android_kernel_google_msm/drivers/cpufreq/cpufreq_interactive.c
Stephen Boyd d7574b90d8 cpufreq: interactive: Fix blocked task warnings
Running a kernel that never enables the interactive cpufreq
will eventually hit the following warning:

INFO: task kinteractiveup:112 blocked for more than 120 seconds.
kinteractiveup  D c07ae3a4  7072   112      2 0x00000000
[<c07ae3a4>] (__schedule+0x4e4/0x5c4) from [<c00a1b8c>] (kthread+0x70/0x94)
[<c00a1b8c>] (kthread+0x70/0x94) from [<c000f368>]
(kernel_thread_exit+0x0/0x8)

due to the fact that the kthread is never woken up after being
forked. Kick the thread to its idle loop so that it can
schedule() and move out of the D state.

Change-Id: Idc490e707d9a14dd143306a8ee1c2241320d29d5
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
2013-01-10 10:38:47 -08:00

1006 lines
25 KiB
C

/*
* drivers/cpufreq/cpufreq_interactive.c
*
* Copyright (C) 2010 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Author: Mike Chan (mike@android.com)
*
*/
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpufreq.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/tick.h>
#include <linux/time.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/kthread.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <asm/cputime.h>
#define CREATE_TRACE_POINTS
#include <trace/events/cpufreq_interactive.h>
static atomic_t active_count = ATOMIC_INIT(0);
struct cpufreq_interactive_cpuinfo {
struct timer_list cpu_timer;
int timer_idlecancel;
u64 time_in_idle;
u64 idle_exit_time;
u64 timer_run_time;
int idling;
u64 target_set_time;
u64 target_set_time_in_idle;
struct cpufreq_policy *policy;
struct cpufreq_frequency_table *freq_table;
unsigned int target_freq;
unsigned int floor_freq;
u64 floor_validate_time;
u64 hispeed_validate_time;
int governor_enabled;
};
static DEFINE_PER_CPU(struct cpufreq_interactive_cpuinfo, cpuinfo);
/* Workqueues handle frequency scaling */
static struct task_struct *up_task;
static struct workqueue_struct *down_wq;
static struct work_struct freq_scale_down_work;
static cpumask_t up_cpumask;
static spinlock_t up_cpumask_lock;
static cpumask_t down_cpumask;
static spinlock_t down_cpumask_lock;
static struct mutex set_speed_lock;
/* Hi speed to bump to from lo speed when load burst (default max) */
static u64 hispeed_freq;
/* Go to hi speed when CPU load at or above this value. */
#define DEFAULT_GO_HISPEED_LOAD 85
static unsigned long go_hispeed_load;
/*
* The minimum amount of time to spend at a frequency before we can ramp down.
*/
#define DEFAULT_MIN_SAMPLE_TIME (80 * USEC_PER_MSEC)
static unsigned long min_sample_time;
/*
* The sample rate of the timer used to increase frequency
*/
#define DEFAULT_TIMER_RATE (20 * USEC_PER_MSEC)
static unsigned long timer_rate;
/*
* Wait this long before raising speed above hispeed, by default a single
* timer interval.
*/
#define DEFAULT_ABOVE_HISPEED_DELAY DEFAULT_TIMER_RATE
static unsigned long above_hispeed_delay_val;
/*
* Boost pulse to hispeed on touchscreen input.
*/
static int input_boost_val;
struct cpufreq_interactive_inputopen {
struct input_handle *handle;
struct work_struct inputopen_work;
};
static struct cpufreq_interactive_inputopen inputopen;
/*
* Non-zero means longer-term speed boost active.
