONLY)) sb->s_dirt = 1; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); va_end(args); } void _udf_warn(struct super_block *sb, const char *function, const char *fmt, ...) { struct va_format vaf; va_list args; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); va_end(args); } static void udf_put_super(struct super_block *sb) { int i; struct udf_sb_info *sbi; sbi = UDF_SB(sb); if (sbi->s_vat_inode) iput(sbi->s_vat_inode); if (sbi->s_partitions) for (i = 0; i < sbi->s_partitions; i++) udf_free_partition(&sbi->s_partmaps[i]); #ifdef CONFIG_UDF_NLS if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) unload_nls(sbi->s_nls_map); #endif if (!(sb->s_flags & MS_RDONLY)) udf_close_lvid(sb); brelse(sbi->s_lvid_bh); kfree(sbi->s_partmaps); kfree(sb->s_fs_info); sb->s_fs_info = NULL; } static int udf_sync_fs(struct super_block *sb, int wait) { struct udf_sb_info *sbi = UDF_SB(sb); mutex_lock(&sbi->s_alloc_mutex); if (sbi->s_lvid_dirty) { /* * Blockdevice will be synced later so we don't have to submit * the buffer for IO */ mark_buffer_dirty(sbi->s_lvid_bh); sb->s_dirt = 0; sbi->s_lvid_dirty = 0; } mutex_unlock(&sbi->s_alloc_mutex); return 0; } static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct udf_sb_info *sbi = UDF_SB(sb); struct logicalVolIntegrityDescImpUse *lvidiu; u64 id = huge_encode_dev(sb->s_bdev->bd_dev); if (sbi->s_lvid_bh != NULL) lvidiu = udf_sb_lvidiu(sbi); else lvidiu = NULL; buf->f_type = UDF_SUPER_MAGIC; buf->f_bsize = sb->s_blocksize; buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; buf->f_bfree = udf_count_free(sb); buf->f_bavail = buf->f_bfree; buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + le32_to_cpu(lvidiu->numDirs)) : 0) + buf->f_bfree; buf->f_ffree = buf->f_bfree; buf->f_namelen = UDF_NAME_LEN - 2; buf->f_fsid.val[0] = (u32)id; buf->f_fsid.val[1] = (u32)(id >> 32); return 0; } static unsigned int udf_count_free_bitmap(struct super_block *sb, struct udf_bitmap *bitmap) { struct buffer_head *bh = NULL; unsigned int accum = 0; int index; int block = 0, newblock; struct kernel_lb_addr loc; uint32_t bytes; uint8_t *ptr; uint16_t ident; struct spaceBitmapDesc *bm; loc.logicalBlockNum = bitmap->s_extPosition; loc.partitionReferenceNum = UDF_SB(sb)->s_partition; bh = udf_read_ptagged(sb, &loc, 0, &ident); if (!bh) { udf_err(sb, "udf_count_free failed\n"); goto out; } else if (ident != TAG_IDENT_SBD) { brelse(bh); udf_err(sb, "udf_count_free failed\n"); goto out; } bm = (struct spaceBitmapDesc *)bh->b_data; bytes = le32_to_cpu(bm->numOfBytes); index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ ptr = (uint8_t *)bh->b_data; while (bytes > 0) { u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); accum += bitmap_weight((const unsigned long *)(ptr + index), cur_bytes * 8); bytes -= cur_bytes; if (bytes) { brelse(bh); newblock = udf_get_lb_pblock(sb, &loc, ++block); bh = udf_tread(sb, newblock); if (!bh) { udf_debug("read failed\n"); goto out; } index = 0; ptr = (uint8_t *)bh->b_data; } } brelse(bh); out: return accum; } static unsigned int udf_count_free_table(struct super_block *sb, struct inode *table) { unsigned int accum = 0; uint32_t elen; struct kernel_lb_addr eloc; int8_t etype; struct extent_position epos; mutex_lock(&UDF_SB(sb)->s_alloc_mutex); epos.block = UDF_I(table)->i_location; epos.offset = sizeof(struct unallocSpaceEntry); epos.bh = NULL; while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) accum += (elen >> table->i_sb->s_blocksize_bits); brelse(epos.bh); mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); return accum; } static unsigned int udf_count_free(struct super_block *sb) { unsigned int accum = 0; struct udf_sb_info *sbi; struct udf_part_map *map; sbi = UDF_SB(sb); if (sbi->s_lvid_bh) { struct logicalVolIntegrityDesc *lvid = (struct logicalVolIntegrityDesc *) sbi->s_lvid_bh->b_data; if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { accum = le32_to_cpu( lvid->freeSpaceTable[sbi->s_partition]); if (accum == 0xFFFFFFFF) accum = 0; } } if (accum) return accum; map = &sbi->s_partmaps[sbi->s_partition]; if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { accum += udf_count_free_bitmap(sb, map->s_uspace.s_bitmap); } if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { accum += udf_count_free_bitmap(sb, map->s_fspace.s_bitmap); } if (accum) return accum; if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { accum += udf_count_free_table(sb, map->s_uspace.s_table); } if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { accum += udf_count_free_table(sb, map->s_fspace.s_table); } return accum; }