mirror of
https://github.com/followmsi/android_kernel_google_msm.git
synced 2024-11-06 23:17:41 +00:00
04e554807c
Change-Id: Ibead64ce2e901dede2ddd1b86088b88f2350ce92 Signed-off-by: Duy Truong <dtruong@codeaurora.org>
2961 lines
75 KiB
C
2961 lines
75 KiB
C
/* drivers/android/pmem.c
|
|
*
|
|
* Copyright (C) 2007 Google, Inc.
|
|
* Copyright (c) 2009-2012, The Linux Foundation. All rights reserved.
|
|
*
|
|
* This software is licensed under the terms of the GNU General Public
|
|
* License version 2, as published by the Free Software Foundation, and
|
|
* may be copied, distributed, and modified under those terms.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fmem.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/list.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/android_pmem.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kobject.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/memory_alloc.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/io.h>
|
|
#include <linux/mm_types.h>
|
|
#include <asm/io.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/sizes.h>
|
|
#include <asm/mach/map.h>
|
|
#include <asm/page.h>
|
|
|
|
#define PMEM_MAX_DEVICES (10)
|
|
|
|
#define PMEM_MAX_ORDER (128)
|
|
#define PMEM_MIN_ALLOC PAGE_SIZE
|
|
|
|
#define PMEM_INITIAL_NUM_BITMAP_ALLOCATIONS (64)
|
|
|
|
#define PMEM_32BIT_WORD_ORDER (5)
|
|
#define PMEM_BITS_PER_WORD_MASK (BITS_PER_LONG - 1)
|
|
|
|
#ifdef CONFIG_ANDROID_PMEM_DEBUG
|
|
#define PMEM_DEBUG 1
|
|
#else
|
|
#define PMEM_DEBUG 0
|
|
#endif
|
|
|
|
#define SYSTEM_ALLOC_RETRY 10
|
|
|
|
/* indicates that a refernce to this file has been taken via get_pmem_file,
|
|
* the file should not be released until put_pmem_file is called */
|
|
#define PMEM_FLAGS_BUSY 0x1
|
|
/* indicates that this is a suballocation of a larger master range */
|
|
#define PMEM_FLAGS_CONNECTED 0x1 << 1
|
|
/* indicates this is a master and not a sub allocation and that it is mmaped */
|
|
#define PMEM_FLAGS_MASTERMAP 0x1 << 2
|
|
/* submap and unsubmap flags indicate:
|
|
* 00: subregion has never been mmaped
|
|
* 10: subregion has been mmaped, reference to the mm was taken
|
|
* 11: subretion has ben released, refernece to the mm still held
|
|
* 01: subretion has been released, reference to the mm has been released
|
|
*/
|
|
#define PMEM_FLAGS_SUBMAP 0x1 << 3
|
|
#define PMEM_FLAGS_UNSUBMAP 0x1 << 4
|
|
|
|
struct pmem_data {
|
|
/* in alloc mode: an index into the bitmap
|
|
* in no_alloc mode: the size of the allocation */
|
|
int index;
|
|
/* see flags above for descriptions */
|
|
unsigned int flags;
|
|
/* protects this data field, if the mm_mmap sem will be held at the
|
|
* same time as this sem, the mm sem must be taken first (as this is
|
|
* the order for vma_open and vma_close ops */
|
|
struct rw_semaphore sem;
|
|
/* info about the mmaping process */
|
|
struct vm_area_struct *vma;
|
|
/* task struct of the mapping process */
|
|
struct task_struct *task;
|
|
/* process id of teh mapping process */
|
|
pid_t pid;
|
|
/* file descriptor of the master */
|
|
int master_fd;
|
|
/* file struct of the master */
|
|
struct file *master_file;
|
|
/* a list of currently available regions if this is a suballocation */
|
|
struct list_head region_list;
|
|
/* a linked list of data so we can access them for debugging */
|
|
struct list_head list;
|
|
#if PMEM_DEBUG
|
|
int ref;
|
|
#endif
|
|
};
|
|
|
|
struct pmem_bits {
|
|
unsigned allocated:1; /* 1 if allocated, 0 if free */
|
|
unsigned order:7; /* size of the region in pmem space */
|
|
};
|
|
|
|
struct pmem_region_node {
|
|
struct pmem_region region;
|
|
struct list_head list;
|
|
};
|
|
|
|
#define PMEM_DEBUG_MSGS 0
|
|
#if PMEM_DEBUG_MSGS
|
|
#define DLOG(fmt,args...) \
|
|
do { pr_debug("[%s:%s:%d] "fmt, __FILE__, __func__, __LINE__, \
|
|
##args); } \
|
|
while (0)
|
|
#else
|
|
#define DLOG(x...) do {} while (0)
|
|
#endif
|
|
|
|
enum pmem_align {
|
|
PMEM_ALIGN_4K,
|
|
PMEM_ALIGN_1M,
|
|
};
|
|
|
|
#define PMEM_NAME_SIZE 16
|
|
|
|
struct alloc_list {
|
|
void *addr; /* physical addr of allocation */
|
|
void *aaddr; /* aligned physical addr */
|
|
unsigned int size; /* total size of allocation */
|
|
unsigned char __iomem *vaddr; /* Virtual addr */
|
|
struct list_head allocs;
|
|
};
|
|
|
|
struct pmem_info {
|
|
struct miscdevice dev;
|
|
/* physical start address of the remaped pmem space */
|
|
unsigned long base;
|
|
/* vitual start address of the remaped pmem space */
|
|
unsigned char __iomem *vbase;
|
|
/* total size of the pmem space */
|
|
unsigned long size;
|
|
/* number of entries in the pmem space */
|
|
unsigned long num_entries;
|
|
/* pfn of the garbage page in memory */
|
|
unsigned long garbage_pfn;
|
|
/* which memory type (i.e. SMI, EBI1) this PMEM device is backed by */
|
|
unsigned memory_type;
|
|
|
|
char name[PMEM_NAME_SIZE];
|
|
|
|
/* index of the garbage page in the pmem space */
|
|
int garbage_index;
|
|
/* reserved virtual address range */
|
|
struct vm_struct *area;
|
|
|
|
enum pmem_allocator_type allocator_type;
|
|
|
|
int (*allocate)(const int,
|
|
const unsigned long,
|
|
const unsigned int);
|
|
int (*free)(int, int);
|
|
int (*free_space)(int, struct pmem_freespace *);
|
|
unsigned long (*len)(int, struct pmem_data *);
|
|
unsigned long (*start_addr)(int, struct pmem_data *);
|
|
|
|
/* actual size of memory element, e.g.: (4 << 10) is 4K */
|
|
unsigned int quantum;
|
|
|
|
/* indicates maps of this region should be cached, if a mix of
|
|
* cached and uncached is desired, set this and open the device with
|
|
* O_SYNC to get an uncached region */
|
|
unsigned cached;
|
|
unsigned buffered;
|
|
union {
|
|
struct {
|
|
/* in all_or_nothing allocator mode the first mapper
|
|
* gets the whole space and sets this flag */
|
|
unsigned allocated;
|
|
} all_or_nothing;
|
|
|
|
struct {
|
|
/* the buddy allocator bitmap for the region
|
|
* indicating which entries are allocated and which
|
|
* are free.
|
|
*/
|
|
|
|
struct pmem_bits *buddy_bitmap;
|
|
} buddy_bestfit;
|
|
|
|
struct {
|
|
unsigned int bitmap_free; /* # of zero bits/quanta */
|
|
uint32_t *bitmap;
|
|
int32_t bitmap_allocs;
|
|
struct {
|
|
short bit;
|
|
unsigned short quanta;
|
|
} *bitm_alloc;
|
|
} bitmap;
|
|
|
|
struct {
|
|
unsigned long used; /* Bytes currently allocated */
|
|
struct list_head alist; /* List of allocations */
|
|
} system_mem;
|
|
} allocator;
|
|
|
|
int id;
|
|
struct kobject kobj;
|
|
|
|
/* for debugging, creates a list of pmem file structs, the
|
|
* data_list_mutex should be taken before pmem_data->sem if both are
|
|
* needed */
|
|
struct mutex data_list_mutex;
|
|
struct list_head data_list;
|
|
/* arena_mutex protects the global allocation arena
|
|
*
|
|
* IF YOU TAKE BOTH LOCKS TAKE THEM IN THIS ORDER:
|
|
* down(pmem_data->sem) => mutex_lock(arena_mutex)
|
|
*/
|
|
struct mutex arena_mutex;
|
|
|
|
long (*ioctl)(struct file *, unsigned int, unsigned long);
|
|
int (*release)(struct inode *, struct file *);
|
|
/* reference count of allocations */
|
|
atomic_t allocation_cnt;
|
|
/*
|
|
* request function for a region when the allocation count goes
|
|
* from 0 -> 1
|
|
*/
|
|
int (*mem_request)(void *);
|
|
/*
|
|
* release function for a region when the allocation count goes
|
|
* from 1 -> 0
|
|
*/
|
|
int (*mem_release)(void *);
|
|
/*
|
|
* private data for the request/release callback
|
|
*/
|
|
void *region_data;
|
|
/*
|
|
* map and unmap as needed
|
|
*/
|
|
int map_on_demand;
|
|
/*
|
|
* memory will be reused through fmem
|
|
*/
|
|
int reusable;
|
|
};
|
|
#define to_pmem_info_id(a) (container_of(a, struct pmem_info, kobj)->id)
|
|
|
|
static void ioremap_pmem(int id);
|
|
static void pmem_put_region(int id);
|
|
static int pmem_get_region(int id);
|
|
|
|
static struct pmem_info pmem[PMEM_MAX_DEVICES];
|
|
static int id_count;
|
|
|
|
#define PMEM_SYSFS_DIR_NAME "pmem_regions" /* under /sys/kernel/ */
|
|
static struct kset *pmem_kset;
|
|
|
|
#define PMEM_IS_FREE_BUDDY(id, index) \
|
|
(!(pmem[id].allocator.buddy_bestfit.buddy_bitmap[index].allocated))
|
|
#define PMEM_BUDDY_ORDER(id, index) \
|
|
(pmem[id].allocator.buddy_bestfit.buddy_bitmap[index].order)
|
|
#define PMEM_BUDDY_INDEX(id, index) \
|
|
(index ^ (1 << PMEM_BUDDY_ORDER(id, index)))
|
|
#define PMEM_BUDDY_NEXT_INDEX(id, index) \
|
|
(index + (1 << PMEM_BUDDY_ORDER(id, index)))
|
|
#define PMEM_OFFSET(index) (index * pmem[id].quantum)
|
|
#define PMEM_START_ADDR(id, index) \
|
|
(PMEM_OFFSET(index) + pmem[id].base)
|
|
#define PMEM_BUDDY_LEN(id, index) \
|
|
((1 << PMEM_BUDDY_ORDER(id, index)) * pmem[id].quantum)
|
|
#define PMEM_END_ADDR(id, index) \
|
|
(PMEM_START_ADDR(id, index) + PMEM_LEN(id, index))
|
|
#define PMEM_START_VADDR(id, index) \
|
|
(PMEM_OFFSET(id, index) + pmem[id].vbase)
|
|
#define PMEM_END_VADDR(id, index) \
|
|
(PMEM_START_VADDR(id, index) + PMEM_LEN(id, index))
|
|
#define PMEM_REVOKED(data) (data->flags & PMEM_FLAGS_REVOKED)
|
|
#define PMEM_IS_PAGE_ALIGNED(addr) (!((addr) & (~PAGE_MASK)))
|
|
#define PMEM_IS_SUBMAP(data) \
|
|
((data->flags & PMEM_FLAGS_SUBMAP) && \
|
|
(!(data->flags & PMEM_FLAGS_UNSUBMAP)))
|
|
|
|
static int pmem_release(struct inode *, struct file *);
|
|
static int pmem_mmap(struct file *, struct vm_area_struct *);
|
|
static int pmem_open(struct inode *, struct file *);
|
|
static long pmem_ioctl(struct file *, unsigned int, unsigned long);
|
|
|
|
struct file_operations pmem_fops = {
|
|
.release = pmem_release,
|
|
.mmap = pmem_mmap,
|
|
.open = pmem_open,
|
|
.unlocked_ioctl = pmem_ioctl,
|
|
};
|
|
|
|
#define PMEM_ATTR(_name, _mode, _show, _store) { \
|
|
.attr = {.name = __stringify(_name), .mode = _mode }, \
|
|
.show = _show, \
|
|
.store = _store, \
|
|
}
|
|
|
|
struct pmem_attr {
|
|
struct attribute attr;
|
|
ssize_t(*show) (const int id, char * const);
|
|
ssize_t(*store) (const int id, const char * const, const size_t count);
|
|
};
|
|
#define to_pmem_attr(a) container_of(a, struct pmem_attr, attr)
|
|
|
|
#define RW_PMEM_ATTR(name) \
|
|
static struct pmem_attr pmem_attr_## name = \
|
|
PMEM_ATTR(name, S_IRUGO | S_IWUSR, show_pmem_## name, store_pmem_## name)
|
|
|
|
#define RO_PMEM_ATTR(name) \
|
|
static struct pmem_attr pmem_attr_## name = \
|
|
PMEM_ATTR(name, S_IRUGO, show_pmem_## name, NULL)
|
|
|
|
#define WO_PMEM_ATTR(name) \
|
|
static struct pmem_attr pmem_attr_## name = \
|
|
PMEM_ATTR(name, S_IWUSR, NULL, store_pmem_## name)
|
|
|
|
static ssize_t show_pmem(struct kobject *kobj,
|
|
struct attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct pmem_attr *a = to_pmem_attr(attr);
|
|
return a->show ? a->show(to_pmem_info_id(kobj), buf) : -EIO;
|
|
}
|
|
|
|
static ssize_t store_pmem(struct kobject *kobj, struct attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct pmem_attr *a = to_pmem_attr(attr);
|
|
return a->store ? a->store(to_pmem_info_id(kobj), buf, count) : -EIO;
|
|
}
|
|
|
|
static struct sysfs_ops pmem_ops = {
|
|
.show = show_pmem,
|
|
.store = store_pmem,
|
|
};
|
|
|
|
static ssize_t show_pmem_base(int id, char *buf)
|
|
{
|
|
return scnprintf(buf, PAGE_SIZE, "%lu(%#lx)\n",
|
|
pmem[id].base, pmem[id].base);
|
|
}
|
|
RO_PMEM_ATTR(base);
|
|
|
|
static ssize_t show_pmem_size(int id, char *buf)
|
|
{
|
|
return scnprintf(buf, PAGE_SIZE, "%lu(%#lx)\n",
|
|
pmem[id].size, pmem[id].size);
|
|
}
|
|
RO_PMEM_ATTR(size);
|
|
|
|
static ssize_t show_pmem_allocator_type(int id, char *buf)
|
|
{
|
|
switch (pmem[id].allocator_type) {
|
|
case PMEM_ALLOCATORTYPE_ALLORNOTHING:
|
|
return scnprintf(buf, PAGE_SIZE, "%s\n", "All or Nothing");
|
|
case PMEM_ALLOCATORTYPE_BUDDYBESTFIT:
|
|
return scnprintf(buf, PAGE_SIZE, "%s\n", "Buddy Bestfit");
|
|
case PMEM_ALLOCATORTYPE_BITMAP:
|
|
return scnprintf(buf, PAGE_SIZE, "%s\n", "Bitmap");
|
|
case PMEM_ALLOCATORTYPE_SYSTEM:
|
|
return scnprintf(buf, PAGE_SIZE, "%s\n", "System heap");
|
|
default:
|
|
return scnprintf(buf, PAGE_SIZE,
|
|
"??? Invalid allocator type (%d) for this region! "
|
|
"Something isn't right.\n",
|
|
pmem[id].allocator_type);
|
|
}
|
|
}
|
|
RO_PMEM_ATTR(allocator_type);
|
|
|
|
static ssize_t show_pmem_mapped_regions(int id, char *buf)
|
|
{
|
|
struct list_head *elt;
|
|
int ret;
|
|
|
|
ret = scnprintf(buf, PAGE_SIZE,
|
|
"pid #: mapped regions (offset, len) (offset,len)...\n");
|
|
|
|
mutex_lock(&pmem[id].data_list_mutex);
|
|
list_for_each(elt, &pmem[id].data_list) {
|
|
struct pmem_data *data =
|
|
list_entry(elt, struct pmem_data, list);
|
|
struct list_head *elt2;
|
|
|
|
down_read(&data->sem);
|
|
ret += scnprintf(buf + ret, PAGE_SIZE - ret, "pid %u:",
|
|
data->pid);
|
|
list_for_each(elt2, &data->region_list) {
|
|
struct pmem_region_node *region_node = list_entry(elt2,
|
|
struct pmem_region_node,
|
|
list);
|
|
ret += scnprintf(buf + ret, PAGE_SIZE - ret,
|
|
"(%lx,%lx) ",
|
|
region_node->region.offset,
|
|
region_node->region.len);
|
|
}
|
|
up_read(&data->sem);
|
|
ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
|
|
}
|
|
mutex_unlock(&pmem[id].data_list_mutex);
|
|
return ret;
|
|
}
|
|
RO_PMEM_ATTR(mapped_regions);
|
|
|
|
#define PMEM_COMMON_SYSFS_ATTRS \
|
|
&pmem_attr_base.attr, \
|
|
&pmem_attr_size.attr, \
|
|
&pmem_attr_allocator_type.attr, \
|
|
&pmem_attr_mapped_regions.attr
|
|
|
|
|
|
static ssize_t show_pmem_allocated(int id, char *buf)
|
|
{
|
|
ssize_t ret;
|
|
|
|
mutex_lock(&pmem[id].arena_mutex);
|
|
ret = scnprintf(buf, PAGE_SIZE, "%s\n",
|
|
pmem[id].allocator.all_or_nothing.allocated ?
