android_kernel_google_msm/include/asm-ia64/pgtable.h
Randy Dunlap 33bf56106d [PATCH] feature removal of io_remap_page_range()
As written in Documentation/feature-removal-schedule.txt, remove the
io_remap_page_range() kernel API.

Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-13 08:22:33 -07:00

565 lines
20 KiB
C

#ifndef _ASM_IA64_PGTABLE_H
#define _ASM_IA64_PGTABLE_H
/*
* This file contains the functions and defines necessary to modify and use
* the IA-64 page table tree.
*
* This hopefully works with any (fixed) IA-64 page-size, as defined
* in <asm/page.h>.
*
* Copyright (C) 1998-2005 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
*/
#include <linux/config.h>
#include <asm/mman.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/system.h>
#include <asm/types.h>
#define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) */
/*
* First, define the various bits in a PTE. Note that the PTE format
* matches the VHPT short format, the firt doubleword of the VHPD long
* format, and the first doubleword of the TLB insertion format.
*/
#define _PAGE_P_BIT 0
#define _PAGE_A_BIT 5
#define _PAGE_D_BIT 6
#define _PAGE_P (1 << _PAGE_P_BIT) /* page present bit */
#define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */
#define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */
#define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */
#define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */
#define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */
#define _PAGE_MA_MASK (0x7 << 2)
#define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */
#define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */
#define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */
#define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */
#define _PAGE_PL_MASK (3 << 7)
#define _PAGE_AR_R (0 << 9) /* read only */
#define _PAGE_AR_RX (1 << 9) /* read & execute */
#define _PAGE_AR_RW (2 << 9) /* read & write */
#define _PAGE_AR_RWX (3 << 9) /* read, write & execute */
#define _PAGE_AR_R_RW (4 << 9) /* read / read & write */
#define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */
#define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */
#define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */
#define _PAGE_AR_MASK (7 << 9)
#define _PAGE_AR_SHIFT 9
#define _PAGE_A (1 << _PAGE_A_BIT) /* page accessed bit */
#define _PAGE_D (1 << _PAGE_D_BIT) /* page dirty bit */
#define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL)
#define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */
#define _PAGE_PROTNONE (__IA64_UL(1) << 63)
/* Valid only for a PTE with the present bit cleared: */
#define _PAGE_FILE (1 << 1) /* see swap & file pte remarks below */
#define _PFN_MASK _PAGE_PPN_MASK
/* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */
#define _PAGE_CHG_MASK (_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED)
#define _PAGE_SIZE_4K 12
#define _PAGE_SIZE_8K 13
#define _PAGE_SIZE_16K 14
#define _PAGE_SIZE_64K 16
#define _PAGE_SIZE_256K 18
#define _PAGE_SIZE_1M 20
#define _PAGE_SIZE_4M 22
#define _PAGE_SIZE_16M 24
#define _PAGE_SIZE_64M 26
#define _PAGE_SIZE_256M 28
#define _PAGE_SIZE_1G 30
#define _PAGE_SIZE_4G 32
#define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB
#define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB
#define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED
/*
* Definitions for first level:
*
* PGDIR_SHIFT determines what a first-level page table entry can map.
*/
#define PGDIR_SHIFT (PAGE_SHIFT + 2*(PAGE_SHIFT-3))
#define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#define PTRS_PER_PGD (1UL << (PAGE_SHIFT-3))
#define USER_PTRS_PER_PGD (5*PTRS_PER_PGD/8) /* regions 0-4 are user regions */
#define FIRST_USER_ADDRESS 0
/*
* Definitions for second level:
*
* PMD_SHIFT determines the size of the area a second-level page table
* can map.
*/
#define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3))
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
#define PTRS_PER_PMD (1UL << (PAGE_SHIFT-3))
/*
* Definitions for third level:
*/
#define PTRS_PER_PTE (__IA64_UL(1) << (PAGE_SHIFT-3))
/*
* All the normal masks have the "page accessed" bits on, as any time
* they are used, the page is accessed. They are cleared only by the
* page-out routines.
*/
#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A)
#define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)
#define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
#define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
#define PAGE_COPY_EXEC __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
#define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX)
#define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX)
#define PAGE_KERNELRX __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX)
# ifndef __ASSEMBLY__
#include <asm/bitops.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
#include <asm/processor.h>
/*
* Next come the mappings that determine how mmap() protection bits
* (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The
* _P version gets used for a private shared memory segment, the _S
* version gets used for a shared memory segment with MAP_SHARED on.
