/* * Generic process-grouping system. * * Based originally on the cpuset system, extracted by Paul Menage * Copyright (C) 2006 Google, Inc * * Notifications support * Copyright (C) 2009 Nokia Corporation * Author: Kirill A. Shutemov * * Copyright notices from the original cpuset code: * -------------------------------------------------- * Copyright (C) 2003 BULL SA. * Copyright (C) 2004-2006 Silicon Graphics, Inc. * * Portions derived from Patrick Mochel's sysfs code. * sysfs is Copyright (c) 2001-3 Patrick Mochel * * 2003-10-10 Written by Simon Derr. * 2003-10-22 Updates by Stephen Hemminger. * 2004 May-July Rework by Paul Jackson. * --------------------------------------------------- * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of the Linux * distribution for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* TODO: replace with more sophisticated array */ #include #include #include /* used in cgroup_attach_proc */ #include /* * cgroup_mutex is the master lock. Any modification to cgroup or its * hierarchy must be performed while holding it. * * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify * cgroupfs_root of any cgroup hierarchy - subsys list, flags, * release_agent_path and so on. Modifying requires both cgroup_mutex and * cgroup_root_mutex. Readers can acquire either of the two. This is to * break the following locking order cycle. * * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem * B. namespace_sem -> cgroup_mutex * * B happens only through cgroup_show_options() and using cgroup_root_mutex * breaks it. */ static DEFINE_MUTEX(cgroup_mutex); static DEFINE_MUTEX(cgroup_root_mutex); /* * Generate an array of cgroup subsystem pointers. At boot time, this is * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are * registered after that. The mutable section of this array is protected by * cgroup_mutex. */ #define SUBSYS(_x) &_x ## _subsys, static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = { #include }; #define MAX_CGROUP_ROOT_NAMELEN 64 /* * A cgroupfs_root represents the root of a cgroup hierarchy, * and may be associated with a superblock to form an active * hierarchy */ struct cgroupfs_root { struct super_block *sb; /* * The bitmask of subsystems intended to be attached to this * hierarchy */ unsigned long subsys_bits; /* Unique id for this hierarchy. */ int hierarchy_id; /* The bitmask of subsystems currently attached to this hierarchy */ unsigned long actual_subsys_bits; /* A list running through the attached subsystems */ struct list_head subsys_list; /* The root cgroup for this hierarchy */ struct cgroup top_cgroup; /* Tracks how many cgroups are currently defined in hierarchy.*/ int number_of_cgroups; /* A list running through the active hierarchies */ struct list_head root_list; /* Hierarchy-specific flags */ unsigned long flags; /* The path to use for release notifications. */ char release_agent_path[PATH_MAX]; /* The name for this hierarchy - may be empty */ char name[MAX_CGROUP_ROOT_NAMELEN]; }; /* * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the * subsystems that are otherwise unattached - it never has more than a * single cgroup, and all tasks are part of that cgroup. */ static struct cgroupfs_root rootnode; /* * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when * cgroup_subsys->use_id != 0. */ #define CSS_ID_MAX (65535) struct css_id { /* * The css to which this ID points. This pointer is set to valid value * after cgroup is populated. If cgroup is removed, this will be NULL. * This pointer is expected to be RCU-safe because destroy() * is called after synchronize_rcu(). But for safe use, css_is_removed() * css_tryget() should be used for avoiding race. */ struct cgroup_subsys_state __rcu *css; /* * ID of this css. */ unsigned short id; /* * Depth in hierarchy which this ID belongs to. */ unsigned short depth; /* * ID is freed by RCU. (and lookup routine is RCU safe.) */ struct rcu_head rcu_head; /* * Hierarchy of CSS ID belongs to. */ unsigned short stack[0]; /* Array of Length (depth+1) */ }; /* * cgroup_event represents events which userspace want to receive. */ struct cgroup_event { /* * Cgroup which the event belongs to. */ struct cgroup *cgrp; /* * Control file which the event associated. */ struct cftype *cft; /* * eventfd to signal userspace about the event. */ struct eventfd_ctx *eventfd; /* * Each of these stored in a list by the cgroup. */ struct list_head list; /* * All fields below needed to unregister event when * userspace closes eventfd. */ poll_table pt; wait_queue_head_t *wqh; wait_queue_t wait; struct work_struct remove; }; /* The list of hierarchy roots */ static LIST_HEAD(roots); static int root_count; static DEFINE_IDA(hierarchy_ida); static int next_hierarchy_id; static DEFINE_SPINLOCK(hierarchy_id_lock); /* dummytop is a shorthand for the dummy hierarchy's top cgroup */ #define dummytop (&rootnode.top_cgroup) /* This flag indicates whether tasks in the fork and exit paths should * check for fork/exit handlers to call. This avoids us having to do * extra work in the fork/exit path if none of the subsystems need to * be called. */ static int need_forkexit_callback __read_mostly; #ifdef CONFIG_PROVE_LOCKING int cgroup_lock_is_held(void) { return lockdep_is_held(&cgroup_mutex); } #else /* #ifdef CONFIG_PROVE_LOCKING */ int cgroup_lock_is_held(void) { return mutex_is_locked(&cgroup_mutex); } #endif /* #else #ifdef CONFIG_PROVE_LOCKING */ EXPORT_SYMBOL_GPL(cgroup_lock_is_held); /* convenient tests for these bits */ inline int cgroup_is_removed(const struct cgroup *cgrp) { return test_bit(CGRP_REMOVED, &cgrp->flags); } /* bits in struct cgroupfs_root flags field */ enum { ROOT_NOPREFIX, /* mounted subsystems have no named prefix */ }; static int cgroup_is_releasable(const struct cgroup *cgrp) { const int bits = (1 << CGRP_RELEASABLE) | (1 << CGRP_NOTIFY_ON_RELEASE); return (cgrp->flags & bits) == bits; } static int notify_on_release(const struct cgroup *cgrp) { return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); } static int clone_children(const struct cgroup *cgrp) { return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); } /* * for_each_subsys() allows you to iterate on each subsystem attached to * an active hierarchy */ #define for_each_subsys(_root, _ss) \ list_for_each_entry(_ss, &_root->subsys_list, sibling) /* for_each_active_root() allows you to iterate across the active hierarchies */ #define for_each_active_root(_root) \ list_for_each_entry(_root, &roots, root_list) /* the list of cgroups eligible for automatic release. Protected by * release_list_lock */ static LIST_HEAD(release_list); static DEFINE_RAW_SPINLOCK(release_list_lock); static void cgroup_release_agent(struct work_struct *work); static DECLARE_WORK(release_agent_work, cgroup_release_agent); static void check_for_release(struct cgroup *cgrp); /* * A queue for waiters to do rmdir() cgroup. A tasks will sleep when * list_empty(&cgroup->children) && subsys has some * reference to css->refcnt. In general, this refcnt is expected to goes down * to zero, soon. * * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex; */ static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq); static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp) { if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))) wake_up_all(&cgroup_rmdir_waitq); } void cgroup_exclude_rmdir(struct cgroup_subsys_state *css) { css_get(css); } void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css) { cgroup_wakeup_rmdir_waiter(css->cgroup); css_put(css); } /* Link structure for associating css_set objects with cgroups */ struct cg_cgroup_link { /* * List running through cg_cgroup_links associated with a * cgroup, anchored on cgroup->css_sets */ struct list_head cgrp_link_list; struct cgroup *cgrp; /* * List running through cg_cgroup_links pointing at a * single css_set object, anchored on css_set->cg_links */ struct list_head cg_link_list; struct css_set *cg; }; /* The default css_set - used by init and its children prior to any * hierarchies being mounted. It contains a pointer to the root state * for each subsystem. Also used to anchor the list of css_sets. Not * reference-counted, to improve performance when child cgroups * haven't been created. */ static struct css_set init_css_set; static struct cg_cgroup_link init_css_set_link; static int cgroup_init_idr(struct cgroup_subsys *ss, struct cgroup_subsys_state *css); /* css_set_lock protects the list of css_set objects, and the * chain of tasks off each css_set. Nests outside task->alloc_lock * due to cgroup_iter_start() */ static DEFINE_RWLOCK(css_set_lock); static int css_set_count; /* * hash table for cgroup groups. This improves the performance to find * an existing css_set. This hash doesn't (currently) take into * account cgroups in empty hierarchies. */ #define CSS_SET_HASH_BITS 7 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS) static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE]; static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[]) { int i; int index; unsigned long tmp = 0UL; for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) tmp += (unsigned long)css[i]; tmp = (tmp >> 16) ^ tmp; index = hash_long(tmp, CSS_SET_HASH_BITS); return &css_set_table[index]; } static void free_css_set_work(struct work_struct *work) { struct css_set *cg = container_of(work, struct css_set, work); struct cg_cgroup_link *link; struct cg_cgroup_link *saved_link; write_lock(&css_set_lock); list_for_each_entry_safe(link, saved_link, &cg->cg_links, cg_link_list) { struct cgroup *cgrp = link->cgrp; list_del(&link->cg_link_list); list_del(&link->cgrp_link_list); /* * We may not be holding cgroup_mutex, and if cgrp->count is * dropped to 0 the cgroup can be destroyed at any time, hence * rcu_read_lock is used to keep it alive. */ rcu_read_lock(); if (atomic_dec_and_test(&cgrp->count)) { check_for_release(cgrp); cgroup_wakeup_rmdir_waiter(cgrp); } rcu_read_unlock(); kfree(link); } write_unlock(&css_set_lock); kfree(cg); } static void free_css_set_rcu(struct rcu_head *obj) { struct css_set *cg = container_of(obj, struct css_set, rcu_head); INIT_WORK(&cg->work, free_css_set_work); schedule_work(&cg->work); } /* We don't maintain the lists running through each css_set to its * task until after the first call to cgroup_iter_start(). This * reduces the fork()/exit() overhead for people who have cgroups * compiled into their kernel but not actually in use */ static int use_task_css_set_links __read_mostly; /* * refcounted get/put for css_set objects */ static inline void get_css_set(struct css_set *cg) { atomic_inc(&cg->refcount); } static void put_css_set(struct css_set *cg) { /* * Ensure that the refcount doesn't hit zero while any readers * can see it. Similar to atomic_dec_and_lock(), but for an * rwlock */ if (atomic_add_unless(&cg->refcount, -1, 1)) return; write_lock(&css_set_lock); if (!atomic_dec_and_test(&cg->refcount)) { write_unlock(&css_set_lock); return; } hlist_del(&cg->hlist); css_set_count--; write_unlock(&css_set_lock); call_rcu(&cg->rcu_head, free_css_set_rcu); } /* * compare_css_sets - helper function for find_existing_css_set(). * @cg: candidate css_set being tested * @old_cg: existing css_set for a task * @new_cgrp: cgroup that's being entered by the task * @template: desired set of css pointers in css_set (pre-calculated) * * Returns true if "cg" matches "old_cg" except for the hierarchy * which "new_cgrp" belongs to, for which it should match "new_cgrp". */ static bool compare_css_sets(struct css_set *cg, struct css_set *old_cg, struct cgroup *new_cgrp, struct cgroup_subsys_state *template[]) { struct list_head *l1, *l2; if (memcmp(template, cg->subsys, sizeof(cg->subsys))) { /* Not all subsystems matched */ return false; } /* * Compare cgroup pointers in order to distinguish between * different cgroups in heirarchies with no subsystems. We * could get by with just this check alone (and skip the * memcmp above) but on most setups the memcmp check will * avoid the need for this more expensive check on almost all * candidates. */ l1 = &cg->cg_links; l2 = &old_cg->cg_links; while (1) { struct cg_cgroup_link *cgl1, *cgl2; struct cgroup *cg1, *cg2; l1 = l1->next; l2 = l2->next; /* See if we reached the end - both lists are equal length. */ if (l1 == &cg->cg_links) { BUG_ON(l2 != &old_cg->cg_links); break; } else { BUG_ON(l2 == &old_cg->cg_links); } /* Locate the cgroups associated with these links. */ cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list); cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list); cg1 = cgl1->cgrp; cg2 = cgl2->cgrp; /* Hierarchies should be linked in the same order. */ BUG_ON(cg1->root != cg2->root); /* * If this hierarchy is the hierarchy of the cgroup * that's changing, then we need to check that this * css_set points to the new cgroup; if it's any other * hierarchy, then this css_set should point to the * same cgroup as the old css_set. */ if (cg1->root == new_cgrp->root) { if (cg1 != new_cgrp) return false; } else { if (cg1 != cg2) return false; } } return true; } /* * find_existing_css_set() is a helper for * find_css_set(), and checks to see whether an existing * css_set is suitable. * * oldcg: the cgroup group that we're using before the cgroup * transition * * cgrp: the cgroup that we're moving into * * template: location in which to build the desired set of subsystem * state objects for the new cgroup group */ static struct css_set *find_existing_css_set( struct css_set *oldcg, struct cgroup *cgrp, struct cgroup_subsys_state *template[]) { int i; struct cgroupfs_root *root = cgrp->root; struct hlist_head *hhead; struct hlist_node *node; struct css_set *cg; /* * Build the set of subsystem state objects that we want to see in the * new css_set. while subsystems can change globally, the entries here * won't change, so no need for locking. */ for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { if (root->subsys_bits & (1UL << i)) { /* Subsystem is in this hierarchy. So we want * the subsystem state from the new * cgroup */ template[i] = cgrp->subsys[i]; } else { /* Subsystem is not in this hierarchy, so we * don't want to change the subsystem state */ template[i] = oldcg->subsys[i]; } } hhead = css_set_hash(template); hlist_for_each_entry(cg, node, hhead, hlist) { if (!compare_css_sets(cg, oldcg, cgrp, template)) continue; /* This css_set matches what we need */ return cg; } /* No existing cgroup group matched */ return NULL; } static void free_cg_links(struct list_head *tmp) { struct cg_cgroup_link *link; struct cg_cgroup_link *saved_link; list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) { list_del(&link->cgrp_link_list); kfree(link); } } /* * allocate_cg_links() allocates "count" cg_cgroup_link structures * and chains them on tmp through their cgrp_link_list fields. Returns 0 on * success or a negative error */ static int allocate_cg_links(int count, struct list_head *tmp) { struct cg_cgroup_link *link; int i; INIT_LIST_HEAD(tmp); for (i = 0; i < count; i++) { link = kmalloc(sizeof(*link), GFP_KERNEL); if (!link) { free_cg_links(tmp); return -ENOMEM; } list_add(&link->cgrp_link_list, tmp); } return 0; } /** * link_css_set - a helper function to link a css_set to a cgroup * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links() * @cg: the css_set to be linked * @cgrp: the destination cgroup */ static void link_css_set(struct list_head *tmp_cg_links, struct css_set *cg, struct cgroup *cgrp) { struct cg_cgroup_link *link; BUG_ON(list_empty(tmp_cg_links)); link = list_first_entry(tmp_cg_links, struct cg_cgroup_link, cgrp_link_list); link->cg = cg; link->cgrp = cgrp; atomic_inc(&cgrp->count); list_move(&link->cgrp_link_list, &cgrp->css_sets); /* * Always add links to the tail of the list so that the list * is sorted by order of hierarchy creation */ list_add_tail(&link->cg_link_list, &cg->cg_links); } /* * find_css_set() takes an existing cgroup group and a * cgroup object, and returns a css_set object that's * equivalent to the old group, but with the given cgroup * substituted into the appropriate hierarchy. Must be called with * cgroup_mutex held */ static struct css_set *find_css_set( struct css_set *oldcg, struct cgroup *cgrp) { struct css_set *res; struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; struct list_head tmp_cg_links; struct hlist_head *hhead; struct cg_cgroup_link *link; /* First see if we already have a cgroup group that matches * the desired set */ read_lock(&css_set_lock); res = find_existing_css_set(oldcg, cgrp, template); if (res) get_css_set(res); read_unlock(&css_set_lock); if (res) return res; res = kmalloc(sizeof(*res), GFP_KERNEL); if (!res) return NULL; /* Allocate all the cg_cgroup_link objects that we'll need */ if (allocate_cg_links(root_count, &tmp_cg_links) < 0) { kfree(res); return NULL; } atomic_set(&res->refcount, 1); INIT_LIST_HEAD(&res->cg_links); INIT_LIST_HEAD(&res->tasks); INIT_HLIST_NODE(&res->hlist); /* Copy the set of subsystem state objects generated in * find_existing_css_set() */ memcpy(res->subsys, template, sizeof(res->subsys)); write_lock(&css_set_lock); /* Add reference counts and links from the new css_set. */ list_for_each_entry(link, &oldcg->cg_links, cg_link_list) { struct cgroup *c = link->cgrp; if (c->root == cgrp->root) c = cgrp; link_css_set(&tmp_cg_links, res, c); } BUG_ON(!list_empty(&tmp_cg_links)); css_set_count++; /* Add this cgroup group to the hash table */ hhead = css_set_hash(res->subsys); hlist_add_head(&res->hlist, hhead); write_unlock(&css_set_lock); return res; } /* * Return the cgroup for "task" from the given hierarchy. Must be * called with cgroup_mutex held. */ static struct cgroup *task_cgroup_from_root(struct task_struct *task, struct cgroupfs_root *root) { struct css_set *css; struct cgroup *res = NULL; BUG_ON(!mutex_is_locked(&cgroup_mutex)); read_lock(&css_set_lock); /* * No need to lock the task - since we hold cgroup_mutex the * task can't change groups, so the only thing that can happen * is that it exits and its css is set back to init_css_set. */ css = task->cgroups; if (css == &init_css_set) { res = &root->top_cgroup; } else { struct cg_cgroup_link *link; list_for_each_entry(link, &css->cg_links, cg_link_list) { struct cgroup *c = link->cgrp; if (c->root == root) { res = c; break; } } } read_unlock(&css_set_lock); BUG_ON(!res); return res; } /* * There is one global cgroup mutex. We also require taking * task_lock() when dereferencing a task's cgroup subsys pointers. * See "The task_lock() exception", at the end of this comment. * * A task must hold cgroup_mutex to modify cgroups. * * Any task can increment and decrement the count field without lock. * So in general, code holding cgroup_mutex can't rely on the count * field not changing. However, if the count goes to zero, then only * cgroup_attach_task() can increment it again. Because a count of zero * means that no tasks are currently attached, therefore there is no * way a task attached to that cgroup can fork (the other way to * increment the count). So code holding cgroup_mutex can safely * assume that if the count is zero, it will stay zero. Similarly, if * a task holds cgroup_mutex on a cgroup with zero count, it * knows that the cgroup won't be removed, as cgroup_rmdir() * needs that mutex. * * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't * (usually) take cgroup_mutex. These are the two most performance * critical pieces of code here. The exception occurs on cgroup_exit(), * when a task in a notify_on_release cgroup exits. Then cgroup_mutex * is taken, and if the cgroup count is zero, a usermode call made * to the release agent with the name of the cgroup (path relative to * the root of cgroup file system) as the argument. * * A cgroup can only be deleted if both its 'count' of using tasks * is zero, and its list of 'children' cgroups is empty. Since all * tasks in the system use _some_ cgroup, and since there is always at * least one task in the system (init, pid == 1), therefore, top_cgroup * always has either children cgroups and/or using tasks. So we don't * need a special hack to ensure that top_cgroup cannot be deleted. * * The task_lock() exception * * The need for this exception arises from the action of * cgroup_attach_task(), which overwrites one tasks cgroup pointer with * another. It does so using cgroup_mutex, however there are * several performance critical places that need to reference * task->cgroups without the expense of grabbing a system global * mutex. Therefore except as noted below, when dereferencing or, as * in cgroup_attach_task(), modifying a task's cgroups pointer we use * task_lock(), which acts on a spinlock (task->alloc_lock) already in * the task_struct routinely used for such matters. * * P.S. One more locking exception. RCU is used to guard the * update of a tasks cgroup pointer by cgroup_attach_task() */ /** * cgroup_lock - lock out any changes to cgroup structures * */ void cgroup_lock(void) { mutex_lock(&cgroup_mutex); } EXPORT_SYMBOL_GPL(cgroup_lock); /** * cgroup_unlock - release lock on cgroup changes * * Undo the lock taken in a previous cgroup_lock() call. */ void cgroup_unlock(void) { mutex_unlock(&cgroup_mutex); } EXPORT_SYMBOL_GPL(cgroup_unlock); /* * A couple of forward declarations required, due to cyclic reference loop: * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir -> * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations * -> cgroup_mkdir. */ static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode); static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *); static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); static int cgroup_populate_dir(struct cgroup *cgrp); static const struct inode_operations cgroup_dir_inode_operations; static const struct file_operations proc_cgroupstats_operations; static struct backing_dev_info cgroup_backing_dev_info = { .name = "cgroup", .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK, }; static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent, struct cgroup *child); static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb) { struct inode *inode = new_inode(sb); if (inode) { inode->i_ino = get_next_ino(); inode->i_mode = mode; inode->i_uid = current_fsuid(); inode->i_gid = current_fsgid(); inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info; } return inode; } /* * Call subsys's pre_destroy handler. * This is called before css refcnt check. */ static int cgroup_call_pre_destroy(struct cgroup *cgrp) { struct cgroup_subsys *ss; int ret = 0; for_each_subsys(cgrp->root, ss) if (ss->pre_destroy) { ret = ss->pre_destroy(cgrp); if (ret) break; } return ret; } static void cgroup_diput(struct dentry *dentry, struct inode *inode) { /* is dentry a directory ? if so, kfree() associated cgroup */ if (S_ISDIR(inode->i_mode)) { struct cgroup *cgrp = dentry->d_fsdata; struct cgroup_subsys *ss; BUG_ON(!(cgroup_is_removed(cgrp))); /* It's possible for external users to be holding css * reference counts on a cgroup; css_put() needs to * be able to access the cgroup after decrementing * the reference count in order to know if it needs to * queue the cgroup to be handled by the release * agent */ synchronize_rcu(); mutex_lock(&cgroup_mutex); /* * Release the subsystem state objects. */ for_each_subsys(cgrp->root, ss) ss->destroy(cgrp); cgrp->root->number_of_cgroups--; mutex_unlock(&cgroup_mutex); /* * Drop the active superblock reference that we took when we * created the cgroup */ deactivate_super(cgrp->root->sb); /* * if we're getting rid of the cgroup, refcount should ensure * that there are no pidlists left. */ BUG_ON(!list_empty(&cgrp->pidlists)); kfree_rcu(cgrp, rcu_head); } iput(inode); } static int cgroup_delete(const struct dentry *d) { return 1; } static void remove_dir(struct dentry *d) { struct dentry *parent = dget(d->d_parent); d_delete(d); simple_rmdir(parent->d_inode, d); dput(parent); } static void cgroup_clear_directory(struct dentry *dentry) { struct list_head *node; BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex)); spin_lock(&dentry->d_lock); node = dentry->d_subdirs.next; while (node != &dentry->d_subdirs) { struct dentry *d = list_entry(node, struct dentry, d_child); spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); list_del_init(node); if (d->d_inode) { /* This should never be called on a cgroup * directory with child cgroups */ BUG_ON(d->d_inode->i_mode & S_IFDIR); dget_dlock(d); spin_unlock(&d->d_lock); spin_unlock(&dentry->d_lock); d_delete(d); simple_unlink(dentry->d_inode, d); dput(d); spin_lock(&dentry->d_lock); } else spin_unlock(&d->d_lock); node = dentry->d_subdirs.next; } spin_unlock(&dentry->d_lock); } /* * NOTE : the dentry must have been dget()'ed */ static void cgroup_d_remove_dir(struct dentry *dentry) { struct dentry *parent; cgroup_clear_directory(dentry); parent = dentry->d_parent; spin_lock(&parent->d_lock); spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); list_del_init(&dentry->d_child); spin_unlock(&dentry->d_lock); spin_unlock(&parent->d_lock); remove_dir(dentry); } /* * Call with cgroup_mutex held. Drops reference counts on modules, including * any duplicate ones that parse_cgroupfs_options took. If this function * returns an error, no reference counts are touched. */ static int rebind_subsystems(struct cgroupfs_root *root, unsigned long final_bits) { unsigned long added_bits, removed_bits; struct cgroup *cgrp = &root->top_cgroup; int i; BUG_ON(!mutex_is_locked(&cgroup_mutex)); BUG_ON(!mutex_is_locked(&cgroup_root_mutex)); removed_bits = root->actual_subsys_bits & ~final_bits; added_bits = final_bits & ~root->actual_subsys_bits; /* Check that any added subsystems are currently free */ for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { unsigned long bit = 1UL << i; struct cgroup_subsys *ss = subsys[i]; if (!(bit & added_bits)) continue; /* * Nobody should tell us to do a subsys that doesn't exist: * parse_cgroupfs_options should catch that case and refcounts * ensure that subsystems won't disappear once selected. */ BUG_ON(ss == NULL); if (ss->root != &rootnode) { /* Subsystem isn't free */ return -EBUSY; } } /* Currently we don't handle adding/removing subsystems when * any child cgroups exist. This is theoretically supportable * but involves complex error handling, so it's being left until * later */ if (root->number_of_cgroups > 1) return -EBUSY; /* Process each subsystem */ for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { struct cgroup_subsys *ss = subsys[i]; unsigned long bit = 1UL << i; if (bit & added_bits) { /* We're binding this subsystem to this hierarchy */ BUG_ON(ss == NULL); BUG_ON(cgrp->subsys[i]); BUG_ON(!dummytop->subsys[i]); BUG_ON(dummytop->subsys[i]->cgroup != dummytop); mutex_lock(&ss->hierarchy_mutex); cgrp->subsys[i] = dummytop->subsys[i]; cgrp->subsys[i]->cgroup = cgrp; list_move(&ss->sibling, &root->subsys_list); ss->root = root; if (ss->bind) ss->bind(cgrp); mutex_unlock(&ss->hierarchy_mutex); /* refcount was already taken, and we're keeping it */ } else if (bit & removed_bits) { /* We're removing this subsystem */ BUG_ON(ss == NULL); BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]); BUG_ON(cgrp->subsys[i]->cgroup != cgrp); mutex_lock(&ss->hierarchy_mutex); if (ss->bind) ss->bind(dummytop); dummytop->subsys[i]->cgroup = dummytop; cgrp->subsys[i] = NULL; subsys[i]->root = &rootnode; list_move(&ss->sibling, &rootnode.subsys_list); mutex_unlock(&ss->hierarchy_mutex); /* subsystem is now free - drop reference on module */ module_put(ss->module); } else if (bit & final_bits) { /* Subsystem state should already exist */ BUG_ON(ss == NULL); BUG_ON(!cgrp->subsys[i]); /* * a refcount was taken, but we already had one, so * drop the extra reference. */ module_put(ss->module); #ifdef CONFIG_MODULE_UNLOAD BUG_ON(ss->module && !module_refcount(ss->module)); #endif } else { /* Subsystem state shouldn't exist */ BUG_ON(cgrp->subsys[i]); } } root->subsys_bits = root->actual_subsys_bits = final_bits; synchronize_rcu(); return 0; } static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry) { struct cgroupfs_root *root = dentry->d_sb->s_fs_info; struct cgroup_subsys *ss; mutex_lock(&cgroup_root_mutex); for_each_subsys(root, ss) seq_show_option(seq, ss->name, NULL); if (test_bit(ROOT_NOPREFIX, &root->flags)) seq_puts(seq, ",noprefix"); if (strlen(root->release_agent_path)) seq_show_option(seq, "release_agent", root->release_agent_path); if (clone_children(&root->top_cgroup)) seq_puts(seq, ",clone_children"); if (strlen(root->name)) seq_show_option(seq, "name", root->name); mutex_unlock(&cgroup_root_mutex); return 0; } struct cgroup_sb_opts { unsigned long subsys_bits; unsigned long flags; char *release_agent; bool clone_children; char *name; /* User explicitly requested empty subsystem */ bool none; struct cgroupfs_root *new_root; }; /* * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call * with cgroup_mutex held to protect the subsys[] array. This function takes * refcounts on subsystems to be used, unless it returns error, in which case * no refcounts are taken. */ static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) { char *token, *o = data; bool all_ss = false, one_ss = false; unsigned long mask = (unsigned long)-1; int i; bool module_pin_failed = false; BUG_ON(!mutex_is_locked(&cgroup_mutex)); #ifdef CONFIG_CPUSETS mask = ~(1UL << cpuset_subsys_id); #endif memset(opts, 0, sizeof(*opts)); while ((token = strsep(&o, ",")) != NULL) { if (!*token) return -EINVAL; if (!strcmp(token, "none")) { /* Explicitly have no subsystems */ opts->none = true; continue; } if (!strcmp(token, "all")) { /* Mutually exclusive option 'all' + subsystem name */ if (one_ss) return -EINVAL; all_ss = true; continue; } if (!strcmp(token, "noprefix")) { set_bit(ROOT_NOPREFIX, &opts->flags); continue; } if (!strcmp(token, "clone_children")) { opts->clone_children = true; continue; } if (!strncmp(token, "release_agent=", 14)) { /* Specifying two release agents is forbidden */ if (opts->release_agent) return -EINVAL; opts->release_agent = kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL); if (!opts->release_agent) return -ENOMEM; continue; } if (!strncmp(token, "name=", 5)) { const char *name = token + 5; /* Can't specify an empty name */ if (!strlen(name)) return -EINVAL; /* Must match [\w.-]+ */ for (i = 0; i < strlen(name); i++) { char c = name[i]; if (isalnum(c)) continue; if ((c == '.') || (c == '-') || (c == '_')) continue; return -EINVAL; } /* Specifying two names is forbidden */ if (opts->name) return -EINVAL; opts->name = kstrndup(name, MAX_CGROUP_ROOT_NAMELEN - 1, GFP_KERNEL); if (!opts->name) return -ENOMEM; continue; } for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { struct cgroup_subsys *ss = subsys[i]; if (ss == NULL) continue; if (strcmp(token, ss->name)) continue; if (ss->disabled) continue; /* Mutually exclusive option 'all' + subsystem name */ if (all_ss) return -EINVAL; set_bit(i, &opts->subsys_bits); one_ss = true; break; } if (i == CGROUP_SUBSYS_COUNT) return -ENOENT; } /* * If the 'all' option was specified select all the subsystems, * otherwise if 'none', 'name=' and a subsystem name options * were not specified, let's default to 'all' */ if (all_ss || (!one_ss && !opts->none && !opts->name)) { for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { struct cgroup_subsys *ss = subsys[i]; if (ss == NULL) continue; if (ss->disabled) continue; set_bit(i, &opts->subsys_bits); } } /* Consistency checks */ /* * Option noprefix was introduced just for backward compatibility * with the old cpuset, so we allow noprefix only if mounting just * the cpuset subsystem. */ if (test_bit(ROOT_NOPREFIX, &opts->flags) && (opts->subsys_bits & mask)) return -EINVAL; /* Can't specify "none" and some subsystems */ if (opts->subsys_bits && opts->none) return -EINVAL; /* * We either have to specify by name or by subsystems. (So all * empty hierarchies must have a name). */ if (!opts->subsys_bits && !opts->name) return -EINVAL; /* * Grab references on all the modules we'll need, so the subsystems * don't dance around before rebind_subsystems attaches them. This may * take duplicate reference counts on a subsystem that's already used, * but rebind_subsystems handles this case. */ for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) { unsigned long bit = 1UL << i; if (!(bit & opts->subsys_bits)) continue; if (!try_module_get(subsys[i]->module)) { module_pin_failed = true; break; } } if (module_pin_failed) { /* * oops, one of the modules was going away. this means that we * raced with a module_delete call, and to the user this is * essentially a "subsystem doesn't exist" case. */ for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) { /* drop refcounts only on the ones we took */ unsigned long bit = 1UL << i; if (!(bit & opts->subsys_bits)) continue; module_put(subsys[i]->module); } return -ENOENT; } return 0; } static void drop_parsed_module_refcounts(unsigned long subsys_bits) { int i; for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) { unsigned long bit = 1UL << i; if (!