*/
static int boost_val;
static int cpufreq_governor_interactive(struct cpufreq_policy *policy,
unsigned int event);
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
static
#endif
struct cpufreq_governor cpufreq_gov_interactive = {
.name = "interactive",
.governor = cpufreq_governor_interactive,
.max_transition_latency = 10000000,
.owner = THIS_MODULE,
};
static void cpufreq_interactive_timer(unsigned long data)
{
unsigned int delta_idle;
unsigned int delta_time;
int cpu_load;
int load_since_change;
u64 time_in_idle;
u64 idle_exit_time;
struct cpufreq_interactive_cpuinfo *pcpu =
&per_cpu(cpuinfo, data);
u64 now_idle;
unsigned int new_freq;
unsigned int index;
unsigned long flags;
smp_rmb();
if (!pcpu->governor_enabled)
goto exit;
/*
* Once pcpu->timer_run_time is updated to >= pcpu->idle_exit_time,
* this lets idle exit know the current idle time sample has
* been processed, and idle exit can generate a new sample and
* re-arm the timer. This prevents a concurrent idle
* exit on that CPU from writing a new set of info at the same time
* the timer function runs (the timer function can't use that info
* until more time passes).
*/
time_in_idle = pcpu->time_in_idle;
idle_exit_time = pcpu->idle_exit_time;
now_idle = get_cpu_idle_time_us(data, &pcpu->timer_run_time);
smp_wmb();
/* If we raced with cancelling a timer, skip. */
if (!idle_exit_time)
goto exit;
delta_idle = (unsigned int)(now_idle - time_in_idle);
delta_time = (unsigned int)(pcpu->timer_run_time - idle_exit_time);
/*
* If timer ran less than 1ms after short-term sample started, retry.
*/
if (delta_time < 1000)
goto rearm;
if (delta_idle > delta_time)
cpu_load = 0;
else
cpu_load = 100 * (delta_time - delta_idle) / delta_time;
delta_idle = (unsigned int)(now_idle - pcpu->target_set_time_in_idle);
delta_time = (unsigned int)(pcpu->timer_run_time -
pcpu->target_set_time);
if ((delta_time == 0) || (delta_idle > delta_time))
load_since_change = 0;
else
load_since_change =
100 * (delta_time - delta_idle) / delta_time;
/*
* Choose greater of short-term load (since last idle timer
* started or timer function re-armed itself) or long-term load
* (since last frequency change).
*/
if (load_since_change > cpu_load)
cpu_load = load_since_change;
if (cpu_load >= go_hispeed_load || boost_val) {
if (pcpu->target_freq <= pcpu->policy->min) {
new_freq = hispeed_freq;
} else {
new_freq = pcpu->policy->max * cpu_load / 100;
if (new_freq < hispeed_freq)
new_freq = hispeed_freq;
if (pcpu->target_freq == hispeed_freq &&
new_freq > hispeed_freq &&
pcpu->timer_run_time - pcpu->hispeed_validate_time
< above_hispeed_delay_val) {
trace_cpufreq_interactive_notyet(data, cpu_load,
pcpu->target_freq,
new_freq);
goto rearm;
}
}
} else {
new_freq = pcpu->policy->max * cpu_load / 100;
}
if (new_freq <= hispeed_freq)
pcpu->hispeed_validate_time = pcpu->timer_run_time;
if (cpufreq_frequency_table_target(pcpu->policy, pcpu->freq_table,
new_freq, CPUFREQ_RELATION_H,
&index)) {
pr_warn_once("timer %d: cpufreq_frequency_table_target error\n",
(int) data);
goto rearm;
}
new_freq = pcpu->freq_table[index].frequency;
/*
* Do not scale below floor_freq unless we have been at or above the
* floor frequency for the minimum sample time since last validated.
