mirror of
https://github.com/followmsi/android_kernel_google_msm.git
synced 2024-11-06 23:17:41 +00:00
d4ad4eee69
Add new register definitions for QCE5.0 Hardware Add new HAL (qce50.c) for interfacing with CE 5.0 hardware: -- Implement the new interface to BAM (instead of data mover). -- Add support for multiple Pipes. -- Add support for use of HW key. Change-Id: I69dc3993f607553d4752f9f9fb4fdfe1a09a6345 Signed-off-by: Mona Hossain <mhossain@codeaurora.org>
2739 lines
80 KiB
C
2739 lines
80 KiB
C
/* Qualcomm Crypto Engine driver.
|
|
*
|
|
* Copyright (c) 2012, Code Aurora Forum. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 and
|
|
* only version 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
#define pr_fmt(fmt) "QCE50: %s: " fmt, __func__
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/device.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/err.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/io.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/qcedev.h>
|
|
#include <linux/bitops.h>
|
|
#include <crypto/hash.h>
|
|
#include <crypto/sha.h>
|
|
#include <mach/dma.h>
|
|
#include <mach/clk.h>
|
|
#include <mach/socinfo.h>
|
|
|
|
#include "qce.h"
|
|
#include "qce50.h"
|
|
#include "qcryptohw_50.h"
|
|
|
|
#define CRYPTO_CONFIG_RESET 0xE001F
|
|
|
|
static DEFINE_MUTEX(bam_register_cnt);
|
|
struct bam_registration_info {
|
|
uint32_t handle;
|
|
uint32_t cnt;
|
|
};
|
|
static struct bam_registration_info bam_registry;
|
|
|
|
/*
|
|
* CE HW device structure.
|
|
* Each engine has an instance of the structure.
|
|
* Each engine can only handle one crypto operation at one time. It is up to
|
|
* the sw above to ensure single threading of operation on an engine.
|
|
*/
|
|
struct qce_device {
|
|
struct device *pdev; /* Handle to platform_device structure */
|
|
|
|
unsigned char *coh_vmem; /* Allocated coherent virtual memory */
|
|
dma_addr_t coh_pmem; /* Allocated coherent physical memory */
|
|
int memsize; /* Memory allocated */
|
|
|
|
void __iomem *iobase; /* Virtual io base of CE HW */
|
|
unsigned int phy_iobase; /* Physical io base of CE HW */
|
|
|
|
struct clk *ce_core_src_clk; /* Handle to CE src clk*/
|
|
struct clk *ce_core_clk; /* Handle to CE clk */
|
|
struct clk *ce_clk; /* Handle to CE clk */
|
|
|
|
qce_comp_func_ptr_t qce_cb; /* qce callback function pointer */
|
|
|
|
int assoc_nents;
|
|
int ivsize;
|
|
int authsize;
|
|
int src_nents;
|
|
int dst_nents;
|
|
|
|
dma_addr_t phy_iv_in;
|
|
|
|
void *areq;
|
|
enum qce_cipher_mode_enum mode;
|
|
struct ce_sps_data ce_sps;
|
|
};
|
|
|
|
/* Standard initialization vector for SHA-1, source: FIPS 180-2 */
|
|
static uint32_t _std_init_vector_sha1[] = {
|
|
0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0
|
|
};
|
|
|
|
/* Standard initialization vector for SHA-256, source: FIPS 180-2 */
|
|
static uint32_t _std_init_vector_sha256[] = {
|
|
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
|
|
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
|
|
};
|
|
|
|
static void _byte_stream_to_net_words(uint32_t *iv, unsigned char *b,
|
|
unsigned int len)
|
|
{
|
|
unsigned n;
|
|
|
|
n = len / sizeof(uint32_t) ;
|
|
for (; n > 0; n--) {
|
|
*iv = ((*b << 24) & 0xff000000) |
|
|
(((*(b+1)) << 16) & 0xff0000) |
|
|
(((*(b+2)) << 8) & 0xff00) |
|
|
(*(b+3) & 0xff);
|
|
b += sizeof(uint32_t);
|
|
iv++;
|
|
}
|
|
|
|
n = len % sizeof(uint32_t);
|
|
if (n == 3) {
|
|
*iv = ((*b << 24) & 0xff000000) |
|
|
(((*(b+1)) << 16) & 0xff0000) |
|
|
(((*(b+2)) << 8) & 0xff00) ;
|
|
} else if (n == 2) {
|
|
*iv = ((*b << 24) & 0xff000000) |
|
|
(((*(b+1)) << 16) & 0xff0000) ;
|
|
} else if (n == 1) {
|
|
*iv = ((*b << 24) & 0xff000000) ;
|
|
}
|
|
}
|
|
|
|
static void _byte_stream_swap_to_net_words(uint32_t *iv, unsigned char *b,
|
|
unsigned int len)
|
|
{
|
|
unsigned i, j;
|
|
unsigned char swap_iv[AES_IV_LENGTH];
|
|
|
|
memset(swap_iv, 0, AES_IV_LENGTH);
|
|
for (i = (AES_IV_LENGTH-len), j = len-1; i < AES_IV_LENGTH; i++, j--)
|
|
swap_iv[i] = b[j];
|
|
_byte_stream_to_net_words(iv, swap_iv, AES_IV_LENGTH);
|
|
}
|
|
|
|
static int count_sg(struct scatterlist *sg, int nbytes)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; nbytes > 0; i++, sg = sg_next(sg))
|
|
nbytes -= sg->length;
|
|
return i;
|
|
}
|
|
|
|
static int _probe_ce_engine(struct qce_device *pce_dev)
|
|
{
|
|
unsigned int rev;
|
|
unsigned int maj_rev, min_rev, step_rev;
|
|
|
|
rev = readl_relaxed(pce_dev->iobase + CRYPTO_VERSION_REG);
|
|
mb();
|
|
maj_rev = (rev & CRYPTO_CORE_MAJOR_REV_MASK) >> CRYPTO_CORE_MAJOR_REV;
|
|
min_rev = (rev & CRYPTO_CORE_MINOR_REV_MASK) >> CRYPTO_CORE_MINOR_REV;
|
|
step_rev = (rev & CRYPTO_CORE_STEP_REV_MASK) >> CRYPTO_CORE_STEP_REV;
|
|
|
|
if ((maj_rev != 0x05) || (min_rev > 0x02) || (step_rev > 0x02)) {
|
|
pr_err("Unknown Qualcomm crypto device at 0x%x, rev %d.%d.%d\n",
|
|
pce_dev->phy_iobase, maj_rev, min_rev, step_rev);
|
|
return -EIO;
|
|
};
|
|
if ((min_rev > 0) && (step_rev != 0)) {
|
|
pr_err("Unknown Qualcomm crypto device at 0x%x, rev %d.%d.%d\n",
|
|
pce_dev->phy_iobase, maj_rev, min_rev, step_rev);
|
|
return -EIO;
|
|
};
|
|
pce_dev->ce_sps.minor_version = min_rev;
|
|
|
|
dev_info(pce_dev->pdev, "Qualcomm Crypto %d.%d.%d device found @0x%x\n",
|
|
maj_rev, min_rev, step_rev, pce_dev->phy_iobase);
|
|
|
|
pce_dev->ce_sps.ce_burst_size = MAX_CE_BAM_BURST_SIZE;
|
|
|
|
dev_info(pce_dev->pdev,
|
|
"IO base, CE = 0x%x\n, "
|
|
"Consumer (IN) PIPE %d, "
|
|
"Producer (OUT) PIPE %d\n"
|
|
"IO base BAM = 0x%x\n"
|
|
"BAM IRQ %d\n",
|
|
(uint32_t) pce_dev->iobase,
|
|
pce_dev->ce_sps.dest_pipe_index,
|
|
pce_dev->ce_sps.src_pipe_index,
|
|
(uint32_t)pce_dev->ce_sps.bam_iobase,
|
|
pce_dev->ce_sps.bam_irq);
|
|
return 0;
|
|
};
|
|
|
|
static int _ce_get_hash_cmdlistinfo(struct qce_device *pce_dev,
|
|
struct qce_sha_req *sreq,
|
|
struct qce_cmdlist_info **cmdplistinfo)
|
|
{
|
|
struct qce_cmdlistptr_ops *cmdlistptr = &pce_dev->ce_sps.cmdlistptr;
|
|
|
|
switch (sreq->alg) {
|
|
case QCE_HASH_SHA1:
|
|
*cmdplistinfo = &cmdlistptr->auth_sha1;
|
|
break;
|
|
|
|
case QCE_HASH_SHA256:
|
|
*cmdplistinfo = &cmdlistptr->auth_sha256;
|
|
break;
|
|
|
|
case QCE_HASH_SHA1_HMAC:
|
|
*cmdplistinfo = &cmdlistptr->auth_sha1_hmac;
|
|
break;
|
|
|
|
case QCE_HASH_SHA256_HMAC:
|
|
*cmdplistinfo = &cmdlistptr->auth_sha256_hmac;
|
|
break;
|
|
|
|
case QCE_HASH_AES_CMAC:
|
|
if (sreq->authklen == AES128_KEY_SIZE)
|
|
*cmdplistinfo = &cmdlistptr->auth_aes_128_cmac;
|
|
else
|
|
*cmdplistinfo = &cmdlistptr->auth_aes_256_cmac;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int _ce_setup_hash(struct qce_device *pce_dev,
|
|
struct qce_sha_req *sreq,
|
|
struct qce_cmdlist_info *cmdlistinfo)
|
|
{
|
|
uint32_t auth32[SHA256_DIGEST_SIZE / sizeof(uint32_t)];
|
|
uint32_t diglen;
|
|
int i;
|
|
uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
bool sha1 = false;
|
|
struct sps_command_element *pce = NULL;
|
|
|
|
if ((sreq->alg == QCE_HASH_SHA1_HMAC) ||
|
|
(sreq->alg == QCE_HASH_SHA256_HMAC) ||
|
|
(sreq->alg == QCE_HASH_AES_CMAC)) {
|
|
uint32_t authk_size_in_word = sreq->authklen/sizeof(uint32_t);
|
|
|
|
_byte_stream_to_net_words(mackey32, sreq->authkey,
|
|
sreq->authklen);
|
|
|
|
/* check for null key. If null, use hw key*/
|
|
for (i = 0; i < authk_size_in_word; i++) {
|
|
if (mackey32[i] != 0)
|
|
break;
|
|
}
|
|
|
|
pce = cmdlistinfo->go_proc;
|
|
if (i == authk_size_in_word) {
|
|
pce->addr = (uint32_t)(CRYPTO_GOPROC_OEM_KEY_REG +
|
|
pce_dev->phy_iobase);
|
|
} else {
|
|
pce->addr = (uint32_t)(CRYPTO_GOPROC_REG +
|
|
pce_dev->phy_iobase);
|
|
pce = cmdlistinfo->auth_key;
|
|
for (i = 0; i < authk_size_in_word; i++, pce++)
|
|
pce->data = mackey32[i];
|
|
}
|
|
}
|
|
|
|
if (sreq->alg == QCE_HASH_AES_CMAC)
|
|
goto go_proc;
|
|
|
|
/* if not the last, the size has to be on the block boundary */
|
|
if (sreq->last_blk == 0 && (sreq->size % SHA256_BLOCK_SIZE))
|
|
return -EIO;
|
|
|
|
switch (sreq->alg) {
|
|
case QCE_HASH_SHA1:
|
|
case QCE_HASH_SHA1_HMAC:
|
|
diglen = SHA1_DIGEST_SIZE;
|
|
sha1 = true;
|
|
break;
|
|
case QCE_HASH_SHA256:
|
|
case QCE_HASH_SHA256_HMAC:
|
|
diglen = SHA256_DIGEST_SIZE;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* write 20/32 bytes, 5/8 words into auth_iv for SHA1/SHA256 */
|
|
if (sreq->first_blk) {
|
|
if (sha1) {
|
|
for (i = 0; i < 5; i++)
|
|
auth32[i] = _std_init_vector_sha1[i];
|
|
} else {
|
|
for (i = 0; i < 8; i++)
|
|
auth32[i] = _std_init_vector_sha256[i];
|
|
}
|
|
} else {
|
|
_byte_stream_to_net_words(auth32, sreq->digest, diglen);
|
|
}
|
|
|
|
pce = cmdlistinfo->auth_iv;
|
|
for (i = 0; i < 5; i++, pce++)
|
|
pce->data = auth32[i];
|
|
|
|
if ((sreq->alg == QCE_HASH_SHA256) ||
|
|
(sreq->alg == QCE_HASH_SHA256_HMAC)) {
|
|
for (i = 5; i < 8; i++, pce++)
|
|
pce->data = auth32[i];
|
|
}
|
|
|
|
/* write auth_bytecnt 0/1, start with 0 */
|
|
pce = cmdlistinfo->auth_bytecount;
|
|
for (i = 0; i < 2; i++, pce++)
|
|
pce->data = sreq->auth_data[i];
|
|
|
|
/* Set/reset last bit in CFG register */
|
|
pce = cmdlistinfo->auth_seg_cfg;
|
|
if (sreq->last_blk)
|
|
pce->data |= 1 << CRYPTO_LAST;
|
|
else
|
|
pce->data &= ~(1 << CRYPTO_LAST);
|
|
if (sreq->first_blk)
|
|
pce->data |= 1 << CRYPTO_FIRST;
|
|
else
|
|
pce->data &= ~(1 << CRYPTO_FIRST);
|
|
go_proc:
|
|
/* write auth seg size */
|
|
pce = cmdlistinfo->auth_seg_size;
|
|
pce->data = sreq->size;
|
|
|
|
/* write auth seg size start*/
|
|
pce = cmdlistinfo->auth_seg_start;
|
|
pce->data = 0;
|
|
|
|
/* write seg size */
|
|
pce = cmdlistinfo->seg_size;
|
|
pce->data = sreq->size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _ce_get_cipher_cmdlistinfo(struct qce_device *pce_dev,
|
|
struct qce_req *creq,
|
|
struct qce_cmdlist_info **cmdlistinfo)
|
|
{
|
|
struct qce_cmdlistptr_ops *cmdlistptr = &pce_dev->ce_sps.cmdlistptr;
