mirror of
https://github.com/followmsi/android_kernel_google_msm.git
synced 2024-11-06 23:17:41 +00:00
6473d160b4
I noticed that many source files include <linux/pci.h> while they do not appear to need it. Here is an attempt to clean it all up. In order to find all possibly affected files, I searched for all files including <linux/pci.h> but without any other occurence of "pci" or "PCI". I removed the include statement from all of these, then I compiled an allmodconfig kernel on both i386 and x86_64 and fixed the false positives manually. My tests covered 66% of the affected files, so there could be false positives remaining. Untested files are: arch/alpha/kernel/err_common.c arch/alpha/kernel/err_ev6.c arch/alpha/kernel/err_ev7.c arch/ia64/sn/kernel/huberror.c arch/ia64/sn/kernel/xpnet.c arch/m68knommu/kernel/dma.c arch/mips/lib/iomap.c arch/powerpc/platforms/pseries/ras.c arch/ppc/8260_io/enet.c arch/ppc/8260_io/fcc_enet.c arch/ppc/8xx_io/enet.c arch/ppc/syslib/ppc4xx_sgdma.c arch/sh64/mach-cayman/iomap.c arch/xtensa/kernel/xtensa_ksyms.c arch/xtensa/platform-iss/setup.c drivers/i2c/busses/i2c-at91.c drivers/i2c/busses/i2c-mpc.c drivers/media/video/saa711x.c drivers/misc/hdpuftrs/hdpu_cpustate.c drivers/misc/hdpuftrs/hdpu_nexus.c drivers/net/au1000_eth.c drivers/net/fec_8xx/fec_main.c drivers/net/fec_8xx/fec_mii.c drivers/net/fs_enet/fs_enet-main.c drivers/net/fs_enet/mac-fcc.c drivers/net/fs_enet/mac-fec.c drivers/net/fs_enet/mac-scc.c drivers/net/fs_enet/mii-bitbang.c drivers/net/fs_enet/mii-fec.c drivers/net/ibm_emac/ibm_emac_core.c drivers/net/lasi_82596.c drivers/parisc/hppb.c drivers/sbus/sbus.c drivers/video/g364fb.c drivers/video/platinumfb.c drivers/video/stifb.c drivers/video/valkyriefb.c include/asm-arm/arch-ixp4xx/dma.h sound/oss/au1550_ac97.c I would welcome test reports for these files. I am fine with removing the untested files from the patch if the general opinion is that these changes aren't safe. The tested part would still be nice to have. Note that this patch depends on another header fixup patch I submitted to LKML yesterday: [PATCH] scatterlist.h needs types.h http://lkml.org/lkml/2007/3/01/141 Signed-off-by: Jean Delvare <khali@linux-fr.org> Cc: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
226 lines
4.5 KiB
C
226 lines
4.5 KiB
C
/*
|
|
* Implement the default iomap interfaces
|
|
*
|
|
* (C) Copyright 2004 Linus Torvalds
|
|
* (C) Copyright 2006 Ralf Baechle <ralf@linux-mips.org>
|
|
* (C) Copyright 2007 MIPS Technologies, Inc.
|
|
* written by Ralf Baechle <ralf@linux-mips.org>
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <asm/io.h>
|
|
|
|
/*
|
|
* Read/write from/to an (offsettable) iomem cookie. It might be a PIO
|
|
* access or a MMIO access, these functions don't care. The info is
|
|
* encoded in the hardware mapping set up by the mapping functions
|
|
* (or the cookie itself, depending on implementation and hw).
|
|
*
|
|
* The generic routines don't assume any hardware mappings, and just
|
|
* encode the PIO/MMIO as part of the cookie. They coldly assume that
|
|
* the MMIO IO mappings are not in the low address range.
|
|
*
|
|
* Architectures for which this is not true can't use this generic
|
|
* implementation and should do their own copy.
|
|
*/
|
|
|
|
#define PIO_MASK 0x0ffffUL
|
|
|
|
unsigned int ioread8(void __iomem *addr)
|
|
{
|
|
return readb(addr);
|
|
}
|
|
|
|
EXPORT_SYMBOL(ioread8);
|
|
|
|
unsigned int ioread16(void __iomem *addr)
|
|
{
|
|
return readw(addr);
|
|
}
|
|
|
|
EXPORT_SYMBOL(ioread16);
|
|
|
|
unsigned int ioread16be(void __iomem *addr)
|
|
{
|
|
return be16_to_cpu(__raw_readw(addr));
|
|
}
|
|
|
|
EXPORT_SYMBOL(ioread16be);
|
|
|
|
unsigned int ioread32(void __iomem *addr)
|
|
{
|
|
return readl(addr);
|
|
}
|
|
|
|
EXPORT_SYMBOL(ioread32);
|
|
|
|
unsigned int ioread32be(void __iomem *addr)
|
|
{
|
|
return be32_to_cpu(__raw_readl(addr));
|
|
}
|
|
|
|
EXPORT_SYMBOL(ioread32be);
|
|
|
|
void iowrite8(u8 val, void __iomem *addr)
|
|
{
|
|
writeb(val, addr);
|
|
}
|
|
|
|
EXPORT_SYMBOL(iowrite8);
|
|
|
|
void iowrite16(u16 val, void __iomem *addr)
|
|
{
|
|
writew(val, addr);
|
|
}
|
|
|
|
EXPORT_SYMBOL(iowrite16);
|
|
|
|
void iowrite16be(u16 val, void __iomem *addr)
|
|
{
|
|
__raw_writew(cpu_to_be16(val), addr);
|
|
}
|
|
|
|
EXPORT_SYMBOL(iowrite16be);
|
|
|
|
void iowrite32(u32 val, void __iomem *addr)
|
|
{
|
|
writel(val, addr);
|
|
}
|
|
|
|
EXPORT_SYMBOL(iowrite32);
|
|
|
|
void iowrite32be(u32 val, void __iomem *addr)
|
|
{
|
|
__raw_writel(cpu_to_be32(val), addr);
|
|
}
|
|
|
|
EXPORT_SYMBOL(iowrite32be);
|
|
|
|
/*
|
|
* These are the "repeat MMIO read/write" functions.