|
|
"is allocated" : "is NOT allocated");
|
|
mutex_unlock(&pmem[id].arena_mutex);
|
|
return ret;
|
|
}
|
|
RO_PMEM_ATTR(allocated);
|
|
|
|
static struct attribute *pmem_allornothing_attrs[] = {
|
|
PMEM_COMMON_SYSFS_ATTRS,
|
|
|
|
&pmem_attr_allocated.attr,
|
|
|
|
NULL
|
|
};
|
|
|
|
static struct kobj_type pmem_allornothing_ktype = {
|
|
.sysfs_ops = &pmem_ops,
|
|
.default_attrs = pmem_allornothing_attrs,
|
|
};
|
|
|
|
static ssize_t show_pmem_total_entries(int id, char *buf)
|
|
{
|
|
return scnprintf(buf, PAGE_SIZE, "%lu\n", pmem[id].num_entries);
|
|
}
|
|
RO_PMEM_ATTR(total_entries);
|
|
|
|
static ssize_t show_pmem_quantum_size(int id, char *buf)
|
|
{
|
|
return scnprintf(buf, PAGE_SIZE, "%u (%#x)\n",
|
|
pmem[id].quantum, pmem[id].quantum);
|
|
}
|
|
RO_PMEM_ATTR(quantum_size);
|
|
|
|
static ssize_t show_pmem_buddy_bitmap_dump(int id, char *buf)
|
|
{
|
|
int ret, i;
|
|
|
|
mutex_lock(&pmem[id].data_list_mutex);
|
|
ret = scnprintf(buf, PAGE_SIZE, "index\torder\tlength\tallocated\n");
|
|
|
|
for (i = 0; i < pmem[id].num_entries && (PAGE_SIZE - ret);
|
|
i = PMEM_BUDDY_NEXT_INDEX(id, i))
|
|
ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%d\t%d\t%d\t%d\n",
|
|
i, PMEM_BUDDY_ORDER(id, i),
|
|
PMEM_BUDDY_LEN(id, i),
|
|
!PMEM_IS_FREE_BUDDY(id, i));
|
|
|
|
mutex_unlock(&pmem[id].data_list_mutex);
|
|
return ret;
|
|
}
|
|
RO_PMEM_ATTR(buddy_bitmap_dump);
|
|
|
|
#define PMEM_BITMAP_BUDDY_BESTFIT_COMMON_SYSFS_ATTRS \
|
|
&pmem_attr_quantum_size.attr, \
|
|
&pmem_attr_total_entries.attr
|
|
|
|
static struct attribute *pmem_buddy_bestfit_attrs[] = {
|
|
PMEM_COMMON_SYSFS_ATTRS,
|
|
|
|
PMEM_BITMAP_BUDDY_BESTFIT_COMMON_SYSFS_ATTRS,
|
|
|
|
&pmem_attr_buddy_bitmap_dump.attr,
|
|
|
|
NULL
|
|
};
|
|
|
|
static struct kobj_type pmem_buddy_bestfit_ktype = {
|
|
.sysfs_ops = &pmem_ops,
|
|
.default_attrs = pmem_buddy_bestfit_attrs,
|
|
};
|
|
|
|
static ssize_t show_pmem_free_quanta(int id, char *buf)
|
|
{
|
|
ssize_t ret;
|
|
|
|
mutex_lock(&pmem[id].arena_mutex);
|
|
ret = scnprintf(buf, PAGE_SIZE, "%u\n",
|
|
pmem[id].allocator.bitmap.bitmap_free);
|
|
mutex_unlock(&pmem[id].arena_mutex);
|
|
return ret;
|
|
}
|
|
RO_PMEM_ATTR(free_quanta);
|
|
|
|
static ssize_t show_pmem_bits_allocated(int id, char *buf)
|
|
{
|
|
ssize_t ret;
|
|
unsigned int i;
|
|
|
|
mutex_lock(&pmem[id].arena_mutex);
|
|
|
|
ret = scnprintf(buf, PAGE_SIZE,
|
|
"id: %d\nbitnum\tindex\tquanta allocated\n", id);
|
|
|
|
for (i = 0; i < pmem[id].allocator.bitmap.bitmap_allocs; i++)
|
|
if (pmem[id].allocator.bitmap.bitm_alloc[i].bit != -1)
|
|
ret += scnprintf(buf + ret, PAGE_SIZE - ret,
|
|
"%u\t%u\t%u\n",
|
|
i,
|
|
pmem[id].allocator.bitmap.bitm_alloc[i].bit,
|
|
pmem[id].allocator.bitmap.bitm_alloc[i].quanta
|
|
);
|
|
|
|
mutex_unlock(&pmem[id].arena_mutex);
|
|
return ret;
|
|
}
|
|
RO_PMEM_ATTR(bits_allocated);
|
|
|
|
static struct attribute *pmem_bitmap_attrs[] = {
|
|
PMEM_COMMON_SYSFS_ATTRS,
|
|
|
|
PMEM_BITMAP_BUDDY_BESTFIT_COMMON_SYSFS_ATTRS,
|
|
|
|
&pmem_attr_free_quanta.attr,
|
|
&pmem_attr_bits_allocated.attr,
|
|
|
|
NULL
|
|
};
|
|
|
|
static struct attribute *pmem_system_attrs[] = {
|
|
PMEM_COMMON_SYSFS_ATTRS,
|
|
|
|
NULL
|
|
};
|
|
|
|
static struct kobj_type pmem_bitmap_ktype = {
|
|
.sysfs_ops = &pmem_ops,
|
|
.default_attrs = pmem_bitmap_attrs,
|
|
};
|
|
|
|
static struct kobj_type pmem_system_ktype = {
|
|
.sysfs_ops = &pmem_ops,
|
|
.default_attrs = pmem_system_attrs,
|
|
};
|
|
|
|
static int pmem_allocate_from_id(const int id, const unsigned long size,
|
|
const unsigned int align)
|
|
{
|
|
int ret;
|
|
ret = pmem_get_region(id);
|
|
|
|
if (ret)
|
|
return -1;
|
|
|
|
ret = pmem[id].allocate(id, size, align);
|
|
|
|
if (ret < 0)
|
|
pmem_put_region(id);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int pmem_free_from_id(const int id, const int index)
|
|
{
|
|
pmem_put_region(id);
|
|
return pmem[id].free(id, index);
|
|
}
|
|
|
|
static int pmem_get_region(int id)
|
|
{
|
|
/* Must be called with arena mutex locked */
|
|
atomic_inc(&pmem[id].allocation_cnt);
|
|
if (!pmem[id].vbase) {
|
|
DLOG("PMEMDEBUG: mapping for %s", pmem[id].name);
|
|
if (pmem[id].mem_request) {
|
|
int ret = pmem[id].mem_request(pmem[id].region_data);
|
|
if (ret) {
|
|
atomic_dec(&pmem[id].allocation_cnt);
|
|
return 1;
|
|
}
|
|
}
|
|
ioremap_pmem(id);
|
|
}
|
|
|
|
if (pmem[id].vbase) {
|
|
return 0;
|
|
} else {
|
|
if (pmem[id].mem_release)
|
|
pmem[id].mem_release(pmem[id].region_data);
|
|
atomic_dec(&pmem[id].allocation_cnt);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static void pmem_put_region(int id)
|
|
{
|
|
/* Must be called with arena mutex locked */
|
|
if (atomic_dec_and_test(&pmem[id].allocation_cnt)) {
|
|
DLOG("PMEMDEBUG: unmapping for %s", pmem[id].name);
|
|
BUG_ON(!pmem[id].vbase);
|
|
if (pmem[id].map_on_demand) {
|
|
/* unmap_kernel_range() flushes the caches
|
|
* and removes the page table entries
|
|
*/
|
|
unmap_kernel_range((unsigned long)pmem[id].vbase,
|
|
pmem[id].size);
|
|
pmem[id].vbase = NULL;
|
|
if (pmem[id].mem_release) {
|
|
int ret = pmem[id].mem_release(
|
|
pmem[id].region_data);
|
|
WARN(ret, "mem_release failed");
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
static int get_id(struct file *file)
|
|
{
|
|
return MINOR(file->f_dentry->d_inode->i_rdev);
|
|
}
|
|
|
|
static char *get_name(struct file *file)
|
|
{
|
|
int id = get_id(file);
|
|
return pmem[id].name;
|
|
}
|
|
|
|
static int is_pmem_file(struct file *file)
|
|
{
|
|
int id;
|
|
|
|
if (unlikely(!file || !file->f_dentry || !file->f_dentry->d_inode))
|
|
return 0;
|
|
|
|
id = get_id(file);
|
|
return (unlikely(id >= PMEM_MAX_DEVICES ||
|
|
file->f_dentry->d_inode->i_rdev !=
|
|
MKDEV(MISC_MAJOR, pmem[id].dev.minor))) ? 0 : 1;
|
|
}
|
|
|
|
static int has_allocation(struct file *file)
|
|
{
|
|
/* must be called with at least read lock held on
|
|
* ((struct pmem_data *)(file->private_data))->sem which
|
|
* means that file is guaranteed not to be NULL upon entry!!
|
|
* check is_pmem_file first if not accessed via pmem_file_ops */
|
|
struct pmem_data *pdata = file->private_data;
|
|
return pdata && pdata->index != -1;
|
|
}
|
|
|
|
static int is_master_owner(struct file *file)
|
|
{
|
|
struct file *master_file;
|
|
struct pmem_data *data = file->private_data;
|
|
int put_needed, ret = 0;
|
|
|
|
if (!has_allocation(file))
|
|
return 0;
|
|
if (PMEM_FLAGS_MASTERMAP & data->flags)
|
|
return 1;
|
|
master_file = fget_light(data->master_fd, &put_needed);
|
|
if (master_file && data->master_file == master_file)
|
|
ret = 1;
|
|
if (master_file)
|
|
fput_light(master_file, put_needed);
|
|
return ret;
|
|
}
|
|
|
|
static int pmem_free_all_or_nothing(int id, int index)
|
|
{
|
|
/* caller should hold the lock on arena_mutex! */
|
|
DLOG("index %d\n", index);
|
|
|
|
pmem[id].allocator.all_or_nothing.allocated = 0;
|
|
return 0;
|
|
}
|
|
|
|
static int pmem_free_space_all_or_nothing(int id,
|
|
struct pmem_freespace *fs)
|
|
{
|
|
/* caller should hold the lock on arena_mutex! */
|
|
fs->total = (unsigned long)
|
|
pmem[id].allocator.all_or_nothing.allocated == 0 ?
