android_kernel_google_msm/drivers/gpu/msm/z180.c
Hareesh Gundu 2ce8d472c1 msm: kgsl: Fix Z180 memory leak
Decerement entry refcount, which incremented
in kgsl_sharedmem_find_region.

CRs-Fixed: 635747
Change-Id: I621ba8f8e119a9ab8ba5455b28a565e3cae2f7cd
Signed-off-by: Hareesh Gundu <hareeshg@codeaurora.org>
2016-10-29 23:12:15 +08:00

1067 lines
28 KiB
C

/* Copyright (c) 2002,2007-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/sched.h>
#include "kgsl.h"
#include "kgsl_cffdump.h"
#include "kgsl_sharedmem.h"
#include "z180.h"
#include "z180_reg.h"
#include "z180_trace.h"
#define DRIVER_VERSION_MAJOR 3
#define DRIVER_VERSION_MINOR 1
#define GSL_VGC_INT_MASK \
(REG_VGC_IRQSTATUS__MH_MASK | \
REG_VGC_IRQSTATUS__G2D_MASK | \
REG_VGC_IRQSTATUS__FIFO_MASK)
#define VGV3_NEXTCMD_JUMP 0x01
#define VGV3_NEXTCMD_NEXTCMD_FSHIFT 12
#define VGV3_NEXTCMD_NEXTCMD_FMASK 0x7
#define VGV3_CONTROL_MARKADD_FSHIFT 0
#define VGV3_CONTROL_MARKADD_FMASK 0xfff
#define Z180_MARKER_SIZE 10
#define Z180_CALL_CMD 0x1000
#define Z180_MARKER_CMD 0x8000
#define Z180_STREAM_END_CMD 0x9000
#define Z180_STREAM_PACKET 0x7C000176
#define Z180_STREAM_PACKET_CALL 0x7C000275
#define NUMTEXUNITS 4
#define TEXUNITREGCOUNT 25
#define VG_REGCOUNT 0x39
#define PACKETSIZE_BEGIN 3
#define PACKETSIZE_G2DCOLOR 2
#define PACKETSIZE_TEXUNIT (TEXUNITREGCOUNT * 2)
#define PACKETSIZE_REG (VG_REGCOUNT * 2)
#define PACKETSIZE_STATE (PACKETSIZE_TEXUNIT * NUMTEXUNITS + \
PACKETSIZE_REG + PACKETSIZE_BEGIN + \
PACKETSIZE_G2DCOLOR)
#define PACKETSIZE_STATESTREAM (ALIGN((PACKETSIZE_STATE * \
sizeof(unsigned int)), 32) / \
sizeof(unsigned int))
#define Z180_INVALID_CONTEXT UINT_MAX
/* z180 MH arbiter config*/
#define Z180_CFG_MHARB \
(0x10 \
| (0 << MH_ARBITER_CONFIG__SAME_PAGE_GRANULARITY__SHIFT) \
| (1 << MH_ARBITER_CONFIG__L1_ARB_ENABLE__SHIFT) \
| (1 << MH_ARBITER_CONFIG__L1_ARB_HOLD_ENABLE__SHIFT) \
| (0 << MH_ARBITER_CONFIG__L2_ARB_CONTROL__SHIFT) \
| (1 << MH_ARBITER_CONFIG__PAGE_SIZE__SHIFT) \
| (1 << MH_ARBITER_CONFIG__TC_REORDER_ENABLE__SHIFT) \
| (1 << MH_ARBITER_CONFIG__TC_ARB_HOLD_ENABLE__SHIFT) \
| (0 << MH_ARBITER_CONFIG__IN_FLIGHT_LIMIT_ENABLE__SHIFT) \
| (0x8 << MH_ARBITER_CONFIG__IN_FLIGHT_LIMIT__SHIFT) \
| (1 << MH_ARBITER_CONFIG__CP_CLNT_ENABLE__SHIFT) \
| (1 << MH_ARBITER_CONFIG__VGT_CLNT_ENABLE__SHIFT) \
| (1 << MH_ARBITER_CONFIG__TC_CLNT_ENABLE__SHIFT) \
| (1 << MH_ARBITER_CONFIG__RB_CLNT_ENABLE__SHIFT) \
| (1 << MH_ARBITER_CONFIG__PA_CLNT_ENABLE__SHIFT))
#define Z180_TIMESTAMP_EPSILON 20000
#define Z180_IDLE_COUNT_MAX 1000000
enum z180_cmdwindow_type {
Z180_CMDWINDOW_2D = 0x00000000,
Z180_CMDWINDOW_MMU = 0x00000002,
};
#define Z180_CMDWINDOW_TARGET_MASK 0x000000FF
#define Z180_CMDWINDOW_ADDR_MASK 0x00FFFF00
#define Z180_CMDWINDOW_TARGET_SHIFT 0
#define Z180_CMDWINDOW_ADDR_SHIFT 8
static int z180_init(struct kgsl_device *device);
static int z180_start(struct kgsl_device *device);
static int z180_stop(struct kgsl_device *device);
static int z180_wait(struct kgsl_device *device,
