android_kernel_google_msm/drivers/pci/dmar.c
Tony Battersby 084eb960e8 intel-iommu: fix endless "Unknown DMAR structure type" loop
I have a SuperMicro C2SBX motherboard with BIOS revision 1.0b.  With vt-d
enabled in the BIOS, Linux gets into an endless loop printing
"DMAR:Unknown DMAR structure type" when booting.  Here is the DMAR ACPI
table:

DMAR @ 0x7fe86dec
  0000: 44 4d 41 52 98 00 00 00 01 6f 49 6e 74 65 6c 20  DMAR.....oIntel
  0010: 4f 45 4d 44 4d 41 52 20 00 00 04 06 4c 4f 48 52  OEMDMAR ....LOHR
  0020: 01 00 00 00 23 00 00 00 00 00 00 00 00 00 00 00  ....#...........
  0030: 01 00 58 00 00 00 00 00 00 a0 e8 7f 00 00 00 00  ..X.............
  0040: ff ff ef 7f 00 00 00 00 01 08 00 00 00 00 1d 00  ................
  0050: 01 08 00 00 00 00 1d 01 01 08 00 00 00 00 1d 02  ................
  0060: 01 08 00 00 00 00 1d 07 01 08 00 00 00 00 1a 00  ................
  0070: 01 08 00 00 00 00 1a 01 01 08 00 00 00 00 1a 02  ................
  0080: 01 08 00 00 00 00 1a 07 01 08 00 00 00 00 1a 07  ................
  0090: c0 00 68 00 04 10 66 60                          ..h...f`

Here are the messages printed by the kernel:

DMAR:Host address width 36
DMAR:RMRR base: 0x000000007fe8a000 end: 0x000000007fefffff
DMAR:Unknown DMAR structure type
DMAR:Unknown DMAR structure type
DMAR:Unknown DMAR structure type
...

Although I not very familiar with ACPI, to me it looks like struct
acpi_dmar_header::length == 0x0058 is incorrect, causing
parse_dmar_table() to look at an invalid offset on the next loop.  This
offset happens to have struct acpi_dmar_header::length == 0x0000, which
prevents the loop from ever terminating.  This patch checks for this
condition and bails out instead of looping forever.

Signed-off-by: Tony Battersby <tonyb@cybernetics.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2009-02-14 08:33:34 +00:00

811 lines
18 KiB
C

/*
* Copyright (c) 2006, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
* Place - Suite 330, Boston, MA 02111-1307 USA.
*
* Copyright (C) 2006-2008 Intel Corporation
* Author: Ashok Raj <ashok.raj@intel.com>
* Author: Shaohua Li <shaohua.li@intel.com>
* Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
*
* This file implements early detection/parsing of Remapping Devices
* reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
* tables.
*
* These routines are used by both DMA-remapping and Interrupt-remapping
*/
#include <linux/pci.h>
#include <linux/dmar.h>
#include <linux/iova.h>
#include <linux/intel-iommu.h>
#include <linux/timer.h>
#undef PREFIX
#define PREFIX "DMAR:"
/* No locks are needed as DMA remapping hardware unit
* list is constructed at boot time and hotplug of
* these units are not supported by the architecture.
*/
LIST_HEAD(dmar_drhd_units);
static struct acpi_table_header * __initdata dmar_tbl;
static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
{
/*
* add INCLUDE_ALL at the tail, so scan the list will find it at
* the very end.