|
|
pmem[id].size : 0;
|
|
|
|
fs->largest = fs->total;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int pmem_free_buddy_bestfit(int id, int index)
|
|
{
|
|
/* caller should hold the lock on arena_mutex! */
|
|
int curr = index;
|
|
DLOG("index %d\n", index);
|
|
|
|
|
|
/* clean up the bitmap, merging any buddies */
|
|
pmem[id].allocator.buddy_bestfit.buddy_bitmap[curr].allocated = 0;
|
|
/* find a slots buddy Buddy# = Slot# ^ (1 << order)
|
|
* if the buddy is also free merge them
|
|
* repeat until the buddy is not free or end of the bitmap is reached
|
|
*/
|
|
do {
|
|
int buddy = PMEM_BUDDY_INDEX(id, curr);
|
|
if (buddy < pmem[id].num_entries &&
|
|
PMEM_IS_FREE_BUDDY(id, buddy) &&
|
|
PMEM_BUDDY_ORDER(id, buddy) ==
|
|
PMEM_BUDDY_ORDER(id, curr)) {
|
|
PMEM_BUDDY_ORDER(id, buddy)++;
|
|
PMEM_BUDDY_ORDER(id, curr)++;
|
|
curr = min(buddy, curr);
|
|
} else {
|
|
break;
|
|
}
|
|
} while (curr < pmem[id].num_entries);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int pmem_free_space_buddy_bestfit(int id,
|
|
struct pmem_freespace *fs)
|
|
{
|
|
/* caller should hold the lock on arena_mutex! */
|
|
int curr;
|
|
unsigned long size;
|
|
fs->total = 0;
|
|
fs->largest = 0;
|
|
|
|
for (curr = 0; curr < pmem[id].num_entries;
|
|
curr = PMEM_BUDDY_NEXT_INDEX(id, curr)) {
|
|
if (PMEM_IS_FREE_BUDDY(id, curr)) {
|
|
size = PMEM_BUDDY_LEN(id, curr);
|
|
if (size > fs->largest)
|
|
fs->largest = size;
|
|
fs->total += size;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static inline uint32_t start_mask(int bit_start)
|
|
{
|
|
return (uint32_t)(~0) << (bit_start & PMEM_BITS_PER_WORD_MASK);
|
|
}
|
|
|
|
static inline uint32_t end_mask(int bit_end)
|
|
{
|
|
return (uint32_t)(~0) >>
|
|
((BITS_PER_LONG - bit_end) & PMEM_BITS_PER_WORD_MASK);
|
|
}
|
|
|
|
static inline int compute_total_words(int bit_end, int word_index)
|
|
{
|
|
return ((bit_end + BITS_PER_LONG - 1) >>
|
|
PMEM_32BIT_WORD_ORDER) - word_index;
|
|
}
|
|
|
|
static void bitmap_bits_clear_all(uint32_t *bitp, int bit_start, int bit_end)
|
|
{
|
|
int word_index = bit_start >> PMEM_32BIT_WORD_ORDER, total_words;
|
|
|
|
total_words = compute_total_words(bit_end, word_index);
|
|
if (total_words > 0) {
|
|
if (total_words == 1) {
|
|
bitp[word_index] &=
|
|
~(start_mask(bit_start) & end_mask(bit_end));
|
|
} else {
|
|
bitp[word_index++] &= ~start_mask(bit_start);
|
|
if (total_words > 2) {
|
|
int total_bytes;
|
|
|
|
total_words -= 2;
|
|
total_bytes = total_words << 2;
|
|
|
|
memset(&bitp[word_index], 0, total_bytes);
|
|
word_index += total_words;
|
|
}
|
|
bitp[word_index] &= ~end_mask(bit_end);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int pmem_free_bitmap(int id, int bitnum)
|
|
{
|
|
/* caller should hold the lock on arena_mutex! */
|
|
int i;
|
|
char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
|
|
|
|
DLOG("bitnum %d\n", bitnum);
|
|
|
|
for (i = 0; i < pmem[id].allocator.bitmap.bitmap_allocs; i++) {
|
|
const int curr_bit =
|
|
pmem[id].allocator.bitmap.bitm_alloc[i].bit;
|
|
|
|
if (curr_bit == bitnum) {
|
|
const int curr_quanta =
|
|
pmem[id].allocator.bitmap.bitm_alloc[i].quanta;
|
|
|
|
bitmap_bits_clear_all(pmem[id].allocator.bitmap.bitmap,
|
|
curr_bit, curr_bit + curr_quanta);
|
|
pmem[id].allocator.bitmap.bitmap_free += curr_quanta;
|
|
pmem[id].allocator.bitmap.bitm_alloc[i].bit = -1;
|
|
pmem[id].allocator.bitmap.bitm_alloc[i].quanta = 0;
|
|
return 0;
|
|
}
|
|
}
|
|
printk(KERN_ALERT "pmem: %s: Attempt to free unallocated index %d, id"
|
|
" %d, pid %d(%s)\n", __func__, bitnum, id, current->pid,
|
|
get_task_comm(currtask_name, current));
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int pmem_free_system(int id, int index)
|
|
{
|
|
/* caller should hold the lock on arena_mutex! */
|
|
struct alloc_list *item;
|
|
|
|
DLOG("index %d\n", index);
|
|
if (index != 0)
|
|
item = (struct alloc_list *)index;
|
|
else
|
|
return 0;
|
|
|
|
if (item->vaddr != NULL) {
|
|
iounmap(item->vaddr);
|
|
kfree(__va(item->addr));
|
|
list_del(&item->allocs);
|
|
kfree(item);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pmem_free_space_bitmap(int id, struct pmem_freespace *fs)
|
|
{
|
|
int i, j;
|
|
int max_allocs = pmem[id].allocator.bitmap.bitmap_allocs;
|
|
int alloc_start = 0;
|
|
int next_alloc;
|
|
unsigned long size = 0;
|
|
|
|
fs->total = 0;
|
|
fs->largest = 0;
|
|
|
|
for (i = 0; i < max_allocs; i++) {
|
|
|
|
int alloc_quanta = 0;
|
|
int alloc_idx = 0;
|
|
next_alloc = pmem[id].num_entries;
|
|
|
|
/* Look for the lowest bit where next allocation starts */
|
|
for (j = 0; j < max_allocs; j++) {
|
|
const int curr_alloc = pmem[id].allocator.
|
|
bitmap.bitm_alloc[j].bit;
|
|
if (curr_alloc != -1) {
|
|
if (alloc_start == curr_alloc)
|
|
alloc_idx = j;
|
|
if (alloc_start >= curr_alloc)
|
|
continue;
|
|
if (curr_alloc < next_alloc)
|
|
next_alloc = curr_alloc;
|
|
}
|
|
}
|
|
alloc_quanta = pmem[id].allocator.bitmap.
|
|
bitm_alloc[alloc_idx].quanta;
|
|
size = (next_alloc - (alloc_start + alloc_quanta)) *
|
|
pmem[id].quantum;
|
|
|
|
if (size > fs->largest)
|
|
fs->largest = size;
|
|
fs->total += size;
|
|
|
|
if (next_alloc == pmem[id].num_entries)
|
|
break;
|
|
else
|
|
alloc_start = next_alloc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pmem_free_space_system(int id, struct pmem_freespace *fs)
|
|
{
|
|
fs->total = pmem[id].size;
|
|
fs->largest = pmem[id].size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pmem_revoke(struct file *file, struct pmem_data *data);
|
|
|
|
static int pmem_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct pmem_data *data = file->private_data;
|
|
struct pmem_region_node *region_node;
|
|
struct list_head *elt, *elt2;
|
|
int id = get_id(file), ret = 0;
|
|
|
|
#if PMEM_DEBUG_MSGS
|
|
char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
|
|
#endif
|
|
DLOG("releasing memory pid %u(%s) file %p(%ld) dev %s(id: %d)\n",
|
|
current->pid, get_task_comm(currtask_name, current),
|
|
file, file_count(file), get_name(file), id);
|
|
mutex_lock(&pmem[id].data_list_mutex);
|
|
/* if this file is a master, revoke all the memory in the connected
|
|
* files */
|
|
if (PMEM_FLAGS_MASTERMAP & data->flags) {
|
|
list_for_each(elt, &pmem[id].data_list) {
|
|
struct pmem_data *sub_data =
|
|
list_entry(elt, struct pmem_data, list);
|
|
int is_master;
|
|
|
|
down_read(&sub_data->sem);
|
|
is_master = (PMEM_IS_SUBMAP(sub_data) &&
|
|
file == sub_data->master_file);
|
|
up_read(&sub_data->sem);
|
|
|
|
if (is_master)
|
|
pmem_revoke(file, sub_data);
|
|
}
|
|
}
|
|
list_del(&data->list);
|
|
mutex_unlock(&pmem[id].data_list_mutex);
|
|
|
|
down_write(&data->sem);
|
|
|
|
/* if it is not a connected file and it has an allocation, free it */
|
|
if (!(PMEM_FLAGS_CONNECTED & data->flags) && has_allocation(file)) {
|
|
mutex_lock(&pmem[id].arena_mutex);
|
|
ret = pmem_free_from_id(id, data->index);
|
|
mutex_unlock(&pmem[id].arena_mutex);
|
|
}
|
|
|
|
/* if this file is a submap (mapped, connected file), downref the
|
|
* task struct */
|
|
if (PMEM_FLAGS_SUBMAP & data->flags)
|
|
if (data->task) {
|
|
put_task_struct(data->task);
|
|
data->task = NULL;
|
|
}
|
|
|
|
file->private_data = NULL;
|
|
|
|
list_for_each_safe(elt, elt2, &data->region_list) {
|
|
region_node = list_entry(elt, struct pmem_region_node, list);
|
|
list_del(elt);
|
|
kfree(region_node);
|
|
}
|
|
BUG_ON(!list_empty(&data->region_list));
|
|
|
|
up_write(&data->sem);
|
|
kfree(data);
|
|
if (pmem[id].release)
|
|
ret = pmem[id].release(inode, file);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int pmem_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct pmem_data *data;
|
|
int id = get_id(file);
|
|
int ret = 0;
|
|
#if PMEM_DEBUG_MSGS
|
|
char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
|
|
#endif
|
|
|
|
DLOG("pid %u(%s) file %p(%ld) dev %s(id: %d)\n",
|
|
current->pid, get_task_comm(currtask_name, current),
|
|
file, file_count(file), get_name(file), id);
|
|
data = kmalloc(sizeof(struct pmem_data), GFP_KERNEL);
|
|
if (!data) {
|
|
printk(KERN_ALERT "pmem: %s: unable to allocate memory for "
|
|
"pmem metadata.", __func__);
|
|
return -1;
|
|
}
|
|
data->flags = 0;
|
|
data->index = -1;
|
|
data->task = NULL;
|
|
data->vma = NULL;
|
|
data->pid = 0;
|
|
data->master_file = NULL;
|
|
#if PMEM_DEBUG
|
|
data->ref = 0;
|
|
#endif
|
|
INIT_LIST_HEAD(&data->region_list);
|
|
init_rwsem(&data->sem);
|
|
|
|
file->private_data = data;
|
|
INIT_LIST_HEAD(&data->list);
|
|
|
|
mutex_lock(&pmem[id].data_list_mutex);
|
|
list_add(&data->list, &pmem[id].data_list);
|
|
mutex_unlock(&pmem[id].data_list_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long pmem_order(unsigned long len, int id)
|
|
{
|
|
int i;
|
|
|
|
len = (len + pmem[id].quantum - 1)/pmem[id].quantum;
|
|
len--;
|
|
for (i = 0; i < sizeof(len)*8; i++)
|
|
if (len >> i == 0)
|
|
break;
|
|
return i;
|
|
}
|
|
|
|
static int pmem_allocator_all_or_nothing(const int id,
|
|
const unsigned long len,
|
|
const unsigned int align)
|
|
{
|
|
/* caller should hold the lock on arena_mutex! */
|
|
DLOG("all or nothing\n");
|
|
if ((len > pmem[id].size) ||
|
|
pmem[id].allocator.all_or_nothing.allocated)
|
|
return -1;
|
|
pmem[id].allocator.all_or_nothing.allocated = 1;
|
|
return len;
|
|
}
|
|
|
|
static int pmem_allocator_buddy_bestfit(const int id,
|
|
const unsigned long len,
|
|
unsigned int align)
|
|
{
|
|
/* caller should hold the lock on arena_mutex! */
|
|
int curr;
|
|
int best_fit = -1;
|
|
unsigned long order;
|
|
|
|
DLOG("buddy bestfit\n");
|
|
order = pmem_order(len, id);
|
|
if (order > PMEM_MAX_ORDER)
|
|
goto out;
|
|
|
|
DLOG("order %lx\n", order);
|
|
|
|
/* Look through the bitmap.
|
|
* If a free slot of the correct order is found, use it.
|
|
* Otherwise, use the best fit (smallest with size > order) slot.