|
|
|
|
if (creq->alg != CIPHER_ALG_AES) {
|
|
switch (creq->alg) {
|
|
case CIPHER_ALG_DES:
|
|
if (creq->mode == QCE_MODE_ECB)
|
|
*cmdlistinfo = &cmdlistptr->cipher_des_ecb;
|
|
else
|
|
*cmdlistinfo = &cmdlistptr->cipher_des_cbc;
|
|
break;
|
|
|
|
case CIPHER_ALG_3DES:
|
|
if (creq->mode == QCE_MODE_ECB)
|
|
*cmdlistinfo =
|
|
&cmdlistptr->cipher_3des_ecb;
|
|
else
|
|
*cmdlistinfo =
|
|
&cmdlistptr->cipher_3des_cbc;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else {
|
|
switch (creq->mode) {
|
|
case QCE_MODE_ECB:
|
|
if (creq->encklen == AES128_KEY_SIZE)
|
|
*cmdlistinfo = &cmdlistptr->cipher_aes_128_ecb;
|
|
else
|
|
*cmdlistinfo = &cmdlistptr->cipher_aes_256_ecb;
|
|
break;
|
|
|
|
case QCE_MODE_CBC:
|
|
case QCE_MODE_CTR:
|
|
if (creq->encklen == AES128_KEY_SIZE)
|
|
*cmdlistinfo =
|
|
&cmdlistptr->cipher_aes_128_cbc_ctr;
|
|
else
|
|
*cmdlistinfo =
|
|
&cmdlistptr->cipher_aes_256_cbc_ctr;
|
|
break;
|
|
|
|
case QCE_MODE_XTS:
|
|
if (creq->encklen == AES128_KEY_SIZE)
|
|
*cmdlistinfo = &cmdlistptr->cipher_aes_128_xts;
|
|
else
|
|
*cmdlistinfo = &cmdlistptr->cipher_aes_256_xts;
|
|
break;
|
|
|
|
case QCE_MODE_CCM:
|
|
if (creq->encklen == AES128_KEY_SIZE)
|
|
*cmdlistinfo = &cmdlistptr->aead_aes_128_ccm;
|
|
else
|
|
*cmdlistinfo = &cmdlistptr->aead_aes_256_ccm;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int _ce_setup_cipher(struct qce_device *pce_dev, struct qce_req *creq,
|
|
uint32_t totallen_in, uint32_t coffset,
|
|
struct qce_cmdlist_info *cmdlistinfo)
|
|
{
|
|
uint32_t enckey32[(MAX_CIPHER_KEY_SIZE * 2)/sizeof(uint32_t)] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
uint32_t enciv32[MAX_IV_LENGTH / sizeof(uint32_t)] = {
|
|
0, 0, 0, 0};
|
|
uint32_t enck_size_in_word = 0;
|
|
uint32_t key_size;
|
|
bool use_hw_key = false;
|
|
uint32_t encr_cfg = 0;
|
|
uint32_t ivsize = creq->ivsize;
|
|
int i;
|
|
struct sps_command_element *pce = NULL;
|
|
|
|
if (creq->mode == QCE_MODE_XTS)
|
|
key_size = creq->encklen/2;
|
|
else
|
|
key_size = creq->encklen;
|
|
|
|
_byte_stream_to_net_words(enckey32, creq->enckey, key_size);
|
|
|
|
/* check for null key. If null, use hw key*/
|
|
enck_size_in_word = key_size/sizeof(uint32_t);
|
|
for (i = 0; i < enck_size_in_word; i++) {
|
|
if (enckey32[i] != 0)
|
|
break;
|
|
}
|
|
pce = cmdlistinfo->go_proc;
|
|
if (i == enck_size_in_word) {
|
|
use_hw_key = true;
|
|
pce->addr = (uint32_t)(CRYPTO_GOPROC_OEM_KEY_REG +
|
|
pce_dev->phy_iobase);
|
|
} else {
|
|
pce->addr = (uint32_t)(CRYPTO_GOPROC_REG +
|
|
pce_dev->phy_iobase);
|
|
}
|
|
|
|
if ((creq->op == QCE_REQ_AEAD) && (creq->mode == QCE_MODE_CCM)) {
|
|
uint32_t authklen32 = creq->encklen/sizeof(uint32_t);
|
|
uint32_t noncelen32 = MAX_NONCE/sizeof(uint32_t);
|
|
uint32_t nonce32[MAX_NONCE/sizeof(uint32_t)] = {0, 0, 0, 0};
|
|
uint32_t auth_cfg = 0;
|
|
|
|
/* write nonce */
|
|
_byte_stream_to_net_words(nonce32, creq->nonce, MAX_NONCE);
|
|
pce = cmdlistinfo->auth_nonce_info;
|
|
for (i = 0; i < noncelen32; i++, pce++)
|
|
pce->data = nonce32[i];
|
|
|
|
/* TBD NEW FEATURE partial AES CCM pkt support set last bit */
|
|
auth_cfg |= ((1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST));
|
|
if (creq->dir == QCE_ENCRYPT)
|
|
auth_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
|
|
else
|
|
auth_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS);
|
|
auth_cfg |= ((creq->authsize - 1) << CRYPTO_AUTH_SIZE);
|
|
auth_cfg |= (CRYPTO_AUTH_MODE_CCM << CRYPTO_AUTH_MODE);
|
|
if (creq->authklen == AES128_KEY_SIZE)
|
|
auth_cfg |= (CRYPTO_AUTH_KEY_SZ_AES128 <<
|
|
CRYPTO_AUTH_KEY_SIZE);
|
|
else {
|
|
if (creq->authklen == AES256_KEY_SIZE)
|
|
auth_cfg |= (CRYPTO_AUTH_KEY_SZ_AES256 <<
|
|
CRYPTO_AUTH_KEY_SIZE);
|
|
}
|
|
auth_cfg |= (CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG);
|
|
auth_cfg |= ((MAX_NONCE/sizeof(uint32_t)) <<
|
|
CRYPTO_AUTH_NONCE_NUM_WORDS);
|
|
|
|
if (use_hw_key == true) {
|
|
auth_cfg |= (1 << CRYPTO_USE_HW_KEY_AUTH);
|
|
} else {
|
|
auth_cfg &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
|
|
/* write auth key */
|
|
pce = cmdlistinfo->auth_key;
|
|
for (i = 0; i < authklen32; i++, pce++)
|
|
pce->data = enckey32[i];
|
|
}
|
|
|
|
pce = cmdlistinfo->auth_seg_cfg;
|
|
pce->data = auth_cfg;
|
|
|
|
pce = cmdlistinfo->auth_seg_size;
|
|
pce->data = totallen_in;
|
|
pce = cmdlistinfo->auth_seg_start;
|
|
pce->data = 0;
|
|
}
|
|
|
|
switch (creq->mode) {
|
|
case QCE_MODE_ECB:
|
|
encr_cfg |= (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE);
|
|
break;
|
|
case QCE_MODE_CBC:
|
|
encr_cfg |= (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE);
|
|
break;
|
|
case QCE_MODE_XTS:
|
|
encr_cfg |= (CRYPTO_ENCR_MODE_XTS << CRYPTO_ENCR_MODE);
|
|
break;
|
|
case QCE_MODE_CCM:
|
|
encr_cfg |= (CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE);
|
|
break;
|
|
case QCE_MODE_CTR:
|
|
default:
|
|
encr_cfg |= (CRYPTO_ENCR_MODE_CTR << CRYPTO_ENCR_MODE);
|
|
break;
|
|
}
|
|
pce_dev->mode = creq->mode;
|
|
|
|
switch (creq->alg) {
|
|
case CIPHER_ALG_DES:
|
|
if (creq->mode != QCE_MODE_ECB) {
|
|
_byte_stream_to_net_words(enciv32, creq->iv, ivsize);
|
|
pce = cmdlistinfo->encr_cntr_iv;
|
|
pce->data = enciv32[0];
|
|
pce++;
|
|
pce->data = enciv32[1];
|
|
}
|
|
if (use_hw_key == false) {
|
|
pce = cmdlistinfo->encr_key;
|
|
pce->data = enckey32[0];
|
|
pce++;
|
|
pce->data = enckey32[1];
|
|
}
|
|
break;
|
|
case CIPHER_ALG_3DES:
|
|
if (creq->mode != QCE_MODE_ECB) {
|
|
_byte_stream_to_net_words(enciv32, creq->iv, ivsize);
|
|
pce = cmdlistinfo->encr_cntr_iv;
|
|
pce->data = enciv32[0];
|
|
pce++;
|
|
pce->data = enciv32[1];
|
|
}
|
|
if (use_hw_key == false) {
|
|
/* write encr key */
|
|
pce = cmdlistinfo->encr_key;
|
|
for (i = 0; i < 6; i++, pce++)
|
|
pce->data = enckey32[i];
|
|
}
|
|
break;
|
|
case CIPHER_ALG_AES:
|
|
default:
|
|
if (creq->mode == QCE_MODE_XTS) {
|
|
uint32_t xtskey32[MAX_CIPHER_KEY_SIZE/sizeof(uint32_t)]
|
|
= {0, 0, 0, 0, 0, 0, 0, 0};
|
|
uint32_t xtsklen =
|
|
creq->encklen/(2 * sizeof(uint32_t));
|
|
|
|
_byte_stream_to_net_words(xtskey32, (creq->enckey +
|
|
creq->encklen/2), creq->encklen/2);
|
|
/* write xts encr key */
|
|
pce = cmdlistinfo->encr_xts_key;
|
|
for (i = 0; i < xtsklen; i++, pce++)
|
|
pce->data = xtskey32[i];
|
|
|
|
/* write xts du size */
|
|
pce = cmdlistinfo->encr_xts_du_size;
|
|
pce->data = creq->cryptlen;
|
|
}
|
|
if (creq->mode != QCE_MODE_ECB) {
|
|
if (creq->mode == QCE_MODE_XTS)
|
|
_byte_stream_swap_to_net_words(enciv32,
|
|
creq->iv, ivsize);
|
|
else
|
|
_byte_stream_to_net_words(enciv32, creq->iv,
|
|
ivsize);
|
|
/* write encr cntr iv */
|
|
pce = cmdlistinfo->encr_cntr_iv;
|
|
for (i = 0; i < 4; i++, pce++)
|
|
pce->data = enciv32[i];
|
|
|
|
if (creq->mode == QCE_MODE_CCM) {
|
|
/* write cntr iv for ccm */
|
|
pce = cmdlistinfo->encr_ccm_cntr_iv;
|
|
for (i = 0; i < 4; i++, pce++)
|
|
pce->data = enciv32[i];
|
|
/* update cntr_iv[3] by one */
|
|
pce = cmdlistinfo->encr_cntr_iv;
|
|
pce += 3;
|
|
pce->data += 1;
|
|
}
|
|
}
|
|
|
|
if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) {
|
|
encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 <<
|
|
CRYPTO_ENCR_KEY_SZ);
|
|
encr_cfg |= CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG;
|
|
} else {
|
|
if (use_hw_key == false) {
|
|
/* write encr key */
|
|
pce = cmdlistinfo->encr_key;
|
|
for (i = 0; i < enck_size_in_word; i++, pce++)
|
|
pce->data = enckey32[i];
|
|
switch (key_size) {
|
|
case AES128_KEY_SIZE:
|
|
encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES128
|
|
<< CRYPTO_ENCR_KEY_SZ);
|
|
break;
|
|
case AES256_KEY_SIZE:
|
|
default:
|
|
encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES256
|
|
<< CRYPTO_ENCR_KEY_SZ);
|
|
break;
|
|
} /* end of switch (creq->encklen) */
|
|
}
|
|
encr_cfg |= CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG;
|
|
} /* else of if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) */
|
|
break;
|
|
} /* end of switch (creq->mode) */
|
|
|
|
/* write encr seg cfg */
|
|
pce = cmdlistinfo->encr_seg_cfg;
|
|
if ((creq->alg == CIPHER_ALG_DES) || (creq->alg == CIPHER_ALG_3DES)) {
|
|
if (creq->dir == QCE_ENCRYPT)
|
|
pce->data |= (1 << CRYPTO_ENCODE);
|
|
else
|
|
pce->data &= ~(1 << CRYPTO_ENCODE);
|
|
encr_cfg = pce->data;
|
|
} else {
|
|
encr_cfg |=
|
|
((creq->dir == QCE_ENCRYPT) ? 1 : 0) << CRYPTO_ENCODE;
|
|
}
|
|
if (use_hw_key == true)
|
|
encr_cfg |= (CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
|
|
else
|
|
encr_cfg &= ~(CRYPTO_USE_HW_KEY << CRYPTO_USE_HW_KEY_ENCR);
|
|
pce->data = encr_cfg;
|
|
|
|
/* write encr seg size */
|
|
pce = cmdlistinfo->encr_seg_size;
|
|
if ((creq->mode == QCE_MODE_CCM) && (creq->dir == QCE_DECRYPT))
|
|
pce->data = (creq->cryptlen + creq->authsize);
|
|
else
|
|
pce->data = creq->cryptlen;
|
|
|
|
/* write encr seg start */
|
|
pce = cmdlistinfo->encr_seg_start;
|
|
pce->data = (coffset & 0xffff);
|
|
|
|
/* write seg size */
|
|
pce = cmdlistinfo->seg_size;
|
|
pce->data = totallen_in;
|
|
|
|
return 0;
|
|
};
|
|
|
|
static int _aead_complete(struct qce_device *pce_dev)
|
|
{
|
|
struct aead_request *areq;
|
|
unsigned char mac[SHA256_DIGEST_SIZE];
|
|
|
|
areq = (struct aead_request *) pce_dev->areq;
|
|
if (areq->src != areq->dst) {
|
|
dma_unmap_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents,
|
|
DMA_FROM_DEVICE);
|
|
}
|
|
dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
|
|
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
|
|
DMA_TO_DEVICE);
|
|
dma_unmap_sg(pce_dev->pdev, areq->assoc, pce_dev->assoc_nents,
|
|
DMA_TO_DEVICE);
|
|
/* check MAC */
|
|
memcpy(mac, (char *)(&pce_dev->ce_sps.result->auth_iv[0]),
|
|
SHA256_DIGEST_SIZE);
|
|
if (pce_dev->mode == QCE_MODE_CCM) {
|
|
uint32_t result_status;
|
|
result_status = pce_dev->ce_sps.result->status;