(bit & subsys_bits)) continue; module_put(subsys[i]->module); } } static int cgroup_remount(struct super_block *sb, int *flags, char *data) { int ret = 0; struct cgroupfs_root *root = sb->s_fs_info; struct cgroup *cgrp = &root->top_cgroup; struct cgroup_sb_opts opts; mutex_lock(&cgrp->dentry->d_inode->i_mutex); mutex_lock(&cgroup_mutex); mutex_lock(&cgroup_root_mutex); /* See what subsystems are wanted */ ret = parse_cgroupfs_options(data, &opts); if (ret) goto out_unlock; /* Don't allow flags or name to change at remount */ if (opts.flags != root->flags || (opts.name && strcmp(opts.name, root->name))) { ret = -EINVAL; drop_parsed_module_refcounts(opts.subsys_bits); goto out_unlock; } ret = rebind_subsystems(root, opts.subsys_bits); if (ret) { drop_parsed_module_refcounts(opts.subsys_bits); goto out_unlock; } /* (re)populate subsystem files */ cgroup_populate_dir(cgrp); if (opts.release_agent) strcpy(root->release_agent_path, opts.release_agent); out_unlock: kfree(opts.release_agent); kfree(opts.name); mutex_unlock(&cgroup_root_mutex); mutex_unlock(&cgroup_mutex); mutex_unlock(&cgrp->dentry->d_inode->i_mutex); return ret; } static const struct super_operations cgroup_ops = { .statfs = simple_statfs, .drop_inode = generic_delete_inode, .show_options = cgroup_show_options, .remount_fs = cgroup_remount, }; static void init_cgroup_housekeeping(struct cgroup *cgrp) { INIT_LIST_HEAD(&cgrp->sibling); INIT_LIST_HEAD(&cgrp->children); INIT_LIST_HEAD(&cgrp->css_sets); INIT_LIST_HEAD(&cgrp->release_list); INIT_LIST_HEAD(&cgrp->pidlists); mutex_init(&cgrp->pidlist_mutex); INIT_LIST_HEAD(&cgrp->event_list); spin_lock_init(&cgrp->event_list_lock); } static void init_cgroup_root(struct cgroupfs_root *root) { struct cgroup *cgrp = &root->top_cgroup; INIT_LIST_HEAD(&root->subsys_list); INIT_LIST_HEAD(&root->root_list); root->number_of_cgroups = 1; cgrp->root = root; cgrp->top_cgroup = cgrp; init_cgroup_housekeeping(cgrp); } static bool init_root_id(struct cgroupfs_root *root) { int ret = 0; do { if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL)) return false; spin_lock(&hierarchy_id_lock); /* Try to allocate the next unused ID */ ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id, &root->hierarchy_id); if (ret == -ENOSPC) /* Try again starting from 0 */ ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id); if (!ret) { next_hierarchy_id = root->hierarchy_id + 1; } else if (ret != -EAGAIN) { /* Can only get here if the 31-bit IDR is full ... */ BUG_ON(ret); } spin_unlock(&hierarchy_id_lock); } while (ret); return true; } static int cgroup_test_super(struct super_block *sb, void *data) { struct cgroup_sb_opts *opts = data; struct cgroupfs_root *root = sb->s_fs_info; /* If we asked for a name then it must match */ if (opts->name && strcmp(opts->name, root->name)) return 0; /* * If we asked for subsystems (or explicitly for no * subsystems) then they must match */ if ((opts->subsys_bits || opts->none) && (opts->subsys_bits != root->subsys_bits)) return 0; return 1; } static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts) { struct cgroupfs_root *root; if (!opts->subsys_bits && !opts->none) return NULL; root = kzalloc(sizeof(*root), GFP_KERNEL); if (!root) return ERR_PTR(-ENOMEM); if (!init_root_id(root)) { kfree(root); return ERR_PTR(-ENOMEM); } init_cgroup_root(root); root->subsys_bits = opts->subsys_bits; root->flags = opts->flags; if (opts->release_agent) strcpy(root->release_agent_path, opts->release_agent); if (opts->name) strcpy(root->name, opts->name); if (opts->clone_children) set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags); return root; } static void cgroup_drop_root(struct cgroupfs_root *root) { if (!root) return; BUG_ON(!root->hierarchy_id); spin_lock(&hierarchy_id_lock); ida_remove(&hierarchy_ida, root->hierarchy_id); spin_unlock(&hierarchy_id_lock); kfree(root); } static int cgroup_set_super(struct super_block *sb, void *data) { int ret; struct cgroup_sb_opts *opts = data; /* If we don't have a new root, we can't set up a new sb */ if (!opts->new_root) return -EINVAL; BUG_ON(!opts->subsys_bits && !opts->none); ret = set_anon_super(sb, NULL); if (ret) return ret; sb->s_fs_info = opts->new_root; opts->new_root->sb = sb; sb->s_blocksize = PAGE_CACHE_SIZE; sb->s_blocksize_bits = PAGE_CACHE_SHIFT; sb->s_magic = CGROUP_SUPER_MAGIC; sb->s_op = &cgroup_ops; return 0; } static int cgroup_get_rootdir(struct super_block *sb) { static const struct dentry_operations cgroup_dops = { .d_iput = cgroup_diput, .d_delete = cgroup_delete, }; struct inode *inode = cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb); if (!inode) return -ENOMEM; inode->i_fop = &simple_dir_operations; inode->i_op = &cgroup_dir_inode_operations; /* directories start off with i_nlink == 2 (for "." entry) */ inc_nlink(inode); sb->s_root = d_make_root(inode); if (!sb->s_root) return -ENOMEM; /* for everything else we want ->d_op set */ sb->s_d_op = &cgroup_dops; return 0; } static struct dentry *cgroup_mount(struct file_system_type *fs_type, int flags, const char *unused_dev_name, void *data) { struct cgroup_sb_opts opts; struct cgroupfs_root *root; int ret = 0; struct super_block *sb; struct cgroupfs_root *new_root; struct inode *inode; /* First find the desired set of subsystems */ mutex_lock(&cgroup_mutex); ret = parse_cgroupfs_options(data, &opts); mutex_unlock(&cgroup_mutex); if (ret) goto out_err; /* * Allocate a new cgroup root. We may not need it if we're * reusing an existing hierarchy. */ new_root = cgroup_root_from_opts(&opts); if (IS_ERR(new_root)) { ret = PTR_ERR(new_root); goto drop_modules; } opts.new_root = new_root; /* Locate an existing or new sb for this hierarchy */ sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts); if (IS_ERR(sb)) { ret = PTR_ERR(sb); cgroup_drop_root(opts.new_root); goto drop_modules; } root = sb->s_fs_info; BUG_ON(!root); if (root == opts.new_root) { /* We used the new root structure, so this is a new hierarchy */ struct list_head tmp_cg_links; struct cgroup *root_cgrp = &root->top_cgroup; struct cgroupfs_root *existing_root; const struct cred *cred; int i; BUG_ON(sb->s_root != NULL); ret = cgroup_get_rootdir(sb); if (ret) goto drop_new_super; inode = sb->s_root->d_inode; mutex_lock(&inode->i_mutex); mutex_lock(&cgroup_mutex); mutex_lock(&cgroup_root_mutex); /* Check for name clashes with existing mounts */ ret = -EBUSY; if (strlen(root->name)) for_each_active_root(existing_root) if (!strcmp(existing_root->name, root->name)) goto unlock_drop; /* * We're accessing css_set_count without locking * css_set_lock here, but that's OK - it can only be * increased by someone holding cgroup_lock, and * that's us. The worst that can happen is that we * have some link structures left over */ ret = allocate_cg_links(css_set_count, &tmp_cg_links); if (ret) goto unlock_drop; ret = rebind_subsystems(root, root->subsys_bits); if (ret == -EBUSY) { free_cg_links(&tmp_cg_links); goto unlock_drop; } /* * There must be no failure case after here, since rebinding * takes care of subsystems' refcounts, which are explicitly * dropped in the failure exit path. */ /* EBUSY should be the only error here */ BUG_ON(ret); list_add(&root->root_list, &roots); root_count++; sb->s_root->d_fsdata = root_cgrp; root->top_cgroup.dentry = sb->s_root; /* Link the top cgroup in this hierarchy into all * the css_set objects */ write_lock(&css_set_lock); for (i = 0; i < CSS_SET_TABLE_SIZE; i++) { struct hlist_head *hhead = &css_set_table[i]; struct hlist_node *node; struct css_set *cg; hlist_for_each_entry(cg, node, hhead, hlist) link_css_set(&tmp_cg_links, cg, root_cgrp); } write_unlock(&css_set_lock); free_cg_links(&tmp_cg_links); BUG_ON(!list_empty(&root_cgrp->sibling)); BUG_ON(!list_empty(&root_cgrp->children)); BUG_ON(root->number_of_cgroups != 1); cred = override_creds(&init_cred); cgroup_populate_dir(root_cgrp); revert_creds(cred); mutex_unlock(&cgroup_root_mutex); mutex_unlock(&cgroup_mutex); mutex_unlock(&inode->i_mutex); } else { /* * We re-used an existing hierarchy - the new root (if * any) is not needed */ cgroup_drop_root(opts.new_root); /* no subsys rebinding, so refcounts don't change */ drop_parsed_module_refcounts(opts.subsys_bits); } kfree(opts.release_agent); kfree(opts.name); return dget(sb->s_root); unlock_drop: mutex_unlock(&cgroup_root_mutex); mutex_unlock(&cgroup_mutex); mutex_unlock(&inode->i_mutex); drop_new_super: deactivate_locked_super(sb); drop_modules: drop_parsed_module_refcounts(opts.subsys_bits); out_err: kfree(opts.release_agent); kfree(opts.name); return ERR_PTR(ret); } static void cgroup_kill_sb(struct super_block *sb) { struct cgroupfs_root *root = sb->s_fs_info; struct cgroup *cgrp = &root->top_cgroup; int ret; struct cg_cgroup_link *link; struct cg_cgroup_link *saved_link; BUG_ON(!root); BUG_ON(root->number_of_cgroups != 1); BUG_ON(!list_empty(&cgrp->children)); BUG_ON(!list_empty(&cgrp->sibling)); mutex_lock(&cgroup_mutex); mutex_lock(&cgroup_root_mutex); /* Rebind all subsystems back to the default hierarchy */ ret = rebind_subsystems(root, 0); /* Shouldn't be able to fail ... */ BUG_ON(ret); /* * Release all the links from css_sets to this hierarchy's * root cgroup */ write_lock(&css_set_lock); list_for_each_entry_safe(link, saved_link, &cgrp->css_sets, cgrp_link_list) { list_del(&link->cg_link_list); list_del(&link->cgrp_link_list); kfree(link); } write_unlock(&css_set_lock); if (!list_empty(&root->root_list)) { list_del(&root->root_list); root_count--; } mutex_unlock(&cgroup_root_mutex); mutex_unlock(&cgroup_mutex); kill_litter_super(sb); cgroup_drop_root(root); } static struct file_system_type cgroup_fs_type = { .name = "cgroup", .mount = cgroup_mount, .kill_sb = cgroup_kill_sb, }; static struct kobject *cgroup_kobj; static inline struct cgroup *__d_cgrp(struct dentry *dentry) { return dentry->d_fsdata; } static inline struct cftype *__d_cft(struct dentry *dentry) { return dentry->d_fsdata; } /** * cgroup_path - generate the path of a cgroup * @cgrp: the cgroup in question * @buf: the buffer to write the path into * @buflen: the length of the buffer * * Called with cgroup_mutex held or else with an RCU-protected cgroup * reference. Writes path of cgroup into buf. Returns 0 on success, * -errno on error. */ int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen) { char *start; struct dentry *dentry = rcu_dereference_check(cgrp->dentry, cgroup_lock_is_held()); if (!dentry || cgrp == dummytop) { /* * Inactive subsystems have no dentry for their root * cgroup */ strcpy(buf, "/"); return 0; } start = buf + buflen; *--start = '\0'; for (;;) { int len = dentry->d_name.len; if ((start -= len) < buf) return -ENAMETOOLONG; memcpy(start, dentry->d_name.name, len); cgrp = cgrp->parent; if (!cgrp) break; dentry = rcu_dereference_check(cgrp->dentry, cgroup_lock_is_held()); if (!cgrp->parent) continue; if (--start < buf) return -ENAMETOOLONG; *start = '/'; } memmove(buf, start, buf + buflen - start); return 0; } EXPORT_SYMBOL_GPL(cgroup_path); /* * Control Group taskset */ struct task_and_cgroup { struct task_struct *task; struct cgroup *cgrp; struct css_set *cg; }; struct cgroup_taskset { struct task_and_cgroup single; struct flex_array *tc_array; int tc_array_len; int idx; struct cgroup *cur_cgrp; }; /** * cgroup_taskset_first - reset taskset and return the first task * @tset: taskset of interest * * @tset iteration is initialized and the first task is returned. */ struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset) { if (tset->tc_array) { tset->idx = 0; return cgroup_taskset_next(tset); } else { tset->cur_cgrp = tset->single.cgrp; return tset->single.task; } } EXPORT_SYMBOL_GPL(cgroup_taskset_first); /** * cgroup_taskset_next - iterate to the next task in taskset * @tset: taskset of interest * * Return the next task in @tset. Iteration must have been initialized * with cgroup_taskset_first(). */ struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset) { struct task_and_cgroup *tc; if (!tset->tc_array || tset->idx >= tset->tc_array_len) return NULL; tc = flex_array_get(tset->tc_array, tset->idx++); tset->cur_cgrp = tc->cgrp; return tc->task; } EXPORT_SYMBOL_GPL(cgroup_taskset_next); /** * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task * @tset: taskset of interest * * Return the cgroup for the current (last returned) task of @tset. This * function must be preceded by either cgroup_taskset_first() or * cgroup_taskset_next(). */ struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset) { return tset->cur_cgrp; } EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup); /** * cgroup_taskset_size - return the number of tasks in taskset * @tset: taskset of interest */ int cgroup_taskset_size(struct cgroup_taskset *tset) { return tset->tc_array ? tset->tc_array_len : 1; } EXPORT_SYMBOL_GPL(cgroup_taskset_size); /* * cgroup_task_migrate - move a task from one cgroup to another. * * 'guarantee' is set if the caller promises that a new css_set for the task * will already exist. If not set, this function might sleep, and can fail with * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked. */ static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp, struct task_struct *tsk, struct css_set *newcg) { struct css_set *oldcg; /* * We are synchronized through threadgroup_lock() against PF_EXITING * setting such that we can't race against cgroup_exit() changing the * css_set to init_css_set and dropping the old one. */ WARN_ON_ONCE(tsk->flags & PF_EXITING); oldcg = tsk->cgroups; task_lock(tsk); rcu_assign_pointer(tsk->cgroups, newcg); task_unlock(tsk); /* Update the css_set linked lists if we're using them */ write_lock(&css_set_lock); if (!list_empty(&tsk->cg_list)) list_move(&tsk->cg_list, &newcg->tasks); write_unlock(&css_set_lock); /* * We just gained a reference on oldcg by taking it from the task. As * trading it for newcg is protected by cgroup_mutex, we're safe to drop * it here; it will be freed under RCU. */ set_bit(CGRP_RELEASABLE, &oldcgrp->flags); put_css_set(oldcg); } /** * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp' * @cgrp: the cgroup the task is attaching to * @tsk: the task to be attached * * Call with cgroup_mutex and threadgroup locked. May take task_lock of * @tsk during call. */ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) { int retval = 0; struct cgroup_subsys *ss, *failed_ss = NULL; struct cgroup *oldcgrp; struct cgroupfs_root *root = cgrp->root; struct cgroup_taskset tset = { }; struct css_set *newcg; struct css_set *cg; /* @tsk either already exited or can't exit until the end */ if (tsk->flags & PF_EXITING) return -ESRCH; /* Nothing to do if the task is already in that cgroup */ oldcgrp = task_cgroup_from_root(tsk, root); if (cgrp == oldcgrp) return 0; tset.single.task = tsk; tset.single.cgrp = oldcgrp; for_each_subsys(root, ss) { if (ss->can_attach) { retval = ss->can_attach(cgrp, &tset); if (retval) { /* * Remember on which subsystem the can_attach() * failed, so that we only call cancel_attach() * against the subsystems whose can_attach() * succeeded. (See below) */ failed_ss = ss; goto out; } } } newcg = find_css_set(tsk->cgroups, cgrp); if (!newcg) { retval = -ENOMEM; goto out; } task_lock(tsk); cg = tsk->cgroups; get_css_set(cg); task_unlock(tsk); cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg); for_each_subsys(root, ss) { if (ss->attach) ss->attach(cgrp, &tset); } set_bit(CGRP_RELEASABLE, &cgrp->flags); /* put_css_set will not destroy cg until after an RCU grace period */ put_css_set(cg); /* * wake up rmdir() waiter. the rmdir should fail since the cgroup * is no longer empty. */ cgroup_wakeup_rmdir_waiter(cgrp); out: if (retval) { for_each_subsys(root, ss) { if (ss == failed_ss) /* * This subsystem was the one that failed the * can_attach() check earlier, so we don't need * to call cancel_attach() against it or any * remaining subsystems. */ break; if (ss->cancel_attach) ss->cancel_attach(cgrp, &tset); } } return retval; } /** * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' * @from: attach to all cgroups of a given task * @tsk: the task to be attached */ int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) { struct cgroupfs_root *root; int retval = 0; cgroup_lock(); for_each_active_root(root) { struct cgroup *from_cg = task_cgroup_from_root(from, root); retval = cgroup_attach_task(from_cg, tsk); if (retval) break; } cgroup_unlock(); return retval; } EXPORT_SYMBOL_GPL(cgroup_attach_task_all); /** * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup * @cgrp: the cgroup to attach to * @leader: the threadgroup leader task_struct of the group to be