struct kgsl_context *context,
unsigned int timestamp,
unsigned int msecs);
static void z180_regread(struct kgsl_device *device,
unsigned int offsetwords,
unsigned int *value);
static void z180_regwrite(struct kgsl_device *device,
unsigned int offsetwords,
unsigned int value);
static void z180_cmdwindow_write(struct kgsl_device *device,
unsigned int addr,
unsigned int data);
#define Z180_MMU_CONFIG \
(0x01 \
| (MMU_CONFIG << MH_MMU_CONFIG__RB_W_CLNT_BEHAVIOR__SHIFT) \
| (MMU_CONFIG << MH_MMU_CONFIG__CP_W_CLNT_BEHAVIOR__SHIFT) \
| (MMU_CONFIG << MH_MMU_CONFIG__CP_R0_CLNT_BEHAVIOR__SHIFT) \
| (MMU_CONFIG << MH_MMU_CONFIG__CP_R1_CLNT_BEHAVIOR__SHIFT) \
| (MMU_CONFIG << MH_MMU_CONFIG__CP_R2_CLNT_BEHAVIOR__SHIFT) \
| (MMU_CONFIG << MH_MMU_CONFIG__CP_R3_CLNT_BEHAVIOR__SHIFT) \
| (MMU_CONFIG << MH_MMU_CONFIG__CP_R4_CLNT_BEHAVIOR__SHIFT) \
| (MMU_CONFIG << MH_MMU_CONFIG__VGT_R0_CLNT_BEHAVIOR__SHIFT) \
| (MMU_CONFIG << MH_MMU_CONFIG__VGT_R1_CLNT_BEHAVIOR__SHIFT) \
| (MMU_CONFIG << MH_MMU_CONFIG__TC_R_CLNT_BEHAVIOR__SHIFT) \
| (MMU_CONFIG << MH_MMU_CONFIG__PA_W_CLNT_BEHAVIOR__SHIFT))
#define KGSL_LOG_LEVEL_DEFAULT 3
static const struct kgsl_functable z180_functable;
static struct z180_device device_2d0 = {
.dev = {
KGSL_DEVICE_COMMON_INIT(device_2d0.dev),
.name = DEVICE_2D0_NAME,
.id = KGSL_DEVICE_2D0,
.mh = {
.mharb = Z180_CFG_MHARB,
.mh_intf_cfg1 = 0x00032f07,
.mh_intf_cfg2 = 0x004b274f,
/* turn off memory protection unit by setting
acceptable physical address range to include
all pages. */
.mpu_base = 0x00000000,
.mpu_range = 0xFFFFF000,
},
.mmu = {
.config = Z180_MMU_CONFIG,
},
.pwrctrl = {
.irq_name = KGSL_2D0_IRQ,
},
.iomemname = KGSL_2D0_REG_MEMORY,
.ftbl = &z180_functable,
.cmd_log = KGSL_LOG_LEVEL_DEFAULT,
.ctxt_log = KGSL_LOG_LEVEL_DEFAULT,
.drv_log = KGSL_LOG_LEVEL_DEFAULT,
.mem_log = KGSL_LOG_LEVEL_DEFAULT,
.pwr_log = KGSL_LOG_LEVEL_DEFAULT,
.pm_dump_enable = 0,
},
.cmdwin_lock = __SPIN_LOCK_INITIALIZER(device_2d1.cmdwin_lock),
};
static struct z180_device device_2d1 = {
.dev = {
KGSL_DEVICE_COMMON_INIT(device_2d1.dev),
.name = DEVICE_2D1_NAME,
.id = KGSL_DEVICE_2D1,
.mh = {
.mharb = Z180_CFG_MHARB,
.mh_intf_cfg1 = 0x00032f07,
.mh_intf_cfg2 = 0x004b274f,
/* turn off memory protection unit by setting
acceptable physical address range to include
all pages. */
.mpu_base = 0x00000000,
.mpu_range = 0xFFFFF000,
},
.mmu = {
.config = Z180_MMU_CONFIG,
},
.pwrctrl = {
.irq_name = KGSL_2D1_IRQ,
},
.iomemname = KGSL_2D1_REG_MEMORY,
.ftbl = &z180_functable,
},
.cmdwin_lock = __SPIN_LOCK_INITIALIZER(device_2d1.cmdwin_lock),
};
static irqreturn_t z180_irq_handler(struct kgsl_device *device)
{
irqreturn_t result = IRQ_NONE;
unsigned int status;
struct z180_device *z180_dev = Z180_DEVICE(device);
z180_regread(device, ADDR_VGC_IRQSTATUS >> 2, &status);
trace_kgsl_z180_irq_status(device, status);
if (status & GSL_VGC_INT_MASK) {
z180_regwrite(device,
ADDR_VGC_IRQSTATUS >> 2, status & GSL_VGC_INT_MASK);
result = IRQ_HANDLED;