|
|
result_status &= (1 << CRYPTO_MAC_FAILED);
|
|
result_status |= (pce_dev->ce_sps.consumer_status |
|
|
pce_dev->ce_sps.producer_status);
|
|
pce_dev->qce_cb(areq, mac, NULL, result_status);
|
|
} else {
|
|
uint32_t ivsize = 0;
|
|
struct crypto_aead *aead;
|
|
unsigned char iv[NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE];
|
|
|
|
aead = crypto_aead_reqtfm(areq);
|
|
ivsize = crypto_aead_ivsize(aead);
|
|
dma_unmap_single(pce_dev->pdev, pce_dev->phy_iv_in,
|
|
ivsize, DMA_TO_DEVICE);
|
|
memcpy(iv, (char *)(pce_dev->ce_sps.result->encr_cntr_iv),
|
|
sizeof(iv));
|
|
pce_dev->qce_cb(areq, mac, iv, pce_dev->ce_sps.consumer_status |
|
|
pce_dev->ce_sps.producer_status);
|
|
|
|
}
|
|
return 0;
|
|
};
|
|
|
|
static void _sha_complete(struct qce_device *pce_dev)
|
|
{
|
|
struct ahash_request *areq;
|
|
unsigned char digest[SHA256_DIGEST_SIZE];
|
|
|
|
areq = (struct ahash_request *) pce_dev->areq;
|
|
dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
|
|
DMA_TO_DEVICE);
|
|
memcpy(digest, (char *)(&pce_dev->ce_sps.result->auth_iv[0]),
|
|
SHA256_DIGEST_SIZE);
|
|
pce_dev->qce_cb(areq, digest,
|
|
(char *)pce_dev->ce_sps.result->auth_byte_count,
|
|
pce_dev->ce_sps.consumer_status);
|
|
};
|
|
|
|
static int _ablk_cipher_complete(struct qce_device *pce_dev)
|
|
{
|
|
struct ablkcipher_request *areq;
|
|
unsigned char iv[NUM_OF_CRYPTO_CNTR_IV_REG * CRYPTO_REG_SIZE];
|
|
|
|
areq = (struct ablkcipher_request *) pce_dev->areq;
|
|
|
|
if (areq->src != areq->dst) {
|
|
dma_unmap_sg(pce_dev->pdev, areq->dst,
|
|
pce_dev->dst_nents, DMA_FROM_DEVICE);
|
|
}
|
|
dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
|
|
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
|
|
DMA_TO_DEVICE);
|
|
|
|
if (pce_dev->mode == QCE_MODE_ECB) {
|
|
pce_dev->qce_cb(areq, NULL, NULL,
|
|
pce_dev->ce_sps.consumer_status |
|
|
pce_dev->ce_sps.producer_status);
|
|
} else {
|
|
if (pce_dev->ce_sps.minor_version == 0) {
|
|
if (pce_dev->mode == QCE_MODE_CBC)
|
|
memcpy(iv, (char *)sg_virt(areq->src),
|
|
sizeof(iv));
|
|
|
|
if ((pce_dev->mode == QCE_MODE_CTR) ||
|
|
(pce_dev->mode == QCE_MODE_XTS)) {
|
|
uint32_t num_blk = 0;
|
|
uint32_t cntr_iv = 0;
|
|
|
|
memcpy(iv, areq->info, sizeof(iv));
|
|
if (pce_dev->mode == QCE_MODE_CTR)
|
|
num_blk = areq->nbytes/16;
|
|
cntr_iv = (u32)(((u32)(*(iv + 14))) << 8) |
|
|
(u32)(*(iv + 15));
|
|
*(iv + 14) = (char)((cntr_iv + num_blk) >> 8);
|
|
*(iv + 15) = (char)((cntr_iv + num_blk) & 0xFF);
|
|
}
|
|
} else {
|
|
memcpy(iv,
|
|
(char *)(pce_dev->ce_sps.result->encr_cntr_iv),
|
|
sizeof(iv));
|
|
}
|
|
pce_dev->qce_cb(areq, NULL, iv,
|
|
pce_dev->ce_sps.consumer_status |
|
|
pce_dev->ce_sps.producer_status);
|
|
}
|
|
return 0;
|
|
};
|
|
|
|
#ifdef QCE_DEBUG
|
|
static void _qce_dump_descr_fifos(struct qce_device *pce_dev)
|
|
{
|
|
int i, j, ents;
|
|
struct sps_iovec *iovec = pce_dev->ce_sps.in_transfer.iovec;
|
|
uint32_t cmd_flags = SPS_IOVEC_FLAG_CMD | SPS_IOVEC_FLAG_NWD;
|
|
|
|
printk(KERN_INFO "==============================================\n");
|
|
printk(KERN_INFO "CONSUMER (TX/IN/DEST) PIPE DESCRIPTOR\n");
|
|
printk(KERN_INFO "==============================================\n");
|
|
for (i = 0; i < pce_dev->ce_sps.in_transfer.iovec_count; i++) {
|
|
printk(KERN_INFO " [%d] addr=0x%x size=0x%x flags=0x%x\n", i,
|
|
iovec->addr, iovec->size, iovec->flags);
|
|
if (iovec->flags & cmd_flags) {
|
|
struct sps_command_element *pced;
|
|
|
|
pced = (struct sps_command_element *)
|
|
(GET_VIRT_ADDR(iovec->addr));
|
|
ents = iovec->size/(sizeof(struct sps_command_element));
|
|
for (j = 0; j < ents; j++) {
|
|
printk(KERN_INFO " [%d] [0x%x] 0x%x\n", j,
|
|
pced->addr, pced->data);
|
|
pced++;
|
|
}
|
|
}
|
|
iovec++;
|
|
}
|
|
|
|
printk(KERN_INFO "==============================================\n");
|
|
printk(KERN_INFO "PRODUCER (RX/OUT/SRC) PIPE DESCRIPTOR\n");
|
|
printk(KERN_INFO "==============================================\n");
|
|
iovec = pce_dev->ce_sps.out_transfer.iovec;
|
|
for (i = 0; i < pce_dev->ce_sps.out_transfer.iovec_count; i++) {
|
|
printk(KERN_INFO " [%d] addr=0x%x size=0x%x flags=0x%x\n", i,
|
|
iovec->addr, iovec->size, iovec->flags);
|
|
iovec++;
|
|
}
|
|
}
|
|
|
|
#else
|
|
static void _qce_dump_descr_fifos(struct qce_device *pce_dev)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void _qce_sps_iovec_count_init(struct qce_device *pce_dev)
|
|
{
|
|
pce_dev->ce_sps.in_transfer.iovec_count = 0;
|
|
pce_dev->ce_sps.out_transfer.iovec_count = 0;
|
|
}
|
|
|
|
static void _qce_set_eot_flag(struct sps_transfer *sps_bam_pipe)
|
|
{
|
|
struct sps_iovec *iovec = sps_bam_pipe->iovec +
|
|
(sps_bam_pipe->iovec_count - 1);
|
|
iovec->flags |= SPS_IOVEC_FLAG_EOT;
|
|
}
|
|
|
|
static void _qce_sps_add_data(uint32_t addr, uint32_t len,
|
|
struct sps_transfer *sps_bam_pipe)
|
|
{
|
|
struct sps_iovec *iovec = sps_bam_pipe->iovec +
|
|
sps_bam_pipe->iovec_count;
|
|
if (len) {
|
|
iovec->size = len;
|
|
iovec->addr = addr;
|
|
iovec->flags = 0;
|
|
sps_bam_pipe->iovec_count++;
|
|
}
|
|
}
|
|
|
|
static int _qce_sps_add_sg_data(struct qce_device *pce_dev,
|
|
struct scatterlist *sg_src, uint32_t nbytes,
|
|
struct sps_transfer *sps_bam_pipe)
|
|
{
|
|
uint32_t addr, data_cnt, len;
|
|
struct sps_iovec *iovec = sps_bam_pipe->iovec +
|
|
sps_bam_pipe->iovec_count;
|
|
|
|
while (nbytes > 0) {
|
|
len = min(nbytes, sg_dma_len(sg_src));
|
|
nbytes -= len;
|
|
addr = sg_dma_address(sg_src);
|
|
if (pce_dev->ce_sps.minor_version == 0)
|
|
len = ALIGN(len, pce_dev->ce_sps.ce_burst_size);
|
|
while (len > 0) {
|
|
if (len > SPS_MAX_PKT_SIZE) {
|
|
data_cnt = SPS_MAX_PKT_SIZE;
|
|
iovec->size = data_cnt;
|
|
iovec->addr = addr;
|
|
iovec->flags = 0;
|
|
} else {
|
|
data_cnt = len;
|
|
iovec->size = data_cnt;
|
|
iovec->addr = addr;
|
|
iovec->flags = 0;
|
|
}
|
|
iovec++;
|
|
sps_bam_pipe->iovec_count++;
|
|
addr += data_cnt;
|
|
len -= data_cnt;
|
|
}
|
|
sg_src++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int _qce_sps_add_cmd(struct qce_device *pce_dev, uint32_t flag,
|
|
struct qce_cmdlist_info *cmdptr,
|
|
struct sps_transfer *sps_bam_pipe)
|
|
{
|
|
struct sps_iovec *iovec = sps_bam_pipe->iovec +
|
|
sps_bam_pipe->iovec_count;
|
|
iovec->size = cmdptr->size;
|
|
iovec->addr = GET_PHYS_ADDR(cmdptr->cmdlist);
|
|
iovec->flags = SPS_IOVEC_FLAG_CMD | SPS_IOVEC_FLAG_NWD | flag;
|
|
sps_bam_pipe->iovec_count++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _qce_sps_transfer(struct qce_device *pce_dev)
|
|
{
|
|
int rc = 0;
|
|
|
|
_qce_dump_descr_fifos(pce_dev);
|
|
rc = sps_transfer(pce_dev->ce_sps.consumer.pipe,
|
|
&pce_dev->ce_sps.in_transfer);
|
|
if (rc) {
|
|
pr_err("sps_xfr() fail (consumer pipe=0x%x) rc = %d,",
|
|
(u32)pce_dev->ce_sps.consumer.pipe, rc);
|
|
return rc;
|
|
}
|
|
rc = sps_transfer(pce_dev->ce_sps.producer.pipe,
|
|
&pce_dev->ce_sps.out_transfer);
|
|
if (rc) {
|
|
pr_err("sps_xfr() fail (producer pipe=0x%x) rc = %d,",
|
|
(u32)pce_dev->ce_sps.producer.pipe, rc);
|
|
return rc;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* Allocate and Connect a CE peripheral's SPS endpoint
|
|
*
|
|
* This function allocates endpoint context and
|
|
* connect it with memory endpoint by calling
|
|
* appropriate SPS driver APIs.
|
|
*
|
|
* Also registers a SPS callback function with
|
|
* SPS driver
|
|
*
|
|
* This function should only be called once typically
|
|
* during driver probe.
|
|
*
|
|
* @pce_dev - Pointer to qce_device structure
|
|
* @ep - Pointer to sps endpoint data structure
|
|
* @is_produce - 1 means Producer endpoint
|
|
* 0 means Consumer endpoint
|
|
*
|
|
* @return - 0 if successful else negative value.
|
|
*
|
|
*/
|
|
static int qce_sps_init_ep_conn(struct qce_device *pce_dev,
|
|
struct qce_sps_ep_conn_data *ep,
|
|
bool is_producer)
|
|
{
|
|
int rc = 0;
|
|
struct sps_pipe *sps_pipe_info;
|
|
struct sps_connect *sps_connect_info = &ep->connect;
|
|
struct sps_register_event *sps_event = &ep->event;
|
|
|
|
/* Allocate endpoint context */
|
|
sps_pipe_info = sps_alloc_endpoint();
|
|
if (!sps_pipe_info) {
|
|
pr_err("sps_alloc_endpoint() failed!!! is_producer=%d",
|
|
is_producer);
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
/* Now save the sps pipe handle */
|
|
ep->pipe = sps_pipe_info;
|
|
|
|
/* Get default connection configuration for an endpoint */
|
|
rc = sps_get_config(sps_pipe_info, sps_connect_info);
|
|
if (rc) {
|
|
pr_err("sps_get_config() fail pipe_handle=0x%x, rc = %d\n",
|
|
(u32)sps_pipe_info, rc);
|
|
goto get_config_err;
|
|
}
|
|
|
|
/* Modify the default connection configuration */
|
|
if (is_producer) {
|
|
/*
|
|
* For CE producer transfer, source should be
|
|
* CE peripheral where as destination should
|
|
* be system memory.
|
|
*/
|
|
sps_connect_info->source = pce_dev->ce_sps.bam_handle;
|
|
sps_connect_info->destination = SPS_DEV_HANDLE_MEM;
|
|
/* Producer pipe will handle this connection */
|
|
sps_connect_info->mode = SPS_MODE_SRC;
|
|
sps_connect_info->options =
|
|
SPS_O_AUTO_ENABLE | SPS_O_EOT;
|
|
} else {
|
|
/* For CE consumer transfer, source should be
|
|
* system memory where as destination should
|
|
* CE peripheral
|
|
*/
|
|
sps_connect_info->source = SPS_DEV_HANDLE_MEM;
|
|
sps_connect_info->destination = pce_dev->ce_sps.bam_handle;
|
|
sps_connect_info->mode = SPS_MODE_DEST;
|
|
sps_connect_info->options =
|
|
SPS_O_AUTO_ENABLE | SPS_O_EOT;
|
|
}
|
|
|
|
/* Producer pipe index */
|
|
sps_connect_info->src_pipe_index = pce_dev->ce_sps.src_pipe_index;
|
|
/* Consumer pipe index */
|
|
sps_connect_info->dest_pipe_index = pce_dev->ce_sps.dest_pipe_index;
|
|
sps_connect_info->event_thresh = 0x10;
|
|
/*
|
|
* Max. no of scatter/gather buffers that can
|
|
* be passed by block layer = 32 (NR_SG).
|
|
* Each BAM descritor needs 64 bits (8 bytes).