*/
if (drhd->include_all)
list_add_tail(&drhd->list, &dmar_drhd_units);
else
list_add(&drhd->list, &dmar_drhd_units);
}
static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
struct pci_dev **dev, u16 segment)
{
struct pci_bus *bus;
struct pci_dev *pdev = NULL;
struct acpi_dmar_pci_path *path;
int count;
bus = pci_find_bus(segment, scope->bus);
path = (struct acpi_dmar_pci_path *)(scope + 1);
count = (scope->length - sizeof(struct acpi_dmar_device_scope))
/ sizeof(struct acpi_dmar_pci_path);
while (count) {
if (pdev)
pci_dev_put(pdev);
/*
* Some BIOSes list non-exist devices in DMAR table, just
* ignore it
*/
if (!bus) {
printk(KERN_WARNING
PREFIX "Device scope bus [%d] not found\n",
scope->bus);
break;
}
pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
if (!pdev) {
printk(KERN_WARNING PREFIX
"Device scope device [%04x:%02x:%02x.%02x] not found\n",
segment, bus->number, path->dev, path->fn);
break;
}
path ++;
count --;
bus = pdev->subordinate;
}
if (!pdev) {
printk(KERN_WARNING PREFIX
"Device scope device [%04x:%02x:%02x.%02x] not found\n",
segment, scope->bus, path->dev, path->fn);
*dev = NULL;
return 0;
}
if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
pdev->subordinate) || (scope->entry_type == \
ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
pci_dev_put(pdev);
printk(KERN_WARNING PREFIX
"Device scope type does not match for %s\n",
pci_name(pdev));
return -EINVAL;
}
*dev = pdev;
return 0;
}
static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
struct pci_dev ***devices, u16 segment)
{
struct acpi_dmar_device_scope *scope;
void * tmp = start;
int index;
int ret;
*cnt = 0;
while (start < end) {
scope = start;
if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
(*cnt)++;
else
printk(KERN_WARNING PREFIX
"Unsupported device scope\n");
start += scope->length;
}
if (*cnt == 0)
return 0;
*devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
if (!*devices)
return -ENOMEM;
start = tmp;
index = 0;
while (start < end) {
scope = start;
if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
ret = dmar_parse_one_dev_scope(scope,
&(*devices)[index], segment);
if (ret) {
kfree(*devices);
return ret;
}
index ++;
}
start += scope->length;
}
return 0;
}
/**
* dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
* structure which uniquely represent one DMA remapping hardware unit
* present in the platform
*/
static int __init
dmar_parse_one_drhd(struct acpi_dmar_header *header)
{
struct acpi_dmar_hardware_unit *drhd;
struct dmar_drhd_unit *dmaru;
int ret = 0;
dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
if (!dmaru)
return -ENOMEM;
dmaru->hdr = header;
drhd = (struct acpi_dmar_hardware_unit *)header;
dmaru->reg_base_addr = drhd->address;
dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
ret = alloc_iommu(dmaru);
if (ret) {
kfree(dmaru);
return ret;
}
dmar_register_drhd_unit(dmaru);
return 0;
}
static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
{
struct acpi_dmar_hardware_unit *drhd;
int ret = 0;
drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
if (dmaru->include_all)
return 0;
ret = dmar_parse_dev_scope((void *)(drhd + 1),
((void *)drhd) + drhd->header.length,
&dmaru->devices_cnt, &dmaru->devices,
drhd->segment);
if (ret) {
list_del(&dmaru->list);
kfree(dmaru);
}
return ret;
}
#ifdef CONFIG_DMAR
LIST_HEAD(dmar_rmrr_units);
static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
{
list_add(&rmrr->list, &dmar_rmrr_units);
}
static int __init
dmar_parse_one_rmrr(struct acpi_dmar_header *header)
{
struct acpi_dmar_reserved_memory *rmrr;
struct dmar_rmrr_unit *rmrru;
rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
if (!rmrru)
return -ENOMEM;
rmrru->hdr = header;
rmrr = (struct acpi_dmar_reserved_memory *)header;
rmrru->base_address = rmrr->base_address;
rmrru->end_address = rmrr->end_address;
dmar_register_rmrr_unit(rmrru);
return 0;
}
static int __init
rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
{
struct acpi_dmar_reserved_memory *rmrr;
int ret;
rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
ret = dmar_parse_dev_scope((void *)(rmrr + 1),
((void *)rmrr) + rmrr->header.length,
&rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
if (ret || (rmrru->devices_cnt == 0)) {
list_del(&rmrru->list);
kfree(rmrru);
}
return ret;
}
#endif
static void __init
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
{
struct acpi_dmar_hardware_unit *drhd;
struct acpi_dmar_reserved_memory *rmrr;
switch (header->type) {
case ACPI_DMAR_TYPE_HARDWARE_UNIT:
drhd = (struct acpi_dmar_hardware_unit *)header;
printk (KERN_INFO PREFIX
"DRHD (flags: 0x%08x)base: 0x%016Lx\n",
drhd->flags, (unsigned long long)drhd->address);
break;
case ACPI_DMAR_TYPE_RESERVED_MEMORY:
rmrr = (struct acpi_dmar_reserved_memory *)header;
printk (KERN_INFO PREFIX
"RMRR base: 0x%016Lx end: 0x%016Lx\n",
(unsigned long long)rmrr->base_address,
(unsigned long long)rmrr->end_address);
break;
}
}
/**
* dmar_table_detect - checks to see if the platform supports DMAR devices
*/
static int __init dmar_table_detect(void)
{
acpi_status status = AE_OK;
/* if we could find DMAR table, then there are DMAR devices */
status = acpi_get_table(ACPI_SIG_DMAR, 0,
(struct acpi_table_header **)&dmar_tbl);
if (ACPI_SUCCESS(status) && !dmar_tbl) {
printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
status = AE_NOT_FOUND;
}
return (ACPI_SUCCESS(status) ? 1 : 0);
}
/**
* parse_dmar_table - parses the DMA reporting table
*/
static int __init
parse_dmar_table(void)
{
struct acpi_table_dmar *dmar;
struct acpi_dmar_header *entry_header;
int ret = 0;
/*
* Do it again, earlier dmar_tbl mapping could be mapped with
* fixed map.