if (status & REG_VGC_IRQSTATUS__FIFO_MASK)
KGSL_DRV_ERR(device, "z180 fifo interrupt\n");
if (status & REG_VGC_IRQSTATUS__MH_MASK)
kgsl_mh_intrcallback(device);
if (status & REG_VGC_IRQSTATUS__G2D_MASK) {
int count;
z180_regread(device,
ADDR_VGC_IRQ_ACTIVE_CNT >> 2,
&count);
count >>= 8;
count &= 255;
z180_dev->timestamp += count;
queue_work(device->work_queue, &device->ts_expired_ws);
wake_up_interruptible(&device->wait_queue);
}
}
if (device->requested_state == KGSL_STATE_NONE) {
kgsl_pwrctrl_request_state(device, KGSL_STATE_NAP);
queue_work(device->work_queue, &device->idle_check_ws);
}
mod_timer_pending(&device->idle_timer,
jiffies + device->pwrctrl.interval_timeout);
return result;
}
static void z180_cleanup_pt(struct kgsl_device *device,
struct kgsl_pagetable *pagetable)
{
struct z180_device *z180_dev = Z180_DEVICE(device);
kgsl_mmu_unmap(pagetable, &device->mmu.setstate_memory);
kgsl_mmu_unmap(pagetable, &device->memstore);
kgsl_mmu_unmap(pagetable, &z180_dev->ringbuffer.cmdbufdesc);
}
static int z180_setup_pt(struct kgsl_device *device,
struct kgsl_pagetable *pagetable)
{
int result = 0;
struct z180_device *z180_dev = Z180_DEVICE(device);
result = kgsl_mmu_map_global(pagetable, &device->mmu.setstate_memory);
if (result)
goto error;
result = kgsl_mmu_map_global(pagetable, &device->memstore);
if (result)
goto error_unmap_dummy;
result = kgsl_mmu_map_global(pagetable,
&z180_dev->ringbuffer.cmdbufdesc);
if (result)
goto error_unmap_memstore;
/*
* Set the mpu end to the last "normal" global memory we use.
* For the IOMMU, this will be used to restrict access to the
* mapped registers.
*/
device->mh.mpu_range = z180_dev->ringbuffer.cmdbufdesc.gpuaddr +
z180_dev->ringbuffer.cmdbufdesc.size;
return result;
error_unmap_dummy:
kgsl_mmu_unmap(pagetable, &device->mmu.setstate_memory);
error_unmap_memstore:
kgsl_mmu_unmap(pagetable, &device->memstore);
error:
return result;
}
static inline unsigned int rb_offset(unsigned int timestamp)
{
return (timestamp % Z180_PACKET_COUNT)
*sizeof(unsigned int)*(Z180_PACKET_SIZE);
}
static inline unsigned int rb_gpuaddr(struct z180_device *z180_dev,
unsigned int timestamp)
{
return z180_dev->ringbuffer.cmdbufdesc.gpuaddr + rb_offset(timestamp);
}
static void addmarker(struct z180_ringbuffer *rb, unsigned int timestamp)
{
char *ptr = (char *)(rb->cmdbufdesc.hostptr);
unsigned int *p = (unsigned int *)(ptr + rb_offset(timestamp));
*p++ = Z180_STREAM_PACKET;
*p++ = (Z180_MARKER_CMD | 5);
*p++ = ADDR_VGV3_LAST << 24;
*p++ = ADDR_VGV3_LAST << 24;
*p++ = ADDR_VGV3_LAST << 24;
*p++ = Z180_STREAM_PACKET;
*p++ = 5;
*p++ = ADDR_VGV3_LAST << 24;
*p++ = ADDR_VGV3_LAST << 24;
*p++ = ADDR_VGV3_LAST << 24;
}
static void addcmd(struct z180_ringbuffer *rb, unsigned int timestamp,
unsigned int cmd, unsigned int nextcnt)
{
char * ptr = (char *)(rb->cmdbufdesc.hostptr);
unsigned int *p = (unsigned int *)(ptr + (rb_offset(timestamp)
+ (Z180_MARKER_SIZE * sizeof(unsigned int))));
*p++ = Z180_STREAM_PACKET_CALL;
*p++ = cmd;
*p++ = Z180_CALL_CMD | nextcnt;