* In a private shared memory segment, we do a copy-on-write if a task
* attempts to write to the page.
*/
/* xwr */
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */
#define __P011 PAGE_READONLY /* ditto */
#define __P100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
#define __P101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
#define __P110 PAGE_COPY_EXEC
#define __P111 PAGE_COPY_EXEC
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */
#define __S011 PAGE_SHARED
#define __S100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
#define __S101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
#define __S110 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
#define __S111 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
#define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
#define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
/*
* Some definitions to translate between mem_map, PTEs, and page addresses:
*/
/* Quick test to see if ADDR is a (potentially) valid physical address. */
static inline long
ia64_phys_addr_valid (unsigned long addr)
{
return (addr & (local_cpu_data->unimpl_pa_mask)) == 0;
}
/*
* kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
* memory. For the return value to be meaningful, ADDR must be >=
* PAGE_OFFSET. This operation can be relatively expensive (e.g.,
* require a hash-, or multi-level tree-lookup or something of that
* sort) but it guarantees to return TRUE only if accessing the page
* at that address does not cause an error. Note that there may be
* addresses for which kern_addr_valid() returns FALSE even though an
* access would not cause an error (e.g., this is typically true for
* memory mapped I/O regions.
*
* XXX Need to implement this for IA-64.
*/
#define kern_addr_valid(addr) (1)
/*
* Now come the defines and routines to manage and access the three-level
* page table.
*/
/*
* On some architectures, special things need to be done when setting
* the PTE in a page table. Nothing special needs to be on IA-64.
*/
#define set_pte(ptep, pteval) (*(ptep) = (pteval))
#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
#define VMALLOC_START (RGN_BASE(RGN_GATE) + 0x200000000UL)
#ifdef CONFIG_VIRTUAL_MEM_MAP
# define VMALLOC_END_INIT (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
# define VMALLOC_END vmalloc_end
extern unsigned long vmalloc_end;
#else
# define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
#endif
/* fs/proc/kcore.c */
#define kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE))
#define kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE))
/*
* Conversion functions: convert page frame number (pfn) and a protection value to a page
* table entry (pte).
*/
#define pfn_pte(pfn, pgprot) \
({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; })
/* Extract pfn from pte. */
#define pte_pfn(_pte) ((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT)
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
/* This takes a physical page address that is used by the remapping functions */
#define mk_pte_phys(physpage, pgprot) \
({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
#define pte_modify(_pte, newprot) \
(__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK)))
#define page_pte_prot(page,prot) mk_pte(page, prot)
#define page_pte(page) page_pte_prot(page, __pgprot(0))
#define pte_none(pte) (!pte_val(pte))
#define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE))
#define pte_clear(mm,addr,pte) (pte_val(*(pte)) = 0UL)
/* pte_page() returns the "struct page *" corresponding to the PTE: */
#define pte_page(pte) virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET))
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) (!ia64_phys_addr_valid(pmd_val(pmd)))
#define pmd_present(pmd) (pmd_val(pmd) != 0UL)
#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL)
#define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK))
#define pmd_page(pmd) virt_to_page((pmd_val(pmd) + PAGE_OFFSET))
#define pud_none(pud) (!pud_val(pud))
#define pud_bad(pud) (!ia64_phys_addr_valid(pud_val(pud)))
#define pud_present(pud) (pud_val(pud) != 0UL)
#define pud_clear(pudp) (pud_val(*(pudp)) = 0UL)
#define pud_page(pud) ((unsigned long) __va(pud_val(pud) & _PFN_MASK))
/*
* The following have defined behavior only work if pte_present() is true.
*/
#define pte_user(pte) ((pte_val(pte) & _PAGE_PL_MASK) == _PAGE_PL_3)
#define pte_read(pte) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) < 6)
#define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4)
#define pte_exec(pte) ((pte_val(pte) & _PAGE_AR_RX) != 0)
#define pte_dirty(pte) ((pte_val(pte) & _PAGE_D) != 0)
#define pte_young(pte) ((pte_val(pte) & _PAGE_A) != 0)
#define pte_file(pte) ((pte_val(pte) & _PAGE_FILE) != 0)
/*
* Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the
* access rights:
*/
#define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW))
#define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW))
#define pte_mkexec(pte) (__pte(pte_val(pte) | _PAGE_AR_RX))
#define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A))
#define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A))
#define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D))
#define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D))
#define pte_mkhuge(pte) (__pte(pte_val(pte) | _PAGE_P))
/*
* Macro to a page protection value as "uncacheable". Note that "protection" is really a
* misnomer here as the protection value contains the memory attribute bits, dirty bits,
* and various other bits as well.