*/
if (new_freq < pcpu->floor_freq) {
if (pcpu->timer_run_time - pcpu->floor_validate_time
< min_sample_time) {
trace_cpufreq_interactive_notyet(data, cpu_load,
pcpu->target_freq, new_freq);
goto rearm;
}
}
pcpu->floor_freq = new_freq;
pcpu->floor_validate_time = pcpu->timer_run_time;
if (pcpu->target_freq == new_freq) {
trace_cpufreq_interactive_already(data, cpu_load,
pcpu->target_freq, new_freq);
goto rearm_if_notmax;
}
trace_cpufreq_interactive_target(data, cpu_load, pcpu->target_freq,
new_freq);
pcpu->target_set_time_in_idle = now_idle;
pcpu->target_set_time = pcpu->timer_run_time;
if (new_freq < pcpu->target_freq) {
pcpu->target_freq = new_freq;
spin_lock_irqsave(&down_cpumask_lock, flags);
cpumask_set_cpu(data, &down_cpumask);
spin_unlock_irqrestore(&down_cpumask_lock, flags);
queue_work(down_wq, &freq_scale_down_work);
} else {
pcpu->target_freq = new_freq;
spin_lock_irqsave(&up_cpumask_lock, flags);
cpumask_set_cpu(data, &up_cpumask);
spin_unlock_irqrestore(&up_cpumask_lock, flags);
wake_up_process(up_task);
}
rearm_if_notmax:
/*
* Already set max speed and don't see a need to change that,
* wait until next idle to re-evaluate, don't need timer.
*/
if (pcpu->target_freq == pcpu->policy->max)
goto exit;
rearm:
if (!timer_pending(&pcpu->cpu_timer)) {
/*
* If already at min: if that CPU is idle, don't set timer.
* Else cancel the timer if that CPU goes idle. We don't
* need to re-evaluate speed until the next idle exit.
*/
if (pcpu->target_freq == pcpu->policy->min) {
smp_rmb();
if (pcpu->idling)
goto exit;
pcpu->timer_idlecancel = 1;
}
pcpu->time_in_idle = get_cpu_idle_time_us(
data, &pcpu->idle_exit_time);
mod_timer(&pcpu->cpu_timer,
jiffies + usecs_to_jiffies(timer_rate));
}
exit:
return;
}
static void cpufreq_interactive_idle_start(void)
{
struct cpufreq_interactive_cpuinfo *pcpu =
&per_cpu(cpuinfo, smp_processor_id());
int pending;
if (!pcpu->governor_enabled)
return;
pcpu->idling = 1;
smp_wmb();
pending = timer_pending(&pcpu->cpu_timer);
if (pcpu->target_freq != pcpu->policy->min) {
#ifdef CONFIG_SMP
/*
* Entering idle while not at lowest speed. On some
* platforms this can hold the other CPU(s) at that speed
* even though the CPU is idle. Set a timer to re-evaluate
* speed so this idle CPU doesn't hold the other CPUs above
* min indefinitely. This should probably be a quirk of
* the CPUFreq driver.
*/
if (!pending) {
pcpu->time_in_idle = get_cpu_idle_time_us(
smp_processor_id(), &pcpu->idle_exit_time);
pcpu->timer_idlecancel = 0;
mod_timer(&pcpu->cpu_timer,
jiffies + usecs_to_jiffies(timer_rate));
}
#endif
} else {
/*
* If at min speed and entering idle after load has
* already been evaluated, and a timer has been set just in
* case the CPU suddenly goes busy, cancel that timer. The
* CPU didn't go busy; we'll recheck things upon idle exit.
*/
if (pending && pcpu->timer_idlecancel) {
del_timer(&pcpu->cpu_timer);
/*
* Ensure last timer run time is after current idle
* sample start time, so next idle exit will always
* start a new idle sampling period.
*/
pcpu->idle_exit_time = 0;
pcpu->timer_idlecancel = 0;
}
}
}
static void cpufreq_interactive_idle_end(void)
{
struct cpufreq_interactive_cpuinfo *pcpu =
&per_cpu(cpuinfo, smp_processor_id());
pcpu->idling = 0;
smp_wmb();
/*
* Arm the timer for 1-2 ticks later if not already, and if the timer
* function has already processed the previous load sampling
* interval. (If the timer is not pending but has not processed
* the previous interval, it is probably racing with us on another
* CPU. Let it compute load based on the previous sample and then
* re-arm the timer for another interval when it's done, rather
* than updating the interval start time to be "now", which doesn't
* give the timer function enough time to make a decision on this
* run.)