attached * * Call holding cgroup_mutex and the group_rwsem of the leader. Will take * task_lock of each thread in leader's threadgroup individually in turn. */ static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader) { int retval, i, group_size; struct cgroup_subsys *ss, *failed_ss = NULL; /* guaranteed to be initialized later, but the compiler needs this */ struct cgroupfs_root *root = cgrp->root; /* threadgroup list cursor and array */ struct task_struct *tsk; struct task_and_cgroup *tc; struct flex_array *group; struct cgroup_taskset tset = { }; /* * step 0: in order to do expensive, possibly blocking operations for * every thread, we cannot iterate the thread group list, since it needs * rcu or tasklist locked. instead, build an array of all threads in the * group - group_rwsem prevents new threads from appearing, and if * threads exit, this will just be an over-estimate. */ group_size = get_nr_threads(leader); /* flex_array supports very large thread-groups better than kmalloc. */ group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL); if (!group) return -ENOMEM; /* pre-allocate to guarantee space while iterating in rcu read-side. */ retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL); if (retval) goto out_free_group_list; tsk = leader; i = 0; /* * Prevent freeing of tasks while we take a snapshot. Tasks that are * already PF_EXITING could be freed from underneath us unless we * take an rcu_read_lock. */ rcu_read_lock(); do { struct task_and_cgroup ent; /* @tsk either already exited or can't exit until the end */ if (tsk->flags & PF_EXITING) continue; /* as per above, nr_threads may decrease, but not increase. */ BUG_ON(i >= group_size); ent.task = tsk; ent.cgrp = task_cgroup_from_root(tsk, root); /* nothing to do if this task is already in the cgroup */ if (ent.cgrp == cgrp) continue; /* * saying GFP_ATOMIC has no effect here because we did prealloc * earlier, but it's good form to communicate our expectations. */ retval = flex_array_put(group, i, &ent, GFP_ATOMIC); BUG_ON(retval != 0); i++; } while_each_thread(leader, tsk); rcu_read_unlock(); /* remember the number of threads in the array for later. */ group_size = i; tset.tc_array = group; tset.tc_array_len = group_size; /* methods shouldn't be called if no task is actually migrating */ retval = 0; if (!group_size) goto out_free_group_list; /* * step 1: check that we can legitimately attach to the cgroup. */ for_each_subsys(root, ss) { if (ss->can_attach) { retval = ss->can_attach(cgrp, &tset); if (retval) { failed_ss = ss; goto out_cancel_attach; } } } /* * step 2: make sure css_sets exist for all threads to be migrated. * we use find_css_set, which allocates a new one if necessary. */ for (i = 0; i < group_size; i++) { tc = flex_array_get(group, i); tc->cg = find_css_set(tc->task->cgroups, cgrp); if (!tc->cg) { retval = -ENOMEM; goto out_put_css_set_refs; } } /* * step 3: now that we're guaranteed success wrt the css_sets, * proceed to move all tasks to the new cgroup. There are no * failure cases after here, so this is the commit point. */ for (i = 0; i < group_size; i++) { tc = flex_array_get(group, i); cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg); } /* nothing is sensitive to fork() after this point. */ /* * step 4: do subsystem attach callbacks. */ for_each_subsys(root, ss) { if (ss->attach) ss->attach(cgrp, &tset); } /* * step 5: success! and cleanup */ cgroup_wakeup_rmdir_waiter(cgrp); retval = 0; out_put_css_set_refs: if (retval) { for (i = 0; i < group_size; i++) { tc = flex_array_get(group, i); if (!tc->cg) break; put_css_set(tc->cg); } } out_cancel_attach: if (retval) { for_each_subsys(root, ss) { if (ss == failed_ss) break; if (ss->cancel_attach) ss->cancel_attach(cgrp, &tset); } } out_free_group_list: flex_array_free(group); return retval; } static int cgroup_allow_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) { struct cgroup_subsys *ss; int ret; for_each_subsys(cgrp->root, ss) { if (ss->allow_attach) { ret = ss->allow_attach(cgrp, tset); if (ret) return ret; } else { return -EACCES; } } return 0; } /* * Find the task_struct of the task to attach by vpid and pass it along to the * function to attach either it or all tasks in its threadgroup. Will lock * cgroup_mutex and threadgroup; may take task_lock of task. */ static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup) { struct task_struct *tsk; const struct cred *cred = current_cred(), *tcred; int ret; if (!cgroup_lock_live_group(cgrp)) return -ENODEV; retry_find_task: rcu_read_lock(); if (pid) { tsk = find_task_by_vpid(pid); if (!tsk) { rcu_read_unlock(); ret= -ESRCH; goto out_unlock_cgroup; } /* * even if we're attaching all tasks in the thread group, we * only need to check permissions on one of them. */ tcred = __task_cred(tsk); if (cred->euid && cred->euid != tcred->uid && cred->euid != tcred->suid) { /* * if the default permission check fails, give each * cgroup a chance to extend the permission check */ struct cgroup_taskset tset = { }; tset.single.task = tsk; tset.single.cgrp = cgrp; ret = cgroup_allow_attach(cgrp, &tset); if (ret) { rcu_read_unlock(); goto out_unlock_cgroup; } } } else tsk = current; if (threadgroup) tsk = tsk->group_leader; get_task_struct(tsk); rcu_read_unlock(); threadgroup_lock(tsk); if (threadgroup) { if (!thread_group_leader(tsk)) { /* * a race with de_thread from another thread's exec() * may strip us of our leadership, if this happens, * there is no choice but to throw this task away and * try again; this is * "double-double-toil-and-trouble-check locking". */ threadgroup_unlock(tsk); put_task_struct(tsk); goto retry_find_task; } ret = cgroup_attach_proc(cgrp, tsk); } else ret = cgroup_attach_task(cgrp, tsk); threadgroup_unlock(tsk); put_task_struct(tsk); out_unlock_cgroup: cgroup_unlock(); return ret; } static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid) { return attach_task_by_pid(cgrp, pid, false); } static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid) { return attach_task_by_pid(cgrp, tgid, true); } /** * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. * @cgrp: the cgroup to be checked for liveness * * On success, returns true; the lock should be later released with * cgroup_unlock(). On failure returns false with no lock held. */ bool cgroup_lock_live_group(struct cgroup *cgrp) { mutex_lock(&cgroup_mutex); if (cgroup_is_removed(cgrp)) { mutex_unlock(&cgroup_mutex); return false; } return true; } EXPORT_SYMBOL_GPL(cgroup_lock_live_group); static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft, const char *buffer) { BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); if (strlen(buffer) >= PATH_MAX) return -EINVAL; if (!cgroup_lock_live_group(cgrp)) return -ENODEV; mutex_lock(&cgroup_root_mutex); strcpy(cgrp->root->release_agent_path, buffer); mutex_unlock(&cgroup_root_mutex); cgroup_unlock(); return 0; } static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft, struct seq_file *seq) { if (!cgroup_lock_live_group(cgrp)) return -ENODEV; seq_puts(seq, cgrp->root->release_agent_path); seq_putc(seq, '\n'); cgroup_unlock(); return 0; } /* A buffer size big enough for numbers or short strings */ #define CGROUP_LOCAL_BUFFER_SIZE 64 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft, struct file *file, const char __user *userbuf, size_t nbytes, loff_t *unused_ppos) { char buffer[CGROUP_LOCAL_BUFFER_SIZE]; int retval = 0; char *end; if (!nbytes) return -EINVAL; if (nbytes >= sizeof(buffer)) return -E2BIG; if (copy_from_user(buffer, userbuf, nbytes)) return -EFAULT; buffer[nbytes] = 0; /* nul-terminate */ if (cft->write_u64) { u64 val = simple_strtoull(strstrip(buffer), &end, 0); if (*end) return -EINVAL; retval = cft->write_u64(cgrp, cft, val); } else { s64 val = simple_strtoll(strstrip(buffer), &end, 0); if (*end) return -EINVAL; retval = cft->write_s64(cgrp, cft, val); } if (!retval) retval = nbytes; return retval; } static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft, struct file *file, const char __user *userbuf, size_t nbytes, loff_t *unused_ppos) { char local_buffer[CGROUP_LOCAL_BUFFER_SIZE]; int retval = 0; size_t max_bytes = cft->max_write_len; char *buffer = local_buffer; if (!max_bytes) max_bytes = sizeof(local_buffer) - 1; if (nbytes >= max_bytes) return -E2BIG; /* Allocate a dynamic buffer if we need one */ if (nbytes >= sizeof(local_buffer)) { buffer = kmalloc(nbytes + 1, GFP_KERNEL); if (buffer == NULL) return -ENOMEM; } if (nbytes && copy_from_user(buffer, userbuf, nbytes)) { retval = -EFAULT; goto out; } buffer[nbytes] = 0; /* nul-terminate */ retval = cft->write_string(cgrp, cft, strstrip(buffer)); if (!retval) retval = nbytes; out: if (buffer != local_buffer) kfree(buffer); return retval; } static ssize_t cgroup_file_write(struct file *file, const char __user *buf, size_t nbytes, loff_t *ppos) { struct cftype *cft = __d_cft(file->f_dentry); struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); if (cgroup_is_removed(cgrp)) return -ENODEV; if (cft->write) return cft->write(cgrp, cft, file, buf, nbytes, ppos); if (cft->write_u64 || cft->write_s64) return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos); if (cft->write_string) return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos); if (cft->trigger) { int ret = cft->trigger(cgrp, (unsigned int)cft->private); return ret ? ret : nbytes; } return -EINVAL; } static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft, struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { char tmp[CGROUP_LOCAL_BUFFER_SIZE]; u64 val = cft->read_u64(cgrp, cft); int len = sprintf(tmp, "%llu\n", (unsigned long long) val); return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); } static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft, struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { char tmp[CGROUP_LOCAL_BUFFER_SIZE]; s64 val = cft->read_s64(cgrp, cft); int len = sprintf(tmp, "%lld\n", (long long) val); return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); } static ssize_t cgroup_file_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct cftype *cft = __d_cft(file->f_dentry); struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); if (cgroup_is_removed(cgrp)) return -ENODEV; if (cft->read) return cft->read(cgrp, cft, file, buf, nbytes, ppos); if (cft->read_u64) return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos); if (cft->read_s64) return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos); return -EINVAL; } /* * seqfile ops/methods for returning structured data. Currently just * supports string->u64 maps, but can be extended in future. */ struct cgroup_seqfile_state { struct cftype *cft; struct cgroup *cgroup; }; static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value) { struct seq_file *sf = cb->state; return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value); } static int cgroup_seqfile_show(struct seq_file *m, void *arg) { struct cgroup_seqfile_state *state = m->private; struct cftype *cft = state->cft; if (cft->read_map) { struct cgroup_map_cb cb = { .fill = cgroup_map_add, .state = m, }; return cft->read_map(state->cgroup, cft, &cb); } return cft->read_seq_string(state->cgroup, cft, m); } static int cgroup_seqfile_release(struct inode *inode, struct file *file) { struct seq_file *seq = file->private_data; kfree(seq->private); return single_release(inode, file); } static const struct file_operations cgroup_seqfile_operations = { .read = seq_read, .write = cgroup_file_write, .llseek = seq_lseek, .release = cgroup_seqfile_release, }; static int cgroup_file_open(struct inode *inode, struct file *file) { int err; struct cftype *cft; err = generic_file_open(inode, file); if (err) return err; cft = __d_cft(file->f_dentry); if (cft->read_map || cft->read_seq_string) { struct cgroup_seqfile_state *state = kzalloc(sizeof(*state), GFP_USER); if (!state) return -ENOMEM; state->cft = cft; state->cgroup = __d_cgrp(file->f_dentry->d_parent); file->f_op = &cgroup_seqfile_operations; err = single_open(file, cgroup_seqfile_show, state); if (err < 0) kfree(state); } else if (cft->open) err = cft->open(inode, file); else err = 0; return err; } static int cgroup_file_release(struct inode *inode, struct file *file) { struct cftype *cft = __d_cft(file->f_dentry); if (cft->release) return cft->release(inode, file); return 0; } /* * cgroup_rename - Only allow simple rename of directories in place. */ static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { if (!S_ISDIR(old_dentry->d_inode->i_mode)) return -ENOTDIR; if (new_dentry->d_inode) return -EEXIST; if (old_dir != new_dir) return -EIO; return simple_rename(old_dir, old_dentry, new_dir, new_dentry); } static const struct file_operations cgroup_file_operations = { .read = cgroup_file_read, .write = cgroup_file_write, .llseek = generic_file_llseek, .open = cgroup_file_open, .release = cgroup_file_release, }; static const struct inode_operations cgroup_dir_inode_operations = { .lookup = cgroup_lookup, .mkdir = cgroup_mkdir, .rmdir = cgroup_rmdir, .rename = cgroup_rename, }; static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) { if (dentry->d_name.len > NAME_MAX) return ERR_PTR(-ENAMETOOLONG); d_add(dentry, NULL); return NULL; } /* * Check if a file is a control file */ static inline struct cftype *__file_cft(struct file *file) { if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations) return ERR_PTR(-EINVAL); return __d_cft(file->f_dentry); } static int cgroup_create_file(struct dentry *dentry, umode_t mode, struct super_block *sb) { struct inode *inode; if (!dentry) return -ENOENT; if (dentry->d_inode) return -EEXIST; inode = cgroup_new_inode(mode, sb); if (!inode) return -ENOMEM; if (S_ISDIR(mode)) { inode->i_op = &cgroup_dir_inode_operations; inode->i_fop = &simple_dir_operations; /* start off with i_nlink == 2 (for "." entry) */ inc_nlink(inode); /* start with the directory inode held, so that we can * populate it without racing with another mkdir */ mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); } else if (S_ISREG(mode)) { inode->i_size = 0; inode->i_fop = &cgroup_file_operations; } d_instantiate(dentry, inode); dget(dentry); /* Extra count - pin the dentry in core */ return 0; } /* * cgroup_create_dir - create a directory for an object. * @cgrp: the cgroup we create the directory for. It must have a valid * ->parent field. And we are going to fill its ->dentry field. * @dentry: dentry of the new cgroup * @mode: mode to set on new directory. */ static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry, umode_t mode) { struct dentry *parent; int error = 0; parent = cgrp->parent->dentry; error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb); if (!error) { dentry->d_fsdata = cgrp; inc_nlink(parent->d_inode); rcu_assign_pointer(cgrp->dentry, dentry); } return error; } /** * cgroup_file_mode - deduce file mode of a control file * @cft: the control file in question * * returns cft->mode if ->mode is not 0 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler * returns S_IRUGO if it has only a read handler * returns S_IWUSR if it has only a write hander */ static umode_t cgroup_file_mode(const struct cftype *cft) { umode_t mode = 0; if (cft->mode) return cft->mode; if (cft->read || cft->read_u64 || cft->read_s64 || cft->read_map || cft->read_seq_string) mode |= S_IRUGO; if (cft->write || cft->write_u64 || cft->write_s64 || cft->write_string || cft->trigger) mode |= S_IWUSR; return mode; } int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys, const struct cftype *cft) { struct dentry *dir = cgrp->dentry; struct dentry *dentry; int error; umode_t mode; char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 }; if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) { strcpy(name, subsys->name); strcat(name, "."); } strcat(name, cft->name); BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex)); dentry = lookup_one_len(name, dir, strlen(name)); if (!IS_ERR(dentry)) { mode = cgroup_file_mode(cft); error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb); if (!error) dentry->d_fsdata = (void *)cft; dput(dentry); } else error = PTR_ERR(dentry); return error; } EXPORT_SYMBOL_GPL(cgroup_add_file); int cgroup_add_files(struct cgroup *cgrp, struct cgroup_subsys *subsys, const struct cftype cft[], int count) { int i, err; for (i = 0; i < count; i++) { err = cgroup_add_file(cgrp, subsys, &cft[i]); if (err) return err; } return 0; } EXPORT_SYMBOL_GPL(cgroup_add_files); /** * cgroup_task_count - count the number of tasks in a cgroup. * @cgrp: the cgroup in question * * Return the number