*p++ = ADDR_VGV3_LAST << 24;
*p++ = ADDR_VGV3_LAST << 24;
}
static void z180_cmdstream_start(struct kgsl_device *device)
{
struct z180_device *z180_dev = Z180_DEVICE(device);
unsigned int cmd = VGV3_NEXTCMD_JUMP << VGV3_NEXTCMD_NEXTCMD_FSHIFT;
addmarker(&z180_dev->ringbuffer, 0);
z180_cmdwindow_write(device, ADDR_VGV3_MODE, 4);
z180_cmdwindow_write(device, ADDR_VGV3_NEXTADDR,
rb_gpuaddr(z180_dev, z180_dev->current_timestamp));
z180_cmdwindow_write(device, ADDR_VGV3_NEXTCMD, cmd | 5);
z180_cmdwindow_write(device, ADDR_VGV3_WRITEADDR,
device->memstore.gpuaddr);
cmd = (int)(((1) & VGV3_CONTROL_MARKADD_FMASK)
<< VGV3_CONTROL_MARKADD_FSHIFT);
z180_cmdwindow_write(device, ADDR_VGV3_CONTROL, cmd);
z180_cmdwindow_write(device, ADDR_VGV3_CONTROL, 0);
}
static int room_in_rb(struct z180_device *device)
{
int ts_diff;
ts_diff = device->current_timestamp - device->timestamp;
return ts_diff < Z180_PACKET_COUNT;
}
/**
* z180_idle() - Idle the 2D device
* @device: Pointer to the KGSL device struct for the Z180
*
* wait until the z180 submission queue is idle
*/
int z180_idle(struct kgsl_device *device)
{
int status = 0;
struct z180_device *z180_dev = Z180_DEVICE(device);
if (timestamp_cmp(z180_dev->current_timestamp,
z180_dev->timestamp) > 0)
status = z180_wait(device, NULL,
z180_dev->current_timestamp,
Z180_IDLE_TIMEOUT);
if (status)
KGSL_DRV_ERR(device, "z180_waittimestamp() timed out\n");
return status;
}
int
z180_cmdstream_issueibcmds(struct kgsl_device_private *dev_priv,
struct kgsl_context *context,
struct kgsl_cmdbatch *cmdbatch,
uint32_t *timestamp)
{
long result = 0;
unsigned int ofs = PACKETSIZE_STATESTREAM * sizeof(unsigned int);
unsigned int cnt = 5;
unsigned int old_timestamp = 0;
unsigned int nextcnt = Z180_STREAM_END_CMD | 5;
struct kgsl_mem_entry *entry = NULL;
unsigned int cmd;
struct kgsl_device *device = dev_priv->device;
struct kgsl_pagetable *pagetable = dev_priv->process_priv->pagetable;
struct z180_device *z180_dev = Z180_DEVICE(device);
unsigned int sizedwords;
unsigned int numibs;
struct kgsl_ibdesc *ibdesc;
mutex_lock(&device->mutex);
result = kgsl_active_count_get(device);
if (result)
goto error_active_count;
if (cmdbatch == NULL) {
result = EINVAL;
goto error;
}
ibdesc = cmdbatch->ibdesc;
numibs = cmdbatch->ibcount;
if (device->state & KGSL_STATE_HUNG) {
result = -EINVAL;
goto error;
}
if (numibs != 1) {
KGSL_DRV_ERR(device, "Invalid number of ibs: %d\n", numibs);
result = -EINVAL;
goto error;
}
cmd = ibdesc[0].gpuaddr;
sizedwords = ibdesc[0].sizedwords;
/*
* Get a kernel mapping to the IB for monkey patching.
* See the end of this function.
*/
entry = kgsl_sharedmem_find_region(dev_priv->process_priv, cmd,
sizedwords);
if (entry == NULL) {
KGSL_DRV_ERR(device, "Bad ibdesc: gpuaddr 0x%x size %d\n",
cmd, sizedwords);
result = -EINVAL;
goto error;
}
/*
* This will only map memory if it exists, otherwise it will reuse the
* mapping. And the 2d userspace reuses IBs so we likely won't create
* too many mappings.