*/
if (timer_pending(&pcpu->cpu_timer) == 0 &&
pcpu->timer_run_time >= pcpu->idle_exit_time &&
pcpu->governor_enabled) {
pcpu->time_in_idle =
get_cpu_idle_time_us(smp_processor_id(),
&pcpu->idle_exit_time);
pcpu->timer_idlecancel = 0;
mod_timer(&pcpu->cpu_timer,
jiffies + usecs_to_jiffies(timer_rate));
}
}
static int cpufreq_interactive_up_task(void *data)
{
unsigned int cpu;
cpumask_t tmp_mask;
unsigned long flags;
struct cpufreq_interactive_cpuinfo *pcpu;
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&up_cpumask_lock, flags);
if (cpumask_empty(&up_cpumask)) {
spin_unlock_irqrestore(&up_cpumask_lock, flags);
schedule();
if (kthread_should_stop())
break;
spin_lock_irqsave(&up_cpumask_lock, flags);
}
set_current_state(TASK_RUNNING);
tmp_mask = up_cpumask;
cpumask_clear(&up_cpumask);
spin_unlock_irqrestore(&up_cpumask_lock, flags);
for_each_cpu(cpu, &tmp_mask) {
unsigned int j;
unsigned int max_freq = 0;
pcpu = &per_cpu(cpuinfo, cpu);
smp_rmb();
if (!pcpu->governor_enabled)
continue;
mutex_lock(&set_speed_lock);
for_each_cpu(j, pcpu->policy->cpus) {
struct cpufreq_interactive_cpuinfo *pjcpu =
&per_cpu(cpuinfo, j);
if (pjcpu->target_freq > max_freq)
max_freq = pjcpu->target_freq;
}
if (max_freq != pcpu->policy->cur)
__cpufreq_driver_target(pcpu->policy,
max_freq,
CPUFREQ_RELATION_H);
mutex_unlock(&set_speed_lock);
trace_cpufreq_interactive_up(cpu, pcpu->target_freq,
pcpu->policy->cur);
}
}
return 0;
}
static void cpufreq_interactive_freq_down(struct work_struct *work)
{
unsigned int cpu;
cpumask_t tmp_mask;
unsigned long flags;
struct cpufreq_interactive_cpuinfo *pcpu;
spin_lock_irqsave(&down_cpumask_lock, flags);
tmp_mask = down_cpumask;
cpumask_clear(&down_cpumask);
spin_unlock_irqrestore(&down_cpumask_lock, flags);
for_each_cpu(cpu, &tmp_mask) {
unsigned int j;
unsigned int max_freq = 0;
pcpu = &per_cpu(cpuinfo, cpu);
smp_rmb();
if (!pcpu->governor_enabled)
continue;
mutex_lock(&set_speed_lock);
for_each_cpu(j, pcpu->policy->cpus) {
struct cpufreq_interactive_cpuinfo *pjcpu =
&per_cpu(cpuinfo, j);
if (pjcpu->target_freq > max_freq)
max_freq = pjcpu->target_freq;
}
if (max_freq != pcpu->policy->cur)
__cpufreq_driver_target(pcpu->policy, max_freq,
CPUFREQ_RELATION_H);
mutex_unlock(&set_speed_lock);
trace_cpufreq_interactive_down(cpu, pcpu->target_freq,
pcpu->policy->cur);
}
}
static void cpufreq_interactive_boost(void)
{
int i;
int anyboost = 0;
unsigned long flags;
struct cpufreq_interactive_cpuinfo *pcpu;
spin_lock_irqsave(&up_cpumask_lock, flags);
for_each_online_cpu(i) {
pcpu = &per_cpu(cpuinfo, i);
if (pcpu->target_freq < hispeed_freq) {
pcpu->target_freq = hispeed_freq;
cpumask_set_cpu(i, &up_cpumask);
pcpu->target_set_time_in_idle =
get_cpu_idle_time_us(i, &pcpu->target_set_time);
pcpu->hispeed_validate_time = pcpu->target_set_time;
anyboost = 1;
}
/*
* Set floor freq and (re)start timer for when last
* validated.