|
|
*/
|
|
for (curr = 0;
|
|
curr < pmem[id].num_entries;
|
|
curr = PMEM_BUDDY_NEXT_INDEX(id, curr))
|
|
if (PMEM_IS_FREE_BUDDY(id, curr)) {
|
|
if (PMEM_BUDDY_ORDER(id, curr) ==
|
|
(unsigned char)order) {
|
|
/* set the not free bit and clear others */
|
|
best_fit = curr;
|
|
break;
|
|
}
|
|
if (PMEM_BUDDY_ORDER(id, curr) >
|
|
(unsigned char)order &&
|
|
(best_fit < 0 ||
|
|
PMEM_BUDDY_ORDER(id, curr) <
|
|
PMEM_BUDDY_ORDER(id, best_fit)))
|
|
best_fit = curr;
|
|
}
|
|
|
|
/* if best_fit < 0, there are no suitable slots; return an error */
|
|
if (best_fit < 0) {
|
|
#if PMEM_DEBUG
|
|
printk(KERN_ALERT "pmem: %s: no space left to allocate!\n",
|
|
__func__);
|
|
#endif
|
|
goto out;
|
|
}
|
|
|
|
/* now partition the best fit:
|
|
* split the slot into 2 buddies of order - 1
|
|
* repeat until the slot is of the correct order
|
|
*/
|
|
while (PMEM_BUDDY_ORDER(id, best_fit) > (unsigned char)order) {
|
|
int buddy;
|
|
PMEM_BUDDY_ORDER(id, best_fit) -= 1;
|
|
buddy = PMEM_BUDDY_INDEX(id, best_fit);
|
|
PMEM_BUDDY_ORDER(id, buddy) = PMEM_BUDDY_ORDER(id, best_fit);
|
|
}
|
|
pmem[id].allocator.buddy_bestfit.buddy_bitmap[best_fit].allocated = 1;
|
|
out:
|
|
return best_fit;
|
|
}
|
|
|
|
|
|
static inline unsigned long paddr_from_bit(const int id, const int bitnum)
|
|
{
|
|
return pmem[id].base + pmem[id].quantum * bitnum;
|
|
}
|
|
|
|
static inline unsigned long bit_from_paddr(const int id,
|
|
const unsigned long paddr)
|
|
{
|
|
return (paddr - pmem[id].base) / pmem[id].quantum;
|
|
}
|
|
|
|
static void bitmap_bits_set_all(uint32_t *bitp, int bit_start, int bit_end)
|
|
{
|
|
int word_index = bit_start >> PMEM_32BIT_WORD_ORDER, total_words;
|
|
|
|
total_words = compute_total_words(bit_end, word_index);
|
|
if (total_words > 0) {
|
|
if (total_words == 1) {
|
|
bitp[word_index] |=
|
|
(start_mask(bit_start) & end_mask(bit_end));
|
|
} else {
|
|
bitp[word_index++] |= start_mask(bit_start);
|
|
if (total_words > 2) {
|
|
int total_bytes;
|
|
|
|
total_words -= 2;
|
|
total_bytes = total_words << 2;
|
|
|
|
memset(&bitp[word_index], ~0, total_bytes);
|
|
word_index += total_words;
|
|
}
|
|
bitp[word_index] |= end_mask(bit_end);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
bitmap_allocate_contiguous(uint32_t *bitp, int num_bits_to_alloc,
|
|
int total_bits, int spacing, int start_bit)
|
|
{
|
|
int bit_start, last_bit, word_index;
|
|
|
|
if (num_bits_to_alloc <= 0)
|
|
return -1;
|
|
|
|
for (bit_start = start_bit; ;
|
|
bit_start = ((last_bit +
|
|
(word_index << PMEM_32BIT_WORD_ORDER) + spacing - 1)
|
|
& ~(spacing - 1)) + start_bit) {
|
|
int bit_end = bit_start + num_bits_to_alloc, total_words;
|
|
|
|
if (bit_end > total_bits)
|
|
return -1; /* out of contiguous memory */
|
|
|
|
word_index = bit_start >> PMEM_32BIT_WORD_ORDER;
|
|
total_words = compute_total_words(bit_end, word_index);
|
|
|
|
if (total_words <= 0)
|
|
return -1;
|
|
|
|
if (total_words == 1) {
|
|
last_bit = fls(bitp[word_index] &
|
|
(start_mask(bit_start) &
|
|
end_mask(bit_end)));
|
|
if (last_bit)
|
|
continue;
|
|
} else {
|
|
int end_word = word_index + (total_words - 1);
|
|
last_bit =
|
|
fls(bitp[word_index] & start_mask(bit_start));
|
|
if (last_bit)
|
|
continue;
|
|
|
|
for (word_index++;
|
|
word_index < end_word;
|
|
word_index++) {
|
|
last_bit = fls(bitp[word_index]);
|
|
if (last_bit)
|
|
break;
|
|
}
|
|
if (last_bit)
|
|
continue;
|
|
|
|
last_bit = fls(bitp[word_index] & end_mask(bit_end));
|
|
if (last_bit)
|
|
continue;
|
|
}
|
|
bitmap_bits_set_all(bitp, bit_start, bit_end);
|
|
return bit_start;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int reserve_quanta(const unsigned int quanta_needed,
|
|
const int id,
|
|
unsigned int align)
|
|
{
|
|
/* alignment should be a valid power of 2 */
|
|
int ret = -1, start_bit = 0, spacing = 1;
|
|
|
|
/* Sanity check */
|
|
if (quanta_needed > pmem[id].allocator.bitmap.bitmap_free) {
|
|
#if PMEM_DEBUG
|
|
printk(KERN_ALERT "pmem: %s: request (%d) too big for"
|
|
" available free (%d)\n", __func__, quanta_needed,
|
|
pmem[id].allocator.bitmap.bitmap_free);
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
start_bit = bit_from_paddr(id,
|
|
(pmem[id].base + align - 1) & ~(align - 1));
|
|
if (start_bit <= -1) {
|
|
#if PMEM_DEBUG
|
|
printk(KERN_ALERT
|
|
"pmem: %s: bit_from_paddr fails for"
|
|
" %u alignment.\n", __func__, align);
|
|
#endif
|
|
return -1;
|
|
}
|
|
spacing = align / pmem[id].quantum;
|
|
spacing = spacing > 1 ? spacing : 1;
|
|
|
|
ret = bitmap_allocate_contiguous(pmem[id].allocator.bitmap.bitmap,
|
|
quanta_needed,
|
|
(pmem[id].size + pmem[id].quantum - 1) / pmem[id].quantum,
|
|
spacing,
|
|
start_bit);
|
|
|
|
#if PMEM_DEBUG
|
|
if (ret < 0)
|
|
printk(KERN_ALERT "pmem: %s: not enough contiguous bits free "
|
|
"in bitmap! Region memory is either too fragmented or"
|
|
" request is too large for available memory.\n",
|
|
__func__);
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int pmem_allocator_bitmap(const int id,
|
|
const unsigned long len,
|
|
const unsigned int align)
|
|
{
|
|
/* caller should hold the lock on arena_mutex! */
|
|
int bitnum, i;
|
|
unsigned int quanta_needed;
|
|
|
|
DLOG("bitmap id %d, len %ld, align %u\n", id, len, align);
|
|
if (!pmem[id].allocator.bitmap.bitm_alloc) {
|
|
#if PMEM_DEBUG
|
|
printk(KERN_ALERT "pmem: bitm_alloc not present! id: %d\n",
|
|
id);
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
quanta_needed = (len + pmem[id].quantum - 1) / pmem[id].quantum;
|
|
DLOG("quantum size %u quanta needed %u free %u id %d\n",
|
|
pmem[id].quantum, quanta_needed,
|
|
pmem[id].allocator.bitmap.bitmap_free, id);
|
|
|
|
if (pmem[id].allocator.bitmap.bitmap_free < quanta_needed) {
|
|
#if PMEM_DEBUG
|
|
printk(KERN_ALERT "pmem: memory allocation failure. "
|
|
"PMEM memory region exhausted, id %d."
|
|
" Unable to comply with allocation request.\n", id);
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
bitnum = reserve_quanta(quanta_needed, id, align);
|
|
if (bitnum == -1)
|
|
goto leave;
|
|
|
|
for (i = 0;
|
|
i < pmem[id].allocator.bitmap.bitmap_allocs &&
|
|
pmem[id].allocator.bitmap.bitm_alloc[i].bit != -1;
|
|
i++)
|
|
;
|
|
|
|
if (i >= pmem[id].allocator.bitmap.bitmap_allocs) {
|
|
void *temp;
|
|
int32_t new_bitmap_allocs =
|
|
pmem[id].allocator.bitmap.bitmap_allocs << 1;
|
|
int j;
|
|
|
|
if (!new_bitmap_allocs) { /* failed sanity check!! */
|
|
#if PMEM_DEBUG
|
|
pr_alert("pmem: bitmap_allocs number"
|
|
" wrapped around to zero! Something "
|
|
"is VERY wrong.\n");
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
if (new_bitmap_allocs > pmem[id].num_entries) {
|
|
/* failed sanity check!! */
|
|
#if PMEM_DEBUG
|
|
pr_alert("pmem: required bitmap_allocs"
|
|
" number exceeds maximum entries possible"
|
|
" for current quanta\n");
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
temp = krealloc(pmem[id].allocator.bitmap.bitm_alloc,
|
|
new_bitmap_allocs *
|
|
sizeof(*pmem[id].allocator.bitmap.bitm_alloc),
|
|
GFP_KERNEL);
|
|
if (!temp) {
|
|
#if PMEM_DEBUG
|
|
pr_alert("pmem: can't realloc bitmap_allocs,"
|
|
"id %d, current num bitmap allocs %d\n",
|
|
id, pmem[id].allocator.bitmap.bitmap_allocs);
|
|
#endif
|
|
return -1;
|
|
}
|
|
pmem[id].allocator.bitmap.bitmap_allocs = new_bitmap_allocs;
|
|
pmem[id].allocator.bitmap.bitm_alloc = temp;
|
|
|
|
for (j = i; j < new_bitmap_allocs; j++) {
|
|
pmem[id].allocator.bitmap.bitm_alloc[j].bit = -1;
|
|
pmem[id].allocator.bitmap.bitm_alloc[i].quanta = 0;
|
|
}
|
|
|
|
DLOG("increased # of allocated regions to %d for id %d\n",
|
|
pmem[id].allocator.bitmap.bitmap_allocs, id);
|
|
}
|
|
|
|
DLOG("bitnum %d, bitm_alloc index %d\n", bitnum, i);
|
|
|
|
pmem[id].allocator.bitmap.bitmap_free -= quanta_needed;
|
|
pmem[id].allocator.bitmap.bitm_alloc[i].bit = bitnum;
|
|
pmem[id].allocator.bitmap.bitm_alloc[i].quanta = quanta_needed;
|
|
leave:
|
|
return bitnum;
|
|
}
|
|
|
|
static int pmem_allocator_system(const int id,
|
|
const unsigned long len,
|
|
const unsigned int align)
|
|
{
|
|
/* caller should hold the lock on arena_mutex! */
|
|
struct alloc_list *list;
|
|
unsigned long aligned_len;
|
|
int count = SYSTEM_ALLOC_RETRY;
|
|
void *buf;
|
|
|
|
DLOG("system id %d, len %ld, align %u\n", id, len, align);
|
|
|
|
if ((pmem[id].allocator.system_mem.used + len) > pmem[id].size) {
|
|
DLOG("requested size would be larger than quota\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Handle alignment */
|
|
aligned_len = len + align;
|
|
|
|
/* Attempt allocation */
|
|
list = kmalloc(sizeof(struct alloc_list), GFP_KERNEL);
|
|
if (list == NULL) {
|
|
printk(KERN_ERR "pmem: failed to allocate system metadata\n");
|
|
return -1;
|
|
}
|
|
list->vaddr = NULL;
|
|
|
|
buf = NULL;
|
|
while ((buf == NULL) && count--) {
|
|
buf = kmalloc((aligned_len), GFP_KERNEL);
|
|
if (buf == NULL) {
|
|
DLOG("pmem: kmalloc %d temporarily failed len= %ld\n",
|
|
count, aligned_len);
|
|
}
|
|
}
|
|
if (!buf) {
|
|
printk(KERN_CRIT "pmem: kmalloc failed for id= %d len= %ld\n",
|
|
id, aligned_len);
|
|
kfree(list);
|
|
return -1;
|
|
}
|
|
list->size = aligned_len;
|
|
list->addr = (void *)__pa(buf);
|
|
list->aaddr = (void *)(((unsigned int)(list->addr) + (align - 1)) &
|
|
~(align - 1));
|
|
|
|
if (!pmem[id].cached)
|
|
list->vaddr = ioremap(__pa(buf), aligned_len);
|
|
else
|
|
list->vaddr = ioremap_cached(__pa(buf), aligned_len);
|
|
|
|
INIT_LIST_HEAD(&list->allocs);
|
|
list_add(&list->allocs, &pmem[id].allocator.system_mem.alist);
|
|
|
|
return (int)list;
|
|
}
|
|
|
|
static pgprot_t pmem_phys_mem_access_prot(struct file *file, pgprot_t vma_prot)
|
|
{
|
|
int id = get_id(file);
|
|
#ifdef pgprot_writecombine
|
|
if (pmem[id].cached == 0 || file->f_flags & O_SYNC)
|
|
/* on ARMv6 and ARMv7 this expands to Normal Noncached */
|
|
return pgprot_writecombine(vma_prot);
|
|
#endif
|
|
#ifdef pgprot_ext_buffered
|
|
else if (pmem[id].buffered)
|
|
return pgprot_ext_buffered(vma_prot);
|
|
#endif
|
|
return vma_prot;
|
|
}
|
|
|
|
static unsigned long pmem_start_addr_all_or_nothing(int id,
|
|
struct pmem_data *data)
|
|
{
|
|
return PMEM_START_ADDR(id, 0);
|
|
}
|
|
|
|
static unsigned long pmem_start_addr_buddy_bestfit(int id,
|
|
struct pmem_data *data)
|
|
{
|
|
return PMEM_START_ADDR(id, data->index);
|
|
}
|
|
|
|
static unsigned long pmem_start_addr_bitmap(int id, struct pmem_data *data)
|
|
{
|
|
return data->index * pmem[id].quantum + pmem[id].base;
|
|
}
|
|
|
|
