mirror of
https://github.com/followmsi/android_kernel_google_msm.git
synced 2024-11-06 23:17:41 +00:00
a8b0ca17b8
The nmi parameter indicated if we could do wakeups from the current context, if not, we would set some state and self-IPI and let the resulting interrupt do the wakeup. For the various event classes: - hardware: nmi=0; PMI is in fact an NMI or we run irq_work_run from the PMI-tail (ARM etc.) - tracepoint: nmi=0; since tracepoint could be from NMI context. - software: nmi=[0,1]; some, like the schedule thing cannot perform wakeups, and hence need 0. As one can see, there is very little nmi=1 usage, and the down-side of not using it is that on some platforms some software events can have a jiffy delay in wakeup (when arch_irq_work_raise isn't implemented). The up-side however is that we can remove the nmi parameter and save a bunch of conditionals in fast paths. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Michael Cree <mcree@orcon.net.nz> Cc: Will Deacon <will.deacon@arm.com> Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com> Cc: Anton Blanchard <anton@samba.org> Cc: Eric B Munson <emunson@mgebm.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: David S. Miller <davem@davemloft.net> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jason Wessel <jason.wessel@windriver.com> Cc: Don Zickus <dzickus@redhat.com> Link: http://lkml.kernel.org/n/tip-agjev8eu666tvknpb3iaj0fg@git.kernel.org Signed-off-by: Ingo Molnar <mingo@elte.hu>
374 lines
8.5 KiB
C
374 lines
8.5 KiB
C
/*
|
|
* Page fault handler for SH with an MMU.
|
|
*
|
|
* Copyright (C) 1999 Niibe Yutaka
|
|
* Copyright (C) 2003 - 2009 Paul Mundt
|
|
*
|
|
* Based on linux/arch/i386/mm/fault.c:
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/perf_event.h>
|
|
#include <asm/io_trapped.h>
|
|
#include <asm/system.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
static inline int notify_page_fault(struct pt_regs *regs, int trap)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (kprobes_built_in() && !user_mode(regs)) {
|
|
preempt_disable();
|
|
if (kprobe_running() && kprobe_fault_handler(regs, trap))
|
|
ret = 1;
|
|
preempt_enable();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
|
|
{
|
|
unsigned index = pgd_index(address);
|
|
pgd_t *pgd_k;
|
|
pud_t *pud, *pud_k;
|
|
pmd_t *pmd, *pmd_k;
|
|
|
|
pgd += index;
|
|
pgd_k = init_mm.pgd + index;
|
|
|
|
if (!pgd_present(*pgd_k))
|
|
return NULL;
|
|
|
|
pud = pud_offset(pgd, address);
|
|
pud_k = pud_offset(pgd_k, address);
|
|
if (!pud_present(*pud_k))
|
|
return NULL;
|
|
|
|
if (!pud_present(*pud))
|
|
set_pud(pud, *pud_k);
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
pmd_k = pmd_offset(pud_k, address);
|
|
if (!pmd_present(*pmd_k))
|
|
return NULL;
|
|
|
|
if (!pmd_present(*pmd))
|
|
set_pmd(pmd, *pmd_k);
|
|
else {
|
|
/*
|
|
* The page tables are fully synchronised so there must
|
|
* be another reason for the fault. Return NULL here to
|
|
* signal that we have not taken care of the fault.
|
|
*/
|
|
BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
|
|
return NULL;
|
|
}
|
|
|
|
return pmd_k;
|
|
}
|
|
|
|
/*
|
|
* Handle a fault on the vmalloc or module mapping area
|
|
*/
|
|
static noinline int vmalloc_fault(unsigned long address)
|
|
{
|
|
pgd_t *pgd_k;
|
|
pmd_t *pmd_k;
|
|
pte_t *pte_k;
|
|
|
|
/* Make sure we are in vmalloc/module/P3 area: */
|
|
if (!(address >= VMALLOC_START && address < P3_ADDR_MAX))
|
|
return -1;
|
|
|
|
/*
|
|
* Synchronize this task's top level page-table
|
|
* with the 'reference' page table.
|
|
*
|
|
* Do _not_ use "current" here. We might be inside
|
|
* an interrupt in the middle of a task switch..
|
|
*/
|
|
pgd_k = get_TTB();
|
|
pmd_k = vmalloc_sync_one(pgd_k, address);
|
|
if (!pmd_k)
|
|
return -1;
|
|
|
|
pte_k = pte_offset_kernel(pmd_k, address);
|
|
if (!pte_present(*pte_k))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fault_in_kernel_space(unsigned long address)
|
|
{
|
|
return address >= TASK_SIZE;
|
|
}
|
|
|
|
/*
|
|
* This routine handles page faults. It determines the address,
|
|
* and the problem, and then passes it off to one of the appropriate
|
|
* routines.