*/
pcpu->floor_freq = hispeed_freq;
pcpu->floor_validate_time = ktime_to_us(ktime_get());
}
spin_unlock_irqrestore(&up_cpumask_lock, flags);
if (anyboost)
wake_up_process(up_task);
}
/*
* Pulsed boost on input event raises CPUs to hispeed_freq and lets
* usual algorithm of min_sample_time decide when to allow speed
* to drop.
*/
static void cpufreq_interactive_input_event(struct input_handle *handle,
unsigned int type,
unsigned int code, int value)
{
if (input_boost_val && type == EV_SYN && code == SYN_REPORT) {
trace_cpufreq_interactive_boost("input");
cpufreq_interactive_boost();
}
}
static void cpufreq_interactive_input_open(struct work_struct *w)
{
struct cpufreq_interactive_inputopen *io =
container_of(w, struct cpufreq_interactive_inputopen,
inputopen_work);
int error;
error = input_open_device(io->handle);
if (error)
input_unregister_handle(io->handle);
}
static int cpufreq_interactive_input_connect(struct input_handler *handler,
struct input_dev *dev,
const struct input_device_id *id)
{
struct input_handle *handle;
int error;
pr_info("%s: connect to %s\n", __func__, dev->name);
handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
if (!handle)
return -ENOMEM;
handle->dev = dev;
handle->handler = handler;
handle->name = "cpufreq_interactive";
error = input_register_handle(handle);
if (error)
goto err;
inputopen.handle = handle;
queue_work(down_wq, &inputopen.inputopen_work);
return 0;
err:
kfree(handle);
return error;
}
static void cpufreq_interactive_input_disconnect(struct input_handle *handle)
{
input_close_device(handle);
input_unregister_handle(handle);
kfree(handle);
}
static const struct input_device_id cpufreq_interactive_ids[] = {
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT |
INPUT_DEVICE_ID_MATCH_ABSBIT,
.evbit = { BIT_MASK(EV_ABS) },
.absbit = { [BIT_WORD(ABS_MT_POSITION_X)] =
BIT_MASK(ABS_MT_POSITION_X) |
BIT_MASK(ABS_MT_POSITION_Y) },
}, /* multi-touch touchscreen */
{
.flags = INPUT_DEVICE_ID_MATCH_KEYBIT |
INPUT_DEVICE_ID_MATCH_ABSBIT,
.keybit = { [BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH) },
.absbit = { [BIT_WORD(ABS_X)] =
BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) },
}, /* touchpad */
{ },
};
static struct input_handler cpufreq_interactive_input_handler = {
.event = cpufreq_interactive_input_event,
.connect = cpufreq_interactive_input_connect,
.disconnect = cpufreq_interactive_input_disconnect,
.name = "cpufreq_interactive",
.id_table = cpufreq_interactive_ids,
};
static ssize_t show_hispeed_freq(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%llu\n", hispeed_freq);
}
static ssize_t store_hispeed_freq(struct kobject *kobj,
struct attribute *attr, const char *buf,
size_t count)
{
int ret;
u64 val;
ret = strict_strtoull(buf, 0, &val);
if (ret < 0)
return ret;
hispeed_freq = val;
return count;
}
static struct global_attr hispeed_freq_attr = __ATTR(hispeed_freq, 0644,
show_hispeed_freq, store_hispeed_freq);
static ssize_t show_go_hispeed_load(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", go_hispeed_load);
}
static ssize_t store_go_hispeed_load(struct kobject *kobj,
struct attribute *attr, const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = strict_strtoul(buf, 0, &val);
if (ret < 0)
return ret;
go_hispeed_load = val;
return count;
}
static struct global_attr go_hispeed_load_attr = __ATTR(go_hispeed_load, 0644,
show_go_hispeed_load, store_go_hispeed_load);
static ssize_t show_min_sample_time(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", min_sample_time);
}