|
|
* One BAM descriptor is required per buffer transfer.
|
|
* So we would require total 256 (32 * 8) bytes of descriptor FIFO.
|
|
* But due to HW limitation we need to allocate atleast one extra
|
|
* descriptor memory (256 bytes + 8 bytes). But in order to be
|
|
* in power of 2, we are allocating 512 bytes of memory.
|
|
*/
|
|
sps_connect_info->desc.size = 512;
|
|
sps_connect_info->desc.base = dma_alloc_coherent(pce_dev->pdev,
|
|
sps_connect_info->desc.size,
|
|
&sps_connect_info->desc.phys_base,
|
|
GFP_KERNEL);
|
|
if (sps_connect_info->desc.base == NULL) {
|
|
rc = -ENOMEM;
|
|
pr_err("Can not allocate coherent memory for sps data\n");
|
|
goto get_config_err;
|
|
}
|
|
|
|
memset(sps_connect_info->desc.base, 0x00, sps_connect_info->desc.size);
|
|
|
|
/* Establish connection between peripheral and memory endpoint */
|
|
rc = sps_connect(sps_pipe_info, sps_connect_info);
|
|
if (rc) {
|
|
pr_err("sps_connect() fail pipe_handle=0x%x, rc = %d\n",
|
|
(u32)sps_pipe_info, rc);
|
|
goto sps_connect_err;
|
|
}
|
|
|
|
sps_event->mode = SPS_TRIGGER_CALLBACK;
|
|
sps_event->options = SPS_O_EOT;
|
|
sps_event->xfer_done = NULL;
|
|
sps_event->user = (void *)pce_dev;
|
|
|
|
pr_debug("success, %s : pipe_handle=0x%x, desc fifo base (phy) = 0x%x\n",
|
|
is_producer ? "PRODUCER(RX/OUT)" : "CONSUMER(TX/IN)",
|
|
(u32)sps_pipe_info, sps_connect_info->desc.phys_base);
|
|
goto out;
|
|
|
|
sps_connect_err:
|
|
dma_free_coherent(pce_dev->pdev,
|
|
sps_connect_info->desc.size,
|
|
sps_connect_info->desc.base,
|
|
sps_connect_info->desc.phys_base);
|
|
get_config_err:
|
|
sps_free_endpoint(sps_pipe_info);
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* Disconnect and Deallocate a CE peripheral's SPS endpoint
|
|
*
|
|
* This function disconnect endpoint and deallocates
|
|
* endpoint context.
|
|
*
|
|
* This function should only be called once typically
|
|
* during driver remove.
|
|
*
|
|
* @pce_dev - Pointer to qce_device structure
|
|
* @ep - Pointer to sps endpoint data structure
|
|
*
|
|
*/
|
|
static void qce_sps_exit_ep_conn(struct qce_device *pce_dev,
|
|
struct qce_sps_ep_conn_data *ep)
|
|
{
|
|
struct sps_pipe *sps_pipe_info = ep->pipe;
|
|
struct sps_connect *sps_connect_info = &ep->connect;
|
|
|
|
sps_disconnect(sps_pipe_info);
|
|
dma_free_coherent(pce_dev->pdev,
|
|
sps_connect_info->desc.size,
|
|
sps_connect_info->desc.base,
|
|
sps_connect_info->desc.phys_base);
|
|
sps_free_endpoint(sps_pipe_info);
|
|
}
|
|
/**
|
|
* Initialize SPS HW connected with CE core
|
|
*
|
|
* This function register BAM HW resources with
|
|
* SPS driver and then initialize 2 SPS endpoints
|
|
*
|
|
* This function should only be called once typically
|
|
* during driver probe.
|
|
*
|
|
* @pce_dev - Pointer to qce_device structure
|
|
*
|
|
* @return - 0 if successful else negative value.
|
|
*
|
|
*/
|
|
static int qce_sps_init(struct qce_device *pce_dev)
|
|
{
|
|
int rc = 0;
|
|
struct sps_bam_props bam = {0};
|
|
bool register_bam = false;
|
|
|
|
bam.phys_addr = pce_dev->ce_sps.bam_mem;
|
|
bam.virt_addr = pce_dev->ce_sps.bam_iobase;
|
|
|
|
/*
|
|
* This event thresold value is only significant for BAM-to-BAM
|
|
* transfer. It's ignored for BAM-to-System mode transfer.
|
|
*/
|
|
bam.event_threshold = 0x10; /* Pipe event threshold */
|
|
/*
|
|
* This threshold controls when the BAM publish
|
|
* the descriptor size on the sideband interface.
|
|
* SPS HW will only be used when
|
|
* data transfer size > 64 bytes.
|
|
*/
|
|
bam.summing_threshold = 64;
|
|
/* SPS driver wll handle the crypto BAM IRQ */
|
|
bam.irq = (u32)pce_dev->ce_sps.bam_irq;
|
|
bam.manage = SPS_BAM_MGR_LOCAL;
|
|
|
|
pr_debug("bam physical base=0x%x\n", (u32)bam.phys_addr);
|
|
pr_debug("bam virtual base=0x%x\n", (u32)bam.virt_addr);
|
|
|
|
mutex_lock(&bam_register_cnt);
|
|
if ((bam_registry.handle == 0) && (bam_registry.cnt == 0)) {
|
|
/* Register CE Peripheral BAM device to SPS driver */
|
|
rc = sps_register_bam_device(&bam, &bam_registry.handle);
|
|
if (rc) {
|
|
pr_err("sps_register_bam_device() failed! err=%d", rc);
|
|
return -EIO;
|
|
}
|
|
bam_registry.cnt++;
|
|
register_bam = true;
|
|
} else {
|
|
bam_registry.cnt++;
|
|
}
|
|
mutex_unlock(&bam_register_cnt);
|
|
pce_dev->ce_sps.bam_handle = bam_registry.handle;
|
|
pr_debug("BAM device registered. bam_handle=0x%x",
|
|
pce_dev->ce_sps.bam_handle);
|
|
|
|
rc = qce_sps_init_ep_conn(pce_dev, &pce_dev->ce_sps.producer, true);
|
|
if (rc)
|
|
goto sps_connect_producer_err;
|
|
rc = qce_sps_init_ep_conn(pce_dev, &pce_dev->ce_sps.consumer, false);
|
|
if (rc)
|
|
goto sps_connect_consumer_err;
|
|
|
|
pce_dev->ce_sps.out_transfer.user = pce_dev->ce_sps.producer.pipe;
|
|
pce_dev->ce_sps.in_transfer.user = pce_dev->ce_sps.consumer.pipe;
|
|
pr_info(" Qualcomm MSM CE-BAM at 0x%016llx irq %d\n",
|
|
(unsigned long long)pce_dev->ce_sps.bam_mem,
|
|
(unsigned int)pce_dev->ce_sps.bam_irq);
|
|
return rc;
|
|
|
|
sps_connect_consumer_err:
|
|
qce_sps_exit_ep_conn(pce_dev, &pce_dev->ce_sps.producer);
|
|
sps_connect_producer_err:
|
|
if (register_bam)
|
|
sps_deregister_bam_device(pce_dev->ce_sps.bam_handle);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* De-initialize SPS HW connected with CE core
|
|
*
|
|
* This function deinitialize SPS endpoints and then
|
|
* deregisters BAM resources from SPS driver.
|
|
*
|
|
* This function should only be called once typically
|
|
* during driver remove.
|
|
*
|
|
* @pce_dev - Pointer to qce_device structure
|
|
*
|
|
*/
|
|
static void qce_sps_exit(struct qce_device *pce_dev)
|
|
{
|
|
qce_sps_exit_ep_conn(pce_dev, &pce_dev->ce_sps.consumer);
|
|
qce_sps_exit_ep_conn(pce_dev, &pce_dev->ce_sps.producer);
|
|
mutex_lock(&bam_register_cnt);
|
|
if ((bam_registry.handle != 0) && (bam_registry.cnt == 1)) {
|
|
sps_deregister_bam_device(pce_dev->ce_sps.bam_handle);
|
|
bam_registry.cnt = 0;
|
|
bam_registry.handle = 0;
|
|
}
|
|
if ((bam_registry.handle != 0) && (bam_registry.cnt > 1))
|
|
bam_registry.cnt--;
|
|
mutex_unlock(&bam_register_cnt);
|
|
|
|
iounmap(pce_dev->ce_sps.bam_iobase);
|
|
}
|
|
|
|
static void _aead_sps_producer_callback(struct sps_event_notify *notify)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *)
|
|
((struct sps_event_notify *)notify)->user;
|
|
|
|
pce_dev->ce_sps.notify = *notify;
|
|
pr_debug("sps ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x\n",
|
|
notify->event_id,
|
|
notify->data.transfer.iovec.addr,
|
|
notify->data.transfer.iovec.size,
|
|
notify->data.transfer.iovec.flags);
|
|
|
|
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_COMP;
|
|
if (pce_dev->ce_sps.consumer_state == QCE_PIPE_STATE_COMP) {
|
|
pce_dev->ce_sps.consumer_state = QCE_PIPE_STATE_IDLE;
|
|
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_IDLE;
|
|
|
|
/* done */
|
|
_aead_complete(pce_dev);
|
|
}
|
|
};
|
|
|
|
static void _aead_sps_consumer_callback(struct sps_event_notify *notify)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *)
|
|
((struct sps_event_notify *)notify)->user;
|
|
|
|
pce_dev->ce_sps.notify = *notify;
|
|
pr_debug("sps ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x\n",
|
|
notify->event_id,
|
|
notify->data.transfer.iovec.addr,
|
|
notify->data.transfer.iovec.size,
|
|
notify->data.transfer.iovec.flags);
|
|
|
|
pce_dev->ce_sps.consumer_state = QCE_PIPE_STATE_COMP;
|
|
if (pce_dev->ce_sps.producer_state == QCE_PIPE_STATE_COMP) {
|
|
pce_dev->ce_sps.consumer_state = QCE_PIPE_STATE_IDLE;
|
|
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_IDLE;
|
|
|
|
/* done */
|
|
_aead_complete(pce_dev);
|
|
}
|
|
};
|
|
|
|
static void _sha_sps_producer_callback(struct sps_event_notify *notify)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *)
|
|
((struct sps_event_notify *)notify)->user;
|
|
|
|
pce_dev->ce_sps.notify = *notify;
|
|
pr_debug("sps ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x\n",
|
|
notify->event_id,
|
|
notify->data.transfer.iovec.addr,
|
|
notify->data.transfer.iovec.size,
|
|
notify->data.transfer.iovec.flags);
|
|
|
|
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_COMP;
|
|
if (pce_dev->ce_sps.consumer_state == QCE_PIPE_STATE_COMP) {
|
|
pce_dev->ce_sps.consumer_state = QCE_PIPE_STATE_IDLE;
|
|
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_IDLE;
|
|
|
|
/* done */
|
|
_sha_complete(pce_dev);
|
|
}
|
|
};
|
|
|
|
static void _sha_sps_consumer_callback(struct sps_event_notify *notify)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *)
|
|
((struct sps_event_notify *)notify)->user;
|
|
|
|
pce_dev->ce_sps.notify = *notify;
|
|
pr_debug("sps ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x\n",
|
|
notify->event_id,
|
|
notify->data.transfer.iovec.addr,
|
|
notify->data.transfer.iovec.size,
|
|
notify->data.transfer.iovec.flags);
|
|
|
|
pce_dev->ce_sps.consumer_state = QCE_PIPE_STATE_COMP;
|
|
if (pce_dev->ce_sps.producer_state == QCE_PIPE_STATE_COMP) {
|
|
pce_dev->ce_sps.consumer_state = QCE_PIPE_STATE_IDLE;
|
|
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_IDLE;
|
|
|
|
/* done */
|
|
_sha_complete(pce_dev);
|
|
}
|
|
};
|
|
|
|
static void _ablk_cipher_sps_producer_callback(struct sps_event_notify *notify)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *)
|
|
((struct sps_event_notify *)notify)->user;
|
|
|
|
pce_dev->ce_sps.notify = *notify;
|
|
pr_debug("sps ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x\n",
|
|
notify->event_id,
|
|
notify->data.transfer.iovec.addr,
|
|
notify->data.transfer.iovec.size,
|
|
notify->data.transfer.iovec.flags);
|
|
|
|
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_COMP;
|
|
if (pce_dev->ce_sps.consumer_state == QCE_PIPE_STATE_COMP) {
|
|
pce_dev->ce_sps.consumer_state = QCE_PIPE_STATE_IDLE;
|
|
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_IDLE;
|
|
|
|
/* done */
|
|
_ablk_cipher_complete(pce_dev);
|
|
}
|
|
};
|
|
|
|
static void _ablk_cipher_sps_consumer_callback(struct sps_event_notify *notify)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *)
|
|
((struct sps_event_notify *)notify)->user;
|
|
|
|
pce_dev->ce_sps.notify = *notify;
|
|
pr_debug("sps ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x\n",
|
|
notify->event_id,
|
|
notify->data.transfer.iovec.addr,
|
|
notify->data.transfer.iovec.size,
|
|
notify->data.transfer.iovec.flags);
|
|
|
|
pce_dev->ce_sps.consumer_state = QCE_PIPE_STATE_COMP;
|
|
if (pce_dev->ce_sps.producer_state == QCE_PIPE_STATE_COMP) {
|
|
pce_dev->ce_sps.consumer_state = QCE_PIPE_STATE_IDLE;
|
|
pce_dev->ce_sps.producer_state = QCE_PIPE_STATE_IDLE;
|
|
|
|
/* done */
|
|
_ablk_cipher_complete(pce_dev);
|
|
}
|
|
};
|
|
|
|
static void qce_add_cmd_element(struct qce_device *pdev,
|
|
struct sps_command_element **cmd_ptr, u32 addr,
|
|
u32 data, struct sps_command_element **populate)
|
|
{
|
|
(*cmd_ptr)->addr = (uint32_t)(addr + pdev->phy_iobase);
|
|
(*cmd_ptr)->data = data;
|
|
(*cmd_ptr)->mask = 0xFFFFFFFF;
|
|
if (populate != NULL)
|
|
*populate = *cmd_ptr;
|
|
(*cmd_ptr)++ ;
|
|
}
|
|
|
|
static int _setup_cipher_aes_cmdlistptrs(struct qce_device *pdev,
|
|
unsigned char **pvaddr, enum qce_cipher_mode_enum mode,
|
|
bool key_128)
|
|
{
|
|
struct sps_command_element *ce_vaddr =
|
|
(struct sps_command_element *)(*pvaddr);
|
|
uint32_t ce_vaddr_start = (uint32_t)(*pvaddr);
|
|
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_sps.cmdlistptr;
|
|
struct qce_cmdlist_info *pcl_info = NULL;
|
|
int i = 0;
|
|
uint32_t encr_cfg = 0;
|
|
uint32_t key_reg = 0;
|
|
uint32_t xts_key_reg = 0;
|
|
uint32_t iv_reg = 0;
|
|
uint32_t crypto_cfg = 0;
|
|
uint32_t beats = (pdev->ce_sps.ce_burst_size >> 3) - 1;
|
|
uint32_t pipe_pair = pdev->ce_sps.pipe_pair_index;
|
|
|
|
crypto_cfg = (beats << CRYPTO_REQ_SIZE) |
|
|
BIT(CRYPTO_MASK_DOUT_INTR) |
|
|
BIT(CRYPTO_MASK_DIN_INTR) |
|
|
BIT(CRYPTO_MASK_OP_DONE_INTR) |
|
|
(0 << CRYPTO_HIGH_SPD_EN_N) |
|
|
(pipe_pair << CRYPTO_PIPE_SET_SELECT);
|
|
/*
|
|
* Designate chunks of the allocated memory to various
|
|
* command list pointers related to AES cipher operations defined
|
|
* in ce_cmdlistptrs_ops structure.