static unsigned long pmem_start_addr_system(int id, struct pmem_data *data)
|
|
{
|
|
return (unsigned long)(((struct alloc_list *)(data->index))->aaddr);
|
|
}
|
|
|
|
static void *pmem_start_vaddr(int id, struct pmem_data *data)
|
|
{
|
|
if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_SYSTEM)
|
|
return ((struct alloc_list *)(data->index))->vaddr;
|
|
else
|
|
return pmem[id].start_addr(id, data) - pmem[id].base + pmem[id].vbase;
|
|
}
|
|
|
|
static unsigned long pmem_len_all_or_nothing(int id, struct pmem_data *data)
|
|
{
|
|
return data->index;
|
|
}
|
|
|
|
static unsigned long pmem_len_buddy_bestfit(int id, struct pmem_data *data)
|
|
{
|
|
return PMEM_BUDDY_LEN(id, data->index);
|
|
}
|
|
|
|
static unsigned long pmem_len_bitmap(int id, struct pmem_data *data)
|
|
{
|
|
int i;
|
|
unsigned long ret = 0;
|
|
|
|
mutex_lock(&pmem[id].arena_mutex);
|
|
|
|
for (i = 0; i < pmem[id].allocator.bitmap.bitmap_allocs; i++)
|
|
if (pmem[id].allocator.bitmap.bitm_alloc[i].bit ==
|
|
data->index) {
|
|
ret = pmem[id].allocator.bitmap.bitm_alloc[i].quanta *
|
|
pmem[id].quantum;
|
|
break;
|
|
}
|
|
|
|
mutex_unlock(&pmem[id].arena_mutex);
|
|
#if PMEM_DEBUG
|
|
if (i >= pmem[id].allocator.bitmap.bitmap_allocs)
|
|
pr_alert("pmem: %s: can't find bitnum %d in "
|
|
"alloc'd array!\n", __func__, data->index);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long pmem_len_system(int id, struct pmem_data *data)
|
|
{
|
|
unsigned long ret = 0;
|
|
|
|
mutex_lock(&pmem[id].arena_mutex);
|
|
|
|
ret = ((struct alloc_list *)data->index)->size;
|
|
mutex_unlock(&pmem[id].arena_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int pmem_map_garbage(int id, struct vm_area_struct *vma,
|
|
struct pmem_data *data, unsigned long offset,
|
|
unsigned long len)
|
|
{
|
|
int i, garbage_pages = len >> PAGE_SHIFT;
|
|
|
|
vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP | VM_SHARED | VM_WRITE;
|
|
for (i = 0; i < garbage_pages; i++) {
|
|
if (vm_insert_pfn(vma, vma->vm_start + offset + (i * PAGE_SIZE),
|
|
pmem[id].garbage_pfn))
|
|
return -EAGAIN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int pmem_unmap_pfn_range(int id, struct vm_area_struct *vma,
|
|
struct pmem_data *data, unsigned long offset,
|
|
unsigned long len)
|
|
{
|
|
int garbage_pages;
|
|
DLOG("unmap offset %lx len %lx\n", offset, len);
|
|
|
|
BUG_ON(!PMEM_IS_PAGE_ALIGNED(len));
|
|
|
|
garbage_pages = len >> PAGE_SHIFT;
|
|
zap_page_range(vma, vma->vm_start + offset, len, NULL);
|
|
pmem_map_garbage(id, vma, data, offset, len);
|
|
return 0;
|
|
}
|
|
|
|
static int pmem_map_pfn_range(int id, struct vm_area_struct *vma,
|
|
struct pmem_data *data, unsigned long offset,
|
|
unsigned long len)
|
|
{
|
|
int ret;
|
|
DLOG("map offset %lx len %lx\n", offset, len);
|
|
BUG_ON(!PMEM_IS_PAGE_ALIGNED(vma->vm_start));
|
|
BUG_ON(!PMEM_IS_PAGE_ALIGNED(vma->vm_end));
|
|
BUG_ON(!PMEM_IS_PAGE_ALIGNED(len));
|
|
BUG_ON(!PMEM_IS_PAGE_ALIGNED(offset));
|
|
|
|
ret = io_remap_pfn_range(vma, vma->vm_start + offset,
|
|
(pmem[id].start_addr(id, data) + offset) >> PAGE_SHIFT,
|
|
len, vma->vm_page_prot);
|
|
if (ret) {
|
|
#if PMEM_DEBUG
|
|
pr_alert("pmem: %s: io_remap_pfn_range fails with "
|
|
"return value: %d!\n", __func__, ret);
|
|
#endif
|
|
|
|
ret = -EAGAIN;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int pmem_remap_pfn_range(int id, struct vm_area_struct *vma,
|
|
struct pmem_data *data, unsigned long offset,
|
|
unsigned long len)
|
|
{
|
|
/* hold the mm semp for the vma you are modifying when you call this */
|
|
BUG_ON(!vma);
|
|
zap_page_range(vma, vma->vm_start + offset, len, NULL);
|
|
return pmem_map_pfn_range(id, vma, data, offset, len);
|
|
}
|
|
|
|
static void pmem_vma_open(struct vm_area_struct *vma)
|
|
{
|
|
struct file *file = vma->vm_file;
|
|
struct pmem_data *data = file->private_data;
|
|
int id = get_id(file);
|
|
|
|
#if PMEM_DEBUG_MSGS
|
|
char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
|
|
#endif
|
|
DLOG("Dev %s(id: %d) pid %u(%s) ppid %u file %p count %ld\n",
|
|
get_name(file), id, current->pid,
|
|
get_task_comm(currtask_name, current),
|
|
current->parent->pid, file, file_count(file));
|
|
/* this should never be called as we don't support copying pmem
|
|
* ranges via fork */
|
|
down_read(&data->sem);
|
|
BUG_ON(!has_allocation(file));
|
|
/* remap the garbage pages, forkers don't get access to the data */
|
|
pmem_unmap_pfn_range(id, vma, data, 0, vma->vm_start - vma->vm_end);
|
|
up_read(&data->sem);
|
|
}
|
|
|
|
static void pmem_vma_close(struct vm_area_struct *vma)
|
|
{
|
|
struct file *file = vma->vm_file;
|
|
struct pmem_data *data = file->private_data;
|
|
|
|
#if PMEM_DEBUG_MSGS
|
|
char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
|
|
#endif
|
|
DLOG("Dev %s(id: %d) pid %u(%s) ppid %u file %p count %ld\n",
|
|
get_name(file), get_id(file), current->pid,
|
|
get_task_comm(currtask_name, current),
|
|
current->parent->pid, file, file_count(file));
|
|
|
|
if (unlikely(!is_pmem_file(file))) {
|
|
pr_warning("pmem: something is very wrong, you are "
|
|
"closing a vm backing an allocation that doesn't "
|
|
"exist!\n");
|
|
return;
|
|
}
|
|
|
|
down_write(&data->sem);
|
|
if (unlikely(!has_allocation(file))) {
|
|
up_write(&data->sem);
|
|
pr_warning("pmem: something is very wrong, you are "
|
|
"closing a vm backing an allocation that doesn't "
|
|
"exist!\n");
|
|
return;
|
|
}
|
|
if (data->vma == vma) {
|
|
data->vma = NULL;
|
|
if ((data->flags & PMEM_FLAGS_CONNECTED) &&
|
|
(data->flags & PMEM_FLAGS_SUBMAP))
|
|
data->flags |= PMEM_FLAGS_UNSUBMAP;
|
|
}
|
|
/* the kernel is going to free this vma now anyway */
|
|
up_write(&data->sem);
|
|
}
|
|
|
|
static struct vm_operations_struct vm_ops = {
|
|
.open = pmem_vma_open,
|
|
.close = pmem_vma_close,
|
|
};
|
|
|
|
static int pmem_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
struct pmem_data *data = file->private_data;
|
|
int index = -1;
|
|
unsigned long vma_size = vma->vm_end - vma->vm_start;
|
|
int ret = 0, id = get_id(file);
|
|
#if PMEM_DEBUG_MSGS
|
|
char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
|
|
#endif
|
|
|
|
if (!data) {
|
|
pr_err("pmem: Invalid file descriptor, no private data\n");
|
|
return -EINVAL;
|
|
}
|
|
DLOG("pid %u(%s) mmap vma_size %lu on dev %s(id: %d)\n", current->pid,
|
|
get_task_comm(currtask_name, current), vma_size,
|
|
get_name(file), id);
|
|
if (vma->vm_pgoff || !PMEM_IS_PAGE_ALIGNED(vma_size)) {
|
|
#if PMEM_DEBUG
|
|
pr_err("pmem: mmaps must be at offset zero, aligned"
|
|
" and a multiple of pages_size.\n");
|
|
#endif
|
|
return -EINVAL;
|
|
}
|
|
|
|
down_write(&data->sem);
|
|
/* check this file isn't already mmaped, for submaps check this file
|
|
* has never been mmaped */
|
|
if ((data->flags & PMEM_FLAGS_SUBMAP) ||
|
|
(data->flags & PMEM_FLAGS_UNSUBMAP)) {
|
|
#if PMEM_DEBUG
|
|
pr_err("pmem: you can only mmap a pmem file once, "
|
|
"this file is already mmaped. %x\n", data->flags);
|
|
#endif
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
/* if file->private_data == unalloced, alloc*/
|
|
if (data->index == -1) {
|
|
mutex_lock(&pmem[id].arena_mutex);
|
|
index = pmem_allocate_from_id(id,
|
|
vma->vm_end - vma->vm_start,
|
|
SZ_4K);
|
|
mutex_unlock(&pmem[id].arena_mutex);
|
|
/* either no space was available or an error occured */
|
|
if (index == -1) {
|
|
pr_err("pmem: mmap unable to allocate memory"
|
|
"on %s\n", get_name(file));
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
/* store the index of a successful allocation */
|
|
data->index = index;
|
|
}
|
|
|
|
if (pmem[id].len(id, data) < vma_size) {
|
|
#if PMEM_DEBUG
|
|
pr_err("pmem: mmap size [%lu] does not match"
|
|
" size of backing region [%lu].\n", vma_size,
|
|
pmem[id].len(id, data));
|
|
#endif
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
vma->vm_pgoff = pmem[id].start_addr(id, data) >> PAGE_SHIFT;
|
|
|
|
vma->vm_page_prot = pmem_phys_mem_access_prot(file, vma->vm_page_prot);
|
|
|
|
if (data->flags & PMEM_FLAGS_CONNECTED) {
|
|
struct pmem_region_node *region_node;
|
|
struct list_head *elt;
|
|
if (pmem_map_garbage(id, vma, data, 0, vma_size)) {
|
|
pr_alert("pmem: mmap failed in kernel!\n");
|
|
ret = -EAGAIN;
|
|
goto error;
|
|
}
|
|
list_for_each(elt, &data->region_list) {
|
|
region_node = list_entry(elt, struct pmem_region_node,
|
|
list);
|
|
DLOG("remapping file: %p %lx %lx\n", file,
|
|
region_node->region.offset,
|
|
region_node->region.len);
|
|
if (pmem_remap_pfn_range(id, vma, data,
|
|
region_node->region.offset,
|
|
region_node->region.len)) {
|
|
ret = -EAGAIN;
|
|
goto error;
|
|
}
|
|
}
|
|
data->flags |= PMEM_FLAGS_SUBMAP;
|
|
get_task_struct(current->group_leader);
|
|
data->task = current->group_leader;
|
|
data->vma = vma;
|
|
#if PMEM_DEBUG
|
|
data->pid = current->pid;
|
|
#endif
|
|
DLOG("submmapped file %p vma %p pid %u\n", file, vma,
|
|
current->pid);
|
|
} else {
|
|
if (pmem_map_pfn_range(id, vma, data, 0, vma_size)) {
|
|
pr_err("pmem: mmap failed in kernel!\n");
|
|
ret = -EAGAIN;
|
|
goto error;
|
|
}
|
|
data->flags |= PMEM_FLAGS_MASTERMAP;
|
|
data->pid = current->pid;
|
|
}
|
|
vma->vm_ops = &vm_ops;
|
|
error:
|
|
up_write(&data->sem);
|
|
return ret;
|
|
}
|
|
|
|
/* the following are the api for accessing pmem regions by other drivers
|
|
* from inside the kernel */
|
|
int get_pmem_user_addr(struct file *file, unsigned long *start,
|
|
unsigned long *len)
|
|
{
|
|
int ret = -1;
|
|
|
|
if (is_pmem_file(file)) {
|
|
struct pmem_data *data = file->private_data;
|
|
|
|
down_read(&data->sem);
|
|
if (has_allocation(file)) {
|
|
if (data->vma) {
|
|
*start = data->vma->vm_start;
|
|
*len = data->vma->vm_end - data->vma->vm_start;
|
|
} else {
|
|
*start = *len = 0;
|
|
#if PMEM_DEBUG
|
|
pr_err("pmem: %s: no vma present.\n",
|
|
__func__);
|
|
#endif
|
|
}
|
|
ret = 0;
|
|
}
|
|
up_read(&data->sem);
|
|
}
|
|
|
|
#if PMEM_DEBUG
|
|
if (ret)
|
|
pr_err("pmem: %s: requested pmem data from invalid"
|
|
"file.\n", __func__);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
int get_pmem_addr(struct file *file, unsigned long *start,
|
|
unsigned long *vstart, unsigned long *len)
|
|
{
|
|
int ret = -1;
|
|
|
|
if (is_pmem_file(file)) {
|
|
struct pmem_data *data = file->private_data;
|
|
|
|
down_read(&data->sem);
|
|
if (has_allocation(file)) {
|
|
int id = get_id(file);
|
|
|
|
*start = pmem[id].start_addr(id, data);
|
|
*len = pmem[id].len(id, data);
|
|
*vstart = (unsigned long)
|
|