static ssize_t store_min_sample_time(struct kobject *kobj,
struct attribute *attr, const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = strict_strtoul(buf, 0, &val);
if (ret < 0)
return ret;
min_sample_time = val;
return count;
}
static struct global_attr min_sample_time_attr = __ATTR(min_sample_time, 0644,
show_min_sample_time, store_min_sample_time);
static ssize_t show_above_hispeed_delay(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", above_hispeed_delay_val);
}
static ssize_t store_above_hispeed_delay(struct kobject *kobj,
struct attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = strict_strtoul(buf, 0, &val);
if (ret < 0)
return ret;
above_hispeed_delay_val = val;
return count;
}
define_one_global_rw(above_hispeed_delay);
static ssize_t show_timer_rate(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", timer_rate);
}
static ssize_t store_timer_rate(struct kobject *kobj,
struct attribute *attr, const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = strict_strtoul(buf, 0, &val);
if (ret < 0)
return ret;
timer_rate = val;
return count;
}
static struct global_attr timer_rate_attr = __ATTR(timer_rate, 0644,
show_timer_rate, store_timer_rate);
static ssize_t show_input_boost(struct kobject *kobj, struct attribute *attr,
char *buf)
{
return sprintf(buf, "%u\n", input_boost_val);
}
static ssize_t store_input_boost(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = strict_strtoul(buf, 0, &val);
if (ret < 0)
return ret;
input_boost_val = val;
return count;
}
define_one_global_rw(input_boost);
static ssize_t show_boost(struct kobject *kobj, struct attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", boost_val);
}
static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
boost_val = val;
if (boost_val) {
trace_cpufreq_interactive_boost("on");
cpufreq_interactive_boost();
} else {
trace_cpufreq_interactive_unboost("off");
}
return count;
}
define_one_global_rw(boost);
static ssize_t store_boostpulse(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
trace_cpufreq_interactive_boost("pulse");
cpufreq_interactive_boost();
return count;
}
static struct global_attr boostpulse =
__ATTR(boostpulse, 0200, NULL, store_boostpulse);
static struct attribute *interactive_attributes[] = {
&hispeed_freq_attr.attr,
&go_hispeed_load_attr.attr,
&above_hispeed_delay.attr,
&min_sample_time_attr.attr,
&timer_rate_attr.attr,
&input_boost.attr,
&boost.attr,
&boostpulse.attr,
NULL,
};
static struct attribute_group interactive_attr_group = {
.attrs = interactive_attributes,
.name = "interactive",
};
static int cpufreq_governor_interactive(struct cpufreq_policy *policy,
unsigned int event)
{
int rc;
unsigned int j;
struct cpufreq_interactive_cpuinfo *pcpu;
struct cpufreq_frequency_table *freq_table;
switch (event) {
case CPUFREQ_GOV_START:
if (!cpu_online(policy->cpu))
return -EINVAL;
freq_table =
cpufreq_frequency_get_table(policy->cpu);
for_each_cpu(j, policy->cpus) {
pcpu = &per_cpu(cpuinfo, j);
pcpu->policy = policy;
pcpu->target_freq = policy->cur;
pcpu->freq_table = freq_table;
pcpu->target_set_time_in_idle =
get_cpu_idle_time_us(j,
&pcpu->target_set_time);
pcpu->floor_freq = pcpu->target_freq;
pcpu->floor_validate_time =
pcpu->target_set_time;
pcpu->hispeed_validate_time =
pcpu->target_set_time;
pcpu->governor_enabled = 1;
pcpu->idle_exit_time = pcpu->target_set_time;
mod_timer(&pcpu->cpu_timer,
jiffies + usecs_to_jiffies(timer_rate));
smp_wmb();
}
if (!hispeed_freq)
hispeed_freq = policy->max;
/*
* Do not register the idle hook and create sysfs
* entries if we have already done so.