|
|
* Note the "__raw" accesses, since we don't want to
|
|
* convert to CPU byte order. We write in "IO byte
|
|
* order" (we also don't have IO barriers).
|
|
*/
|
|
static inline void mmio_insb(void __iomem *addr, u8 *dst, int count)
|
|
{
|
|
while (--count >= 0) {
|
|
u8 data = __raw_readb(addr);
|
|
*dst = data;
|
|
dst++;
|
|
}
|
|
}
|
|
|
|
static inline void mmio_insw(void __iomem *addr, u16 *dst, int count)
|
|
{
|
|
while (--count >= 0) {
|
|
u16 data = __raw_readw(addr);
|
|
*dst = data;
|
|
dst++;
|
|
}
|
|
}
|
|
|
|
static inline void mmio_insl(void __iomem *addr, u32 *dst, int count)
|
|
{
|
|
while (--count >= 0) {
|
|
u32 data = __raw_readl(addr);
|
|
*dst = data;
|
|
dst++;
|
|
}
|
|
}
|
|
|
|
static inline void mmio_outsb(void __iomem *addr, const u8 *src, int count)
|
|
{
|
|
while (--count >= 0) {
|
|
__raw_writeb(*src, addr);
|
|
src++;
|
|
}
|
|
}
|
|
|
|
static inline void mmio_outsw(void __iomem *addr, const u16 *src, int count)
|
|
{
|
|
while (--count >= 0) {
|
|
__raw_writew(*src, addr);
|
|
src++;
|
|
}
|
|
}
|
|
|
|
static inline void mmio_outsl(void __iomem *addr, const u32 *src, int count)
|
|
{
|
|
while (--count >= 0) {
|
|
__raw_writel(*src, addr);
|
|
src++;
|
|
}
|
|
}
|
|
|
|
void ioread8_rep(void __iomem *addr, void *dst, unsigned long count)
|
|
{
|
|
mmio_insb(addr, dst, count);
|
|
}
|
|
|
|
EXPORT_SYMBOL(ioread8_rep);
|
|
|
|
void ioread16_rep(void __iomem *addr, void *dst, unsigned long count)
|
|
{
|
|
mmio_insw(addr, dst, count);
|
|
}
|
|
|
|
EXPORT_SYMBOL(ioread16_rep);
|
|
|
|
void ioread32_rep(void __iomem *addr, void *dst, unsigned long count)
|
|
{
|
|
mmio_insl(addr, dst, count);
|
|
}
|
|
|
|
EXPORT_SYMBOL(ioread32_rep);
|
|
|
|
void iowrite8_rep(void __iomem *addr, const void *src, unsigned long count)
|
|
{
|
|
mmio_outsb(addr, src, count);
|
|
}
|
|
|
|
EXPORT_SYMBOL(iowrite8_rep);
|
|
|
|
void iowrite16_rep(void __iomem *addr, const void *src, unsigned long count)
|
|
{
|
|
mmio_outsw(addr, src, count);
|
|
}
|
|
|
|
EXPORT_SYMBOL(iowrite16_rep);
|
|
|
|
void iowrite32_rep(void __iomem *addr, const void *src, unsigned long count)
|
|
{
|
|
mmio_outsl(addr, src, count);
|
|
}
|
|
|
|
EXPORT_SYMBOL(iowrite32_rep);
|
|
|
|
/*
|
|
* Create a virtual mapping cookie for an IO port range
|
|
*
|
|
* This uses the same mapping are as the in/out family which has to be setup
|
|
* by the platform initialization code.
|
|
*
|
|
* Just to make matters somewhat more interesting on MIPS systems with
|
|
* multiple host bridge each will have it's own ioport address space.
|
|
*/
|
|
static void __iomem *ioport_map_legacy(unsigned long port, unsigned int nr)
|
|
{
|
|
return (void __iomem *) (mips_io_port_base + port);
|
|
}
|
|
|
|
void __iomem *ioport_map(unsigned long port, unsigned int nr)
|
|
{
|
|
if (port > PIO_MASK)
|
|
return NULL;
|
|
|
|
return ioport_map_legacy(port, nr);
|
|
}
|
|
|
|
EXPORT_SYMBOL(ioport_map);
|
|
|
|
void ioport_unmap(void __iomem *addr)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
|
|
EXPORT_SYMBOL(ioport_unmap);
|