*/
dmar_table_detect();
dmar = (struct acpi_table_dmar *)dmar_tbl;
if (!dmar)
return -ENODEV;
if (dmar->width < PAGE_SHIFT - 1) {
printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
return -EINVAL;
}
printk (KERN_INFO PREFIX "Host address width %d\n",
dmar->width + 1);
entry_header = (struct acpi_dmar_header *)(dmar + 1);
while (((unsigned long)entry_header) <
(((unsigned long)dmar) + dmar_tbl->length)) {
/* Avoid looping forever on bad ACPI tables */
if (entry_header->length == 0) {
printk(KERN_WARNING PREFIX
"Invalid 0-length structure\n");
ret = -EINVAL;
break;
}
dmar_table_print_dmar_entry(entry_header);
switch (entry_header->type) {
case ACPI_DMAR_TYPE_HARDWARE_UNIT:
ret = dmar_parse_one_drhd(entry_header);
break;
case ACPI_DMAR_TYPE_RESERVED_MEMORY:
#ifdef CONFIG_DMAR
ret = dmar_parse_one_rmrr(entry_header);
#endif
break;
default:
printk(KERN_WARNING PREFIX
"Unknown DMAR structure type\n");
ret = 0; /* for forward compatibility */
break;
}
if (ret)
break;
entry_header = ((void *)entry_header + entry_header->length);
}
return ret;
}
int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
struct pci_dev *dev)
{
int index;
while (dev) {
for (index = 0; index < cnt; index++)
if (dev == devices[index])
return 1;
/* Check our parent */
dev = dev->bus->self;
}
return 0;
}
struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
struct dmar_drhd_unit *dmaru = NULL;
struct acpi_dmar_hardware_unit *drhd;
list_for_each_entry(dmaru, &dmar_drhd_units, list) {
drhd = container_of(dmaru->hdr,
struct acpi_dmar_hardware_unit,
header);
if (dmaru->include_all &&
drhd->segment == pci_domain_nr(dev->bus))
return dmaru;
if (dmar_pci_device_match(dmaru->devices,
dmaru->devices_cnt, dev))
return dmaru;
}
return NULL;
}
int __init dmar_dev_scope_init(void)
{
struct dmar_drhd_unit *drhd, *drhd_n;
int ret = -ENODEV;
list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
ret = dmar_parse_dev(drhd);
if (ret)
return ret;
}
#ifdef CONFIG_DMAR
{
struct dmar_rmrr_unit *rmrr, *rmrr_n;
list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
ret = rmrr_parse_dev(rmrr);
if (ret)
return ret;
}
}
#endif
return ret;
}
int __init dmar_table_init(void)
{
static int dmar_table_initialized;
int ret;
if (dmar_table_initialized)
return 0;
dmar_table_initialized = 1;
ret = parse_dmar_table();
if (ret) {
if (ret != -ENODEV)
printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
return ret;
}
if (list_empty(&dmar_drhd_units)) {
printk(KERN_INFO PREFIX "No DMAR devices found\n");
return -ENODEV;
}
#ifdef CONFIG_DMAR
if (list_empty(&dmar_rmrr_units))
printk(KERN_INFO PREFIX "No RMRR found\n");
#endif
#ifdef CONFIG_INTR_REMAP
parse_ioapics_under_ir();
#endif
return 0;
}
void __init detect_intel_iommu(void)
{
int ret;
ret = dmar_table_detect();
{
#ifdef CONFIG_INTR_REMAP
struct acpi_table_dmar *dmar;
/*
* for now we will disable dma-remapping when interrupt
* remapping is enabled.