|
|
*/
|
|
asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
|
|
unsigned long writeaccess,
|
|
unsigned long address)
|
|
{
|
|
unsigned long vec;
|
|
struct task_struct *tsk;
|
|
struct mm_struct *mm;
|
|
struct vm_area_struct * vma;
|
|
int si_code;
|
|
int fault;
|
|
siginfo_t info;
|
|
|
|
tsk = current;
|
|
mm = tsk->mm;
|
|
si_code = SEGV_MAPERR;
|
|
vec = lookup_exception_vector();
|
|
|
|
/*
|
|
* We fault-in kernel-space virtual memory on-demand. The
|
|
* 'reference' page table is init_mm.pgd.
|
|
*
|
|
* NOTE! We MUST NOT take any locks for this case. We may
|
|
* be in an interrupt or a critical region, and should
|
|
* only copy the information from the master page table,
|
|
* nothing more.
|
|
*/
|
|
if (unlikely(fault_in_kernel_space(address))) {
|
|
if (vmalloc_fault(address) >= 0)
|
|
return;
|
|
if (notify_page_fault(regs, vec))
|
|
return;
|
|
|
|
goto bad_area_nosemaphore;
|
|
}
|
|
|
|
if (unlikely(notify_page_fault(regs, vec)))
|
|
return;
|
|
|
|
/* Only enable interrupts if they were on before the fault */
|
|
if ((regs->sr & SR_IMASK) != SR_IMASK)
|
|
local_irq_enable();
|
|
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
|
|
|
|
/*
|
|
* If we're in an interrupt, have no user context or are running
|
|
* in an atomic region then we must not take the fault:
|
|
*/
|
|
if (in_atomic() || !mm)
|
|
goto no_context;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
|
|
vma = find_vma(mm, address);
|
|
if (!vma)
|
|
goto bad_area;
|
|
if (vma->vm_start <= address)
|
|
goto good_area;
|
|
if (!(vma->vm_flags & VM_GROWSDOWN))
|
|
goto bad_area;
|
|
if (expand_stack(vma, address))
|
|
goto bad_area;
|
|
|
|
/*
|
|
* Ok, we have a good vm_area for this memory access, so
|
|
* we can handle it..
|
|
*/
|
|
good_area:
|
|
si_code = SEGV_ACCERR;
|
|
if (writeaccess) {
|
|
if (!(vma->vm_flags & VM_WRITE))
|
|
goto bad_area;
|
|
} else {
|
|
if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
|
|
goto bad_area;
|
|
}
|
|
|
|
/*
|
|
* If for any reason at all we couldn't handle the fault,
|
|
* make sure we exit gracefully rather than endlessly redo
|
|
* the fault.
|
|
*/
|
|
fault = handle_mm_fault(mm, vma, address, writeaccess ? FAULT_FLAG_WRITE : 0);
|
|
if (unlikely(fault & VM_FAULT_ERROR)) {
|
|
if (fault & VM_FAULT_OOM)
|
|
goto out_of_memory;
|
|
else if (fault & VM_FAULT_SIGBUS)
|
|
goto do_sigbus;
|
|
BUG();
|
|
}
|
|
if (fault & VM_FAULT_MAJOR) {
|
|
tsk->maj_flt++;
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
|
|
regs, address);
|
|
} else {
|
|
tsk->min_flt++;
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
|
|
regs, address);
|
|
}
|
|
|
|
up_read(&mm->mmap_sem);
|
|
return;
|
|
|
|
/*
|
|
* Something tried to access memory that isn't in our memory map..
|
|
* Fix it, but check if it's kernel or user first..
|
|
*/
|
|
bad_area:
|
|
up_read(&mm->mmap_sem);
|
|
|
|
bad_area_nosemaphore:
|
|
if (user_mode(regs)) {
|
|
info.si_signo = SIGSEGV;
|
|
info.si_errno = 0;
|
|
info.si_code = si_code;
|
|
info.si_addr = (void *) address;
|
|
force_sig_info(SIGSEGV, &info, tsk);
|
|
return;
|
|
}
|
|
|
|
no_context:
|
|
/* Are we prepared to handle this kernel fault? */
|
|
if (fixup_exception(regs))
|
|
return;
|
|
|
|
if (handle_trapped_io(regs, address))
|
|
return;
|
|
/*
|
|
* Oops. The kernel tried to access some bad page. We'll have to
|
|
* terminate things with extreme prejudice.