of tasks in the cgroup. */ int cgroup_task_count(const struct cgroup *cgrp) { int count = 0; struct cg_cgroup_link *link; read_lock(&css_set_lock); list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) { count += atomic_read(&link->cg->refcount); } read_unlock(&css_set_lock); return count; } /* * Advance a list_head iterator. The iterator should be positioned at * the start of a css_set */ static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it) { struct list_head *l = it->cg_link; struct cg_cgroup_link *link; struct css_set *cg; /* Advance to the next non-empty css_set */ do { l = l->next; if (l == &cgrp->css_sets) { it->cg_link = NULL; return; } link = list_entry(l, struct cg_cgroup_link, cgrp_link_list); cg = link->cg; } while (list_empty(&cg->tasks)); it->cg_link = l; it->task = cg->tasks.next; } /* * To reduce the fork() overhead for systems that are not actually * using their cgroups capability, we don't maintain the lists running * through each css_set to its tasks until we see the list actually * used - in other words after the first call to cgroup_iter_start(). */ static void cgroup_enable_task_cg_lists(void) { struct task_struct *p, *g; write_lock(&css_set_lock); use_task_css_set_links = 1; /* * We need tasklist_lock because RCU is not safe against * while_each_thread(). Besides, a forking task that has passed * cgroup_post_fork() without seeing use_task_css_set_links = 1 * is not guaranteed to have its child immediately visible in the * tasklist if we walk through it with RCU. */ read_lock(&tasklist_lock); do_each_thread(g, p) { task_lock(p); /* * We should check if the process is exiting, otherwise * it will race with cgroup_exit() in that the list * entry won't be deleted though the process has exited. */ if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list)) list_add(&p->cg_list, &p->cgroups->tasks); task_unlock(p); } while_each_thread(g, p); read_unlock(&tasklist_lock); write_unlock(&css_set_lock); } void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it) __acquires(css_set_lock) { /* * The first time anyone tries to iterate across a cgroup, * we need to enable the list linking each css_set to its * tasks, and fix up all existing tasks. */ if (!use_task_css_set_links) cgroup_enable_task_cg_lists(); read_lock(&css_set_lock); it->cg_link = &cgrp->css_sets; cgroup_advance_iter(cgrp, it); } struct task_struct *cgroup_iter_next(struct cgroup *cgrp, struct cgroup_iter *it) { struct task_struct *res; struct list_head *l = it->task; struct cg_cgroup_link *link; /* If the iterator cg is NULL, we have no tasks */ if (!it->cg_link) return NULL; res = list_entry(l, struct task_struct, cg_list); /* Advance iterator to find next entry */ l = l->next; link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list); if (l == &link->cg->tasks) { /* We reached the end of this task list - move on to * the next cg_cgroup_link */ cgroup_advance_iter(cgrp, it); } else { it->task = l; } return res; } void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it) __releases(css_set_lock) { read_unlock(&css_set_lock); } static inline int started_after_time(struct task_struct *t1, struct timespec *time, struct task_struct *t2) { int start_diff = timespec_compare(&t1->start_time, time); if (start_diff > 0) { return 1; } else if (start_diff < 0) { return 0; } else { /* * Arbitrarily, if two processes started at the same * time, we'll say that the lower pointer value * started first. Note that t2 may have exited by now * so this may not be a valid pointer any longer, but * that's fine - it still serves to distinguish * between two tasks started (effectively) simultaneously. */ return t1 > t2; } } /* * This function is a callback from heap_insert() and is used to order * the heap. * In this case we order the heap in descending task start time. */ static inline int started_after(void *p1, void *p2) { struct task_struct *t1 = p1; struct task_struct *t2 = p2; return started_after_time(t1, &t2->start_time, t2); } /** * cgroup_scan_tasks - iterate though all the tasks in a cgroup * @scan: struct cgroup_scanner containing arguments for the scan * * Arguments include pointers to callback functions test_task() and * process_task(). * Iterate through all the tasks in a cgroup, calling test_task() for each, * and if it returns true, call process_task() for it also. * The test_task pointer may be NULL, meaning always true (select all tasks). * Effectively duplicates cgroup_iter_{start,next,end}() * but does not lock css_set_lock for the call to process_task(). * The struct cgroup_scanner may be embedded in any structure of the caller's * creation. * It is guaranteed that process_task() will act on every task that * is a member of the cgroup for the duration of this call. This * function may or may not call process_task() for tasks that exit * or move to a different cgroup during the call, or are forked or * move into the cgroup during the call. * * Note that test_task() may be called with locks held, and may in some * situations be called multiple times for the same task, so it should * be cheap. * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been * pre-allocated and will be used for heap operations (and its "gt" member will * be overwritten), else a temporary heap will be used (allocation of which * may cause this function to fail). */ int cgroup_scan_tasks(struct cgroup_scanner *scan) { int retval, i; struct cgroup_iter it; struct task_struct *p, *dropped; /* Never dereference latest_task, since it's not refcounted */ struct task_struct *latest_task = NULL; struct ptr_heap tmp_heap; struct ptr_heap *heap; struct timespec latest_time = { 0, 0 }; if (scan->heap) { /* The caller supplied our heap and pre-allocated its memory */ heap = scan->heap; heap->gt = &started_after; } else { /* We need to allocate our own heap memory */ heap = &tmp_heap; retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after); if (retval) /* cannot allocate the heap */ return retval; } again: /* * Scan tasks in the cgroup, using the scanner's "test_task" callback * to determine which are of interest, and using the scanner's * "process_task" callback to process any of them that need an update. * Since we don't want to hold any locks during the task updates, * gather tasks to be processed in a heap structure. * The heap is sorted by descending task start time. * If the statically-sized heap fills up, we overflow tasks that * started later, and in future iterations only consider tasks that * started after the latest task in the previous pass. This * guarantees forward progress and that we don't miss any tasks. */ heap->size = 0; cgroup_iter_start(scan->cg, &it); while ((p = cgroup_iter_next(scan->cg, &it))) { /* * Only affect tasks that qualify per the caller's callback, * if he provided one */ if (scan->test_task && !scan->test_task(p, scan)) continue; /* * Only process tasks that started after the last task * we processed */ if (!started_after_time(p, &latest_time, latest_task)) continue; dropped = heap_insert(heap, p); if (dropped == NULL) { /* * The new task was inserted; the heap wasn't * previously full */ get_task_struct(p); } else if (dropped != p) { /* * The new task was inserted, and pushed out a * different task */ get_task_struct(p); put_task_struct(dropped); } /* * Else the new task was newer than anything already in * the heap and wasn't inserted */ } cgroup_iter_end(scan->cg, &it); if (heap->size) { for (i = 0; i < heap->size; i++) { struct task_struct *q = heap->ptrs[i]; if (i == 0) { latest_time = q->start_time; latest_task = q; } /* Process the task per the caller's callback */ scan->process_task(q, scan); put_task_struct(q); } /* * If we had to process any tasks at all, scan again * in case some of them were in the middle of forking * children that didn't get processed. * Not the most efficient way to do it, but it avoids * having to take callback_mutex in the fork path */ goto again; } if (heap == &tmp_heap) heap_free(&tmp_heap); return 0; } /* * Stuff for reading the 'tasks'/'procs' files. * * Reading this file can return large amounts of data if a cgroup has * *lots* of attached tasks. So it may need several calls to read(), * but we cannot guarantee that the information we produce is correct * unless we produce it entirely atomically. * */ /* which pidlist file are we talking about? */ enum cgroup_filetype { CGROUP_FILE_PROCS, CGROUP_FILE_TASKS, }; /* * A pidlist is a list of pids that virtually represents the contents of one * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, * a pair (one each for procs, tasks) for each pid namespace that's relevant * to the cgroup. */ struct cgroup_pidlist { /* * used to find which pidlist is wanted. doesn't change as long as * this particular list stays in the list. */ struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; /* array of xids */ pid_t *list; /* how many elements the above list has */ int length; /* how many files are using the current array */ int use_count; /* each of these stored in a list by its cgroup */ struct list_head links; /* pointer to the cgroup we belong to, for list removal purposes */ struct cgroup *owner; /* protects the other fields */ struct rw_semaphore mutex; }; /* * The following two functions "fix" the issue where there are more pids * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. * TODO: replace with a kernel-wide solution to this problem */ #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) static void *pidlist_allocate(int count) { if (PIDLIST_TOO_LARGE(count)) return vmalloc(count * sizeof(pid_t)); else return kmalloc(count * sizeof(pid_t), GFP_KERNEL); } static void pidlist_free(void *p) { if (is_vmalloc_addr(p)) vfree(p); else kfree(p); } static void *pidlist_resize(void *p, int newcount) { void *newlist; /* note: if new alloc fails, old p will still be valid either way */ if (is_vmalloc_addr(p)) { newlist = vmalloc(newcount * sizeof(pid_t)); if (!newlist) return NULL; memcpy(newlist, p, newcount * sizeof(pid_t)); vfree(p); } else { newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL); } return newlist; } /* * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries * If the new stripped list is sufficiently smaller and there's enough memory * to allocate a new buffer, will let go of the unneeded memory. Returns the * number of unique elements. */ /* is the size difference enough that we should re-allocate the array? */ #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new)) static int pidlist_uniq(pid_t **p, int length) { int src, dest = 1; pid_t *list = *p; pid_t *newlist; /* * we presume the 0th element is unique, so i starts at 1. trivial * edge cases first; no work needs to be done for either */ if (length == 0 || length == 1) return length; /* src and dest walk down the list; dest counts unique elements */ for (src = 1; src < length; src++) { /* find next unique element */ while (list[src] == list[src-1]) { src++; if (src == length) goto after; } /* dest always points to where the next unique element goes */ list[dest] = list[src]; dest++; } after: /* * if the length difference is large enough, we want to allocate a * smaller buffer to save memory. if this fails due to out of memory, * we'll just stay with what we've got. */ if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) { newlist = pidlist_resize(list, dest); if (newlist) *p = newlist; } return dest; } static int cmppid(const void *a, const void *b) { return *(pid_t *)a - *(pid_t *)b; } /* * find the appropriate pidlist for our purpose (given procs vs tasks) * returns with the lock on that pidlist already held, and takes care * of the use count, or returns NULL with no locks held if we're out of * memory. */ static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, enum cgroup_filetype type) { struct cgroup_pidlist *l; /* don't need task_nsproxy() if we're looking at ourself */ struct pid_namespace *ns = current->nsproxy->pid_ns; /* * We can't drop the pidlist_mutex before taking the l->mutex in case * the last ref-holder is trying to remove l from the list at the same * time. Holding the pidlist_mutex precludes somebody taking whichever * list we find out from under us - compare release_pid_array(). */ mutex_lock(&cgrp->pidlist_mutex); list_for_each_entry(l, &cgrp->pidlists, links) { if (l->key.type == type && l->key.ns == ns) { /* make sure l doesn't vanish out from under us */ down_write(&l->mutex); mutex_unlock(&cgrp->pidlist_mutex); return l; } } /* entry not found; create a new one */ l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); if (!l) { mutex_unlock(&cgrp->pidlist_mutex); return l; } init_rwsem(&l->mutex); down_write(&l->mutex); l->key.type = type; l->key.ns = get_pid_ns(ns); l->use_count = 0; /* don't increment here */ l->list = NULL; l->owner = cgrp; list_add(&l->links, &cgrp->pidlists); mutex_unlock(&cgrp->pidlist_mutex); return l; } /* * Load a cgroup's pidarray with either procs' tgids or tasks' pids */ static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, struct cgroup_pidlist **lp) { pid_t *array; int length; int pid, n = 0; /* used for populating the array */ struct cgroup_iter it; struct task_struct *tsk; struct cgroup_pidlist *l; /* * If cgroup gets more users after we read count, we won't have * enough space - tough. This race is indistinguishable to the * caller from the case that the additional cgroup users didn't * show up until sometime later on. */ length = cgroup_task_count(cgrp); array = pidlist_allocate(length); if (!array) return -ENOMEM; /* now, populate the array */ cgroup_iter_start(cgrp, &it); while ((tsk = cgroup_iter_next(cgrp, &it))) { if (unlikely(n == length)) break; /* get tgid or pid for procs or tasks file respectively */ if (type == CGROUP_FILE_PROCS) pid = task_tgid_vnr(tsk); else pid = task_pid_vnr(tsk); if (pid > 0) /* make sure to only use valid results */ array[n++] = pid; } cgroup_iter_end(cgrp, &it); length = n; /* now sort & (if procs) strip out duplicates */ sort(array, length, sizeof(pid_t), cmppid, NULL); if (type == CGROUP_FILE_PROCS) length = pidlist_uniq(&array, length); l = cgroup_pidlist_find(cgrp, type); if (!l) { pidlist_free(array); return -ENOMEM; } /* store array, freeing old if necessary - lock already held */ pidlist_free(l->list); l->list = array; l->length = length; l->use_count++; up_write(&l->mutex); *lp = l; return 0; } /** * cgroupstats_build - build and fill cgroupstats * @stats: cgroupstats to fill information into * @dentry: A dentry entry belonging to the cgroup for which stats have * been requested. * * Build and fill cgroupstats so that taskstats can export it to user * space. */ int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) { int ret = -EINVAL; struct cgroup *cgrp; struct cgroup_iter it; struct task_struct *tsk; /* * Validate dentry by checking the superblock operations, * and make sure it's a directory. */ if (dentry->d_sb->s_op != &cgroup_ops || !S_ISDIR(dentry->d_inode->i_mode)) goto err; ret = 0; cgrp = dentry->d_fsdata; cgroup_iter_start(cgrp, &it); while ((tsk = cgroup_iter_next(cgrp, &it))) { switch (tsk->state) { case TASK_RUNNING: stats->nr_running++; break; case TASK_INTERRUPTIBLE: stats->nr_sleeping++; break; case TASK_UNINTERRUPTIBLE: stats->nr_uninterruptible++; break; case TASK_STOPPED: stats->nr_stopped++; break; default: if (delayacct_is_task_waiting_on_io(tsk)) stats->nr_io_wait++; break; } } cgroup_iter_end(cgrp, &it); err: return ret; } /* * seq_file methods for the tasks/procs files. The seq_file position is the * next pid to display; the seq_file iterator is a pointer to the pid * in the cgroup->l->list array. */ static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) { /* * Initially we receive a position value that corresponds to * one more than the last pid shown (or 0 on the first call or * after a seek to the start). Use a binary-search to find the * next pid to display, if any */ struct cgroup_pidlist *l = s->private; int index = 0, pid = *pos; int *iter; down_read(&l->mutex); if (pid) { int end = l->length; while (index < end) { int mid = (index + end) / 2; if (l->list[mid] == pid) { index = mid; break; } else if (l->list[mid] <= pid) index = mid + 1; else end = mid; } } /* If we're off the end of the array, we're done */ if (index >= l->length) return NULL; /* Update the abstract position to be the actual pid that we found */ iter = l->list + index; *pos = *iter; return iter; } static void cgroup_pidlist_stop(struct seq_file *s, void *v) { struct cgroup_pidlist *l = s->private; up_read(&l->mutex); } static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) { struct cgroup_pidlist *l = s->private; pid_t *p = v; pid_t *end = l->list + l->length; /* * Advance to the next pid in the array. If this goes off the * end, we're done */ p++; if (p >= end) { return NULL; } else { *pos = *p; return p; } } static int cgroup_pidlist_show(struct seq_file *s, void *v) { return seq_printf(s, "%d\n", *(int *)v); } /* * seq_operations functions for iterating on pidlists through seq_file - * independent of whether it's tasks or procs */ static const struct seq_operations cgroup_pidlist_seq_operations = { .start = cgroup_pidlist_start, .stop = cgroup_pidlist_stop, .next = cgroup_pidlist_next, .show = cgroup_pidlist_show, }; static void cgroup_release_pid_array(struct cgroup_pidlist *l) { /* * the case where we're the last user of this particular pidlist will * have us remove it from the cgroup's list, which entails taking the * mutex. since in pidlist_find the pidlist->lock depends on cgroup-> * pidlist_mutex, we have to take pidlist_mutex first. */ mutex_lock(&l->owner->pidlist_mutex); down_write(&l->mutex); BUG_ON(!l->use_count); if (!