pmem_start_vaddr(id, data);
|
|
up_read(&data->sem);
|
|
#if PMEM_DEBUG
|
|
down_write(&data->sem);
|
|
data->ref++;
|
|
up_write(&data->sem);
|
|
#endif
|
|
DLOG("returning start %#lx len %lu "
|
|
"vstart %#lx\n",
|
|
*start, *len, *vstart);
|
|
ret = 0;
|
|
} else {
|
|
up_read(&data->sem);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int get_pmem_file(unsigned int fd, unsigned long *start, unsigned long *vstart,
|
|
unsigned long *len, struct file **filp)
|
|
{
|
|
int ret = -1;
|
|
struct file *file = fget(fd);
|
|
|
|
if (unlikely(file == NULL)) {
|
|
pr_err("pmem: %s: requested data from file "
|
|
"descriptor that doesn't exist.\n", __func__);
|
|
} else {
|
|
#if PMEM_DEBUG_MSGS
|
|
char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
|
|
#endif
|
|
DLOG("filp %p rdev %d pid %u(%s) file %p(%ld)"
|
|
" dev %s(id: %d)\n", filp,
|
|
file->f_dentry->d_inode->i_rdev,
|
|
current->pid, get_task_comm(currtask_name, current),
|
|
file, file_count(file), get_name(file), get_id(file));
|
|
|
|
if (!get_pmem_addr(file, start, vstart, len)) {
|
|
if (filp)
|
|
*filp = file;
|
|
ret = 0;
|
|
} else {
|
|
fput(file);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(get_pmem_file);
|
|
|
|
int get_pmem_fd(int fd, unsigned long *start, unsigned long *len)
|
|
{
|
|
unsigned long vstart;
|
|
return get_pmem_file(fd, start, &vstart, len, NULL);
|
|
}
|
|
EXPORT_SYMBOL(get_pmem_fd);
|
|
|
|
void put_pmem_file(struct file *file)
|
|
{
|
|
#if PMEM_DEBUG_MSGS
|
|
char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
|
|
#endif
|
|
DLOG("rdev %d pid %u(%s) file %p(%ld)" " dev %s(id: %d)\n",
|
|
file->f_dentry->d_inode->i_rdev, current->pid,
|
|
get_task_comm(currtask_name, current), file,
|
|
file_count(file), get_name(file), get_id(file));
|
|
if (is_pmem_file(file)) {
|
|
#if PMEM_DEBUG
|
|
struct pmem_data *data = file->private_data;
|
|
|
|
down_write(&data->sem);
|
|
if (!data->ref--) {
|
|
data->ref++;
|
|
pr_alert("pmem: pmem_put > pmem_get %s "
|
|
"(pid %d)\n",
|
|
pmem[get_id(file)].dev.name, data->pid);
|
|
BUG();
|
|
}
|
|
up_write(&data->sem);
|
|
#endif
|
|
fput(file);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(put_pmem_file);
|
|
|
|
void put_pmem_fd(int fd)
|
|
{
|
|
int put_needed;
|
|
struct file *file = fget_light(fd, &put_needed);
|
|
|
|
if (file) {
|
|
put_pmem_file(file);
|
|
fput_light(file, put_needed);
|
|
}
|
|
}
|
|
|
|
void flush_pmem_fd(int fd, unsigned long offset, unsigned long len)
|
|
{
|
|
int fput_needed;
|
|
struct file *file = fget_light(fd, &fput_needed);
|
|
|
|
if (file) {
|
|
flush_pmem_file(file, offset, len);
|
|
fput_light(file, fput_needed);
|
|
}
|
|
}
|
|
|
|
void flush_pmem_file(struct file *file, unsigned long offset, unsigned long len)
|
|
{
|
|
struct pmem_data *data;
|
|
int id;
|
|
void *vaddr;
|
|
struct pmem_region_node *region_node;
|
|
struct list_head *elt;
|
|
void *flush_start, *flush_end;
|
|
#ifdef CONFIG_OUTER_CACHE
|
|
unsigned long phy_start, phy_end;
|
|
#endif
|
|
if (!is_pmem_file(file))
|
|
return;
|
|
|
|
id = get_id(file);
|
|
if (!pmem[id].cached)
|
|
return;
|
|
|
|
/* is_pmem_file fails if !file */
|
|
data = file->private_data;
|
|
|
|
down_read(&data->sem);
|
|
if (!has_allocation(file))
|
|
goto end;
|
|
|
|
vaddr = pmem_start_vaddr(id, data);
|
|
|
|
if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_SYSTEM) {
|
|
dmac_flush_range(vaddr,
|
|
(void *)((unsigned long)vaddr +
|
|
((struct alloc_list *)(data->index))->size));
|
|
#ifdef CONFIG_OUTER_CACHE
|
|
phy_start = pmem_start_addr_system(id, data);
|
|
|
|
phy_end = phy_start +
|
|
((struct alloc_list *)(data->index))->size;
|
|
|
|
outer_flush_range(phy_start, phy_end);
|
|
#endif
|
|
goto end;
|
|
}
|
|
/* if this isn't a submmapped file, flush the whole thing */
|
|
if (unlikely(!(data->flags & PMEM_FLAGS_CONNECTED))) {
|
|
dmac_flush_range(vaddr, vaddr + pmem[id].len(id, data));
|
|
#ifdef CONFIG_OUTER_CACHE
|
|
phy_start = (unsigned long)vaddr -
|
|
(unsigned long)pmem[id].vbase + pmem[id].base;
|
|
|
|
phy_end = phy_start + pmem[id].len(id, data);
|
|
|
|
outer_flush_range(phy_start, phy_end);
|
|
#endif
|
|
goto end;
|
|
}
|
|
/* otherwise, flush the region of the file we are drawing */
|
|
list_for_each(elt, &data->region_list) {
|
|
region_node = list_entry(elt, struct pmem_region_node, list);
|
|
if ((offset >= region_node->region.offset) &&
|
|
((offset + len) <= (region_node->region.offset +
|
|
region_node->region.len))) {
|
|
flush_start = vaddr + region_node->region.offset;
|
|
flush_end = flush_start + region_node->region.len;
|
|
dmac_flush_range(flush_start, flush_end);
|
|
#ifdef CONFIG_OUTER_CACHE
|
|
|
|
phy_start = (unsigned long)flush_start -
|
|
(unsigned long)pmem[id].vbase + pmem[id].base;
|
|
|
|
phy_end = phy_start + region_node->region.len;
|
|
|
|
outer_flush_range(phy_start, phy_end);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
end:
|
|
up_read(&data->sem);
|
|
}
|
|
|
|
int pmem_cache_maint(struct file *file, unsigned int cmd,
|
|
struct pmem_addr *pmem_addr)
|
|
{
|
|
struct pmem_data *data;
|
|
int id;
|
|
unsigned long vaddr, paddr, length, offset,
|
|
pmem_len, pmem_start_addr;
|
|
|
|
/* Called from kernel-space so file may be NULL */
|
|
if (!file)
|
|
return -EBADF;
|
|
|
|
/*
|
|
* check that the vaddr passed for flushing is valid
|
|
* so that you don't crash the kernel
|
|
*/
|
|
if (!pmem_addr->vaddr)
|
|
return -EINVAL;
|
|
|
|
data = file->private_data;
|
|
id = get_id(file);
|
|
|
|
if (!pmem[id].cached)
|
|
return 0;
|
|
|
|
offset = pmem_addr->offset;
|
|
length = pmem_addr->length;
|
|
|
|
down_read(&data->sem);
|
|
if (!has_allocation(file)) {
|
|
up_read(&data->sem);
|
|
return -EINVAL;
|
|
}
|
|
pmem_len = pmem[id].len(id, data);
|
|
pmem_start_addr = pmem[id].start_addr(id, data);
|
|
up_read(&data->sem);
|
|
|
|
if (offset + length > pmem_len)
|
|
return -EINVAL;
|
|
|
|
vaddr = pmem_addr->vaddr;
|
|
paddr = pmem_start_addr + offset;
|
|
|
|
DLOG("pmem cache maint on dev %s(id: %d)"
|
|
"(vaddr %lx paddr %lx len %lu bytes)\n",
|
|
get_name(file), id, vaddr, paddr, length);
|
|
if (cmd == PMEM_CLEAN_INV_CACHES)
|
|
clean_and_invalidate_caches(vaddr,
|
|
length, paddr);
|
|
else if (cmd == PMEM_CLEAN_CACHES)
|
|
clean_caches(vaddr, length, paddr);
|
|
else if (cmd == PMEM_INV_CACHES)
|
|
invalidate_caches(vaddr, length, paddr);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(pmem_cache_maint);
|
|
|
|
static int pmem_connect(unsigned long connect, struct file *file)
|
|
{
|
|
int ret = 0, put_needed;
|
|
struct file *src_file;
|
|
|
|
if (!file) {
|
|
pr_err("pmem: %s: NULL file pointer passed in, "
|
|
"bailing out!\n", __func__);
|
|
ret = -EINVAL;
|
|
goto leave;
|
|
}
|
|
|
|
src_file = fget_light(connect, &put_needed);
|
|
|
|
if (!src_file) {
|
|
pr_err("pmem: %s: src file not found!\n", __func__);
|
|
ret = -EBADF;
|
|
goto leave;
|
|
}
|
|
|
|
if (src_file == file) { /* degenerative case, operator error */
|
|
pr_err("pmem: %s: src_file and passed in file are "
|
|
"the same; refusing to connect to self!\n", __func__);
|
|
ret = -EINVAL;
|
|
goto put_src_file;
|
|
}
|
|
|
|
if (unlikely(!is_pmem_file(src_file))) {
|
|
pr_err("pmem: %s: src file is not a pmem file!\n",
|
|
__func__);
|
|
ret = -EINVAL;
|
|
goto put_src_file;
|
|
} else {
|
|
struct pmem_data *src_data = src_file->private_data;
|
|
|
|
if (!src_data) {
|
|
pr_err("pmem: %s: src file pointer has no"
|
|
"private data, bailing out!\n", __func__);
|
|
ret = -EINVAL;
|
|
goto put_src_file;
|
|
}
|
|
|
|
down_read(&src_data->sem);
|
|
|
|
if (unlikely(!has_allocation(src_file))) {
|
|
up_read(&src_data->sem);
|
|
pr_err("pmem: %s: src file has no allocation!\n",
|
|
__func__);
|
|
ret = -EINVAL;
|
|
} else {
|
|
struct pmem_data *data;
|
|
int src_index = src_data->index;
|
|
|
|
up_read(&src_data->sem);
|
|
|
|
data = file->private_data;
|
|
if (!data) {
|
|
pr_err("pmem: %s: passed in file "
|
|
"pointer has no private data, bailing"
|
|
" out!\n", __func__);
|
|
ret = -EINVAL;
|
|
goto put_src_file;
|
|
}
|
|
|
|
down_write(&data->sem);
|
|
if (has_allocation(file) &&
|
|
(data->index != src_index)) {
|
|
up_write(&data->sem);
|
|
|
|
pr_err("pmem: %s: file is already "
|
|
"mapped but doesn't match this "
|
|
"src_file!\n", __func__);
|
|
ret = -EINVAL;
|
|
} else {
|
|
data->index = src_index;
|
|
data->flags |= PMEM_FLAGS_CONNECTED;
|
|
data->master_fd = connect;
|
|
data->master_file = src_file;
|
|
|
|
up_write(&data->sem);
|
|
|
|
DLOG("connect %p to %p\n", file, src_file);
|
|
}
|
|
}
|
|
}
|
|
put_src_file:
|
|
fput_light(src_file, put_needed);
|
|
leave:
|
|
return ret;
|
|
}
|
|
|
|
static void pmem_unlock_data_and_mm(struct pmem_data *data,
|
|
struct mm_struct *mm)
|
|
{
|
|
up_write(&data->sem);
|
|
if (mm != NULL) {
|
|
up_write(&mm->mmap_sem);
|
|
mmput(mm);
|
|
}
|
|
}
|
|
|
|
static int pmem_lock_data_and_mm(struct file *file, struct pmem_data *data,
|
|
struct mm_struct **locked_mm)
|
|
{
|
|
int ret = 0;
|
|
struct mm_struct *mm = NULL;
|
|
#if PMEM_DEBUG_MSGS
|
|
char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
|
|
#endif
|
|
DLOG("pid %u(%s) file %p(%ld)\n",
|
|
current->pid, get_task_comm(currtask_name, current),
|
|
file, file_count(file));
|
|
|
|
*locked_mm = NULL;
|
|
lock_mm:
|
|
down_read(&data->sem);
|
|
if (PMEM_IS_SUBMAP(data)) {
|
|
mm = get_task_mm(data->task);
|
|
if (!mm) {
|
|
up_read(&data->sem);
|
|
#if PMEM_DEBUG
|
|
pr_alert("pmem: can't remap - task is gone!\n");
|
|
#endif
|
|
return -1;
|
|
}
|
|
}
|
|
up_read(&data->sem);
|
|
|
|
if (mm)
|
|
down_write(&mm->mmap_sem);
|
|
|
|
down_write(&data->sem);
|
|
/* check that the file didn't get mmaped before we could take the
|
|
* data sem, this should be safe b/c you can only submap each file
|
|
* once */
|
|
if (PMEM_IS_SUBMAP(data) && !mm) {
|
|
pmem_unlock_data_and_mm(data, mm);
|
|
DLOG("mapping contention, repeating mmap op\n");
|
|
goto lock_mm;
|
|
}
|
|
/* now check that vma.mm is still there, it could have been
|
|
* deleted by vma_close before we could get the data->sem */
|
|
if ((data->flags & PMEM_FLAGS_UNSUBMAP) && (mm != NULL)) {
|
|
/* might as well release this */
|
|
if (data->flags & PMEM_FLAGS_SUBMAP) {
|
|
put_task_struct(data->task);
|
|
data->task = NULL;
|
|
/* lower the submap flag to show the mm is gone */
|
|
data->flags &= ~(PMEM_FLAGS_SUBMAP);
|
|
}
|
|
pmem_unlock_data_and_mm(data, mm);
|
|
#if PMEM_DEBUG
|
|
pr_alert("pmem: vma.mm went away!\n");
|
|
#endif
|
|
return -1;