* When support for queued invalidation for IOTLB invalidation
* is added, we will not need this any more.
*/
dmar = (struct acpi_table_dmar *) dmar_tbl;
if (ret && cpu_has_x2apic && dmar->flags & 0x1)
printk(KERN_INFO
"Queued invalidation will be enabled to support "
"x2apic and Intr-remapping.\n");
#endif
#ifdef CONFIG_DMAR
if (ret && !no_iommu && !iommu_detected && !swiotlb &&
!dmar_disabled)
iommu_detected = 1;
#endif
}
dmar_tbl = NULL;
}
int alloc_iommu(struct dmar_drhd_unit *drhd)
{
struct intel_iommu *iommu;
int map_size;
u32 ver;
static int iommu_allocated = 0;
int agaw = 0;
iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
if (!iommu)
return -ENOMEM;
iommu->seq_id = iommu_allocated++;
iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
if (!iommu->reg) {
printk(KERN_ERR "IOMMU: can't map the region\n");
goto error;
}
iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
#ifdef CONFIG_DMAR
agaw = iommu_calculate_agaw(iommu);
if (agaw < 0) {
printk(KERN_ERR
"Cannot get a valid agaw for iommu (seq_id = %d)\n",
iommu->seq_id);
goto error;
}
#endif
iommu->agaw = agaw;
/* the registers might be more than one page */
map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
cap_max_fault_reg_offset(iommu->cap));
map_size = VTD_PAGE_ALIGN(map_size);
if (map_size > VTD_PAGE_SIZE) {
iounmap(iommu->reg);
iommu->reg = ioremap(drhd->reg_base_addr, map_size);
if (!iommu->reg) {
printk(KERN_ERR "IOMMU: can't map the region\n");
goto error;
}
}
ver = readl(iommu->reg + DMAR_VER_REG);
pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
(unsigned long long)drhd->reg_base_addr,
DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
(unsigned long long)iommu->cap,
(unsigned long long)iommu->ecap);
spin_lock_init(&iommu->register_lock);
drhd->iommu = iommu;
return 0;
error:
kfree(iommu);
return -1;
}
void free_iommu(struct intel_iommu *iommu)
{
if (!iommu)
return;
#ifdef CONFIG_DMAR
free_dmar_iommu(iommu);
#endif
if (iommu->reg)
iounmap(iommu->reg);
kfree(iommu);
}
/*
* Reclaim all the submitted descriptors which have completed its work.
*/
static inline void reclaim_free_desc(struct q_inval *qi)
{
while (qi->desc_status[qi->free_tail] == QI_DONE) {
qi->desc_status[qi->free_tail] = QI_FREE;
qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
qi->free_cnt++;
}
}
static int qi_check_fault(struct intel_iommu *iommu, int index)
{
u32 fault;
int head;
struct q_inval *qi = iommu->qi;
int wait_index = (index + 1) % QI_LENGTH;
fault = readl(iommu->reg + DMAR_FSTS_REG);
/*
* If IQE happens, the head points to the descriptor associated
* with the error. No new descriptors are fetched until the IQE
* is cleared.
*/
if (fault & DMA_FSTS_IQE) {
head = readl(iommu->reg + DMAR_IQH_REG);
if ((head >> 4) == index) {
memcpy(&qi->desc[index], &qi->desc[wait_index],
sizeof(struct qi_desc));
__iommu_flush_cache(iommu, &qi->desc[index],
sizeof(struct qi_desc));
writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
return -EINVAL;
}
}
return 0;
}
/*
* Submit the queued invalidation descriptor to the remapping
* hardware unit and wait for its completion.