--l->use_count) { /* we're the last user if refcount is 0; remove and free */ list_del(&l->links); mutex_unlock(&l->owner->pidlist_mutex); pidlist_free(l->list); put_pid_ns(l->key.ns); up_write(&l->mutex); kfree(l); return; } mutex_unlock(&l->owner->pidlist_mutex); up_write(&l->mutex); } static int cgroup_pidlist_release(struct inode *inode, struct file *file) { struct cgroup_pidlist *l; if (!(file->f_mode & FMODE_READ)) return 0; /* * the seq_file will only be initialized if the file was opened for * reading; hence we check if it's not null only in that case. */ l = ((struct seq_file *)file->private_data)->private; cgroup_release_pid_array(l); return seq_release(inode, file); } static const struct file_operations cgroup_pidlist_operations = { .read = seq_read, .llseek = seq_lseek, .write = cgroup_file_write, .release = cgroup_pidlist_release, }; /* * The following functions handle opens on a file that displays a pidlist * (tasks or procs). Prepare an array of the process/thread IDs of whoever's * in the cgroup. */ /* helper function for the two below it */ static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type) { struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); struct cgroup_pidlist *l; int retval; /* Nothing to do for write-only files */ if (!(file->f_mode & FMODE_READ)) return 0; /* have the array populated */ retval = pidlist_array_load(cgrp, type, &l); if (retval) return retval; /* configure file information */ file->f_op = &cgroup_pidlist_operations; retval = seq_open(file, &cgroup_pidlist_seq_operations); if (retval) { cgroup_release_pid_array(l); return retval; } ((struct seq_file *)file->private_data)->private = l; return 0; } static int cgroup_tasks_open(struct inode *unused, struct file *file) { return cgroup_pidlist_open(file, CGROUP_FILE_TASKS); } static int cgroup_procs_open(struct inode *unused, struct file *file) { return cgroup_pidlist_open(file, CGROUP_FILE_PROCS); } static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, struct cftype *cft) { return notify_on_release(cgrp); } static int cgroup_write_notify_on_release(struct cgroup *cgrp, struct cftype *cft, u64 val) { clear_bit(CGRP_RELEASABLE, &cgrp->flags); if (val) set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); else clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); return 0; } /* * Unregister event and free resources. * * Gets called from workqueue. */ static void cgroup_event_remove(struct work_struct *work) { struct cgroup_event *event = container_of(work, struct cgroup_event, remove); struct cgroup *cgrp = event->cgrp; event->cft->unregister_event(cgrp, event->cft, event->eventfd); eventfd_ctx_put(event->eventfd); kfree(event); dput(cgrp->dentry); } /* * Gets called on POLLHUP on eventfd when user closes it. * * Called with wqh->lock held and interrupts disabled. */ static int cgroup_event_wake(wait_queue_t *wait, unsigned mode, int sync, void *key) { struct cgroup_event *event = container_of(wait, struct cgroup_event, wait); struct cgroup *cgrp = event->cgrp; unsigned long flags = (unsigned long)key; if (flags & POLLHUP) { __remove_wait_queue(event->wqh, &event->wait); spin_lock(&cgrp->event_list_lock); list_del(&event->list); spin_unlock(&cgrp->event_list_lock); /* * We are in atomic context, but cgroup_event_remove() may * sleep, so we have to call it in workqueue. */ schedule_work(&event->remove); } return 0; } static void cgroup_event_ptable_queue_proc(struct file *file, wait_queue_head_t *wqh, poll_table *pt) { struct cgroup_event *event = container_of(pt, struct cgroup_event, pt); event->wqh = wqh; add_wait_queue(wqh, &event->wait); } /* * Parse input and register new cgroup event handler. * * Input must be in format ' '. * Interpretation of args is defined by control file implementation. */ static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft, const char *buffer) { struct cgroup_event *event = NULL; struct cgroup *cgrp_cfile; unsigned int efd, cfd; struct file *efile = NULL; struct file *cfile = NULL; char *endp; int ret; efd = simple_strtoul(buffer, &endp, 10); if (*endp != ' ') return -EINVAL; buffer = endp + 1; cfd = simple_strtoul(buffer, &endp, 10); if ((*endp != ' ') && (*endp != '\0')) return -EINVAL; buffer = endp + 1; event = kzalloc(sizeof(*event), GFP_KERNEL); if (!event) return -ENOMEM; event->cgrp = cgrp; INIT_LIST_HEAD(&event->list); init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc); init_waitqueue_func_entry(&event->wait, cgroup_event_wake); INIT_WORK(&event->remove, cgroup_event_remove); efile = eventfd_fget(efd); if (IS_ERR(efile)) { ret = PTR_ERR(efile); goto fail; } event->eventfd = eventfd_ctx_fileget(efile); if (IS_ERR(event->eventfd)) { ret = PTR_ERR(event->eventfd); goto fail; } cfile = fget(cfd); if (!cfile) { ret = -EBADF; goto fail; } /* the process need read permission on control file */ /* AV: shouldn't we check that it's been opened for read instead? */ ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ); if (ret < 0) goto fail; event->cft = __file_cft(cfile); if (IS_ERR(event->cft)) { ret = PTR_ERR(event->cft); goto fail; } /* * The file to be monitored must be in the same cgroup as * cgroup.event_control is. */ cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent); if (cgrp_cfile != cgrp) { ret = -EINVAL; goto fail; } if (!event->cft->register_event || !event->cft->unregister_event) { ret = -EINVAL; goto fail; } ret = event->cft->register_event(cgrp, event->cft, event->eventfd, buffer); if (ret) goto fail; if (efile->f_op->poll(efile, &event->pt) & POLLHUP) { event->cft->unregister_event(cgrp, event->cft, event->eventfd); ret = 0; goto fail; } /* * Events should be removed after rmdir of cgroup directory, but before * destroying subsystem state objects. Let's take reference to cgroup * directory dentry to do that. */ dget(cgrp->dentry); spin_lock(&cgrp->event_list_lock); list_add(&event->list, &cgrp->event_list); spin_unlock(&cgrp->event_list_lock); fput(cfile); fput(efile); return 0; fail: if (cfile) fput(cfile); if (event && event->eventfd && !IS_ERR(event->eventfd)) eventfd_ctx_put(event->eventfd); if (!IS_ERR_OR_NULL(efile)) fput(efile); kfree(event); return ret; } static u64 cgroup_clone_children_read(struct cgroup *cgrp, struct cftype *cft) { return clone_children(cgrp); } static int cgroup_clone_children_write(struct cgroup *cgrp, struct cftype *cft, u64 val) { if (val) set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); else clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); return 0; } /* * for the common functions, 'private' gives the type of file */ /* for hysterical raisins, we can't put this on the older files */ #define CGROUP_FILE_GENERIC_PREFIX "cgroup." static struct cftype files[] = { { .name = "tasks", .open = cgroup_tasks_open, .write_u64 = cgroup_tasks_write, .release = cgroup_pidlist_release, .mode = S_IRUGO | S_IWUSR, }, { .name = CGROUP_FILE_GENERIC_PREFIX "procs", .open = cgroup_procs_open, .write_u64 = cgroup_procs_write, .release = cgroup_pidlist_release, .mode = S_IRUGO | S_IWUSR, }, { .name = "notify_on_release", .read_u64 = cgroup_read_notify_on_release, .write_u64 = cgroup_write_notify_on_release, }, { .name = CGROUP_FILE_GENERIC_PREFIX "event_control", .write_string = cgroup_write_event_control, .mode = S_IWUGO, }, { .name = "cgroup.clone_children", .read_u64 = cgroup_clone_children_read, .write_u64 = cgroup_clone_children_write, }, }; static struct cftype cft_release_agent = { .name = "release_agent", .read_seq_string = cgroup_release_agent_show, .write_string = cgroup_release_agent_write, .max_write_len = PATH_MAX, }; static int cgroup_populate_dir(struct cgroup *cgrp) { int err; struct cgroup_subsys *ss; /* First clear out any existing files */ cgroup_clear_directory(cgrp->dentry); err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files)); if (err < 0) return err; if (cgrp == cgrp->top_cgroup) { if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0) return err; } for_each_subsys(cgrp->root, ss) { if (ss->populate && (err = ss->populate(ss, cgrp)) < 0) return err; } /* This cgroup is ready now */ for_each_subsys(cgrp->root, ss) { struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; /* * Update id->css pointer and make this css visible from * CSS ID functions. This pointer will be dereferened * from RCU-read-side without locks. */ if (css->id) rcu_assign_pointer(css->id->css, css); } return 0; } static void init_cgroup_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss, struct cgroup *cgrp) { css->cgroup = cgrp; atomic_set(&css->refcnt, 1); css->flags = 0; css->id = NULL; if (cgrp == dummytop) set_bit(CSS_ROOT, &css->flags); BUG_ON(cgrp->subsys[ss->subsys_id]); cgrp->subsys[ss->subsys_id] = css; } static void cgroup_lock_hierarchy(struct cgroupfs_root *root) { /* We need to take each hierarchy_mutex in a consistent order */ int i; /* * No worry about a race with rebind_subsystems that might mess up the * locking order, since both parties are under cgroup_mutex. */ for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { struct cgroup_subsys *ss = subsys[i]; if (ss == NULL) continue; if (ss->root == root) mutex_lock(&ss->hierarchy_mutex); } } static void cgroup_unlock_hierarchy(struct cgroupfs_root *root) { int i; for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { struct cgroup_subsys *ss = subsys[i]; if (ss == NULL) continue; if (ss->root == root) mutex_unlock(&ss->hierarchy_mutex); } } /* * cgroup_create - create a cgroup * @parent: cgroup that will be parent of the new cgroup * @dentry: dentry of the new cgroup * @mode: mode to set on new inode * * Must be called with the mutex on the parent inode held */ static long cgroup_create(struct cgroup *parent, struct dentry *dentry, umode_t mode) { struct cgroup *cgrp; struct cgroupfs_root *root = parent->root; int err = 0; struct cgroup_subsys *ss; struct super_block *sb = root->sb; cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL); if (!cgrp) return -ENOMEM; /* Grab a reference on the superblock so the hierarchy doesn't * get deleted on unmount if there are child cgroups. This * can be done outside cgroup_mutex, since the sb can't * disappear while someone has an open control file on the * fs */ atomic_inc(&sb->s_active); mutex_lock(&cgroup_mutex); init_cgroup_housekeeping(cgrp); cgrp->parent = parent; cgrp->root = parent->root; cgrp->top_cgroup = parent->top_cgroup; if (notify_on_release(parent)) set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); if (clone_children(parent)) set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); for_each_subsys(root, ss) { struct cgroup_subsys_state *css = ss->create(cgrp); if (IS_ERR(css)) { err = PTR_ERR(css); goto err_destroy; } init_cgroup_css(css, ss, cgrp); if (ss->use_id) { err = alloc_css_id(ss, parent, cgrp); if (err) goto err_destroy; } /* At error, ->destroy() callback has to free assigned ID. */ if (clone_children(parent) && ss->post_clone) ss->post_clone(cgrp); } cgroup_lock_hierarchy(root); list_add(&cgrp->sibling, &cgrp->parent->children); cgroup_unlock_hierarchy(root); root->number_of_cgroups++; err = cgroup_create_dir(cgrp, dentry, mode); if (err < 0) goto err_remove; set_bit(CGRP_RELEASABLE, &parent->flags); /* The cgroup directory was pre-locked for us */ BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex)); err = cgroup_populate_dir(cgrp); /* If err < 0, we have a half-filled directory - oh well ;) */ mutex_unlock(&cgroup_mutex); mutex_unlock(&cgrp->dentry->d_inode->i_mutex); return 0; err_remove: cgroup_lock_hierarchy(root); list_del(&cgrp->sibling); cgroup_unlock_hierarchy(root); root->number_of_cgroups--; err_destroy: for_each_subsys(root, ss) { if (cgrp->subsys[ss->subsys_id]) ss->destroy(cgrp); } mutex_unlock(&cgroup_mutex); /* Release the reference count that we took on the superblock */ deactivate_super(sb); kfree(cgrp); return err; } static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) { struct cgroup *c_parent = dentry->d_parent->d_fsdata; /* Do not accept '\n' to prevent making /proc//cgroup unparsable. */ if (strchr(dentry->d_name.name, '\n')) return -EINVAL; /* the vfs holds inode->i_mutex already */ return cgroup_create(c_parent, dentry, mode | S_IFDIR); } static int cgroup_has_css_refs(struct cgroup *cgrp) { /* Check the reference count on each subsystem. Since we * already established that there are no tasks in the * cgroup, if the css refcount is also 1, then there should * be no outstanding references, so the subsystem is safe to * destroy. We scan across all subsystems rather than using * the per-hierarchy linked list of mounted subsystems since * we can be called via check_for_release() with no * synchronization other than RCU, and the subsystem linked * list isn't RCU-safe */ int i; /* * We won't need to lock the subsys array, because the subsystems * we're concerned about aren't going anywhere since our cgroup root * has a reference on them. */ for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { struct cgroup_subsys *ss = subsys[i]; struct cgroup_subsys_state *css; /* Skip subsystems not present or not in this hierarchy */ if (ss == NULL || ss->root != cgrp->root) continue; css = cgrp->subsys[ss->subsys_id]; /* When called from check_for_release() it's possible * that by this point the cgroup has been removed * and the css deleted. But a false-positive doesn't * matter, since it can only happen if the cgroup * has been deleted and hence no longer needs the * release agent to be called anyway. */ if (css && (atomic_read(&css->refcnt) > 1)) return 1; } return 0; } /* * Atomically mark all (or else none) of the cgroup's CSS objects as * CSS_REMOVED. Return true on success, or false if the cgroup has * busy subsystems. Call with cgroup_mutex held */ static int cgroup_clear_css_refs(struct cgroup *cgrp) { struct cgroup_subsys *ss; unsigned long flags; bool failed = false; if (atomic_read(&cgrp->count) != 0) return false; local_irq_save(flags); for_each_subsys(cgrp->root, ss) { struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; int refcnt; while (1) { /* We can only remove a CSS with a refcnt==1 */ refcnt = atomic_read(&css->refcnt); if (refcnt > 1) { failed = true; goto done; } BUG_ON(!refcnt); /* * Drop the refcnt to 0 while we check other * subsystems. This will cause any racing * css_tryget() to spin until we set the * CSS_REMOVED bits or abort */ if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt) break; cpu_relax(); } } done: for_each_subsys(cgrp->root, ss) { struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; if (failed) { /* * Restore old refcnt if we previously managed * to clear it from 1 to 0 */ if (!atomic_read(&css->refcnt)) atomic_set(&css->refcnt, 1); } else { /* Commit the fact that the CSS is removed */ set_bit(CSS_REMOVED, &css->flags); } } local_irq_restore(flags); return !failed; } /* Checks if all of the css_sets attached to a cgroup have a refcount of 0. */ static int cgroup_css_sets_empty(struct cgroup *cgrp) { struct cg_cgroup_link *link; int retval = 1; read_lock(&css_set_lock); list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) { struct css_set *cg = link->cg; if (atomic_read(&cg->refcount) > 0) { retval = 0; break; } } read_unlock(&css_set_lock); return retval; } static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry) { struct cgroup *cgrp = dentry->d_fsdata; struct dentry *d; struct cgroup *parent; DEFINE_WAIT(wait); struct cgroup_event *event, *tmp; int ret; /* the vfs holds