*/
if (kgsl_gpuaddr_to_vaddr(&entry->memdesc, cmd) == NULL) {
KGSL_DRV_ERR(device,
"Cannot make kernel mapping for gpuaddr 0x%x\n",
cmd);
result = -EINVAL;
goto error_put;
}
KGSL_CMD_INFO(device, "ctxt %d ibaddr 0x%08x sizedwords %d\n",
context->id, cmd, sizedwords);
/* context switch */
if ((context->id != (int)z180_dev->ringbuffer.prevctx) ||
(cmdbatch->flags & KGSL_CONTEXT_CTX_SWITCH)) {
KGSL_CMD_INFO(device, "context switch %d -> %d\n",
context->id, z180_dev->ringbuffer.prevctx);
kgsl_mmu_setstate(&device->mmu, pagetable,
KGSL_MEMSTORE_GLOBAL);
cnt = PACKETSIZE_STATESTREAM;
ofs = 0;
}
result = kgsl_setstate(&device->mmu,
KGSL_MEMSTORE_GLOBAL,
kgsl_mmu_pt_get_flags(device->mmu.hwpagetable,
device->id));
if (result < 0)
goto error;
result = wait_event_interruptible_timeout(device->wait_queue,
room_in_rb(z180_dev),
msecs_to_jiffies(KGSL_TIMEOUT_DEFAULT));
if (result < 0) {
KGSL_CMD_ERR(device, "wait_event_interruptible_timeout "
"failed: %ld\n", result);
goto error_put;
}
result = 0;
old_timestamp = z180_dev->current_timestamp;
z180_dev->current_timestamp++;
*timestamp = z180_dev->current_timestamp;
z180_dev->ringbuffer.prevctx = context->id;
addcmd(&z180_dev->ringbuffer, old_timestamp, cmd + ofs, cnt);
kgsl_pwrscale_busy(device);
/* Make sure the next ringbuffer entry has a marker */
addmarker(&z180_dev->ringbuffer, z180_dev->current_timestamp);
/* monkey patch the IB so that it jumps back to the ringbuffer */
kgsl_sharedmem_writel(device, &entry->memdesc,
((sizedwords + 1) * sizeof(unsigned int)),
rb_gpuaddr(z180_dev, z180_dev->current_timestamp));
kgsl_sharedmem_writel(device, &entry->memdesc,
((sizedwords + 2) * sizeof(unsigned int)),
nextcnt);
/* sync memory before activating the hardware for the new command*/
mb();
cmd = (int)(((2) & VGV3_CONTROL_MARKADD_FMASK)
<< VGV3_CONTROL_MARKADD_FSHIFT);
z180_cmdwindow_write(device, ADDR_VGV3_CONTROL, cmd);
z180_cmdwindow_write(device, ADDR_VGV3_CONTROL, 0);
error_put:
kgsl_mem_entry_put(entry);
error:
kgsl_trace_issueibcmds(device, context->id, cmdbatch,
*timestamp, cmdbatch ? cmdbatch->flags : 0, result, 0);
kgsl_active_count_put(device);
error_active_count:
mutex_unlock(&device->mutex);
return (int)result;
}
static int z180_ringbuffer_init(struct kgsl_device *device)
{
struct z180_device *z180_dev = Z180_DEVICE(device);
memset(&z180_dev->ringbuffer, 0, sizeof(struct z180_ringbuffer));
z180_dev->ringbuffer.prevctx = Z180_INVALID_CONTEXT;
z180_dev->ringbuffer.cmdbufdesc.flags = KGSL_MEMFLAGS_GPUREADONLY;
return kgsl_allocate_contiguous(&z180_dev->ringbuffer.cmdbufdesc,
Z180_RB_SIZE);
}
static void z180_ringbuffer_close(struct kgsl_device *device)
{
struct z180_device *z180_dev = Z180_DEVICE(device);
kgsl_sharedmem_free(&z180_dev->ringbuffer.cmdbufdesc);
memset(&z180_dev->ringbuffer, 0, sizeof(struct z180_ringbuffer));
}
static int __devinit z180_probe(struct platform_device *pdev)
{
int status = -EINVAL;
struct kgsl_device *device = NULL;
struct z180_device *z180_dev;
device = (struct kgsl_device *)pdev->id_entry->driver_data;
device->parentdev = &pdev->dev;
z180_dev = Z180_DEVICE(device);
status = z180_ringbuffer_init(device);
if (status != 0)
goto error;
status = kgsl_device_platform_probe(device);
if (status)
goto error_close_ringbuffer;
kgsl_pwrscale_init(device);
kgsl_pwrscale_attach_policy(device, Z180_DEFAULT_PWRSCALE_POLICY);
return status;
error_close_ringbuffer:
z180_ringbuffer_close(device);
error:
device->parentdev = NULL;
return status;
}
static int __devexit z180_remove(struct platform_device *pdev)
{
struct kgsl_device *device = NULL;
device = (struct kgsl_device *)pdev->id_entry->driver_data;
kgsl_pwrscale_close(device);