|
|
*/
|
|
switch (mode) {
|
|
case QCE_MODE_CBC:
|
|
case QCE_MODE_CTR:
|
|
if (key_128 == true) {
|
|
cmdlistptr->cipher_aes_128_cbc_ctr.cmdlist =
|
|
(uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_aes_128_cbc_ctr);
|
|
|
|
encr_cfg = (CRYPTO_ENCR_KEY_SZ_AES128 <<
|
|
CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_AES <<
|
|
CRYPTO_ENCR_ALG);
|
|
iv_reg = 4;
|
|
key_reg = 4;
|
|
xts_key_reg = 0;
|
|
} else {
|
|
cmdlistptr->cipher_aes_256_cbc_ctr.cmdlist =
|
|
(uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_aes_256_cbc_ctr);
|
|
|
|
encr_cfg = (CRYPTO_ENCR_KEY_SZ_AES256 <<
|
|
CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_AES <<
|
|
CRYPTO_ENCR_ALG);
|
|
iv_reg = 4;
|
|
key_reg = 8;
|
|
xts_key_reg = 0;
|
|
}
|
|
break;
|
|
case QCE_MODE_ECB:
|
|
if (key_128 == true) {
|
|
cmdlistptr->cipher_aes_128_ecb.cmdlist =
|
|
(uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_aes_128_ecb);
|
|
|
|
encr_cfg = (CRYPTO_ENCR_KEY_SZ_AES128 <<
|
|
CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_AES <<
|
|
CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_ECB <<
|
|
CRYPTO_ENCR_MODE);
|
|
iv_reg = 0;
|
|
key_reg = 4;
|
|
xts_key_reg = 0;
|
|
} else {
|
|
cmdlistptr->cipher_aes_256_ecb.cmdlist =
|
|
(uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_aes_256_ecb);
|
|
|
|
encr_cfg = (CRYPTO_ENCR_KEY_SZ_AES256 <<
|
|
CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_AES <<
|
|
CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_ECB <<
|
|
CRYPTO_ENCR_MODE);
|
|
iv_reg = 0;
|
|
key_reg = 8;
|
|
xts_key_reg = 0;
|
|
}
|
|
break;
|
|
case QCE_MODE_XTS:
|
|
if (key_128 == true) {
|
|
cmdlistptr->cipher_aes_128_xts.cmdlist =
|
|
(uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_aes_128_xts);
|
|
|
|
encr_cfg = (CRYPTO_ENCR_KEY_SZ_AES128 <<
|
|
CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_AES <<
|
|
CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_XTS <<
|
|
CRYPTO_ENCR_MODE);
|
|
iv_reg = 4;
|
|
key_reg = 4;
|
|
xts_key_reg = 4;
|
|
} else {
|
|
cmdlistptr->cipher_aes_256_xts.cmdlist =
|
|
(uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_aes_256_xts);
|
|
|
|
encr_cfg = (CRYPTO_ENCR_KEY_SZ_AES256 <<
|
|
CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_AES <<
|
|
CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_XTS <<
|
|
CRYPTO_ENCR_MODE);
|
|
iv_reg = 4;
|
|
key_reg = 8;
|
|
xts_key_reg = 8;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, crypto_cfg,
|
|
&pcl_info->crypto_cfg);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
|
|
&pcl_info->seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
|
|
&pcl_info->encr_seg_cfg);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
|
|
&pcl_info->encr_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
|
|
&pcl_info->encr_seg_start);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG,
|
|
(uint32_t)0xffffffff, &pcl_info->encr_mask);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0,
|
|
&pcl_info->auth_seg_cfg);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
|
|
&pcl_info->encr_key);
|
|
for (i = 1; i < key_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
if (xts_key_reg) {
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_XTS_KEY0_REG,
|
|
0, &pcl_info->encr_xts_key);
|
|
for (i = 1; i < xts_key_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
CRYPTO_ENCR_XTS_DU_SIZE_REG, 0, NULL);
|
|
}
|
|
if (iv_reg) {
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
|
|
&pcl_info->encr_cntr_iv);
|
|
for (i = 1; i < iv_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
}
|
|
/* Add dummy to align size to burst-size multiple */
|
|
if (mode == QCE_MODE_XTS) {
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
|
|
0, &pcl_info->auth_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
|
|
0, &pcl_info->auth_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG,
|
|
0, &pcl_info->auth_seg_size);
|
|
|
|
}
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
|
|
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
|
|
&pcl_info->go_proc);
|
|
|
|
pcl_info->size = (uint32_t)ce_vaddr - (uint32_t)ce_vaddr_start;
|
|
*pvaddr = (unsigned char *) ce_vaddr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _setup_cipher_des_cmdlistptrs(struct qce_device *pdev,
|
|
unsigned char **pvaddr, enum qce_cipher_alg_enum alg,
|
|
bool mode_cbc)
|
|
{
|
|
|
|
struct sps_command_element *ce_vaddr =
|
|
(struct sps_command_element *)(*pvaddr);
|
|
uint32_t ce_vaddr_start = (uint32_t)(*pvaddr);
|
|
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_sps.cmdlistptr;
|
|
struct qce_cmdlist_info *pcl_info = NULL;
|
|
int i = 0;
|
|
uint32_t encr_cfg = 0;
|
|
uint32_t key_reg = 0;
|
|
uint32_t iv_reg = 0;
|
|
uint32_t crypto_cfg = 0;
|
|
uint32_t beats = (pdev->ce_sps.ce_burst_size >> 3) - 1;
|
|
uint32_t pipe_pair = pdev->ce_sps.pipe_pair_index;
|
|
|
|
crypto_cfg = (beats << CRYPTO_REQ_SIZE) |
|
|
BIT(CRYPTO_MASK_DOUT_INTR) |
|
|
BIT(CRYPTO_MASK_DIN_INTR) |
|
|
BIT(CRYPTO_MASK_OP_DONE_INTR) |
|
|
(0 << CRYPTO_HIGH_SPD_EN_N) |
|
|
(pipe_pair << CRYPTO_PIPE_SET_SELECT);
|
|
|
|
/*
|
|
* Designate chunks of the allocated memory to various
|
|
* command list pointers related to cipher operations defined
|
|
* in ce_cmdlistptrs_ops structure.
|
|
*/
|
|
switch (alg) {
|
|
case CIPHER_ALG_DES:
|
|
if (mode_cbc) {
|
|
cmdlistptr->cipher_des_cbc.cmdlist =
|
|
(uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_des_cbc);
|
|
|
|
encr_cfg = (CRYPTO_ENCR_KEY_SZ_DES <<
|
|
CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_DES <<
|
|
CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_CBC <<
|
|
CRYPTO_ENCR_MODE);
|
|
iv_reg = 2;
|
|
key_reg = 2;
|
|
} else {
|
|
cmdlistptr->cipher_des_ecb.cmdlist =
|
|
(uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_des_ecb);
|
|
|
|
encr_cfg = (CRYPTO_ENCR_KEY_SZ_DES <<
|
|
CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_DES <<
|
|
CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_ECB <<
|
|
CRYPTO_ENCR_MODE);
|
|
iv_reg = 0;
|
|
key_reg = 2;
|
|
}
|
|
break;
|
|
case CIPHER_ALG_3DES:
|
|
if (mode_cbc) {
|
|
cmdlistptr->cipher_3des_cbc.cmdlist =
|
|
(uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_3des_cbc);
|
|
|
|
encr_cfg = (CRYPTO_ENCR_KEY_SZ_3DES <<
|
|
CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_DES <<
|
|
CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_CBC <<
|
|
CRYPTO_ENCR_MODE);
|
|
iv_reg = 2;
|
|
key_reg = 6;
|
|
} else {
|
|
cmdlistptr->cipher_3des_ecb.cmdlist =
|
|
(uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->cipher_3des_ecb);
|
|
|
|
encr_cfg = (CRYPTO_ENCR_KEY_SZ_3DES <<
|
|
CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_DES <<
|
|
CRYPTO_ENCR_ALG) |
|
|
(CRYPTO_ENCR_MODE_ECB <<
|
|
CRYPTO_ENCR_MODE);
|
|
iv_reg = 0;
|
|
key_reg = 6;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG, crypto_cfg,
|
|
&pcl_info->crypto_cfg);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
|
|
&pcl_info->seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, encr_cfg,
|
|
&pcl_info->encr_seg_cfg);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
|
|
&pcl_info->encr_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
|
|
&pcl_info->encr_seg_start);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0,
|
|
&pcl_info->auth_seg_cfg);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
|
|
&pcl_info->encr_key);
|
|
for (i = 1; i < key_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
if (iv_reg) {
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
|
|
&pcl_info->encr_cntr_iv);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR1_IV1_REG, 0,
|
|
NULL);
|
|
/* Add 2 dummy to align size to burst-size multiple */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR2_IV2_REG, 0,
|
|
NULL);
|
|
}
|
|
/* Add dummy to align size to burst-size multiple */
|
|
if (!mode_cbc) {
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG,
|
|
0, &pcl_info->auth_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
|
|
0, &pcl_info->auth_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG,
|
|
0, &pcl_info->auth_seg_size);
|
|
|
|
}
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
|
|
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
|
|
&pcl_info->go_proc);
|
|
|
|
pcl_info->size = (uint32_t)ce_vaddr - (uint32_t)ce_vaddr_start;
|
|
*pvaddr = (unsigned char *) ce_vaddr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _setup_auth_cmdlistptrs(struct qce_device *pdev,
|
|
unsigned char **pvaddr, enum qce_hash_alg_enum alg,
|
|
bool key_128)
|
|
{
|
|
struct sps_command_element *ce_vaddr =
|
|
(struct sps_command_element *)(*pvaddr);
|
|
uint32_t ce_vaddr_start = (uint32_t)(*pvaddr);
|
|
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_sps.cmdlistptr;
|
|
struct qce_cmdlist_info *pcl_info = NULL;
|
|
int i = 0;
|
|
uint32_t key_reg = 0;
|
|
uint32_t auth_cfg = 0;
|
|
uint32_t iv_reg = 0;
|
|
uint32_t crypto_cfg = 0;
|
|
uint32_t beats = (pdev->ce_sps.ce_burst_size >> 3) - 1;
|
|
uint32_t pipe_pair = pdev->ce_sps.pipe_pair_index;
|
|
|
|
crypto_cfg = (beats << CRYPTO_REQ_SIZE) |
|
|
BIT(CRYPTO_MASK_DOUT_INTR) |
|
|
BIT(CRYPTO_MASK_DIN_INTR) |
|
|
BIT(CRYPTO_MASK_OP_DONE_INTR) |
|
|
(0 << CRYPTO_HIGH_SPD_EN_N) |
|
|
(pipe_pair << CRYPTO_PIPE_SET_SELECT);
|
|
/*
|
|
* Designate chunks of the allocated memory to various
|
|
* command list pointers related to authentication operations
|
|
* defined in ce_cmdlistptrs_ops structure.