*/
if (atomic_inc_return(&active_count) > 1)
return 0;
rc = sysfs_create_group(cpufreq_global_kobject,
&interactive_attr_group);
if (rc)
return rc;
rc = input_register_handler(&cpufreq_interactive_input_handler);
if (rc)
pr_warn("%s: failed to register input handler\n",
__func__);
break;
case CPUFREQ_GOV_STOP:
for_each_cpu(j, policy->cpus) {
pcpu = &per_cpu(cpuinfo, j);
pcpu->governor_enabled = 0;
smp_wmb();
del_timer_sync(&pcpu->cpu_timer);
/*
* Reset idle exit time since we may cancel the timer
* before it can run after the last idle exit time,
* to avoid tripping the check in idle exit for a timer
* that is trying to run.
*/
pcpu->idle_exit_time = 0;
}
flush_work(&freq_scale_down_work);
if (atomic_dec_return(&active_count) > 0)
return 0;
input_unregister_handler(&cpufreq_interactive_input_handler);
sysfs_remove_group(cpufreq_global_kobject,
&interactive_attr_group);
break;
case CPUFREQ_GOV_LIMITS:
if (policy->max < policy->cur)
__cpufreq_driver_target(policy,
policy->max, CPUFREQ_RELATION_H);
else if (policy->min > policy->cur)
__cpufreq_driver_target(policy,
policy->min, CPUFREQ_RELATION_L);
break;
}
return 0;
}
static int cpufreq_interactive_idle_notifier(struct notifier_block *nb,
unsigned long val,
void *data)
{
switch (val) {
case IDLE_START:
cpufreq_interactive_idle_start();
break;
case IDLE_END:
cpufreq_interactive_idle_end();
break;
}
return 0;
}
static struct notifier_block cpufreq_interactive_idle_nb = {
.notifier_call = cpufreq_interactive_idle_notifier,
};
static int __init cpufreq_interactive_init(void)
{
unsigned int i;
struct cpufreq_interactive_cpuinfo *pcpu;
struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
go_hispeed_load = DEFAULT_GO_HISPEED_LOAD;
min_sample_time = DEFAULT_MIN_SAMPLE_TIME;
above_hispeed_delay_val = DEFAULT_ABOVE_HISPEED_DELAY;
timer_rate = DEFAULT_TIMER_RATE;
/* Initalize per-cpu timers */
for_each_possible_cpu(i) {
pcpu = &per_cpu(cpuinfo, i);
init_timer(&pcpu->cpu_timer);
pcpu->cpu_timer.function = cpufreq_interactive_timer;
pcpu->cpu_timer.data = i;
}
up_task = kthread_create(cpufreq_interactive_up_task, NULL,
"kinteractiveup");
if (IS_ERR(up_task))
return PTR_ERR(up_task);
sched_setscheduler_nocheck(up_task, SCHED_FIFO, &param);
get_task_struct(up_task);
/* No rescuer thread, bind to CPU queuing the work for possibly
warm cache (probably doesn't matter much). */
down_wq = alloc_workqueue("knteractive_down", 0, 1);
if (!down_wq)
goto err_freeuptask;
INIT_WORK(&freq_scale_down_work,
cpufreq_interactive_freq_down);
spin_lock_init(&up_cpumask_lock);
spin_lock_init(&down_cpumask_lock);
mutex_init(&set_speed_lock);
/* Kick the kthread to idle */
wake_up_process(up_task);
idle_notifier_register(&cpufreq_interactive_idle_nb);
INIT_WORK(&inputopen.inputopen_work, cpufreq_interactive_input_open);
return cpufreq_register_governor(&cpufreq_gov_interactive);
err_freeuptask:
put_task_struct(up_task);
return -ENOMEM;
}
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
fs_initcall(cpufreq_interactive_init);
#else
module_init(cpufreq_interactive_init);
#endif
static void __exit cpufreq_interactive_exit(void)
{
cpufreq_unregister_governor(&cpufreq_gov_interactive);
kthread_stop(up_task);
put_task_struct(up_task);
destroy_workqueue(down_wq);
}
module_exit(cpufreq_interactive_exit);
MODULE_AUTHOR("Mike Chan <mike@android.com>");
MODULE_DESCRIPTION("'cpufreq_interactive' - A cpufreq governor for "
"Latency sensitive workloads");
MODULE_LICENSE("GPL");