kgsl_device_platform_remove(device);
z180_ringbuffer_close(device);
return 0;
}
static int z180_init(struct kgsl_device *device)
{
struct z180_device *z180_dev = Z180_DEVICE(device);
z180_dev->timestamp = 0;
z180_dev->current_timestamp = 0;
return 0;
}
static int z180_start(struct kgsl_device *device)
{
int status = 0;
kgsl_pwrctrl_set_state(device, KGSL_STATE_INIT);
kgsl_pwrctrl_enable(device);
/* Set interrupts to 0 to ensure a good state */
z180_regwrite(device, (ADDR_VGC_IRQENABLE >> 2), 0x0);
kgsl_mh_start(device);
status = kgsl_mmu_start(device);
if (status)
goto error_clk_off;
z180_cmdstream_start(device);
kgsl_pwrctrl_irq(device, KGSL_PWRFLAGS_ON);
device->ftbl->irqctrl(device, 1);
device->reset_counter++;
return 0;
error_clk_off:
z180_regwrite(device, (ADDR_VGC_IRQENABLE >> 2), 0);
kgsl_pwrctrl_disable(device);
return status;
}
static int z180_stop(struct kgsl_device *device)
{
int ret;
device->ftbl->irqctrl(device, 0);
ret = z180_idle(device);
if (ret)
return ret;
del_timer_sync(&device->idle_timer);
kgsl_mmu_stop(&device->mmu);
/* Disable the clocks before the power rail. */
kgsl_pwrctrl_irq(device, KGSL_PWRFLAGS_OFF);
kgsl_pwrctrl_disable(device);
return 0;
}
static int z180_getproperty(struct kgsl_device *device,
enum kgsl_property_type type,
void *value,
unsigned int sizebytes)
{
int status = -EINVAL;
switch (type) {
case KGSL_PROP_DEVICE_INFO:
{
struct kgsl_devinfo devinfo;
if (sizebytes != sizeof(devinfo)) {
status = -EINVAL;
break;
}
memset(&devinfo, 0, sizeof(devinfo));
devinfo.device_id = device->id+1;
devinfo.chip_id = 0;
devinfo.mmu_enabled = kgsl_mmu_enabled();
if (copy_to_user(value, &devinfo, sizeof(devinfo)) !=
0) {
status = -EFAULT;
break;
}
status = 0;
}
break;
case KGSL_PROP_MMU_ENABLE:
{
int mmu_prop = kgsl_mmu_enabled();
if (sizebytes != sizeof(int)) {
status = -EINVAL;
break;
}
if (copy_to_user(value, &mmu_prop, sizeof(mmu_prop))) {
status = -EFAULT;
break;
}
status = 0;
}
break;
default:
KGSL_DRV_ERR(device, "invalid property: %d\n", type);
status = -EINVAL;
}
return status;
}
static bool z180_isidle(struct kgsl_device *device)
{
struct z180_device *z180_dev = Z180_DEVICE(device);
return (timestamp_cmp(z180_dev->timestamp,
z180_dev->current_timestamp) == 0) ? true : false;
}
static int z180_suspend_context(struct kgsl_device *device)
{
struct z180_device *z180_dev = Z180_DEVICE(device);
z180_dev->ringbuffer.prevctx = Z180_INVALID_CONTEXT;
return 0;
}
/* Not all Z180 registers are directly accessible.
* The _z180_(read|write)_simple functions below handle the ones that are.
*/
static void _z180_regread_simple(struct kgsl_device *device,
unsigned int offsetwords,
unsigned int *value)
{
unsigned int *reg;
BUG_ON(offsetwords * sizeof(uint32_t) >= device->reg_len);
reg = (unsigned int *)(device->reg_virt + (offsetwords << 2));
/*ensure this read finishes before the next one.
* i.e. act like normal readl() */
*value = __raw_readl(reg);
rmb();
}
static void _z180_regwrite_simple(struct kgsl_device *device,
unsigned int offsetwords,
unsigned int value)
{
unsigned int *reg;
BUG_ON(offsetwords*sizeof(uint32_t) >= device->reg_len);
reg = (unsigned int *)(device->reg_virt + (offsetwords << 2));
kgsl_cffdump_regwrite(device, offsetwords << 2, value);
/*ensure previous writes post before this one,
* i.e. act like normal writel() */
wmb();
__raw_writel(value, reg);
}
/* The MH registers must be accessed through via a 2 step write, (read|write)
* process. These registers may be accessed from interrupt context during
* the handling of MH or MMU error interrupts. Therefore a spin lock is used
* to ensure that the 2 step sequence is not interrupted.
