android_kernel_google_msm/include/linux/kref.h
Thomas Hellstrom e3a55052f4 kref: Implement kref_get_unless_zero v3
commit 4b20db3de8 upstream.

This function is intended to simplify locking around refcounting for
objects that can be looked up from a lookup structure, and which are
removed from that lookup structure in the object destructor.
Operations on such objects require at least a read lock around
lookup + kref_get, and a write lock around kref_put + remove from lookup
structure. Furthermore, RCU implementations become extremely tricky.
With a lookup followed by a kref_get_unless_zero *with return value check*
locking in the kref_put path can be deferred to the actual removal from
the lookup structure and RCU lookups become trivial.

v2: Formatting fixes.
v3: Invert the return value.

Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-04-16 21:27:26 -07:00

117 lines
3.8 KiB
C

/*
* kref.h - library routines for handling generic reference counted objects
*
* Copyright (C) 2004 Greg Kroah-Hartman <greg@kroah.com>
* Copyright (C) 2004 IBM Corp.
*
* based on kobject.h which was:
* Copyright (C) 2002-2003 Patrick Mochel <mochel@osdl.org>
* Copyright (C) 2002-2003 Open Source Development Labs
*
* This file is released under the GPLv2.
*
*/
#ifndef _KREF_H_
#define _KREF_H_
#include <linux/bug.h>
#include <linux/atomic.h>
#include <linux/kernel.h>
struct kref {
atomic_t refcount;
};
/**
* kref_init - initialize object.
* @kref: object in question.
*/
static inline void kref_init(struct kref *kref)
{
atomic_set(&kref->refcount, 1);
}
/**
* kref_get - increment refcount for object.
* @kref: object.
*/
static inline void kref_get(struct kref *kref)
{
WARN_ON(!atomic_read(&kref->refcount));
atomic_inc(&kref->refcount);
}
/**
* kref_sub - subtract a number of refcounts for object.
* @kref: object.
* @count: Number of recounts to subtract.
* @release: pointer to the function that will clean up the object when the
* last reference to the object is released.
* This pointer is required, and it is not acceptable to pass kfree
* in as this function. If the caller does pass kfree to this
* function, you will be publicly mocked mercilessly by the kref
* maintainer, and anyone else who happens to notice it. You have
* been warned.
*
* Subtract @count from the refcount, and if 0, call release().
* Return 1 if the object was removed, otherwise return 0. Beware, if this
* function returns 0, you still can not count on the kref from remaining in
* memory. Only use the return value if you want to see if the kref is now
* gone, not present.
*/
static inline int kref_sub(struct kref *kref, unsigned int count,
void (*release)(struct kref *kref))
{
WARN_ON(release == NULL);
if (atomic_sub_and_test((int) count, &kref->refcount)) {
release(kref);
return 1;
}
return 0;
}
/**
* kref_put - decrement refcount for object.
* @kref: object.
* @release: pointer to the function that will clean up the object when the
* last reference to the object is released.
* This pointer is required, and it is not acceptable to pass kfree
* in as this function. If the caller does pass kfree to this
* function, you will be publicly mocked mercilessly by the kref
* maintainer, and anyone else who happens to notice it. You have
* been warned.
*
* Decrement the refcount, and if 0, call release().
* Return 1 if the object was removed, otherwise return 0. Beware, if this
* function returns 0, you still can not count on the kref from remaining in
* memory. Only use the return value if you want to see if the kref is now
* gone, not present.
*/
static inline int kref_put(struct kref *kref, void (*release)(struct kref *kref))
{
return kref_sub(kref, 1, release);
}
/**
* kref_get_unless_zero - Increment refcount for object unless it is zero.
* @kref: object.
*
* Return non-zero if the increment succeeded. Otherwise return 0.
*
* This function is intended to simplify locking around refcounting for
* objects that can be looked up from a lookup structure, and which are
* removed from that lookup structure in the object destructor.
* Operations on such objects require at least a read lock around
* lookup + kref_get, and a write lock around kref_put + remove from lookup
* structure. Furthermore, RCU implementations become extremely tricky.
* With a lookup followed by a kref_get_unless_zero *with return value check*
* locking in the kref_put path can be deferred to the actual removal from
* the lookup structure and RCU lookups become trivial.
*/
static inline int __must_check kref_get_unless_zero(struct kref *kref)
{
return atomic_add_unless(&kref->refcount, 1, 0);
}
#endif /* _KREF_H_ */