*/
int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
{
int rc = 0;
struct q_inval *qi = iommu->qi;
struct qi_desc *hw, wait_desc;
int wait_index, index;
unsigned long flags;
if (!qi)
return 0;
hw = qi->desc;
spin_lock_irqsave(&qi->q_lock, flags);
while (qi->free_cnt < 3) {
spin_unlock_irqrestore(&qi->q_lock, flags);
cpu_relax();
spin_lock_irqsave(&qi->q_lock, flags);
}
index = qi->free_head;
wait_index = (index + 1) % QI_LENGTH;
qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
hw[index] = *desc;
wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
hw[wait_index] = wait_desc;
__iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
__iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
qi->free_head = (qi->free_head + 2) % QI_LENGTH;
qi->free_cnt -= 2;
/*
* update the HW tail register indicating the presence of
* new descriptors.
*/
writel(qi->free_head << 4, iommu->reg + DMAR_IQT_REG);
while (qi->desc_status[wait_index] != QI_DONE) {
/*
* We will leave the interrupts disabled, to prevent interrupt
* context to queue another cmd while a cmd is already submitted
* and waiting for completion on this cpu. This is to avoid
* a deadlock where the interrupt context can wait indefinitely
* for free slots in the queue.
*/
rc = qi_check_fault(iommu, index);
if (rc)
goto out;
spin_unlock(&qi->q_lock);
cpu_relax();
spin_lock(&qi->q_lock);
}
out:
qi->desc_status[index] = qi->desc_status[wait_index] = QI_DONE;
reclaim_free_desc(qi);
spin_unlock_irqrestore(&qi->q_lock, flags);
return rc;
}
/*
* Flush the global interrupt entry cache.
*/
void qi_global_iec(struct intel_iommu *iommu)
{
struct qi_desc desc;
desc.low = QI_IEC_TYPE;
desc.high = 0;
/* should never fail */
qi_submit_sync(&desc, iommu);
}
int qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
u64 type, int non_present_entry_flush)
{
struct qi_desc desc;
if (non_present_entry_flush) {
if (!cap_caching_mode(iommu->cap))
return 1;
else
did = 0;
}
desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
| QI_CC_GRAN(type) | QI_CC_TYPE;
desc.high = 0;
return qi_submit_sync(&desc, iommu);
}
int qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
unsigned int size_order, u64 type,
int non_present_entry_flush)
{
u8 dw = 0, dr = 0;
struct qi_desc desc;
int ih = 0;
if (non_present_entry_flush) {
if (!cap_caching_mode(iommu->cap))
return 1;
else
did = 0;
}
if (cap_write_drain(iommu->cap))
dw = 1;
if (cap_read_drain(iommu->cap))
dr = 1;
desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
| QI_IOTLB_AM(size_order);
return qi_submit_sync(&desc, iommu);
}
/*
* Enable Queued Invalidation interface. This is a must to support
* interrupt-remapping. Also used by DMA-remapping, which replaces
* register based IOTLB invalidation.
*/
int dmar_enable_qi(struct intel_iommu *iommu)
{
u32 cmd, sts;
unsigned long flags;
struct q_inval *qi;
if (!ecap_qis(iommu->ecap))
return -ENOENT;
/*
* queued invalidation is already setup and enabled.
*/
if (iommu->qi)
return 0;
iommu->qi = kmalloc(sizeof(*qi), GFP_KERNEL);
if (!iommu->qi)
return -ENOMEM;
qi = iommu->qi;
qi->desc = (void *)(get_zeroed_page(GFP_KERNEL));
if (!qi->desc) {
kfree(qi);
iommu->qi = 0;
return -ENOMEM;
}
qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_KERNEL);
if (!qi->desc_status) {
free_page((unsigned long) qi->desc);
kfree(qi);
iommu->qi = 0;
return -ENOMEM;
}
qi->free_head = qi->free_tail = 0;
qi->free_cnt = QI_LENGTH;
spin_lock_init(&qi->q_lock);
spin_lock_irqsave(&iommu->register_lock, flags);
/* write zero to the tail reg */
writel(0, iommu->reg + DMAR_IQT_REG);
dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
cmd = iommu->gcmd | DMA_GCMD_QIE;
iommu->gcmd |= DMA_GCMD_QIE;
writel(cmd, iommu->reg + DMAR_GCMD_REG);
/* Make sure hardware complete it */
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
spin_unlock_irqrestore(&iommu->register_lock, flags);
return 0;
}