|
|
*/
|
|
switch (alg) {
|
|
case QCE_HASH_SHA1:
|
|
cmdlistptr->auth_sha1.cmdlist = (uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->auth_sha1);
|
|
|
|
auth_cfg = (CRYPTO_AUTH_MODE_HASH << CRYPTO_AUTH_MODE)|
|
|
(CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
|
|
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
|
|
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
|
|
iv_reg = 5;
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
crypto_cfg, &pcl_info->crypto_cfg);
|
|
/* 1 dummy write */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
|
|
0, NULL);
|
|
|
|
break;
|
|
case QCE_HASH_SHA256:
|
|
cmdlistptr->auth_sha256.cmdlist = (uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->auth_sha256);
|
|
|
|
auth_cfg = (CRYPTO_AUTH_MODE_HASH << CRYPTO_AUTH_MODE)|
|
|
(CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) |
|
|
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
|
|
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
|
|
iv_reg = 8;
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
crypto_cfg, &pcl_info->crypto_cfg);
|
|
/* 2 dummy writes */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
|
|
0, NULL);
|
|
break;
|
|
case QCE_HASH_SHA1_HMAC:
|
|
cmdlistptr->auth_sha1_hmac.cmdlist = (uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->auth_sha1_hmac);
|
|
|
|
auth_cfg = (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
|
|
(CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
|
|
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
|
|
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
|
|
key_reg = 16;
|
|
iv_reg = 5;
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
crypto_cfg, &pcl_info->crypto_cfg);
|
|
/* 1 dummy write */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
|
|
0, NULL);
|
|
break;
|
|
case QCE_AEAD_SHA1_HMAC:
|
|
cmdlistptr->aead_sha1_hmac.cmdlist = (uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->aead_sha1_hmac);
|
|
|
|
auth_cfg = (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
|
|
(CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE) |
|
|
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
|
|
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS) |
|
|
(1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST);
|
|
|
|
key_reg = 16;
|
|
iv_reg = 5;
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
crypto_cfg, &pcl_info->crypto_cfg);
|
|
/* 2 dummy writes */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
|
|
0, NULL);
|
|
break;
|
|
case QCE_HASH_SHA256_HMAC:
|
|
cmdlistptr->auth_sha256_hmac.cmdlist = (uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->auth_sha256_hmac);
|
|
|
|
auth_cfg = (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE)|
|
|
(CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE) |
|
|
(CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG) |
|
|
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
|
|
key_reg = 16;
|
|
iv_reg = 8;
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
crypto_cfg, &pcl_info->crypto_cfg);
|
|
/* 2 dummy writes */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
|
|
0, NULL);
|
|
break;
|
|
case QCE_HASH_AES_CMAC:
|
|
if (key_128 == true) {
|
|
cmdlistptr->auth_aes_128_cmac.cmdlist =
|
|
(uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->auth_aes_128_cmac);
|
|
|
|
auth_cfg = (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
|
|
(CRYPTO_AUTH_MODE_CMAC << CRYPTO_AUTH_MODE)|
|
|
(CRYPTO_AUTH_SIZE_ENUM_16_BYTES <<
|
|
CRYPTO_AUTH_SIZE) |
|
|
(CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
|
|
(CRYPTO_AUTH_KEY_SZ_AES128 <<
|
|
CRYPTO_AUTH_KEY_SIZE) |
|
|
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
|
|
key_reg = 4;
|
|
} else {
|
|
cmdlistptr->auth_aes_256_cmac.cmdlist =
|
|
(uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->auth_aes_256_cmac);
|
|
|
|
auth_cfg = (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST)|
|
|
(CRYPTO_AUTH_MODE_CMAC << CRYPTO_AUTH_MODE)|
|
|
(CRYPTO_AUTH_SIZE_ENUM_16_BYTES <<
|
|
CRYPTO_AUTH_SIZE) |
|
|
(CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
|
|
(CRYPTO_AUTH_KEY_SZ_AES256 <<
|
|
CRYPTO_AUTH_KEY_SIZE) |
|
|
(CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS);
|
|
key_reg = 8;
|
|
}
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
crypto_cfg, &pcl_info->crypto_cfg);
|
|
/* 2 dummy writes */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG,
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
|
|
0, NULL);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
|
|
&pcl_info->seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0,
|
|
&pcl_info->encr_seg_cfg);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
|
|
auth_cfg, &pcl_info->auth_seg_cfg);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
|
|
&pcl_info->auth_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
|
|
&pcl_info->auth_seg_start);
|
|
|
|
if (alg == QCE_HASH_AES_CMAC) {
|
|
/* reset auth iv, bytecount and key registers */
|
|
for (i = 0; i < 16; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
for (i = 0; i < 16; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)),
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
|
|
0, NULL);
|
|
} else {
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_IV0_REG, 0,
|
|
&pcl_info->auth_iv);
|
|
for (i = 1; i < iv_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)),
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
|
|
0, &pcl_info->auth_bytecount);
|
|
}
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG, 0, NULL);
|
|
|
|
if (key_reg) {
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
CRYPTO_AUTH_KEY0_REG, 0, &pcl_info->auth_key);
|
|
for (i = 1; i < key_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)),
|
|
0, NULL);
|
|
}
|
|
if (alg != QCE_AEAD_SHA1_HMAC)
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
|
|
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
|
|
&pcl_info->go_proc);
|
|
|
|
pcl_info->size = (uint32_t)ce_vaddr - (uint32_t)ce_vaddr_start;
|
|
*pvaddr = (unsigned char *) ce_vaddr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _setup_aead_cmdlistptrs(struct qce_device *pdev,
|
|
unsigned char **pvaddr, bool key_128)
|
|
{
|
|
struct sps_command_element *ce_vaddr =
|
|
(struct sps_command_element *)(*pvaddr);
|
|
uint32_t ce_vaddr_start = (uint32_t)(*pvaddr);
|
|
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_sps.cmdlistptr;
|
|
struct qce_cmdlist_info *pcl_info = NULL;
|
|
int i = 0;
|
|
uint32_t encr_cfg = 0;
|
|
uint32_t auth_cfg = 0;
|
|
uint32_t key_reg = 0;
|
|
uint32_t crypto_cfg = 0;
|
|
uint32_t beats = (pdev->ce_sps.ce_burst_size >> 3) - 1;
|
|
uint32_t pipe_pair = pdev->ce_sps.pipe_pair_index;
|
|
|
|
crypto_cfg = (beats << CRYPTO_REQ_SIZE) |
|
|
BIT(CRYPTO_MASK_DOUT_INTR) |
|
|
BIT(CRYPTO_MASK_DIN_INTR) |
|
|
BIT(CRYPTO_MASK_OP_DONE_INTR) |
|
|
(0 << CRYPTO_HIGH_SPD_EN_N) |
|
|
(pipe_pair << CRYPTO_PIPE_SET_SELECT);
|
|
/*
|
|
* Designate chunks of the allocated memory to various
|
|
* command list pointers related to aead operations
|
|
* defined in ce_cmdlistptrs_ops structure.
|
|
*/
|
|
if (key_128 == true) {
|
|
cmdlistptr->aead_aes_128_ccm.cmdlist = (uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->aead_aes_128_ccm);
|
|
|
|
auth_cfg = (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
|
|
(CRYPTO_AUTH_MODE_CCM << CRYPTO_AUTH_MODE)|
|
|
(CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
|
|
(CRYPTO_AUTH_KEY_SZ_AES128 << CRYPTO_AUTH_KEY_SIZE);
|
|
auth_cfg &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
|
|
encr_cfg = (CRYPTO_ENCR_KEY_SZ_AES128 << CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
|
|
((CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE));
|
|
key_reg = 4;
|
|
} else {
|
|
|
|
cmdlistptr->aead_aes_256_ccm.cmdlist = (uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->aead_aes_256_ccm);
|
|
|
|
auth_cfg = (1 << CRYPTO_LAST) | (1 << CRYPTO_FIRST) |
|
|
(CRYPTO_AUTH_MODE_CCM << CRYPTO_AUTH_MODE)|
|
|
(CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG) |
|
|
(CRYPTO_AUTH_KEY_SZ_AES256 << CRYPTO_AUTH_KEY_SIZE) |
|
|
((MAX_NONCE/sizeof(uint32_t)) <<
|
|
CRYPTO_AUTH_NONCE_NUM_WORDS);
|
|
auth_cfg &= ~(1 << CRYPTO_USE_HW_KEY_AUTH);
|
|
encr_cfg = (CRYPTO_ENCR_KEY_SZ_AES256 << CRYPTO_ENCR_KEY_SZ) |
|
|
(CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG) |
|
|
((CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE));
|
|
key_reg = 8;
|
|
}
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
crypto_cfg, &pcl_info->crypto_cfg);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG, 0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
|
|
NULL);
|
|
/* add 1 dummy */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG, 0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_SEG_SIZE_REG, 0,
|
|
&pcl_info->seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_CFG_REG,
|
|
encr_cfg, &pcl_info->encr_seg_cfg);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_SIZE_REG, 0,
|
|
&pcl_info->encr_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_SEG_START_REG, 0,
|
|
&pcl_info->encr_seg_start);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR_MASK_REG,
|
|
(uint32_t)0xffffffff, &pcl_info->encr_mask);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_CFG_REG,
|
|
auth_cfg, &pcl_info->auth_seg_cfg);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_SIZE_REG, 0,
|
|
&pcl_info->auth_seg_size);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_SEG_START_REG, 0,
|
|
&pcl_info->auth_seg_start);
|
|
/* reset auth iv, bytecount and key registers */
|
|
for (i = 0; i < 8; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT0_REG,
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_BYTECNT1_REG,
|
|
0, NULL);
|
|
for (i = 0; i < 16; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
/* set auth key */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_KEY0_REG, 0,
|
|
&pcl_info->auth_key);
|
|
for (i = 1; i < key_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
/* set NONCE info */
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_AUTH_INFO_NONCE0_REG, 0,
|
|
&pcl_info->auth_nonce_info);
|
|
for (i = 1; i < 4; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_AUTH_INFO_NONCE0_REG +
|
|
i * sizeof(uint32_t)), 0, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_KEY0_REG, 0,
|
|
&pcl_info->encr_key);
|
|
for (i = 1; i < key_reg; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CNTR0_IV0_REG, 0,
|
|
&pcl_info->encr_cntr_iv);
|
|
for (i = 1; i < 4; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_ENCR_CCM_INT_CNTR0_REG, 0,
|
|
&pcl_info->encr_ccm_cntr_iv);
|
|
for (i = 1; i < 4; i++)
|
|
qce_add_cmd_element(pdev, &ce_vaddr,
|
|
(CRYPTO_ENCR_CCM_INT_CNTR0_REG + i * sizeof(uint32_t)),
|
|
0, NULL);
|
|
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_GOPROC_REG,
|
|
((1 << CRYPTO_GO) | (1 << CRYPTO_RESULTS_DUMP)),
|
|
&pcl_info->go_proc);
|
|
|
|
pcl_info->size = (uint32_t)ce_vaddr - (uint32_t)ce_vaddr_start;
|
|
*pvaddr = (unsigned char *) ce_vaddr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _setup_unlock_pipe_cmdlistptrs(struct qce_device *pdev,
|
|
unsigned char **pvaddr)
|
|
{
|
|
struct sps_command_element *ce_vaddr =
|
|
(struct sps_command_element *)(*pvaddr);
|
|
uint32_t ce_vaddr_start = (uint32_t)(*pvaddr);
|
|
struct qce_cmdlistptr_ops *cmdlistptr = &pdev->ce_sps.cmdlistptr;
|
|
struct qce_cmdlist_info *pcl_info = NULL;
|
|
|
|
cmdlistptr->unlock_all_pipes.cmdlist = (uint32_t)ce_vaddr;
|
|
pcl_info = &(cmdlistptr->unlock_all_pipes);
|
|
|
|
/*
|
|
* Designate chunks of the allocated memory to command list
|
|
* to unlock pipes.
|
|
*/
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
CRYPTO_CONFIG_RESET, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
CRYPTO_CONFIG_RESET, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
CRYPTO_CONFIG_RESET, NULL);
|
|
qce_add_cmd_element(pdev, &ce_vaddr, CRYPTO_CONFIG_REG,
|
|
CRYPTO_CONFIG_RESET, NULL);
|
|
pcl_info->size = (uint32_t)ce_vaddr - (uint32_t)ce_vaddr_start;
|
|
*pvaddr = (unsigned char *) ce_vaddr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qce_setup_cmdlistptrs(struct qce_device *pdev,
|
|
unsigned char **pvaddr)
|
|
{
|
|
struct sps_command_element *ce_vaddr =
|
|
(struct sps_command_element *)(*pvaddr);
|
|
/*
|
|
* Designate chunks of the allocated memory to various
|
|
* command list pointers related to operations defined
|
|
* in ce_cmdlistptrs_ops structure.