|
|
}
|
|
*locked_mm = mm;
|
|
return ret;
|
|
}
|
|
|
|
int pmem_remap(struct pmem_region *region, struct file *file,
|
|
unsigned operation)
|
|
{
|
|
int ret;
|
|
struct pmem_region_node *region_node;
|
|
struct mm_struct *mm = NULL;
|
|
struct list_head *elt, *elt2;
|
|
int id = get_id(file);
|
|
struct pmem_data *data;
|
|
|
|
DLOG("operation %#x, region offset %ld, region len %ld\n",
|
|
operation, region->offset, region->len);
|
|
|
|
if (!is_pmem_file(file)) {
|
|
#if PMEM_DEBUG
|
|
pr_err("pmem: remap request for non-pmem file descriptor\n");
|
|
#endif
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* is_pmem_file fails if !file */
|
|
data = file->private_data;
|
|
|
|
/* pmem region must be aligned on a page boundry */
|
|
if (unlikely(!PMEM_IS_PAGE_ALIGNED(region->offset) ||
|
|
!PMEM_IS_PAGE_ALIGNED(region->len))) {
|
|
#if PMEM_DEBUG
|
|
pr_err("pmem: request for unaligned pmem"
|
|
"suballocation %lx %lx\n",
|
|
region->offset, region->len);
|
|
#endif
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* if userspace requests a region of len 0, there's nothing to do */
|
|
if (region->len == 0)
|
|
return 0;
|
|
|
|
/* lock the mm and data */
|
|
ret = pmem_lock_data_and_mm(file, data, &mm);
|
|
if (ret)
|
|
return 0;
|
|
|
|
/* only the owner of the master file can remap the client fds
|
|
* that back in it */
|
|
if (!is_master_owner(file)) {
|
|
#if PMEM_DEBUG
|
|
pr_err("pmem: remap requested from non-master process\n");
|
|
#endif
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
/* check that the requested range is within the src allocation */
|
|
if (unlikely((region->offset > pmem[id].len(id, data)) ||
|
|
(region->len > pmem[id].len(id, data)) ||
|
|
(region->offset + region->len > pmem[id].len(id, data)))) {
|
|
#if PMEM_DEBUG
|
|
pr_err("pmem: suballoc doesn't fit in src_file!\n");
|
|
#endif
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
if (operation == PMEM_MAP) {
|
|
region_node = kmalloc(sizeof(struct pmem_region_node),
|
|
GFP_KERNEL);
|
|
if (!region_node) {
|
|
ret = -ENOMEM;
|
|
#if PMEM_DEBUG
|
|
pr_alert("pmem: No space to allocate remap metadata!");
|
|
#endif
|
|
goto err;
|
|
}
|
|
region_node->region = *region;
|
|
list_add(®ion_node->list, &data->region_list);
|
|
} else if (operation == PMEM_UNMAP) {
|
|
int found = 0;
|
|
list_for_each_safe(elt, elt2, &data->region_list) {
|
|
region_node = list_entry(elt, struct pmem_region_node,
|
|
list);
|
|
if (region->len == 0 ||
|
|
(region_node->region.offset == region->offset &&
|
|
region_node->region.len == region->len)) {
|
|
list_del(elt);
|
|
kfree(region_node);
|
|
found = 1;
|
|
}
|
|
}
|
|
if (!found) {
|
|
#if PMEM_DEBUG
|
|
pr_err("pmem: Unmap region does not map any"
|
|
" mapped region!");
|
|
#endif
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (data->vma && PMEM_IS_SUBMAP(data)) {
|
|
if (operation == PMEM_MAP)
|
|
ret = pmem_remap_pfn_range(id, data->vma, data,
|
|
region->offset, region->len);
|
|
else if (operation == PMEM_UNMAP)
|
|
ret = pmem_unmap_pfn_range(id, data->vma, data,
|
|
region->offset, region->len);
|
|
}
|
|
|
|
err:
|
|
pmem_unlock_data_and_mm(data, mm);
|
|
return ret;
|
|
}
|
|
|
|
static void pmem_revoke(struct file *file, struct pmem_data *data)
|
|
{
|
|
struct pmem_region_node *region_node;
|
|
struct list_head *elt, *elt2;
|
|
struct mm_struct *mm = NULL;
|
|
int id = get_id(file);
|
|
int ret = 0;
|
|
|
|
data->master_file = NULL;
|
|
ret = pmem_lock_data_and_mm(file, data, &mm);
|
|
/* if lock_data_and_mm fails either the task that mapped the fd, or
|
|
* the vma that mapped it have already gone away, nothing more
|
|
* needs to be done */
|
|
if (ret)
|
|
return;
|
|
/* unmap everything */
|
|
/* delete the regions and region list nothing is mapped any more */
|
|
if (data->vma)
|
|
list_for_each_safe(elt, elt2, &data->region_list) {
|
|
region_node = list_entry(elt, struct pmem_region_node,
|
|
list);
|
|
pmem_unmap_pfn_range(id, data->vma, data,
|
|
region_node->region.offset,
|
|
region_node->region.len);
|
|
list_del(elt);
|
|
kfree(region_node);
|
|
}
|
|
/* delete the master file */
|
|
pmem_unlock_data_and_mm(data, mm);
|
|
}
|
|
|
|
static void pmem_get_size(struct pmem_region *region, struct file *file)
|
|
{
|
|
/* called via ioctl file op, so file guaranteed to be not NULL */
|
|
struct pmem_data *data = file->private_data;
|
|
int id = get_id(file);
|
|
|
|
down_read(&data->sem);
|
|
if (!has_allocation(file)) {
|
|
region->offset = 0;
|
|
region->len = 0;
|
|
} else {
|
|
region->offset = pmem[id].start_addr(id, data);
|
|
region->len = pmem[id].len(id, data);
|
|
}
|
|
up_read(&data->sem);
|
|
DLOG("offset 0x%lx len 0x%lx\n", region->offset, region->len);
|
|
}
|
|
|
|
|
|
static long pmem_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
|
{
|
|
/* called from user space as file op, so file guaranteed to be not
|
|
* NULL
|
|
*/
|
|
struct pmem_data *data = file->private_data;
|
|
int id = get_id(file);
|
|
#if PMEM_DEBUG_MSGS
|
|
char currtask_name[
|
|
FIELD_SIZEOF(struct task_struct, comm) + 1];
|
|
#endif
|
|
|
|
DLOG("pid %u(%s) file %p(%ld) cmd %#x, dev %s(id: %d)\n",
|
|
current->pid, get_task_comm(currtask_name, current),
|
|
file, file_count(file), cmd, get_name(file), id);
|
|
|
|
switch (cmd) {
|
|
case PMEM_GET_PHYS:
|
|
{
|
|
struct pmem_region region;
|
|
|
|
DLOG("get_phys\n");
|
|
down_read(&data->sem);
|
|
if (!has_allocation(file)) {
|
|
region.offset = 0;
|
|
region.len = 0;
|
|
} else {
|
|
region.offset = pmem[id].start_addr(id, data);
|
|
region.len = pmem[id].len(id, data);
|
|
}
|
|
up_read(&data->sem);
|
|
|
|
if (copy_to_user((void __user *)arg, ®ion,
|
|
sizeof(struct pmem_region)))
|
|
return -EFAULT;
|
|
|
|
DLOG("pmem: successful request for "
|
|
"physical address of pmem region id %d, "
|
|
"offset 0x%lx, len 0x%lx\n",
|
|
id, region.offset, region.len);
|
|
|
|
break;
|
|
}
|
|
case PMEM_MAP:
|
|
{
|
|
struct pmem_region region;
|
|
DLOG("map\n");
|
|
if (copy_from_user(®ion, (void __user *)arg,
|
|
sizeof(struct pmem_region)))
|
|
return -EFAULT;
|
|
return pmem_remap(®ion, file, PMEM_MAP);
|
|
}
|
|
break;
|
|
case PMEM_UNMAP:
|
|
{
|
|
struct pmem_region region;
|
|
DLOG("unmap\n");
|
|
if (copy_from_user(®ion, (void __user *)arg,
|
|
sizeof(struct pmem_region)))
|
|
return -EFAULT;
|
|
return pmem_remap(®ion, file, PMEM_UNMAP);
|
|
break;
|
|
}
|
|
case PMEM_GET_SIZE:
|
|
{
|
|
struct pmem_region region;
|
|
DLOG("get_size\n");
|
|
pmem_get_size(®ion, file);
|
|
if (copy_to_user((void __user *)arg, ®ion,
|
|
sizeof(struct pmem_region)))
|
|
return -EFAULT;
|
|
break;
|
|
}
|
|
case PMEM_GET_TOTAL_SIZE:
|
|
{
|
|
struct pmem_region region;
|
|
DLOG("get total size\n");
|
|
region.offset = 0;
|
|
get_id(file);
|
|
region.len = pmem[id].size;
|
|
if (copy_to_user((void __user *)arg, ®ion,
|
|
sizeof(struct pmem_region)))
|
|
return -EFAULT;
|
|
break;
|
|
}
|
|
case PMEM_GET_FREE_SPACE:
|
|
{
|
|
struct pmem_freespace fs;
|
|
DLOG("get freespace on %s(id: %d)\n",
|
|
get_name(file), id);
|
|
|
|
mutex_lock(&pmem[id].arena_mutex);
|
|
pmem[id].free_space(id, &fs);
|
|
mutex_unlock(&pmem[id].arena_mutex);
|
|
|
|
DLOG("%s(id: %d) total free %lu, largest %lu\n",
|
|
get_name(file), id, fs.total, fs.largest);
|
|
|
|
if (copy_to_user((void __user *)arg, &fs,
|
|
sizeof(struct pmem_freespace)))
|
|
return -EFAULT;
|
|
break;
|
|
}
|
|
|
|
case PMEM_ALLOCATE:
|
|
{
|
|
int ret = 0;
|
|
DLOG("allocate, id %d\n", id);
|
|
down_write(&data->sem);
|
|
if (has_allocation(file)) {
|
|
pr_err("pmem: Existing allocation found on "
|
|
"this file descrpitor\n");
|
|
up_write(&data->sem);
|
|
return -EINVAL;
|
|
}
|
|
|
|
mutex_lock(&pmem[id].arena_mutex);
|
|
data->index = pmem_allocate_from_id(id,
|
|
arg,
|
|
SZ_4K);
|
|
mutex_unlock(&pmem[id].arena_mutex);
|
|
ret = data->index == -1 ? -ENOMEM :
|
|
data->index;
|
|
up_write(&data->sem);
|
|
return ret;
|
|
}
|
|
case PMEM_ALLOCATE_ALIGNED:
|
|
{
|
|
struct pmem_allocation alloc;
|
|
int ret = 0;
|
|
|
|
if (copy_from_user(&alloc, (void __user *)arg,
|
|
sizeof(struct pmem_allocation)))
|
|
return -EFAULT;
|
|
DLOG("allocate id align %d %u\n", id, alloc.align);
|
|
down_write(&data->sem);
|
|
if (has_allocation(file)) {
|
|
pr_err("pmem: Existing allocation found on "
|
|
"this file descrpitor\n");
|
|
up_write(&data->sem);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (alloc.align & (alloc.align - 1)) {
|
|
pr_err("pmem: Alignment is not a power of 2\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (alloc.align != SZ_4K &&
|
|
(pmem[id].allocator_type !=
|
|
PMEM_ALLOCATORTYPE_BITMAP)) {
|
|
pr_err("pmem: Non 4k alignment requires bitmap"
|
|
" allocator on %s\n", pmem[id].name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (alloc.align > SZ_1M ||
|
|
alloc.align < SZ_4K) {
|
|
pr_err("pmem: Invalid Alignment (%u) "
|
|
"specified\n", alloc.align);
|
|
return -EINVAL;
|
|
}
|
|
|
|
mutex_lock(&pmem[id].arena_mutex);
|
|
data->index = pmem_allocate_from_id(id,
|
|
alloc.size,
|
|
alloc.align);
|
|
mutex_unlock(&pmem[id].arena_mutex);
|
|
ret = data->index == -1 ? -ENOMEM :
|
|
data->index;
|
|
up_write(&data->sem);
|
|
return ret;
|
|
}
|
|
case PMEM_CONNECT:
|
|
DLOG("connect\n");
|
|
return pmem_connect(arg, file);
|
|
case PMEM_CLEAN_INV_CACHES:
|
|
case PMEM_CLEAN_CACHES:
|
|
case PMEM_INV_CACHES:
|
|
{
|
|
struct pmem_addr pmem_addr;
|
|
|
|
if (copy_from_user(&pmem_addr, (void __user *)arg,
|
|
sizeof(struct pmem_addr)))
|
|
return -EFAULT;
|
|
|
|
return pmem_cache_maint(file, cmd, &pmem_addr);
|
|
}
|
|
default:
|
|
if (pmem[id].ioctl)
|
|
return pmem[id].ioctl(file, cmd, arg);
|
|
|
|
DLOG("ioctl invalid (%#x)\n", cmd);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void ioremap_pmem(int id)
|
|
{
|
|
unsigned long addr;
|
|
const struct mem_type *type;
|
|
|
|
DLOG("PMEMDEBUG: ioremaping for %s\n", pmem[id].name);
|
|
if (pmem[id].map_on_demand) {
|
|
addr = (unsigned long)pmem[id].area->addr;
|
|
if (pmem[id].cached)
|
|
type = get_mem_type(MT_DEVICE_CACHED);
|
|
else
|
|
type = get_mem_type(MT_DEVICE);
|
|
DLOG("PMEMDEBUG: Remap phys %lx to virt %lx on %s\n",
|
|
pmem[id].base, addr, pmem[id].name);
|
|
if (ioremap_pages(addr, pmem[id].base, pmem[id].size, type)) {
|
|
pr_err("pmem: Failed to map pages\n");
|
|
BUG();
|
|
}
|
|
pmem[id].vbase = pmem[id].area->addr;
|
|
/* Flush the cache after installing page table entries to avoid
|
|
* aliasing when these pages are remapped to user space.