|
|
*
|
|
*/
|
|
|
|
bust_spinlocks(1);
|
|
|
|
if (oops_may_print()) {
|
|
unsigned long page;
|
|
|
|
if (address < PAGE_SIZE)
|
|
printk(KERN_ALERT "Unable to handle kernel NULL "
|
|
"pointer dereference");
|
|
else
|
|
printk(KERN_ALERT "Unable to handle kernel paging "
|
|
"request");
|
|
printk(" at virtual address %08lx\n", address);
|
|
printk(KERN_ALERT "pc = %08lx\n", regs->pc);
|
|
page = (unsigned long)get_TTB();
|
|
if (page) {
|
|
page = ((__typeof__(page) *)page)[address >> PGDIR_SHIFT];
|
|
printk(KERN_ALERT "*pde = %08lx\n", page);
|
|
if (page & _PAGE_PRESENT) {
|
|
page &= PAGE_MASK;
|
|
address &= 0x003ff000;
|
|
page = ((__typeof__(page) *)
|
|
__va(page))[address >>
|
|
PAGE_SHIFT];
|
|
printk(KERN_ALERT "*pte = %08lx\n", page);
|
|
}
|
|
}
|
|
}
|
|
|
|
die("Oops", regs, writeaccess);
|
|
bust_spinlocks(0);
|
|
do_exit(SIGKILL);
|
|
|
|
/*
|
|
* We ran out of memory, or some other thing happened to us that made
|
|
* us unable to handle the page fault gracefully.
|
|
*/
|
|
out_of_memory:
|
|
up_read(&mm->mmap_sem);
|
|
if (!user_mode(regs))
|
|
goto no_context;
|
|
pagefault_out_of_memory();
|
|
return;
|
|
|
|
do_sigbus:
|
|
up_read(&mm->mmap_sem);
|
|
|
|
/*
|
|
* Send a sigbus, regardless of whether we were in kernel
|
|
* or user mode.
|
|
*/
|
|
info.si_signo = SIGBUS;
|
|
info.si_errno = 0;
|
|
info.si_code = BUS_ADRERR;
|
|
info.si_addr = (void *)address;
|
|
force_sig_info(SIGBUS, &info, tsk);
|
|
|
|
/* Kernel mode? Handle exceptions or die */
|
|
if (!user_mode(regs))
|
|
goto no_context;
|
|
}
|
|
|
|
/*
|
|
* Called with interrupts disabled.
|
|
*/
|
|
asmlinkage int __kprobes
|
|
handle_tlbmiss(struct pt_regs *regs, unsigned long writeaccess,
|
|
unsigned long address)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
pte_t entry;
|
|
|
|
/*
|
|
* We don't take page faults for P1, P2, and parts of P4, these
|
|
* are always mapped, whether it be due to legacy behaviour in
|
|
* 29-bit mode, or due to PMB configuration in 32-bit mode.
|
|
*/
|
|
if (address >= P3SEG && address < P3_ADDR_MAX) {
|
|
pgd = pgd_offset_k(address);
|
|
} else {
|
|
if (unlikely(address >= TASK_SIZE || !current->mm))
|
|
return 1;
|
|
|
|
pgd = pgd_offset(current->mm, address);
|
|
}
|
|
|
|
pud = pud_offset(pgd, address);
|
|
if (pud_none_or_clear_bad(pud))
|
|
return 1;
|
|
pmd = pmd_offset(pud, address);
|
|
if (pmd_none_or_clear_bad(pmd))
|
|
return 1;
|
|
pte = pte_offset_kernel(pmd, address);
|
|
entry = *pte;
|
|
if (unlikely(pte_none(entry) || pte_not_present(entry)))
|
|
return 1;
|
|
if (unlikely(writeaccess && !pte_write(entry)))
|
|
return 1;
|
|
|
|
if (writeaccess)
|
|
entry = pte_mkdirty(entry);
|
|
entry = pte_mkyoung(entry);
|
|
|
|
set_pte(pte, entry);
|
|
|
|
#if defined(CONFIG_CPU_SH4) && !defined(CONFIG_SMP)
|
|
/*
|
|
* SH-4 does not set MMUCR.RC to the corresponding TLB entry in
|
|
* the case of an initial page write exception, so we need to
|
|
* flush it in order to avoid potential TLB entry duplication.
|
|
*/
|
|
if (writeaccess == 2)
|
|
local_flush_tlb_one(get_asid(), address & PAGE_MASK);
|
|
#endif
|
|
|
|
update_mmu_cache(NULL, address, pte);
|
|
|
|
return 0;
|
|
}
|