|
|
*/
|
|
ce_vaddr =
|
|
(struct sps_command_element *) ALIGN(((unsigned int) ce_vaddr),
|
|
16);
|
|
*pvaddr = (unsigned char *) ce_vaddr;
|
|
|
|
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_CBC, true);
|
|
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_CTR, true);
|
|
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_ECB, true);
|
|
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_XTS, true);
|
|
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_CBC, false);
|
|
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_CTR, false);
|
|
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_ECB, false);
|
|
_setup_cipher_aes_cmdlistptrs(pdev, pvaddr, QCE_MODE_XTS, false);
|
|
|
|
_setup_cipher_des_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_DES, true);
|
|
_setup_cipher_des_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_DES, false);
|
|
_setup_cipher_des_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_3DES, true);
|
|
_setup_cipher_des_cmdlistptrs(pdev, pvaddr, CIPHER_ALG_3DES, false);
|
|
|
|
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_HASH_SHA1, false);
|
|
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_HASH_SHA256, false);
|
|
|
|
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_HASH_SHA1_HMAC, false);
|
|
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_HASH_SHA256_HMAC, false);
|
|
|
|
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_HASH_AES_CMAC, true);
|
|
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_HASH_AES_CMAC, false);
|
|
|
|
_setup_auth_cmdlistptrs(pdev, pvaddr, QCE_AEAD_SHA1_HMAC, false);
|
|
|
|
_setup_aead_cmdlistptrs(pdev, pvaddr, true);
|
|
_setup_aead_cmdlistptrs(pdev, pvaddr, false);
|
|
_setup_unlock_pipe_cmdlistptrs(pdev, pvaddr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qce_setup_ce_sps_data(struct qce_device *pce_dev)
|
|
{
|
|
unsigned char *vaddr;
|
|
|
|
vaddr = pce_dev->coh_vmem;
|
|
vaddr = (unsigned char *) ALIGN(((unsigned int)vaddr), 16);
|
|
|
|
/* Allow for 256 descriptor (cmd and data) entries per pipe */
|
|
pce_dev->ce_sps.in_transfer.iovec = (struct sps_iovec *)vaddr;
|
|
pce_dev->ce_sps.in_transfer.iovec_phys =
|
|
(uint32_t)GET_PHYS_ADDR(vaddr);
|
|
vaddr += MAX_BAM_DESCRIPTORS * 8;
|
|
|
|
pce_dev->ce_sps.out_transfer.iovec = (struct sps_iovec *)vaddr;
|
|
pce_dev->ce_sps.out_transfer.iovec_phys =
|
|
(uint32_t)GET_PHYS_ADDR(vaddr);
|
|
vaddr += MAX_BAM_DESCRIPTORS * 8;
|
|
|
|
qce_setup_cmdlistptrs(pce_dev, &vaddr);
|
|
pce_dev->ce_sps.result_dump = (uint32_t)vaddr;
|
|
pce_dev->ce_sps.result = (struct ce_result_dump_format *)vaddr;
|
|
vaddr += 128;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qce_aead_sha1_hmac_setup(struct qce_req *creq, struct crypto_aead *aead,
|
|
struct qce_cmdlist_info *cmdlistinfo)
|
|
{
|
|
uint32_t authk_size_in_word = creq->authklen/sizeof(uint32_t);
|
|
uint32_t mackey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
struct sps_command_element *pce = NULL;
|
|
struct aead_request *areq = (struct aead_request *)creq->areq;
|
|
int i;
|
|
|
|
_byte_stream_to_net_words(mackey32, creq->authkey,
|
|
creq->authklen);
|
|
pce = cmdlistinfo->auth_key;
|
|
for (i = 0; i < authk_size_in_word; i++, pce++)
|
|
pce->data = mackey32[i];
|
|
pce = cmdlistinfo->auth_iv;
|
|
for (i = 0; i < 5; i++, pce++)
|
|
pce->data = _std_init_vector_sha1[i];
|
|
/* write auth seg size */
|
|
pce = cmdlistinfo->auth_seg_size;
|
|
pce->data = creq->cryptlen + areq->assoclen + crypto_aead_ivsize(aead);
|
|
|
|
/* write auth seg size start*/
|
|
pce = cmdlistinfo->auth_seg_start;
|
|
pce->data = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qce_aead_req(void *handle, struct qce_req *q_req)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *) handle;
|
|
struct aead_request *areq = (struct aead_request *) q_req->areq;
|
|
uint32_t authsize = q_req->authsize;
|
|
struct crypto_aead *aead = crypto_aead_reqtfm(areq);
|
|
uint32_t ivsize = 0;
|
|
uint32_t totallen_in, out_len;
|
|
uint32_t hw_pad_out = 0;
|
|
int rc = 0;
|
|
int ce_burst_size;
|
|
struct qce_cmdlist_info *cmdlistinfo = NULL;
|
|
struct qce_cmdlist_info *auth_cmdlistinfo = NULL;
|
|
|
|
if (q_req->mode != QCE_MODE_CCM)
|
|
ivsize = crypto_aead_ivsize(aead);
|
|
|
|
ce_burst_size = pce_dev->ce_sps.ce_burst_size;
|
|
if (q_req->dir == QCE_ENCRYPT) {
|
|
q_req->cryptlen = areq->cryptlen;
|
|
totallen_in = q_req->cryptlen + areq->assoclen + ivsize;
|
|
if (q_req->mode == QCE_MODE_CCM) {
|
|
out_len = areq->cryptlen + authsize;
|
|
hw_pad_out = ALIGN(authsize, ce_burst_size) - authsize;
|
|
} else {
|
|
out_len = areq->cryptlen;
|
|
}
|
|
} else {
|
|
q_req->cryptlen = areq->cryptlen - authsize;
|
|
if (q_req->mode == QCE_MODE_CCM)
|
|
totallen_in = areq->cryptlen + areq->assoclen;
|
|
else
|
|
totallen_in = q_req->cryptlen + areq->assoclen + ivsize;
|
|
out_len = q_req->cryptlen;
|
|
hw_pad_out = authsize;
|
|
}
|
|
|
|
pce_dev->assoc_nents = count_sg(areq->assoc, areq->assoclen);
|
|
pce_dev->src_nents = count_sg(areq->src, areq->cryptlen);
|
|
pce_dev->ivsize = q_req->ivsize;
|
|
pce_dev->authsize = q_req->authsize;
|
|
pce_dev->phy_iv_in = 0;
|
|
|
|
/* associated data input */
|
|
dma_map_sg(pce_dev->pdev, areq->assoc, pce_dev->assoc_nents,
|
|
DMA_TO_DEVICE);
|
|
/* cipher input */
|
|
dma_map_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
|
|
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
|
|
DMA_TO_DEVICE);
|
|
/* cipher + mac output for encryption */
|
|
if (areq->src != areq->dst) {
|
|
pce_dev->dst_nents = count_sg(areq->dst, out_len);
|
|
dma_map_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents,
|
|
DMA_FROM_DEVICE);
|
|
} else {
|
|
pce_dev->dst_nents = pce_dev->src_nents;
|
|
}
|
|
|
|
_ce_get_cipher_cmdlistinfo(pce_dev, q_req, &cmdlistinfo);
|
|
/* set up crypto device */
|
|
rc = _ce_setup_cipher(pce_dev, q_req, totallen_in,
|
|
areq->assoclen + ivsize, cmdlistinfo);
|
|
if (rc < 0)
|
|
goto bad;
|
|
|
|
if (q_req->mode != QCE_MODE_CCM) {
|
|
rc = qce_aead_sha1_hmac_setup(q_req, aead, auth_cmdlistinfo);
|
|
if (rc < 0)
|
|
goto bad;
|
|
/* overwrite seg size */
|
|
cmdlistinfo->seg_size->data = totallen_in;
|
|
/* cipher iv for input */
|
|
pce_dev->phy_iv_in = dma_map_single(pce_dev->pdev, q_req->iv,
|
|
ivsize, DMA_TO_DEVICE);
|
|
}
|
|
|
|
/* setup for callback, and issue command to bam */
|
|
pce_dev->areq = q_req->areq;
|
|
pce_dev->qce_cb = q_req->qce_cb;
|
|
|
|
/* Register callback event for EOT (End of transfer) event. */
|
|
pce_dev->ce_sps.producer.event.callback = _aead_sps_producer_callback;
|
|
rc = sps_register_event(pce_dev->ce_sps.producer.pipe,
|
|
&pce_dev->ce_sps.producer.event);
|
|
if (rc) {
|
|
pr_err("Producer callback registration failed rc = %d\n", rc);
|
|
goto bad;
|
|
}
|
|
|
|
/* Register callback event for EOT (End of transfer) event. */
|
|
pce_dev->ce_sps.consumer.event.callback = _aead_sps_consumer_callback;
|
|
rc = sps_register_event(pce_dev->ce_sps.consumer.pipe,
|
|
&pce_dev->ce_sps.consumer.event);
|
|
if (rc) {
|
|
pr_err("Consumer callback registration failed rc = %d\n", rc);
|
|
goto bad;
|
|
}
|
|
|
|
_qce_sps_iovec_count_init(pce_dev);
|
|
|
|
_qce_sps_add_cmd(pce_dev, 0, cmdlistinfo,
|
|
&pce_dev->ce_sps.in_transfer);
|
|
|
|
if (pce_dev->ce_sps.minor_version == 0) {
|
|
_qce_sps_add_sg_data(pce_dev, areq->src, totallen_in,
|
|
&pce_dev->ce_sps.in_transfer);
|
|
|
|
_qce_set_eot_flag(&pce_dev->ce_sps.in_transfer);
|
|
_qce_sps_add_sg_data(pce_dev, areq->dst, out_len +
|
|
areq->assoclen + hw_pad_out,
|
|
&pce_dev->ce_sps.out_transfer);
|
|
_qce_sps_add_data(GET_PHYS_ADDR(pce_dev->ce_sps.result_dump),
|
|
CRYPTO_RESULT_DUMP_SIZE,
|
|
&pce_dev->ce_sps.out_transfer);
|
|
} else {
|
|
_qce_sps_add_sg_data(pce_dev, areq->assoc, areq->assoclen,
|
|
&pce_dev->ce_sps.in_transfer);
|
|
_qce_sps_add_data((uint32_t)pce_dev->phy_iv_in, ivsize,
|
|
&pce_dev->ce_sps.in_transfer);
|
|
_qce_sps_add_sg_data(pce_dev, areq->src, areq->cryptlen,
|
|
&pce_dev->ce_sps.in_transfer);
|
|
_qce_set_eot_flag(&pce_dev->ce_sps.in_transfer);
|
|
|
|
/* Pass through to ignore associated (+iv, if applicable) data*/
|
|
_qce_sps_add_data(GET_PHYS_ADDR(pce_dev->ce_sps.ignore_buffer),
|
|
(ivsize + areq->assoclen),
|
|
&pce_dev->ce_sps.out_transfer);
|
|
_qce_sps_add_sg_data(pce_dev, areq->dst, out_len,
|
|
&pce_dev->ce_sps.out_transfer);
|
|
/* Pass through to ignore hw_pad (padding of the MAC data) */
|
|
_qce_sps_add_data(GET_PHYS_ADDR(pce_dev->ce_sps.ignore_buffer),
|
|
hw_pad_out, &pce_dev->ce_sps.out_transfer);
|
|
|
|
_qce_sps_add_data(GET_PHYS_ADDR(pce_dev->ce_sps.result_dump),
|
|
CRYPTO_RESULT_DUMP_SIZE, &pce_dev->ce_sps.out_transfer);
|
|
}
|
|
rc = _qce_sps_transfer(pce_dev);
|
|
if (rc)
|
|
goto bad;
|
|
return 0;
|
|
|
|
bad:
|
|
if (pce_dev->assoc_nents) {
|
|
dma_unmap_sg(pce_dev->pdev, areq->assoc, pce_dev->assoc_nents,
|
|
DMA_TO_DEVICE);
|
|
}
|
|
if (pce_dev->src_nents) {
|
|
dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
|
|
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
|
|
DMA_TO_DEVICE);
|
|
}
|
|
if (areq->src != areq->dst) {
|
|
dma_unmap_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents,
|
|
DMA_FROM_DEVICE);
|
|
}
|
|
if (pce_dev->phy_iv_in) {
|
|
dma_unmap_single(pce_dev->pdev, pce_dev->phy_iv_in,
|
|
ivsize, DMA_TO_DEVICE);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(qce_aead_req);
|
|
|
|
int qce_ablk_cipher_req(void *handle, struct qce_req *c_req)
|
|
{
|
|
int rc = 0;
|
|
struct qce_device *pce_dev = (struct qce_device *) handle;
|
|
struct ablkcipher_request *areq = (struct ablkcipher_request *)
|
|
c_req->areq;
|
|
struct qce_cmdlist_info *cmdlistinfo = NULL;
|
|
|
|
pce_dev->src_nents = 0;
|
|
pce_dev->dst_nents = 0;
|
|
_ce_get_cipher_cmdlistinfo(pce_dev, c_req, &cmdlistinfo);
|
|
|
|
/* cipher input */
|
|
pce_dev->src_nents = count_sg(areq->src, areq->nbytes);
|
|
|
|
dma_map_sg(pce_dev->pdev, areq->src, pce_dev->src_nents,
|
|
(areq->src == areq->dst) ? DMA_BIDIRECTIONAL :
|
|
DMA_TO_DEVICE);
|
|
/* cipher output */
|
|
if (areq->src != areq->dst) {
|
|
pce_dev->dst_nents = count_sg(areq->dst, areq->nbytes);
|
|
dma_map_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents,
|
|
DMA_FROM_DEVICE);
|
|
} else {
|
|
pce_dev->dst_nents = pce_dev->src_nents;
|
|
}
|
|
/* set up crypto device */
|
|
rc = _ce_setup_cipher(pce_dev, c_req, areq->nbytes, 0, cmdlistinfo);
|
|
if (rc < 0)
|
|
goto bad;
|
|
|
|
/* setup for client callback, and issue command to BAM */
|
|
pce_dev->areq = areq;
|
|
pce_dev->qce_cb = c_req->qce_cb;
|
|
|
|
/* Register callback event for EOT (End of transfer) event. */
|
|
pce_dev->ce_sps.producer.event.callback =
|
|
_ablk_cipher_sps_producer_callback;
|
|
rc = sps_register_event(pce_dev->ce_sps.producer.pipe,
|
|
&pce_dev->ce_sps.producer.event);
|
|
if (rc) {
|
|
pr_err("Producer callback registration failed rc = %d\n", rc);
|
|
goto bad;
|
|
}
|
|
|
|
/* Register callback event for EOT (End of transfer) event. */
|
|
pce_dev->ce_sps.consumer.event.callback =
|
|
_ablk_cipher_sps_consumer_callback;
|
|
rc = sps_register_event(pce_dev->ce_sps.consumer.pipe,
|
|
&pce_dev->ce_sps.consumer.event);
|
|
if (rc) {
|
|
pr_err("Consumer callback registration failed rc = %d\n", rc);
|
|
goto bad;
|
|
}
|
|
|
|
_qce_sps_iovec_count_init(pce_dev);
|
|
|
|
_qce_sps_add_cmd(pce_dev, 0, cmdlistinfo,
|
|
&pce_dev->ce_sps.in_transfer);
|
|
_qce_sps_add_sg_data(pce_dev, areq->src, areq->nbytes,
|
|
&pce_dev->ce_sps.in_transfer);
|
|
_qce_set_eot_flag(&pce_dev->ce_sps.in_transfer);
|
|
|
|
_qce_sps_add_sg_data(pce_dev, areq->dst, areq->nbytes,
|
|
&pce_dev->ce_sps.out_transfer);
|
|
_qce_sps_add_data(GET_PHYS_ADDR(pce_dev->ce_sps.result_dump),
|
|
CRYPTO_RESULT_DUMP_SIZE,
|
|
&pce_dev->ce_sps.out_transfer);
|
|
rc = _qce_sps_transfer(pce_dev);
|
|
if (rc)
|
|
goto bad;
|
|
return 0;
|
|
bad:
|
|
if (pce_dev->dst_nents) {
|
|
dma_unmap_sg(pce_dev->pdev, areq->dst,
|
|
pce_dev->dst_nents, DMA_FROM_DEVICE);
|
|
}
|
|
if (pce_dev->src_nents) {
|
|
dma_unmap_sg(pce_dev->pdev, areq->src,
|
|
pce_dev->src_nents,
|
|
(areq->src == areq->dst) ?