both inode->i_mutex already */ again: mutex_lock(&cgroup_mutex); if (!cgroup_css_sets_empty(cgrp)) { mutex_unlock(&cgroup_mutex); return -EBUSY; } if (!list_empty(&cgrp->children)) { mutex_unlock(&cgroup_mutex); return -EBUSY; } mutex_unlock(&cgroup_mutex); /* * In general, subsystem has no css->refcnt after pre_destroy(). But * in racy cases, subsystem may have to get css->refcnt after * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes * make rmdir return -EBUSY too often. To avoid that, we use waitqueue * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir * and subsystem's reference count handling. Please see css_get/put * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation. */ set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); /* * Call pre_destroy handlers of subsys. Notify subsystems * that rmdir() request comes. */ ret = cgroup_call_pre_destroy(cgrp); if (ret) { clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); return ret; } mutex_lock(&cgroup_mutex); parent = cgrp->parent; if (!cgroup_css_sets_empty(cgrp) || !list_empty(&cgrp->children)) { clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); mutex_unlock(&cgroup_mutex); return -EBUSY; } prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE); if (!cgroup_clear_css_refs(cgrp)) { mutex_unlock(&cgroup_mutex); /* * Because someone may call cgroup_wakeup_rmdir_waiter() before * prepare_to_wait(), we need to check this flag. */ if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)) schedule(); finish_wait(&cgroup_rmdir_waitq, &wait); clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); if (signal_pending(current)) return -EINTR; goto again; } /* NO css_tryget() can success after here. */ finish_wait(&cgroup_rmdir_waitq, &wait); clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); raw_spin_lock(&release_list_lock); set_bit(CGRP_REMOVED, &cgrp->flags); if (!list_empty(&cgrp->release_list)) list_del_init(&cgrp->release_list); raw_spin_unlock(&release_list_lock); cgroup_lock_hierarchy(cgrp->root); /* delete this cgroup from parent->children */ list_del_init(&cgrp->sibling); cgroup_unlock_hierarchy(cgrp->root); d = dget(cgrp->dentry); cgroup_d_remove_dir(d); dput(d); check_for_release(parent); /* * Unregister events and notify userspace. * Notify userspace about cgroup removing only after rmdir of cgroup * directory to avoid race between userspace and kernelspace */ spin_lock(&cgrp->event_list_lock); list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) { list_del(&event->list); remove_wait_queue(event->wqh, &event->wait); eventfd_signal(event->eventfd, 1); schedule_work(&event->remove); } spin_unlock(&cgrp->event_list_lock); mutex_unlock(&cgroup_mutex); return 0; } static void __init cgroup_init_subsys(struct cgroup_subsys *ss) { struct cgroup_subsys_state *css; printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name); /* Create the top cgroup state for this subsystem */ list_add(&ss->sibling, &rootnode.subsys_list); ss->root = &rootnode; css = ss->create(dummytop); /* We don't handle early failures gracefully */ BUG_ON(IS_ERR(css)); init_cgroup_css(css, ss, dummytop); /* Update the init_css_set to contain a subsys * pointer to this state - since the subsystem is * newly registered, all tasks and hence the * init_css_set is in the subsystem's top cgroup. */ init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id]; need_forkexit_callback |= ss->fork || ss->exit; /* At system boot, before all subsystems have been * registered, no tasks have been forked, so we don't * need to invoke fork callbacks here. */ BUG_ON(!list_empty(&init_task.tasks)); mutex_init(&ss->hierarchy_mutex); lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key); ss->active = 1; /* this function shouldn't be used with modular subsystems, since they * need to register a subsys_id, among other things */ BUG_ON(ss->module); } /** * cgroup_load_subsys: load and register a modular subsystem at runtime * @ss: the subsystem to load * * This function should be called in a modular subsystem's initcall. If the * subsystem is built as a module, it will be assigned a new subsys_id and set * up for use. If the subsystem is built-in anyway, work is delegated to the * simpler cgroup_init_subsys. */ int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss) { int i; struct cgroup_subsys_state *css; /* check name and function validity */ if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN || ss->create == NULL || ss->destroy == NULL) return -EINVAL; /* * we don't support callbacks in modular subsystems. this check is * before the ss->module check for consistency; a subsystem that could * be a module should still have no callbacks even if the user isn't * compiling it as one. */ if (ss->fork || ss->exit) return -EINVAL; /* * an optionally modular subsystem is built-in: we want to do nothing, * since cgroup_init_subsys will have already taken care of it. */ if (ss->module == NULL) { /* a few sanity checks */ BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT); BUG_ON(subsys[ss->subsys_id] != ss); return 0; } /* * need to register a subsys id before anything else - for example, * init_cgroup_css needs it. */ mutex_lock(&cgroup_mutex); /* find the first empty slot in the array */ for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) { if (subsys[i] == NULL) break; } if (i == CGROUP_SUBSYS_COUNT) { /* maximum number of subsystems already registered! */ mutex_unlock(&cgroup_mutex); return -EBUSY; } /* assign ourselves the subsys_id */ ss->subsys_id = i; subsys[i] = ss; /* * no ss->create seems to need anything important in the ss struct, so * this can happen first (i.e. before the rootnode attachment). */ css = ss->create(dummytop); if (IS_ERR(css)) { /* failure case - need to deassign the subsys[] slot. */ subsys[i] = NULL; mutex_unlock(&cgroup_mutex); return PTR_ERR(css); } list_add(&ss->sibling, &rootnode.subsys_list); ss->root = &rootnode; /* our new subsystem will be attached to the dummy hierarchy. */ init_cgroup_css(css, ss, dummytop); /* init_idr must be after init_cgroup_css because it sets css->id. */ if (ss->use_id) { int ret = cgroup_init_idr(ss, css); if (ret) { dummytop->subsys[ss->subsys_id] = NULL; ss->destroy(dummytop); subsys[i] = NULL; mutex_unlock(&cgroup_mutex); return ret; } } /* * Now we need to entangle the css into the existing css_sets. unlike * in cgroup_init_subsys, there are now multiple css_sets, so each one * will need a new pointer to it; done by iterating the css_set_table. * furthermore, modifying the existing css_sets will corrupt the hash * table state, so each changed css_set will need its hash recomputed. * this is all done under the css_set_lock. */ write_lock(&css_set_lock); for (i = 0; i < CSS_SET_TABLE_SIZE; i++) { struct css_set *cg; struct hlist_node *node, *tmp; struct hlist_head *bucket = &css_set_table[i], *new_bucket; hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) { /* skip entries that we already rehashed */ if (cg->subsys[ss->subsys_id]) continue; /* remove existing entry */ hlist_del(&cg->hlist); /* set new value */ cg->subsys[ss->subsys_id] = css; /* recompute hash and restore entry */ new_bucket = css_set_hash(cg->subsys); hlist_add_head(&cg->hlist, new_bucket); } } write_unlock(&css_set_lock); mutex_init(&ss->hierarchy_mutex); lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key); ss->active = 1; /* success! */ mutex_unlock(&cgroup_mutex); return 0; } EXPORT_SYMBOL_GPL(cgroup_load_subsys); /** * cgroup_unload_subsys: unload a modular subsystem * @ss: the subsystem to unload * * This function should be called in a modular subsystem's exitcall. When this * function is invoked, the refcount on the subsystem's module will be 0, so * the subsystem will not be attached to any hierarchy. */ void cgroup_unload_subsys(struct cgroup_subsys *ss) { struct cg_cgroup_link *link; struct hlist_head *hhead; BUG_ON(ss->module == NULL); /* * we shouldn't be called if the subsystem is in use, and the use of * try_module_get in parse_cgroupfs_options should ensure that it * doesn't start being used while we're killing it off. */ BUG_ON(ss->root != &rootnode); mutex_lock(&cgroup_mutex); /* deassign the subsys_id */ BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT); subsys[ss->subsys_id] = NULL; /* remove subsystem from rootnode's list of subsystems */ list_del_init(&ss->sibling); /* * disentangle the css from all css_sets attached to the dummytop. as * in loading, we need to pay our respects to the hashtable gods. */ write_lock(&css_set_lock); list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) { struct css_set *cg = link->cg; hlist_del(&cg->hlist); BUG_ON(!cg->subsys[ss->subsys_id]); cg->subsys[ss->subsys_id] = NULL; hhead = css_set_hash(cg->subsys); hlist_add_head(&cg->hlist, hhead); } write_unlock(&css_set_lock); /* * remove subsystem's css from the dummytop and free it - need to free * before marking as null because ss->destroy needs the cgrp->subsys * pointer to find their state. note that this also takes care of * freeing the css_id. */ ss->destroy(dummytop); dummytop->subsys[ss->subsys_id] = NULL; mutex_unlock(&cgroup_mutex); } EXPORT_SYMBOL_GPL(cgroup_unload_subsys); /** * cgroup_init_early - cgroup initialization at system boot * * Initialize cgroups at system boot, and initialize any * subsystems that request early init. */ int __init cgroup_init_early(void) { int i; atomic_set(&init_css_set.refcount, 1); INIT_LIST_HEAD(&init_css_set.cg_links); INIT_LIST_HEAD(&init_css_set.tasks); INIT_HLIST_NODE(&init_css_set.hlist); css_set_count = 1; init_cgroup_root(&rootnode); root_count = 1; init_task.cgroups = &init_css_set; init_css_set_link.cg = &init_css_set; init_css_set_link.cgrp = dummytop; list_add(&init_css_set_link.cgrp_link_list, &rootnode.top_cgroup.css_sets); list_add(&init_css_set_link.cg_link_list, &init_css_set.cg_links); for (i = 0; i < CSS_SET_TABLE_SIZE; i++) INIT_HLIST_HEAD(&css_set_table[i]); /* at bootup time, we don't worry about modular subsystems */ for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { struct cgroup_subsys *ss = subsys[i]; BUG_ON(!ss->name); BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN); BUG_ON(!ss->create); BUG_ON(!ss->destroy); if (ss->subsys_id != i) { printk(KERN_ERR "cgroup: Subsys %s id == %d\n", ss->name, ss->subsys_id); BUG(); } if (ss->early_init) cgroup_init_subsys(ss); } return 0; } /** * cgroup_init - cgroup initialization * * Register cgroup filesystem and /proc file, and initialize * any subsystems that didn't request early init. */ int __init cgroup_init(void) { int err; int i; struct hlist_head *hhead; err = bdi_init(&cgroup_backing_dev_info); if (err) return err; /* at bootup time, we don't worry about modular subsystems */ for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { struct cgroup_subsys *ss = subsys[i]; if (!ss->early_init) cgroup_init_subsys(ss); if (ss->use_id) cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]); } /* Add init_css_set to the hash table */ hhead = css_set_hash(init_css_set.subsys); hlist_add_head(&init_css_set.hlist, hhead); BUG_ON(!init_root_id(&rootnode)); cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj); if (!cgroup_kobj) { err = -ENOMEM; goto out; } err = register_filesystem(&cgroup_fs_type); if (err < 0) { kobject_put(cgroup_kobj); goto out; } proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations); out: if (err) bdi_destroy(&cgroup_backing_dev_info); return err; } /* * proc_cgroup_show() * - Print task's cgroup paths into seq_file, one line for each hierarchy * - Used for /proc//cgroup. * - No need to task_lock(tsk) on this tsk->cgroup reference, as it * doesn't really matter if tsk->cgroup changes after we read it, * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it * anyway. No need to check that tsk->cgroup != NULL, thanks to * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks * cgroup to top_cgroup. */ /* TODO: Use a proper seq_file iterator */ static int proc_cgroup_show(struct seq_file *m, void *v) { struct pid *pid; struct task_struct *tsk; char *buf; int retval; struct cgroupfs_root *root; retval = -ENOMEM; buf = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!buf) goto out; retval = -ESRCH; pid = m->private; tsk = get_pid_task(pid, PIDTYPE_PID); if (!tsk) goto out_free; retval = 0; mutex_lock(&cgroup_mutex); for_each_active_root(root) { struct cgroup_subsys *ss; struct cgroup *cgrp; int count = 0; seq_printf(m, "%d:", root->hierarchy_id); for_each_subsys(root, ss) seq_printf(m, "%s%s", count++ ? "," : "", ss->name); if (strlen(root->name)) seq_printf(m, "%sname=%s", count ? "," : "", root->name); seq_putc(m, ':'); cgrp = task_cgroup_from_root(tsk, root); retval = cgroup_path(cgrp, buf, PAGE_SIZE); if (retval < 0) goto out_unlock; seq_puts(m, buf); seq_putc(m, '\n'); } out_unlock: mutex_unlock(&cgroup_mutex); put_task_struct(tsk); out_free: kfree(buf); out: return retval; } static int cgroup_open(struct inode *inode, struct file *file) { struct pid *pid = PROC_I(inode)->pid; return single_open(file, proc_cgroup_show, pid); } const struct file_operations proc_cgroup_operations = { .open = cgroup_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; /* Display information about each subsystem and each hierarchy */ static int proc_cgroupstats_show(struct seq_file *m, void *v) { int i; seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); /* * ideally we don't want subsystems moving around while we do this. * cgroup_mutex is also necessary to guarantee an atomic snapshot of * subsys/hierarchy state. */ mutex_lock(&cgroup_mutex); for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { struct cgroup_subsys *ss = subsys[i]; if (ss == NULL) continue; seq_printf(m, "%s\t%d\t%d\t%d\n", ss->name, ss->root->hierarchy_id, ss->root->number_of_cgroups, !ss->disabled); } mutex_unlock(&cgroup_mutex); return 0; } static int cgroupstats_open(struct inode *inode, struct file *file) { return single_open(file, proc_cgroupstats_show, NULL); } static const struct file_operations proc_cgroupstats_operations = { .open = cgroupstats_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; /** * cgroup_fork - attach newly forked task to its parents cgroup. * @child: pointer to task_struct of forking parent process. * * Description: A task inherits its parent's cgroup at fork(). * * A pointer to the shared css_set was automatically copied in * fork.c by dup_task_struct(). However, we ignore that copy, since * it was not made under the protection of RCU or cgroup_mutex, so * might no longer be a valid cgroup pointer. cgroup_attach_task() might * have already changed current->cgroups, allowing the previously * referenced cgroup group to be removed and freed. * * At the point that cgroup_fork() is called, 'current' is the parent * task, and the passed argument 'child' points to the child task. */ void cgroup_fork(struct task_struct *child) { task_lock(current); child->cgroups = current->cgroups; get_css_set(child->cgroups); task_unlock(current); INIT_LIST_HEAD(&child->cg_list); } /** * cgroup_post_fork - called on a new task after adding it to the task list * @child: the task in question * * Adds the task to the list running through its css_set if necessary and * call the subsystem fork() callbacks. Has to be after the task is * visible on the task list in case we race with the first call to * cgroup_iter_start() - to guarantee that the new task ends up on its * list. */ void cgroup_post_fork(struct task_struct *child) { int i; /* * use_task_css_set_links is set to 1 before we walk the tasklist * under the tasklist_lock and we read it here after we added the child * to the tasklist under the tasklist_lock as well. If the child wasn't * yet in the tasklist when we walked through it from * cgroup_enable_task_cg_lists(), then use_task_css_set_links value * should be visible now due to the paired locking and barriers implied * by LOCK/UNLOCK: it is written before the tasklist_lock unlock * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock * lock on fork. */ if (use_task_css_set_links) { write_lock(&css_set_lock); task_lock(child); if (list_empty(&child->cg_list)) list_add(&child->cg_list, &child->cgroups->tasks); task_unlock(child); write_unlock(&css_set_lock); } /* * Call ss->fork(). This must happen after @child is linked on * css_set; otherwise, @child might change state between ->fork() * and addition to css_set. */ if (need_forkexit_callback) { for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { struct cgroup_subsys *ss = subsys[i]; if (ss->fork) ss->fork(child); } } } /** * cgroup_exit - detach cgroup from exiting task * @tsk: pointer to task_struct of exiting process * @run_callback: run exit callbacks? * * Description: Detach cgroup from @tsk and release it. * * Note that cgroups marked notify_on_release force every task in * them to take the global cgroup_mutex mutex when exiting. * This could impact scaling on very large systems. Be reluctant to * use notify_on_release cgroups where very high task exit scaling * is required on large systems. * * the_top_cgroup_hack: * * Set the exiting tasks cgroup to the root cgroup (top_cgroup). * * We call cgroup_exit() while the task is still competent to * handle notify_on_release(), then leave the task attached to the * root cgroup in each hierarchy for the remainder of its exit. * * To do this properly, we would increment the reference count on * top_cgroup, and near the very end of the kernel/exit.c do_exit() * code we would add a second cgroup function call, to drop that * reference. This would just create an unnecessary hot spot on * the top_cgroup reference count, to no avail. * * Normally, holding a reference to a cgroup without bumping its * count is unsafe. The cgroup could go away, or someone could * attach us to a different cgroup, decrementing the count on * the first cgroup that we never incremented. But in this case, * top_cgroup isn't going away, and either task has PF_EXITING set, * which wards off any cgroup_attach_task() attempts, or task is a failed * fork, never visible to cgroup_attach_task. */ void cgroup_exit(struct task_struct *tsk, int run_callbacks) { struct css_set *cg; int i; /* * Unlink from the css_set task list if necessary. * Optimistically check cg_list before taking * css_set_lock */ if (!list_empty(&tsk->cg_list)) { write_lock(&css_set_lock); if (!list_empty(&tsk->cg_list)) list_del_init(&tsk->cg_list); write_unlock(&css_set_lock); } /* Reassign the task to the init_css_set. */ task_lock(tsk); cg = tsk->cgroups; tsk->cgroups = &init_css_set; if (run_callbacks && need_forkexit_callback) { /* * modular subsystems can't use callbacks, so no need to lock * the subsys array */ for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { struct cgroup_subsys *ss = subsys[i]; if (ss->exit) { struct cgroup *old_cgrp = rcu_dereference_raw(cg->subsys[i])->cgroup; struct cgroup *cgrp = task_cgroup(tsk, i); ss->exit(cgrp, old_cgrp, tsk); } } } task_unlock(tsk); if (cg) put_css_set(cg); } /** * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp * @cgrp: the cgroup in question * @task: the task in question * * See if @cgrp is a descendant of @task's cgroup in the appropriate * hierarchy. * * If we are sending in dummytop, then presumably we are creating * the top cgroup in the subsystem. * * Called only by the ns (nsproxy) cgroup. */ int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task) { int ret; struct cgroup *target; if (cgrp == dummytop) return 1; target = task_cgroup_from_root(task, cgrp->root); while (cgrp != target && cgrp!= cgrp->top_cgroup) cgrp = cgrp->parent; ret = (cgrp == target); return ret; } static void check_for_release(struct cgroup *cgrp) { /* All of these checks rely on RCU to keep the cgroup * structure alive */ if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count) && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) { /* Control Group is currently removeable. If it's not * already queued for a userspace notification, queue * it now */ int need_schedule_work = 0; raw_spin_lock(&release_list_lock); if (!cgroup_is_removed(cgrp) && list_empty(&cgrp->release_list)) { list_add(&cgrp->release_list, &release_list); need_schedule_work = 1; } raw_spin_unlock(&release_list_lock); if (need_schedule_work) schedule_work(&release_agent_work); } } /* Caller must verify that the css is not for root cgroup */ void __css_get(struct cgroup_subsys_state *css, int count) { atomic_add(count, &css->refcnt); set_bit(CGRP_RELEASABLE, &css->cgroup->flags); } EXPORT_SYMBOL_GPL(__css_get); /* Caller must verify that the css is not for root cgroup */ void __css_put(struct cgroup_subsys_state *css, int count) { struct cgroup *cgrp = css->cgroup; int val; rcu_read_lock(); val = atomic_sub_return(count, &css->refcnt); if (val == 1) { check_for_release(cgrp); cgroup_wakeup_rmdir_waiter(cgrp); } rcu_read_unlock(); WARN_ON_ONCE(val < 1); } EXPORT_SYMBOL_GPL(__css_put); /* * Notify userspace when a cgroup is released, by running the * configured release agent with the name of the cgroup (path * relative to the root of cgroup file system) as the argument. * * Most likely, this user command will try to rmdir this cgroup. * * This races with the possibility that some other task will be * attached to this cgroup before it is removed, or that some other * user task will 'mkdir' a child cgroup of this cgroup. That's ok. * The presumed 'rmdir' will fail quietly if this cgroup is no longer * unused, and this cgroup will be reprieved from its death sentence, * to continue to serve a useful existence. Next time it's released, * we will get notified again, if it still has 'notify_on_release' set. * * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which * means only wait until the task is successfully execve()'d. The * separate release agent task is forked by call_usermodehelper(), * then control in this thread returns here, without waiting for the * release agent task. We don't bother to wait because the caller of * this routine has no use for the exit status of the release agent * task, so no sense holding our caller up for that. */ static void cgroup_release_agent(struct work_struct *work) { BUG_ON(work != &release_agent_work); mutex_lock(&cgroup_mutex); raw_spin_lock(&release_list_lock); while (!list_empty(&release_list)) { char *argv[3], *envp[3]; int i; char *pathbuf = NULL, *agentbuf = NULL; struct cgroup *cgrp = list_entry(release_list.next, struct cgroup, release_list); list_del_init(&cgrp->release_list); raw_spin_unlock(&release_list_lock); pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!pathbuf) goto continue_free; if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) goto continue_free; agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); if (!agentbuf) goto continue_free; i = 0; argv[i++] = agentbuf; argv[i++] = pathbuf; argv[i] = NULL; i = 0; /* minimal command environment */ envp[i++] = "HOME=/"; envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; envp[i] = NULL; /* Drop the lock while we invoke the usermode helper, * since the exec could involve hitting disk and hence * be a slow process */ mutex_unlock(&cgroup_mutex); call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); mutex_lock(&cgroup_mutex); continue_free: kfree(pathbuf); kfree(agentbuf); raw_spin_lock(&release_list_lock); } raw_spin_unlock(&release_list_lock); mutex_unlock(&cgroup_mutex); } static int __init cgroup_disable(char *str) { int i; char *token; while ((token = strsep(&str, ",")) != NULL) { if (!*token) continue; /* * cgroup_disable, being at boot time, can't know about module * subsystems, so we don't worry about them. */ for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { struct cgroup_subsys *ss = subsys[i]; if (!strcmp(token, ss->name)) { ss->disabled = 1; printk(KERN_INFO "Disabling %s control group" " subsystem\n", ss->name); break; } } } return 1; } __setup("cgroup_disable=", cgroup_disable); /* * Functons for CSS ID. */ /* *To get ID other than 0, this should be called when !cgroup_is_removed(). */ unsigned short css_id(struct cgroup_subsys_state *css) { struct css_id *cssid; /* * This css_id() can return correct value when somone has refcnt * on this or this is under rcu_read_lock(). Once css->id is allocated, * it's unchanged until freed. */ cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt)); if (cssid) return cssid->id; return 0; } EXPORT_SYMBOL_GPL(css_id); unsigned short css_depth(struct cgroup_subsys_state *css) { struct css_id *cssid; cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt)); if (cssid) return cssid->depth; return 0; } EXPORT_SYMBOL_GPL(css_depth); /** * css_is_ancestor - test "root" css is an ancestor of "child" * @child: the css to be tested. * @root: the css supporsed to be an ancestor of the child. * * Returns true if "root" is an ancestor of "child" in its hierarchy. Because * this function reads css->id, this use rcu_dereference() and rcu_read_lock(). * But, considering usual usage, the csses should be valid objects after test. * Assuming that the caller will do some action to the child if this returns * returns true, the caller must take "child";s reference count. * If "child" is valid object and this returns true, "root" is valid, too. */ bool css_is_ancestor(struct cgroup_subsys_state *child, const struct cgroup_subsys_state *root) { struct css_id *child_id; struct css_id *root_id; bool ret = true; rcu_read_lock(); child_id = rcu_dereference(child->id); root_id = rcu_dereference(root->id); if (!child_id || !root_id || (child_id->depth < root_id->depth) || (child_id->stack[root_id->depth] != root_id->id)) ret = false; rcu_read_unlock(); return ret; } void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css) { struct css_id *id = css->id; /* When this is called before css_id initialization, id can be NULL */ if (!id) return; BUG_ON(!ss->use_id); rcu_assign_pointer(id->css, NULL); rcu_assign_pointer(css->id, NULL); spin_lock(&ss->id_lock); idr_remove(&ss->idr, id->id); spin_unlock(&ss->id_lock); kfree_rcu(id, rcu_head); } EXPORT_SYMBOL_GPL(free_css_id); /* * This is called by init or create(). Then, calls to this function are * always serialized (By cgroup_mutex() at create()). */ static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth) { struct css_id *newid; int myid, error, size; BUG_ON(!ss->use_id); size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1); newid = kzalloc(size, GFP_KERNEL); if (!newid) return ERR_PTR(-ENOMEM); /* get id */ if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) { error = -ENOMEM; goto err_out; } spin_lock(&ss->id_lock); /* Don't use 0. allocates an ID of 1-65535 */ error = idr_get_new_above(&ss->idr, newid, 1, &myid); spin_unlock(&ss->id_lock); /* Returns error when there are no free spaces for new ID.*/ if (error) { error = -ENOSPC; goto err_out; } if (myid > CSS_ID_MAX) goto remove_idr; newid->id = myid; newid->depth = depth; return newid; remove_idr: error = -ENOSPC; spin_lock(&ss->id_lock); idr_remove(&ss->idr, myid); spin_unlock(&ss->id_lock); err_out: kfree(newid); return ERR_PTR(error); } static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss, struct cgroup_subsys_state *rootcss) { struct css_id *newid; spin_lock_init(&ss->id_lock); idr_init(&ss->idr); newid = get_new_cssid(ss, 0); if (IS_ERR(newid)) return PTR_ERR(newid); newid->stack[0] = newid->id; newid->css = rootcss; rootcss->id = newid; return 0; } static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent, struct cgroup *child) { int subsys_id, i, depth = 0; struct cgroup_subsys_state *parent_css, *child_css; struct css_id *child_id, *parent_id; subsys_id = ss->subsys_id; parent_css = parent->subsys[subsys_id]; child_css = child->subsys[subsys_id]; parent_id = parent_css->id; depth = parent_id->depth + 1; child_id = get_new_cssid(ss, depth); if (IS_ERR(child_id)) return PTR_ERR(child_id); for (i = 0; i < depth; i++) child_id->stack[i] = parent_id->stack[i]; child_id->stack[depth] = child_id->id; /* * child_id->css pointer will be set after this cgroup is available * see cgroup_populate_dir() */ rcu_assign_pointer(child_css->id, child_id); return 0; } /** * css_lookup - lookup css by id * @ss: cgroup subsys to be looked into. * @id: the id * * Returns pointer to cgroup_subsys_state if there is valid one with id. * NULL if not. Should be called under rcu_read_lock() */ struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id) { struct css_id *cssid = NULL; BUG_ON(!ss->use_id); cssid = idr_find(&ss->idr, id); if (unlikely(!cssid)) return NULL; return rcu_dereference(cssid->css); } EXPORT_SYMBOL_GPL(css_lookup); /** * css_get_next - lookup next cgroup under specified hierarchy. * @ss: pointer to subsystem * @id: current position of iteration. * @root: pointer to css. search tree under this. * @foundid: position of found object. * * Search next css under the specified hierarchy of rootid. Calling under * rcu_read_lock() is necessary. Returns NULL if it reaches the end. */ struct cgroup_subsys_state * css_get_next(struct cgroup_subsys *ss, int id, struct cgroup_subsys_state *root, int *foundid) { struct cgroup_subsys_state *ret = NULL; struct css_id *tmp; int tmpid; int rootid = css_id(root); int depth = css_depth(root); if (!rootid) return NULL; BUG_ON(!ss->use_id); WARN_ON_ONCE(!rcu_read_lock_held()); /* fill start point for scan */ tmpid = id; while (1) { /* * scan next entry from bitmap(tree), tmpid is updated after * idr_get_next(). */ tmp = idr_get_next(&ss->idr, &tmpid); if (!tmp) break; if (tmp->depth >= depth && tmp->stack[depth] == rootid) { ret = rcu_dereference(tmp->css); if (ret) { *foundid = tmpid; break; } } /* continue to scan from next id */ tmpid = tmpid + 1; } return ret; } /* * get corresponding css from file open on cgroupfs directory */ struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id) { struct cgroup *cgrp; struct inode *inode; struct cgroup_subsys_state *css; inode = f->f_dentry->d_inode; /* check in cgroup filesystem dir */ if (inode->i_op != &cgroup_dir_inode_operations) return ERR_PTR(-EBADF); if (id < 0 || id >= CGROUP_SUBSYS_COUNT) return ERR_PTR(-EINVAL); /* get cgroup */ cgrp = __d_cgrp(f->f_dentry); css = cgrp->subsys[id]; return css ? css : ERR_PTR(-ENOENT); } #ifdef CONFIG_CGROUP_DEBUG static struct cgroup_subsys_state *debug_create(struct cgroup *cont) { struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); if (!css) return ERR_PTR(-ENOMEM); return css; } static void debug_destroy(struct cgroup *cont) { kfree(cont->subsys[debug_subsys_id]); } static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft) { return atomic_read(&cont->count); } static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft) { return cgroup_task_count(cont); } static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft) { return (u64)(unsigned long)current->cgroups; } static u64 current_css_set_refcount_read(struct cgroup *cont, struct cftype *cft) { u64 count; rcu_read_lock(); count = atomic_read(¤t->cgroups->refcount); rcu_read_unlock(); return count; } static int current_css_set_cg_links_read(struct cgroup *cont, struct cftype *cft, struct seq_file *seq) { struct cg_cgroup_link *link; struct css_set *cg; read_lock(&css_set_lock); rcu_read_lock(); cg = rcu_dereference(current->cgroups); list_for_each_entry(link, &cg->cg_links, cg_link_list) { struct cgroup *c = link->cgrp; const char *name; if (c->dentry) name = c->dentry->d_name.name; else name = "?"; seq_printf(seq, "Root %d group %s\n", c->root->hierarchy_id, name); } rcu_read_unlock(); read_unlock(&css_set_lock); return 0; } #define MAX_TASKS_SHOWN_PER_CSS 25 static int cgroup_css_links_read(struct cgroup *cont, struct cftype *cft, struct seq_file *seq) { struct cg_cgroup_link *link; read_lock(&css_set_lock); list_for_each_entry(link, &cont->css_sets, cgrp_link_list) { struct css_set *cg = link->cg; struct task_struct *task; int count = 0; seq_printf(seq, "css_set %pK\n", cg); list_for_each_entry(task, &cg->tasks, cg_list) { if (count++ > MAX_TASKS_SHOWN_PER_CSS) { seq_puts(seq, " ...\n"); break; } else { seq_printf(seq, " task %d\n", task_pid_vnr(task)); } } } read_unlock(&css_set_lock); return 0; } static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft) { return test_bit(CGRP_RELEASABLE, &cgrp->flags); } static struct cftype debug_files[] = { { .name = "cgroup_refcount", .read_u64 = cgroup_refcount_read, }, { .name = "taskcount", .read_u64 = debug_taskcount_read, }, { .name = "current_css_set", .read_u64 = current_css_set_read, }, { .name = "current_css_set_refcount", .read_u64 = current_css_set_refcount_read, }, { .name = "current_css_set_cg_links", .read_seq_string = current_css_set_cg_links_read, }, { .name = "cgroup_css_links", .read_seq_string = cgroup_css_links_read, }, { .name = "releasable", .read_u64 = releasable_read, }, }; static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont) { return cgroup_add_files(cont, ss, debug_files, ARRAY_SIZE(debug_files)); } struct cgroup_subsys debug_subsys = { .name = "debug", .create = debug_create, .destroy = debug_destroy, .populate = debug_populate, .subsys_id = debug_subsys_id, }; #endif /* CONFIG_CGROUP_DEBUG */