*/
static void _z180_regread_mmu(struct kgsl_device *device,
unsigned int offsetwords,
unsigned int *value)
{
struct z180_device *z180_dev = Z180_DEVICE(device);
unsigned long flags;
spin_lock_irqsave(&z180_dev->cmdwin_lock, flags);
_z180_regwrite_simple(device, (ADDR_VGC_MH_READ_ADDR >> 2),
offsetwords);
_z180_regread_simple(device, (ADDR_VGC_MH_DATA_ADDR >> 2), value);
spin_unlock_irqrestore(&z180_dev->cmdwin_lock, flags);
}
static void _z180_regwrite_mmu(struct kgsl_device *device,
unsigned int offsetwords,
unsigned int value)
{
struct z180_device *z180_dev = Z180_DEVICE(device);
unsigned int cmdwinaddr;
unsigned long flags;
cmdwinaddr = ((Z180_CMDWINDOW_MMU << Z180_CMDWINDOW_TARGET_SHIFT) &
Z180_CMDWINDOW_TARGET_MASK);
cmdwinaddr |= ((offsetwords << Z180_CMDWINDOW_ADDR_SHIFT) &
Z180_CMDWINDOW_ADDR_MASK);
spin_lock_irqsave(&z180_dev->cmdwin_lock, flags);
_z180_regwrite_simple(device, ADDR_VGC_MMUCOMMANDSTREAM >> 2,
cmdwinaddr);
_z180_regwrite_simple(device, ADDR_VGC_MMUCOMMANDSTREAM >> 2, value);
spin_unlock_irqrestore(&z180_dev->cmdwin_lock, flags);
}
/* the rest of the code doesn't want to think about if it is writing mmu
* registers or normal registers so handle it here
*/
static void z180_regread(struct kgsl_device *device,
unsigned int offsetwords,
unsigned int *value)
{
if (!in_interrupt())
kgsl_pre_hwaccess(device);
if ((offsetwords >= MH_ARBITER_CONFIG &&
offsetwords <= MH_AXI_HALT_CONTROL) ||
(offsetwords >= MH_MMU_CONFIG &&
offsetwords <= MH_MMU_MPU_END)) {
_z180_regread_mmu(device, offsetwords, value);
} else {
_z180_regread_simple(device, offsetwords, value);
}
}
static void z180_regwrite(struct kgsl_device *device,
unsigned int offsetwords,
unsigned int value)
{
if (!in_interrupt())
kgsl_pre_hwaccess(device);
if ((offsetwords >= MH_ARBITER_CONFIG &&
offsetwords <= MH_CLNT_INTF_CTRL_CONFIG2) ||
(offsetwords >= MH_MMU_CONFIG &&
offsetwords <= MH_MMU_MPU_END)) {
_z180_regwrite_mmu(device, offsetwords, value);
} else {
_z180_regwrite_simple(device, offsetwords, value);
}
}
static void z180_cmdwindow_write(struct kgsl_device *device,
unsigned int addr, unsigned int data)
{
unsigned int cmdwinaddr;
cmdwinaddr = ((Z180_CMDWINDOW_2D << Z180_CMDWINDOW_TARGET_SHIFT) &
Z180_CMDWINDOW_TARGET_MASK);
cmdwinaddr |= ((addr << Z180_CMDWINDOW_ADDR_SHIFT) &
Z180_CMDWINDOW_ADDR_MASK);
z180_regwrite(device, ADDR_VGC_COMMANDSTREAM >> 2, cmdwinaddr);
z180_regwrite(device, ADDR_VGC_COMMANDSTREAM >> 2, data);
}
static unsigned int z180_readtimestamp(struct kgsl_device *device,
struct kgsl_context *context, enum kgsl_timestamp_type type)
{
struct z180_device *z180_dev = Z180_DEVICE(device);
(void)context;
/* get current EOP timestamp */
return z180_dev->timestamp;
}
static int z180_waittimestamp(struct kgsl_device *device,
struct kgsl_context *context,
unsigned int timestamp,
unsigned int msecs)
{
int status = -EINVAL;
/* Don't wait forever, set a max of Z180_IDLE_TIMEOUT */
if (msecs == -1)
msecs = Z180_IDLE_TIMEOUT;
status = kgsl_active_count_get(device);
if (!status) {
mutex_unlock(&device->mutex);
status = z180_wait(device, context, timestamp, msecs);
mutex_lock(&device->mutex);
kgsl_active_count_put(device);
}
return status;
}
static int z180_wait(struct kgsl_device *device,
struct kgsl_context *context,
unsigned int timestamp,
unsigned int msecs)
{
int status = -EINVAL;
long timeout = 0;
timeout = wait_io_event_interruptible_timeout(
device->wait_queue,
kgsl_check_timestamp(device, context, timestamp),
msecs_to_jiffies(msecs));
if (timeout > 0)
status = 0;
else if (timeout == 0) {
status = -ETIMEDOUT;
kgsl_pwrctrl_set_state(device, KGSL_STATE_HUNG);
kgsl_postmortem_dump(device, 0);
} else
status = timeout;
return status;
}
struct kgsl_context *