|
|
DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
|
|
}
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(qce_ablk_cipher_req);
|
|
|
|
int qce_process_sha_req(void *handle, struct qce_sha_req *sreq)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *) handle;
|
|
int rc;
|
|
|
|
struct ahash_request *areq = (struct ahash_request *)sreq->areq;
|
|
struct qce_cmdlist_info *cmdlistinfo = NULL;
|
|
|
|
pce_dev->src_nents = count_sg(sreq->src, sreq->size);
|
|
_ce_get_hash_cmdlistinfo(pce_dev, sreq, &cmdlistinfo);
|
|
dma_map_sg(pce_dev->pdev, sreq->src, pce_dev->src_nents,
|
|
DMA_TO_DEVICE);
|
|
rc = _ce_setup_hash(pce_dev, sreq, cmdlistinfo);
|
|
if (rc < 0)
|
|
goto bad;
|
|
|
|
pce_dev->areq = areq;
|
|
pce_dev->qce_cb = sreq->qce_cb;
|
|
|
|
/* Register callback event for EOT (End of transfer) event. */
|
|
pce_dev->ce_sps.producer.event.callback = _sha_sps_producer_callback;
|
|
rc = sps_register_event(pce_dev->ce_sps.producer.pipe,
|
|
&pce_dev->ce_sps.producer.event);
|
|
if (rc) {
|
|
pr_err("Producer callback registration failed rc = %d\n", rc);
|
|
goto bad;
|
|
}
|
|
|
|
/* Register callback event for EOT (End of transfer) event. */
|
|
pce_dev->ce_sps.consumer.event.callback = _sha_sps_consumer_callback;
|
|
rc = sps_register_event(pce_dev->ce_sps.consumer.pipe,
|
|
&pce_dev->ce_sps.consumer.event);
|
|
if (rc) {
|
|
pr_err("Consumer callback registration failed rc = %d\n", rc);
|
|
goto bad;
|
|
}
|
|
|
|
_qce_sps_iovec_count_init(pce_dev);
|
|
|
|
_qce_sps_add_cmd(pce_dev, 0, cmdlistinfo,
|
|
&pce_dev->ce_sps.in_transfer);
|
|
_qce_sps_add_sg_data(pce_dev, areq->src, areq->nbytes,
|
|
&pce_dev->ce_sps.in_transfer);
|
|
_qce_set_eot_flag(&pce_dev->ce_sps.in_transfer);
|
|
|
|
_qce_sps_add_data(GET_PHYS_ADDR(pce_dev->ce_sps.result_dump),
|
|
CRYPTO_RESULT_DUMP_SIZE,
|
|
&pce_dev->ce_sps.out_transfer);
|
|
rc = _qce_sps_transfer(pce_dev);
|
|
if (rc)
|
|
goto bad;
|
|
return 0;
|
|
bad:
|
|
if (pce_dev->src_nents) {
|
|
dma_unmap_sg(pce_dev->pdev, sreq->src,
|
|
pce_dev->src_nents, DMA_TO_DEVICE);
|
|
}
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(qce_process_sha_req);
|
|
|
|
static int __qce_get_device_tree_data(struct platform_device *pdev,
|
|
struct qce_device *pce_dev)
|
|
{
|
|
struct resource *resource;
|
|
int rc = 0;
|
|
|
|
if (of_property_read_u32((&pdev->dev)->of_node,
|
|
"qcom,bam-pipe-pair",
|
|
&pce_dev->ce_sps.pipe_pair_index)) {
|
|
pr_err("Fail to get bam pipe pair information.\n");
|
|
return -EINVAL;
|
|
} else {
|
|
pr_warn("bam_pipe_pair=0x%x", pce_dev->ce_sps.pipe_pair_index);
|
|
}
|
|
pce_dev->ce_sps.dest_pipe_index = 2 * pce_dev->ce_sps.pipe_pair_index;
|
|
pce_dev->ce_sps.src_pipe_index = pce_dev->ce_sps.dest_pipe_index + 1;
|
|
|
|
resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
|
|
"crypto-base");
|
|
if (resource) {
|
|
pce_dev->phy_iobase = resource->start;
|
|
pce_dev->iobase = ioremap_nocache(resource->start,
|
|
resource_size(resource));
|
|
if (!pce_dev->iobase) {
|
|
pr_err("Can not map CRYPTO io memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
} else {
|
|
pr_err("CRYPTO HW mem unavailable.\n");
|
|
return -ENODEV;
|
|
}
|
|
pr_warn("ce_phy_reg_base=0x%x ", pce_dev->phy_iobase);
|
|
pr_warn("ce_virt_reg_base=0x%x\n", (uint32_t)pce_dev->iobase);
|
|
|
|
resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
|
|
"crypto-bam-base");
|
|
if (resource) {
|
|
pce_dev->ce_sps.bam_mem = resource->start;
|
|
pce_dev->ce_sps.bam_iobase = ioremap_nocache(resource->start,
|
|
resource_size(resource));
|
|
if (!pce_dev->iobase) {
|
|
rc = -ENOMEM;
|
|
pr_err("Can not map BAM io memory\n");
|
|
goto err_getting_bam_info;
|
|
}
|
|
} else {
|
|
pr_err("CRYPTO BAM mem unavailable.\n");
|
|
rc = -ENODEV;
|
|
goto err_getting_bam_info;
|
|
}
|
|
pr_warn("ce_bam_phy_reg_base=0x%x ", pce_dev->ce_sps.bam_mem);
|
|
pr_warn("ce_bam_virt_reg_base=0x%x\n",
|
|
(uint32_t)pce_dev->ce_sps.bam_iobase);
|
|
|
|
resource = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
|
|
if (resource) {
|
|
pce_dev->ce_sps.bam_irq = resource->start;
|
|
pr_warn("CRYPTO BAM IRQ = %d.\n", pce_dev->ce_sps.bam_irq);
|
|
} else {
|
|
pr_err("CRYPTO BAM IRQ unavailable.\n");
|
|
goto err_dev;
|
|
}
|
|
return rc;
|
|
err_dev:
|
|
if (pce_dev->ce_sps.bam_iobase)
|
|
iounmap(pce_dev->ce_sps.bam_iobase);
|
|
|
|
err_getting_bam_info:
|
|
if (pce_dev->iobase)
|
|
iounmap(pce_dev->iobase);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int __qce_init_clk(struct qce_device *pce_dev)
|
|
{
|
|
int rc = 0;
|
|
struct clk *ce_core_clk;
|
|
struct clk *ce_clk;
|
|
struct clk *ce_core_src_clk;
|
|
|
|
/* Get CE3 src core clk. */
|
|
ce_core_src_clk = clk_get(pce_dev->pdev, "core_clk_src");
|
|
if (!IS_ERR(ce_core_src_clk)) {
|
|
pce_dev->ce_core_src_clk = ce_core_src_clk;
|
|
|
|
/* Set the core src clk @100Mhz */
|
|
rc = clk_set_rate(pce_dev->ce_core_src_clk, 100000000);
|
|
if (rc) {
|
|
clk_put(pce_dev->ce_core_src_clk);
|
|
pr_err("Unable to set the core src clk @100Mhz.\n");
|
|
goto err_clk;
|
|
}
|
|
} else {
|
|
pr_warn("Unable to get CE core src clk, set to NULL\n");
|
|
pce_dev->ce_core_src_clk = NULL;
|
|
}
|
|
|
|
/* Get CE core clk */
|
|
ce_core_clk = clk_get(pce_dev->pdev, "core_clk");
|
|
if (IS_ERR(ce_core_clk)) {
|
|
rc = PTR_ERR(ce_core_clk);
|
|
pr_err("Unable to get CE core clk\n");
|
|
if (pce_dev->ce_core_src_clk != NULL)
|
|
clk_put(pce_dev->ce_core_src_clk);
|
|
goto err_clk;
|
|
}
|
|
pce_dev->ce_core_clk = ce_core_clk;
|
|
|
|
/* Get CE Interface clk */
|
|
ce_clk = clk_get(pce_dev->pdev, "iface_clk");
|
|
if (IS_ERR(ce_clk)) {
|
|
rc = PTR_ERR(ce_clk);
|
|
pr_err("Unable to get CE interface clk\n");
|
|
if (pce_dev->ce_core_src_clk != NULL)
|
|
clk_put(pce_dev->ce_core_src_clk);
|
|
clk_put(pce_dev->ce_core_clk);
|
|
goto err_clk;
|
|
}
|
|
pce_dev->ce_clk = ce_clk;
|
|
|
|
/* Enable CE core clk */
|
|
rc = clk_prepare_enable(pce_dev->ce_core_clk);
|
|
if (rc) {
|
|
pr_err("Unable to enable/prepare CE core clk\n");
|
|
if (pce_dev->ce_core_src_clk != NULL)
|
|
clk_put(pce_dev->ce_core_src_clk);
|
|
clk_put(pce_dev->ce_core_clk);
|
|
clk_put(pce_dev->ce_clk);
|
|
goto err_clk;
|
|
} else {
|
|
/* Enable CE clk */
|
|
rc = clk_prepare_enable(pce_dev->ce_clk);
|
|
if (rc) {
|
|
pr_err("Unable to enable/prepare CE iface clk\n");
|
|
clk_disable_unprepare(pce_dev->ce_core_clk);
|
|
if (pce_dev->ce_core_src_clk != NULL)
|
|
clk_put(pce_dev->ce_core_src_clk);
|
|
clk_put(pce_dev->ce_core_clk);
|
|
clk_put(pce_dev->ce_clk);
|
|
goto err_clk;
|
|
}
|
|
}
|
|
err_clk:
|
|
if (rc)
|
|
pr_err("Unable to init CE clks, rc = %d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/* crypto engine open function. */
|
|
void *qce_open(struct platform_device *pdev, int *rc)
|
|
{
|
|
struct qce_device *pce_dev;
|
|
|
|
pce_dev = kzalloc(sizeof(struct qce_device), GFP_KERNEL);
|
|
if (!pce_dev) {
|
|
*rc = -ENOMEM;
|
|
pr_err("Can not allocate memory: %d\n", *rc);
|
|
return NULL;
|
|
}
|
|
pce_dev->pdev = &pdev->dev;
|
|
|
|
if (pdev->dev.of_node) {
|
|
*rc = __qce_get_device_tree_data(pdev, pce_dev);
|
|
if (*rc)
|
|
goto err_pce_dev;
|
|
} else {
|
|
*rc = -EINVAL;
|
|
pr_err("Device Node not found.\n");
|
|
goto err_pce_dev;
|
|
}
|
|
|
|
pce_dev->memsize = 9 * PAGE_SIZE;
|
|
pce_dev->coh_vmem = dma_alloc_coherent(pce_dev->pdev,
|
|
pce_dev->memsize, &pce_dev->coh_pmem, GFP_KERNEL);
|
|
if (pce_dev->coh_vmem == NULL) {
|
|
*rc = -ENOMEM;
|
|
pr_err("Can not allocate coherent memory for sps data\n");
|
|
goto err_iobase;
|
|
}
|
|
|
|
*rc = __qce_init_clk(pce_dev);
|
|
if (*rc)
|
|
goto err_mem;
|
|
|
|
if (_probe_ce_engine(pce_dev)) {
|
|
*rc = -ENXIO;
|
|
goto err;
|
|
}
|
|
*rc = 0;
|
|
qce_setup_ce_sps_data(pce_dev);
|
|
qce_sps_init(pce_dev);
|
|
|
|
return pce_dev;
|
|
err:
|
|
clk_disable_unprepare(pce_dev->ce_clk);
|
|
clk_disable_unprepare(pce_dev->ce_core_clk);
|
|
|
|
if (pce_dev->ce_core_src_clk != NULL)
|
|
clk_put(pce_dev->ce_core_src_clk);
|
|
clk_put(pce_dev->ce_clk);
|
|
clk_put(pce_dev->ce_core_clk);
|
|
err_mem:
|
|
if (pce_dev->coh_vmem)
|
|
dma_free_coherent(pce_dev->pdev, pce_dev->memsize,
|
|
pce_dev->coh_vmem, pce_dev->coh_pmem);
|
|
err_iobase:
|
|
if (pce_dev->ce_sps.bam_iobase)
|
|
iounmap(pce_dev->ce_sps.bam_iobase);
|
|
if (pce_dev->iobase)
|
|
iounmap(pce_dev->iobase);
|
|
err_pce_dev:
|
|
kfree(pce_dev);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(qce_open);
|
|
|
|
/* crypto engine close function. */
|
|
int qce_close(void *handle)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *) handle;
|
|
|
|
if (handle == NULL)
|
|
return -ENODEV;
|
|
|
|
if (pce_dev->iobase)
|
|
iounmap(pce_dev->iobase);
|
|
if (pce_dev->coh_vmem)
|
|
dma_free_coherent(pce_dev->pdev, pce_dev->memsize,
|
|
pce_dev->coh_vmem, pce_dev->coh_pmem);
|
|
|
|
clk_disable_unprepare(pce_dev->ce_clk);
|
|
clk_disable_unprepare(pce_dev->ce_core_clk);
|
|
if (pce_dev->ce_core_src_clk != NULL)
|
|
clk_put(pce_dev->ce_core_src_clk);
|
|
clk_put(pce_dev->ce_clk);
|
|
clk_put(pce_dev->ce_core_clk);
|
|
|
|
qce_sps_exit(pce_dev);
|
|
kfree(handle);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(qce_close);
|
|
|
|
int qce_hw_support(void *handle, struct ce_hw_support *ce_support)
|
|
{
|
|
struct qce_device *pce_dev = (struct qce_device *)handle;
|
|
|
|
if (ce_support == NULL)
|
|
return -EINVAL;
|
|
|
|
ce_support->sha1_hmac_20 = false;
|
|
ce_support->sha1_hmac = false;
|
|
ce_support->sha256_hmac = false;
|
|
ce_support->sha_hmac = true;
|
|
ce_support->cmac = true;
|
|
ce_support->aes_key_192 = false;
|
|
ce_support->aes_xts = true;
|
|
ce_support->ota = false;
|
|
ce_support->bam = true;
|
|
if (pce_dev->ce_sps.minor_version) {
|
|
ce_support->aligned_only = false;
|
|
ce_support->aes_ccm = true;
|
|
} else {
|
|
ce_support->aligned_only = true;
|
|
ce_support->aes_ccm = false;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(qce_hw_support);
|
|
|
|
static int __init qce_init(void)
|
|
{
|
|
bam_registry.handle = 0;
|
|
bam_registry.cnt = 0;
|
|
return 0;
|
|
}
|
|
|
|
static void __exit qce_exit(void)
|
|
{
|
|
bam_registry.handle = 0;
|
|
bam_registry.cnt = 0;
|
|
}
|
|
|
|
module_init(qce_init);
|
|
module_exit(qce_exit);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("Crypto Engine driver");
|