|
|
*/
|
|
flush_cache_vmap(addr, addr + pmem[id].size);
|
|
} else {
|
|
if (pmem[id].cached)
|
|
pmem[id].vbase = ioremap_cached(pmem[id].base,
|
|
pmem[id].size);
|
|
#ifdef ioremap_ext_buffered
|
|
else if (pmem[id].buffered)
|
|
pmem[id].vbase = ioremap_ext_buffered(pmem[id].base,
|
|
pmem[id].size);
|
|
#endif
|
|
else
|
|
pmem[id].vbase = ioremap(pmem[id].base, pmem[id].size);
|
|
}
|
|
}
|
|
|
|
int pmem_setup(struct android_pmem_platform_data *pdata,
|
|
long (*ioctl)(struct file *, unsigned int, unsigned long),
|
|
int (*release)(struct inode *, struct file *))
|
|
{
|
|
int i, index = 0, id;
|
|
struct vm_struct *pmem_vma = NULL;
|
|
struct page *page;
|
|
|
|
if (id_count >= PMEM_MAX_DEVICES) {
|
|
pr_alert("pmem: %s: unable to register driver(%s) - no more "
|
|
"devices available!\n", __func__, pdata->name);
|
|
goto err_no_mem;
|
|
}
|
|
|
|
if (!pdata->size) {
|
|
pr_alert("pmem: %s: unable to register pmem driver(%s) - zero "
|
|
"size passed in!\n", __func__, pdata->name);
|
|
goto err_no_mem;
|
|
}
|
|
|
|
id = id_count++;
|
|
|
|
pmem[id].id = id;
|
|
|
|
if (pmem[id].allocate) {
|
|
pr_alert("pmem: %s: unable to register pmem driver - "
|
|
"duplicate registration of %s!\n",
|
|
__func__, pdata->name);
|
|
goto err_no_mem;
|
|
}
|
|
|
|
pmem[id].allocator_type = pdata->allocator_type;
|
|
|
|
/* 'quantum' is a "hidden" variable that defaults to 0 in the board
|
|
* files */
|
|
pmem[id].quantum = pdata->quantum ?: PMEM_MIN_ALLOC;
|
|
if (pmem[id].quantum < PMEM_MIN_ALLOC ||
|
|
!is_power_of_2(pmem[id].quantum)) {
|
|
pr_alert("pmem: %s: unable to register pmem driver %s - "
|
|
"invalid quantum value (%#x)!\n",
|
|
__func__, pdata->name, pmem[id].quantum);
|
|
goto err_reset_pmem_info;
|
|
}
|
|
|
|
if (pdata->size % pmem[id].quantum) {
|
|
/* bad alignment for size! */
|
|
pr_alert("pmem: %s: Unable to register driver %s - "
|
|
"memory region size (%#lx) is not a multiple of "
|
|
"quantum size(%#x)!\n", __func__, pdata->name,
|
|
pdata->size, pmem[id].quantum);
|
|
goto err_reset_pmem_info;
|
|
}
|
|
|
|
pmem[id].cached = pdata->cached;
|
|
pmem[id].buffered = pdata->buffered;
|
|
pmem[id].size = pdata->size;
|
|
pmem[id].memory_type = pdata->memory_type;
|
|
strlcpy(pmem[id].name, pdata->name, PMEM_NAME_SIZE);
|
|
|
|
pmem[id].num_entries = pmem[id].size / pmem[id].quantum;
|
|
|
|
memset(&pmem[id].kobj, 0, sizeof(pmem[0].kobj));
|
|
pmem[id].kobj.kset = pmem_kset;
|
|
|
|
switch (pmem[id].allocator_type) {
|
|
case PMEM_ALLOCATORTYPE_ALLORNOTHING:
|
|
pmem[id].allocate = pmem_allocator_all_or_nothing;
|
|
pmem[id].free = pmem_free_all_or_nothing;
|
|
pmem[id].free_space = pmem_free_space_all_or_nothing;
|
|
pmem[id].len = pmem_len_all_or_nothing;
|
|
pmem[id].start_addr = pmem_start_addr_all_or_nothing;
|
|
pmem[id].num_entries = 1;
|
|
pmem[id].quantum = pmem[id].size;
|
|
pmem[id].allocator.all_or_nothing.allocated = 0;
|
|
|
|
if (kobject_init_and_add(&pmem[id].kobj,
|
|
&pmem_allornothing_ktype, NULL,
|
|
"%s", pdata->name))
|
|
goto out_put_kobj;
|
|
|
|
break;
|
|
|
|
case PMEM_ALLOCATORTYPE_BUDDYBESTFIT:
|
|
pmem[id].allocator.buddy_bestfit.buddy_bitmap = kmalloc(
|
|
pmem[id].num_entries * sizeof(struct pmem_bits),
|
|
GFP_KERNEL);
|
|
if (!pmem[id].allocator.buddy_bestfit.buddy_bitmap)
|
|
goto err_reset_pmem_info;
|
|
|
|
memset(pmem[id].allocator.buddy_bestfit.buddy_bitmap, 0,
|
|
sizeof(struct pmem_bits) * pmem[id].num_entries);
|
|
|
|
for (i = sizeof(pmem[id].num_entries) * 8 - 1; i >= 0; i--)
|
|
if ((pmem[id].num_entries) & 1<<i) {
|
|
PMEM_BUDDY_ORDER(id, index) = i;
|
|
index = PMEM_BUDDY_NEXT_INDEX(id, index);
|
|
}
|
|
pmem[id].allocate = pmem_allocator_buddy_bestfit;
|
|
pmem[id].free = pmem_free_buddy_bestfit;
|
|
pmem[id].free_space = pmem_free_space_buddy_bestfit;
|
|
pmem[id].len = pmem_len_buddy_bestfit;
|
|
pmem[id].start_addr = pmem_start_addr_buddy_bestfit;
|
|
if (kobject_init_and_add(&pmem[id].kobj,
|
|
&pmem_buddy_bestfit_ktype, NULL,
|
|
"%s", pdata->name))
|
|
goto out_put_kobj;
|
|
|
|
break;
|
|
|
|
case PMEM_ALLOCATORTYPE_BITMAP: /* 0, default if not explicit */
|
|
pmem[id].allocator.bitmap.bitm_alloc = kmalloc(
|
|
PMEM_INITIAL_NUM_BITMAP_ALLOCATIONS *
|
|
sizeof(*pmem[id].allocator.bitmap.bitm_alloc),
|
|
GFP_KERNEL);
|
|
if (!pmem[id].allocator.bitmap.bitm_alloc) {
|
|
pr_alert("pmem: %s: Unable to register pmem "
|
|
"driver %s - can't allocate "
|
|
"bitm_alloc!\n",
|
|
__func__, pdata->name);
|
|
goto err_reset_pmem_info;
|
|
}
|
|
|
|
if (kobject_init_and_add(&pmem[id].kobj,
|
|
&pmem_bitmap_ktype, NULL,
|
|
"%s", pdata->name))
|
|
goto out_put_kobj;
|
|
|
|
for (i = 0; i < PMEM_INITIAL_NUM_BITMAP_ALLOCATIONS; i++) {
|
|
pmem[id].allocator.bitmap.bitm_alloc[i].bit = -1;
|
|
pmem[id].allocator.bitmap.bitm_alloc[i].quanta = 0;
|
|
}
|
|
|
|
pmem[id].allocator.bitmap.bitmap_allocs =
|
|
PMEM_INITIAL_NUM_BITMAP_ALLOCATIONS;
|
|
|
|
pmem[id].allocator.bitmap.bitmap =
|
|
kcalloc((pmem[id].num_entries + 31) / 32,
|
|
sizeof(unsigned int), GFP_KERNEL);
|
|
if (!pmem[id].allocator.bitmap.bitmap) {
|
|
pr_alert("pmem: %s: Unable to register pmem "
|
|
"driver - can't allocate bitmap!\n",
|
|
__func__);
|
|
goto err_cant_register_device;
|
|
}
|
|
pmem[id].allocator.bitmap.bitmap_free = pmem[id].num_entries;
|
|
|
|
pmem[id].allocate = pmem_allocator_bitmap;
|
|
pmem[id].free = pmem_free_bitmap;
|
|
pmem[id].free_space = pmem_free_space_bitmap;
|
|
pmem[id].len = pmem_len_bitmap;
|
|
pmem[id].start_addr = pmem_start_addr_bitmap;
|
|
|
|
DLOG("bitmap allocator id %d (%s), num_entries %u, raw size "
|
|
"%lu, quanta size %u\n",
|
|
id, pdata->name, pmem[id].allocator.bitmap.bitmap_free,
|
|
pmem[id].size, pmem[id].quantum);
|
|
break;
|
|
|
|
case PMEM_ALLOCATORTYPE_SYSTEM:
|
|
|
|
INIT_LIST_HEAD(&pmem[id].allocator.system_mem.alist);
|
|
|
|
pmem[id].allocator.system_mem.used = 0;
|
|
pmem[id].vbase = NULL;
|
|
|
|
if (kobject_init_and_add(&pmem[id].kobj,
|
|
&pmem_system_ktype, NULL,
|
|
"%s", pdata->name))
|
|
goto out_put_kobj;
|
|
|
|
pmem[id].allocate = pmem_allocator_system;
|
|
pmem[id].free = pmem_free_system;
|
|
pmem[id].free_space = pmem_free_space_system;
|
|
pmem[id].len = pmem_len_system;
|
|
pmem[id].start_addr = pmem_start_addr_system;
|
|
pmem[id].num_entries = 0;
|
|
pmem[id].quantum = PAGE_SIZE;
|
|
|
|
DLOG("system allocator id %d (%s), raw size %lu\n",
|
|
id, pdata->name, pmem[id].size);
|
|
break;
|
|
|
|
default:
|
|
pr_alert("Invalid allocator type (%d) for pmem driver\n",
|
|
pdata->allocator_type);
|
|
goto err_reset_pmem_info;
|
|
}
|
|
|
|
pmem[id].ioctl = ioctl;
|
|
pmem[id].release = release;
|
|
mutex_init(&pmem[id].arena_mutex);
|
|
mutex_init(&pmem[id].data_list_mutex);
|
|
INIT_LIST_HEAD(&pmem[id].data_list);
|
|
|
|
pmem[id].dev.name = pdata->name;
|
|
pmem[id].dev.minor = id;
|
|
pmem[id].dev.fops = &pmem_fops;
|
|
pmem[id].reusable = pdata->reusable;
|
|
pr_info("pmem: Initializing %s as %s\n",
|
|
pdata->name, pdata->cached ? "cached" : "non-cached");
|
|
|
|
if (misc_register(&pmem[id].dev)) {
|
|
pr_alert("Unable to register pmem driver!\n");
|
|
goto err_cant_register_device;
|
|
}
|
|
|
|
if (!pmem[id].reusable) {
|
|
pmem[id].base = allocate_contiguous_memory_nomap(pmem[id].size,
|
|
pmem[id].memory_type, PAGE_SIZE);
|
|
if (!pmem[id].base) {
|
|
pr_err("pmem: Cannot allocate from reserved memory for %s\n",
|
|
pdata->name);
|
|
goto err_misc_deregister;
|
|
}
|
|
}
|
|
|
|
/* reusable pmem requires map on demand */
|
|
pmem[id].map_on_demand = pdata->map_on_demand || pdata->reusable;
|
|
if (pmem[id].map_on_demand) {
|
|
if (pmem[id].reusable) {
|
|
const struct fmem_data *fmem_info = fmem_get_info();
|
|
pmem[id].area = fmem_info->area;
|
|
pmem[id].base = fmem_info->phys;
|
|
} else {
|
|
pmem_vma = get_vm_area(pmem[id].size, VM_IOREMAP);
|
|
if (!pmem_vma) {
|
|
pr_err("pmem: Failed to allocate virtual space for "
|
|
"%s\n", pdata->name);
|
|
goto err_free;
|
|
}
|
|
pr_err("pmem: Reserving virtual address range %lx - %lx for"
|
|
" %s\n", (unsigned long) pmem_vma->addr,
|
|
(unsigned long) pmem_vma->addr + pmem[id].size,
|
|
pdata->name);
|
|
pmem[id].area = pmem_vma;
|
|
}
|
|
} else
|
|
pmem[id].area = NULL;
|
|
|
|
page = alloc_page(GFP_KERNEL);
|
|
if (!page) {
|
|
pr_err("pmem: Failed to allocate page for %s\n", pdata->name);
|
|
goto cleanup_vm;
|
|
}
|
|
pmem[id].garbage_pfn = page_to_pfn(page);
|
|
atomic_set(&pmem[id].allocation_cnt, 0);
|
|
|
|
if (pdata->setup_region)
|
|
pmem[id].region_data = pdata->setup_region();
|
|
|
|
if (pdata->request_region)
|
|
pmem[id].mem_request = pdata->request_region;
|
|
|
|
if (pdata->release_region)
|
|
pmem[id].mem_release = pdata->release_region;
|
|
|
|
pr_info("allocating %lu bytes at %lx physical for %s\n",
|
|
pmem[id].size, pmem[id].base, pmem[id].name);
|
|
|
|
return 0;
|
|
|
|
cleanup_vm:
|
|
if (!pmem[id].reusable)
|
|
remove_vm_area(pmem_vma);
|
|
err_free:
|
|
if (!pmem[id].reusable)
|
|
free_contiguous_memory_by_paddr(pmem[id].base);
|
|
err_misc_deregister:
|
|
misc_deregister(&pmem[id].dev);
|
|
err_cant_register_device:
|
|
out_put_kobj:
|
|
kobject_put(&pmem[id].kobj);
|
|
if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_BUDDYBESTFIT)
|
|
kfree(pmem[id].allocator.buddy_bestfit.buddy_bitmap);
|
|
else if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_BITMAP) {
|
|
kfree(pmem[id].allocator.bitmap.bitmap);
|
|
kfree(pmem[id].allocator.bitmap.bitm_alloc);
|
|
}
|
|
err_reset_pmem_info:
|
|
pmem[id].allocate = 0;
|
|
pmem[id].dev.minor = -1;
|
|
err_no_mem:
|
|
return -1;
|
|
}
|
|
|
|
static int pmem_probe(struct platform_device *pdev)
|
|
{
|
|
struct android_pmem_platform_data *pdata;
|
|
|
|
if (!pdev || !pdev->dev.platform_data) {
|
|
pr_alert("Unable to probe pmem!\n");
|
|
return -1;
|
|
}
|
|
pdata = pdev->dev.platform_data;
|
|
|
|
pm_runtime_set_active(&pdev->dev);
|
|
pm_runtime_enable(&pdev->dev);
|
|
|
|
return pmem_setup(pdata, NULL, NULL);
|
|
}
|
|
|
|
static int pmem_remove(struct platform_device *pdev)
|
|
{
|
|
int id = pdev->id;
|
|
__free_page(pfn_to_page(pmem[id].garbage_pfn));
|
|
pm_runtime_disable(&pdev->dev);
|
|
if (pmem[id].vbase)
|
|
iounmap(pmem[id].vbase);
|
|
if (pmem[id].map_on_demand && !pmem[id].reusable && pmem[id].area)
|
|
free_vm_area(pmem[id].area);
|
|
if (pmem[id].base)
|
|
free_contiguous_memory_by_paddr(pmem[id].base);
|
|
kobject_put(&pmem[id].kobj);
|
|
if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_BUDDYBESTFIT)
|
|
kfree(pmem[id].allocator.buddy_bestfit.buddy_bitmap);
|
|
else if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_BITMAP) {
|
|
kfree(pmem[id].allocator.bitmap.bitmap);
|
|
kfree(pmem[id].allocator.bitmap.bitm_alloc);
|
|
}
|
|
misc_deregister(&pmem[id].dev);
|
|
return 0;
|
|
}
|
|
|
|
static int pmem_runtime_suspend(struct device *dev)
|
|
{
|
|
dev_dbg(dev, "pm_runtime: suspending...\n");
|
|
return 0;
|
|
}
|
|
|
|
static int pmem_runtime_resume(struct device *dev)
|
|
{
|
|
dev_dbg(dev, "pm_runtime: resuming...\n");
|
|
return 0;
|
|
}
|
|
|
|
static const struct dev_pm_ops pmem_dev_pm_ops = {
|
|
.runtime_suspend = pmem_runtime_suspend,
|
|
.runtime_resume = pmem_runtime_resume,
|
|
};
|
|
|
|
static struct platform_driver pmem_driver = {
|
|
.probe = pmem_probe,
|
|
.remove = pmem_remove,
|
|
.driver = { .name = "android_pmem",
|
|
.pm = &pmem_dev_pm_ops,
|
|
}
|
|
};
|
|
|
|
|
|
static int __init pmem_init(void)
|
|
{
|
|
/* create /sys/kernel/<PMEM_SYSFS_DIR_NAME> directory */
|
|
pmem_kset = kset_create_and_add(PMEM_SYSFS_DIR_NAME,
|
|
NULL, kernel_kobj);
|
|
if (!pmem_kset) {
|
|
pr_err("pmem(%s):kset_create_and_add fail\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return platform_driver_register(&pmem_driver);
|
|
}
|
|
|
|
static void __exit pmem_exit(void)
|
|
{
|
|
platform_driver_unregister(&pmem_driver);
|
|
}
|
|
|
|
module_init(pmem_init);
|
|
module_exit(pmem_exit);
|
|
|