z180_drawctxt_create(struct kgsl_device_private *dev_priv,
uint32_t *flags)
{
int ret;
struct kgsl_context *context = kzalloc(sizeof(*context), GFP_KERNEL);
if (context == NULL)
return ERR_PTR(-ENOMEM);
ret = kgsl_context_init(dev_priv, context);
if (ret != 0) {
kfree(context);
return ERR_PTR(ret);
}
return context;
}
static int
z180_drawctxt_detach(struct kgsl_context *context)
{
int ret;
struct kgsl_device *device;
struct z180_device *z180_dev;
device = context->device;
z180_dev = Z180_DEVICE(device);
ret = kgsl_active_count_get(device);
if (ret)
return ret;
z180_idle(device);
if (z180_dev->ringbuffer.prevctx == context->id) {
z180_dev->ringbuffer.prevctx = Z180_INVALID_CONTEXT;
device->mmu.hwpagetable = device->mmu.defaultpagetable;
/* Ignore the result - we are going down anyway */
kgsl_setstate(&device->mmu, KGSL_MEMSTORE_GLOBAL,
KGSL_MMUFLAGS_PTUPDATE);
}
kgsl_active_count_put(device);
return 0;
}
static void
z180_drawctxt_destroy(struct kgsl_context *context)
{
kfree(context);
}
static void z180_power_stats(struct kgsl_device *device,
struct kgsl_power_stats *stats)
{
struct kgsl_pwrctrl *pwr = &device->pwrctrl;
s64 tmp = ktime_to_us(ktime_get());
if (pwr->time == 0) {
pwr->time = tmp;
stats->total_time = 0;
stats->busy_time = 0;
} else {
stats->total_time = tmp - pwr->time;
pwr->time = tmp;
stats->busy_time = tmp - device->on_time;
device->on_time = tmp;
}
}
static void z180_irqctrl(struct kgsl_device *device, int state)
{
/* Control interrupts for Z180 and the Z180 MMU */
if (state) {
z180_regwrite(device, (ADDR_VGC_IRQENABLE >> 2), 3);
z180_regwrite(device, MH_INTERRUPT_MASK,
kgsl_mmu_get_int_mask());
} else {
z180_regwrite(device, (ADDR_VGC_IRQENABLE >> 2), 0);
z180_regwrite(device, MH_INTERRUPT_MASK, 0);
}
}
static unsigned int z180_gpuid(struct kgsl_device *device, unsigned int *chipid)
{
if (chipid != NULL)
*chipid = 0;
/* Standard KGSL gpuid format:
* top word is 0x0002 for 2D or 0x0003 for 3D
* Bottom word is core specific identifer
*/
return (0x0002 << 16) | 180;
}
static const struct kgsl_functable z180_functable = {
/* Mandatory functions */
.regread = z180_regread,
.regwrite = z180_regwrite,
.idle = z180_idle,
.isidle = z180_isidle,
.suspend_context = z180_suspend_context,
.init = z180_init,
.start = z180_start,
.stop = z180_stop,
.getproperty = z180_getproperty,
.waittimestamp = z180_waittimestamp,
.readtimestamp = z180_readtimestamp,
.issueibcmds = z180_cmdstream_issueibcmds,
.setup_pt = z180_setup_pt,
.cleanup_pt = z180_cleanup_pt,
.power_stats = z180_power_stats,
.irqctrl = z180_irqctrl,
.gpuid = z180_gpuid,
.irq_handler = z180_irq_handler,
.drain = z180_idle, /* drain == idle for the z180 */
/* Optional functions */
.drawctxt_create = z180_drawctxt_create,
.drawctxt_detach = z180_drawctxt_detach,
.drawctxt_destroy = z180_drawctxt_destroy,
.ioctl = NULL,
.postmortem_dump = z180_dump,
};
static struct platform_device_id z180_id_table[] = {
{ DEVICE_2D0_NAME, (kernel_ulong_t)&device_2d0.dev, },
{ DEVICE_2D1_NAME, (kernel_ulong_t)&device_2d1.dev, },
{ },
};
MODULE_DEVICE_TABLE(platform, z180_id_table);
static struct platform_driver z180_platform_driver = {
.probe = z180_probe,
.remove = __devexit_p(z180_remove),
.suspend = kgsl_suspend_driver,
.resume = kgsl_resume_driver,
.id_table = z180_id_table,
.driver = {
.owner = THIS_MODULE,
.name = DEVICE_2D_NAME,
.pm = &kgsl_pm_ops,
}
};
static int __init kgsl_2d_init(void)
{
return platform_driver_register(&z180_platform_driver);
}
static void __exit kgsl_2d_exit(void)
{
platform_driver_unregister(&z180_platform_driver);
}
module_init(kgsl_2d_init);
module_exit(kgsl_2d_exit);
MODULE_DESCRIPTION("2D Graphics driver");
MODULE_VERSION("1.2");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:kgsl_2d");