android_kernel_google_msm/include/asm-arm/spinlock.h
Russell King 6d9b37a3a8 [PATCH] ARM SMP: Add ARMv6 memory barriers
Convert explicit gcc asm-based memory barriers into smp_mb() calls.
These change between barrier() and the ARMv6 data memory barrier
instruction depending on whether ARMv6 SMP is enabled.

Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2005-07-26 19:44:26 +01:00

195 lines
3.7 KiB
C

#ifndef __ASM_SPINLOCK_H
#define __ASM_SPINLOCK_H
#if __LINUX_ARM_ARCH__ < 6
#error SMP not supported on pre-ARMv6 CPUs
#endif
/*
* ARMv6 Spin-locking.
*
* We exclusively read the old value. If it is zero, we may have
* won the lock, so we try exclusively storing it. A memory barrier
* is required after we get a lock, and before we release it, because
* V6 CPUs are assumed to have weakly ordered memory.
*
* Unlocked value: 0
* Locked value: 1
*/
typedef struct {
volatile unsigned int lock;
#ifdef CONFIG_PREEMPT
unsigned int break_lock;
#endif
} spinlock_t;
#define SPIN_LOCK_UNLOCKED (spinlock_t) { 0 }
#define spin_lock_init(x) do { *(x) = SPIN_LOCK_UNLOCKED; } while (0)
#define spin_is_locked(x) ((x)->lock != 0)
#define spin_unlock_wait(x) do { barrier(); } while (spin_is_locked(x))
#define _raw_spin_lock_flags(lock, flags) _raw_spin_lock(lock)
static inline void _raw_spin_lock(spinlock_t *lock)
{
unsigned long tmp;
__asm__ __volatile__(
"1: ldrex %0, [%1]\n"
" teq %0, #0\n"
" strexeq %0, %2, [%1]\n"
" teqeq %0, #0\n"
" bne 1b"
: "=&r" (tmp)
: "r" (&lock->lock), "r" (1)
: "cc");
smp_mb();
}
static inline int _raw_spin_trylock(spinlock_t *lock)
{
unsigned long tmp;
__asm__ __volatile__(
" ldrex %0, [%1]\n"
" teq %0, #0\n"
" strexeq %0, %2, [%1]"
: "=&r" (tmp)
: "r" (&lock->lock), "r" (1)
: "cc");
if (tmp == 0) {
smp_mb();
return 1;
} else {
return 0;
}
}
static inline void _raw_spin_unlock(spinlock_t *lock)
{
smp_mb();
__asm__ __volatile__(
" str %1, [%0]"
:
: "r" (&lock->lock), "r" (0)
: "cc");
}
/*
* RWLOCKS
*/
typedef struct {
volatile unsigned int lock;
#ifdef CONFIG_PREEMPT
unsigned int break_lock;
#endif
} rwlock_t;
#define RW_LOCK_UNLOCKED (rwlock_t) { 0 }
#define rwlock_init(x) do { *(x) = RW_LOCK_UNLOCKED; } while (0)
#define rwlock_is_locked(x) (*((volatile unsigned int *)(x)) != 0)
/*
* Write locks are easy - we just set bit 31. When unlocking, we can
* just write zero since the lock is exclusively held.
*/
static inline void _raw_write_lock(rwlock_t *rw)
{
unsigned long tmp;
__asm__ __volatile__(
"1: ldrex %0, [%1]\n"
" teq %0, #0\n"
" strexeq %0, %2, [%1]\n"
" teq %0, #0\n"
" bne 1b"
: "=&r" (tmp)
: "r" (&rw->lock), "r" (0x80000000)
: "cc");
smp_mb();
}
static inline int _raw_write_trylock(rwlock_t *rw)
{
unsigned long tmp;
__asm__ __volatile__(
"1: ldrex %0, [%1]\n"
" teq %0, #0\n"
" strexeq %0, %2, [%1]"
: "=&r" (tmp)
: "r" (&rw->lock), "r" (0x80000000)
: "cc");
if (tmp == 0) {
smp_mb();
return 1;
} else {
return 0;
}
}
static inline void _raw_write_unlock(rwlock_t *rw)
{
smp_mb();
__asm__ __volatile__(
"str %1, [%0]"
:
: "r" (&rw->lock), "r" (0)
: "cc");
}
/*
* Read locks are a bit more hairy:
* - Exclusively load the lock value.
* - Increment it.
* - Store new lock value if positive, and we still own this location.
* If the value is negative, we've already failed.
* - If we failed to store the value, we want a negative result.
* - If we failed, try again.
* Unlocking is similarly hairy. We may have multiple read locks
* currently active. However, we know we won't have any write
* locks.
*/
static inline void _raw_read_lock(rwlock_t *rw)
{
unsigned long tmp, tmp2;
__asm__ __volatile__(
"1: ldrex %0, [%2]\n"
" adds %0, %0, #1\n"
" strexpl %1, %0, [%2]\n"
" rsbpls %0, %1, #0\n"
" bmi 1b"
: "=&r" (tmp), "=&r" (tmp2)
: "r" (&rw->lock)
: "cc");
smp_mb();
}
static inline void _raw_read_unlock(rwlock_t *rw)
{
unsigned long tmp, tmp2;
smp_mb();
__asm__ __volatile__(
"1: ldrex %0, [%2]\n"
" sub %0, %0, #1\n"
" strex %1, %0, [%2]\n"
" teq %1, #0\n"
" bne 1b"
: "=&r" (tmp), "=&r" (tmp2)
: "r" (&rw->lock)
: "cc");
}
#define _raw_read_trylock(lock) generic_raw_read_trylock(lock)
#endif /* __ASM_SPINLOCK_H */