*/
#define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC)
/*
* Macro to make mark a page protection value as "write-combining".
* Note that "protection" is really a misnomer here as the protection
* value contains the memory attribute bits, dirty bits, and various
* other bits as well. Accesses through a write-combining translation
* works bypasses the caches, but does allow for consecutive writes to
* be combined into single (but larger) write transactions.
*/
#define pgprot_writecombine(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC)
static inline unsigned long
pgd_index (unsigned long address)
{
unsigned long region = address >> 61;
unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1);
return (region << (PAGE_SHIFT - 6)) | l1index;
}
/* The offset in the 1-level directory is given by the 3 region bits
(61..63) and the level-1 bits. */
static inline pgd_t*
pgd_offset (struct mm_struct *mm, unsigned long address)
{
return mm->pgd + pgd_index(address);
}
/* In the kernel's mapped region we completely ignore the region number
(since we know it's in region number 5). */
#define pgd_offset_k(addr) \
(init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)))
/* Look up a pgd entry in the gate area. On IA-64, the gate-area
resides in the kernel-mapped segment, hence we use pgd_offset_k()
here. */
#define pgd_offset_gate(mm, addr) pgd_offset_k(addr)
/* Find an entry in the second-level page table.. */
#define pmd_offset(dir,addr) \
((pmd_t *) pud_page(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
/*
* Find an entry in the third-level page table. This looks more complicated than it
* should be because some platforms place page tables in high memory.
*/
#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir,addr) ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr))
#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr)
#define pte_offset_map_nested(dir,addr) pte_offset_map(dir, addr)
#define pte_unmap(pte) do { } while (0)
#define pte_unmap_nested(pte) do { } while (0)
/* atomic versions of the some PTE manipulations: */
static inline int
ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
{
#ifdef CONFIG_SMP
if (!pte_young(*ptep))
return 0;
return test_and_clear_bit(_PAGE_A_BIT, ptep);
#else
pte_t pte = *ptep;
if (!pte_young(pte))
return 0;
set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte));
return 1;
#endif
}
static inline int
ptep_test_and_clear_dirty (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
{
#ifdef CONFIG_SMP
if (!pte_dirty(*ptep))
return 0;
return test_and_clear_bit(_PAGE_D_BIT, ptep);
#else
pte_t pte = *ptep;
if (!pte_dirty(pte))
return 0;
set_pte_at(vma->vm_mm, addr, ptep, pte_mkclean(pte));
return 1;
#endif
}
static inline pte_t
ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
#ifdef CONFIG_SMP
return __pte(xchg((long *) ptep, 0));
#else
pte_t pte = *ptep;
pte_clear(mm, addr, ptep);
return pte;
#endif
}
static inline void
ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
#ifdef CONFIG_SMP
unsigned long new, old;
do {
old = pte_val(*ptep);
new = pte_val(pte_wrprotect(__pte (old)));
} while (cmpxchg((unsigned long *) ptep, old, new) != old);
#else
pte_t old_pte = *ptep;
set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
#endif
}
static inline int
pte_same (pte_t a, pte_t b)
{
return pte_val(a) == pte_val(b);
}
#define update_mmu_cache(vma, address, pte) do { } while (0)
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
extern void paging_init (void);
/*
* Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of
* bits in the swap-type field of the swap pte. It would be nice to
* enforce that, but we can't easily include <linux/swap.h> here.
* (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...).
*
* Format of swap pte:
* bit 0 : present bit (must be zero)
* bit 1 : _PAGE_FILE (must be zero)
* bits 2- 8: swap-type
* bits 9-62: swap offset
* bit 63 : _PAGE_PROTNONE bit
*
* Format of file pte:
* bit 0 : present bit (must be zero)
* bit 1 : _PAGE_FILE (must be one)
* bits 2-62: file_offset/PAGE_SIZE
* bit 63 : _PAGE_PROTNONE bit
*/
#define __swp_type(entry) (((entry).val >> 2) & 0x7f)
#define __swp_offset(entry) (((entry).val << 1) >> 10)
#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((long) (offset) << 9) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
#define PTE_FILE_MAX_BITS 61
#define pte_to_pgoff(pte) ((pte_val(pte) << 1) >> 3)
#define pgoff_to_pte(off) ((pte_t) { ((off) << 2) | _PAGE_FILE })
#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
remap_pfn_range(vma, vaddr, pfn, size, prot)
#define MK_IOSPACE_PFN(space, pfn) (pfn)
#define GET_IOSPACE(pfn) 0
#define GET_PFN(pfn) (pfn)
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
extern struct page *zero_page_memmap_ptr;
#define ZERO_PAGE(vaddr) (zero_page_memmap_ptr)
/* We provide our own get_unmapped_area to cope with VA holes for userland */
#define HAVE_ARCH_UNMAPPED_AREA
#ifdef CONFIG_HUGETLB_PAGE
#define HUGETLB_PGDIR_SHIFT (HPAGE_SHIFT + 2*(PAGE_SHIFT-3))
#define HUGETLB_PGDIR_SIZE (__IA64_UL(1) << HUGETLB_PGDIR_SHIFT)
#define HUGETLB_PGDIR_MASK (~(HUGETLB_PGDIR_SIZE-1))
struct mmu_gather;
void hugetlb_free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
unsigned long end, unsigned long floor, unsigned long ceiling);
#endif
/*
* IA-64 doesn't have any external MMU info: the page tables contain all the necessary
* information. However, we use this routine to take care of any (delayed) i-cache
* flushing that may be necessary.
*/
extern void lazy_mmu_prot_update (pte_t pte);
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
/*
* Update PTEP with ENTRY, which is guaranteed to be a less
* restrictive PTE. That is, ENTRY may have the ACCESSED, DIRTY, and
* WRITABLE bits turned on, when the value at PTEP did not. The
* WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE.
*
* SAFELY_WRITABLE is TRUE if we can update the value at PTEP without
* having to worry about races. On SMP machines, there are only two
* cases where this is true:
*
* (1) *PTEP has the PRESENT bit turned OFF
* (2) ENTRY has the DIRTY bit turned ON
*
* On ia64, we could implement this routine with a cmpxchg()-loop
* which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY.
* However, like on x86, we can get a more streamlined version by
* observing that it is OK to drop ACCESSED bit updates when
* SAFELY_WRITABLE is FALSE. Besides being rare, all that would do is
* result in an extra Access-bit fault, which would then turn on the
* ACCESSED bit in the low-level fault handler (iaccess_bit or
* daccess_bit in ivt.S).
*/
#ifdef CONFIG_SMP
# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
do { \
if (__safely_writable) { \
set_pte(__ptep, __entry); \
flush_tlb_page(__vma, __addr); \
} \
} while (0)
#else
# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
ptep_establish(__vma, __addr, __ptep, __entry)
#endif
# ifdef CONFIG_VIRTUAL_MEM_MAP
/* arch mem_map init routine is needed due to holes in a virtual mem_map */
# define __HAVE_ARCH_MEMMAP_INIT
extern void memmap_init (unsigned long size, int nid, unsigned long zone,
unsigned long start_pfn);
# endif /* CONFIG_VIRTUAL_MEM_MAP */
# endif /* !__ASSEMBLY__ */
/*
* Identity-mapped regions use a large page size. We'll call such large pages
* "granules". If you can think of a better name that's unambiguous, let me
* know...
*/
#if defined(CONFIG_IA64_GRANULE_64MB)
# define IA64_GRANULE_SHIFT _PAGE_SIZE_64M
#elif defined(CONFIG_IA64_GRANULE_16MB)
# define IA64_GRANULE_SHIFT _PAGE_SIZE_16M
#endif
#define IA64_GRANULE_SIZE (1 << IA64_GRANULE_SHIFT)
/*
* log2() of the page size we use to map the kernel image (IA64_TR_KERNEL):
*/
#define KERNEL_TR_PAGE_SHIFT _PAGE_SIZE_64M
#define KERNEL_TR_PAGE_SIZE (1 << KERNEL_TR_PAGE_SHIFT)
/*
* No page table caches to initialise
*/
#define pgtable_cache_init() do { } while (0)
/* These tell get_user_pages() that the first gate page is accessible from user-level. */
#define FIXADDR_USER_START GATE_ADDR
#ifdef HAVE_BUGGY_SEGREL
# define FIXADDR_USER_END (GATE_ADDR + 2*PAGE_SIZE)
#else
# define FIXADDR_USER_END (GATE_ADDR + 2*PERCPU_PAGE_SIZE)
#endif
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
#define __HAVE_ARCH_PTE_SAME
#define __HAVE_ARCH_PGD_OFFSET_GATE
#define __HAVE_ARCH_LAZY_MMU_PROT_UPDATE
#include <asm-generic/pgtable-nopud.h>
#include <asm-generic/pgtable.h>
#endif /* _ASM_IA64_PGTABLE_H */