android_kernel_google_msm/drivers/power/pm8921-charger.c
choongryeol.lee 0338875786 power: pm8921-charger: prevent recharging when batt is overheat
When battery is forced to stop charging by overheat, re-charging
should not be initiated even if re-charging condition is satisfied.

Change-Id: I0070039a186ccf3f12c0e79a8696a7aa3c61e538
2013-03-04 12:46:23 -08:00

4692 lines
121 KiB
C

/* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/platform_device.h>
#include <linux/errno.h>
#include <linux/mfd/pm8xxx/pm8921-charger.h>
#include <linux/mfd/pm8xxx/pm8921-bms.h>
#include <linux/mfd/pm8xxx/pm8xxx-adc.h>
#include <linux/mfd/pm8xxx/ccadc.h>
#include <linux/mfd/pm8xxx/core.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/workqueue.h>
#include <linux/debugfs.h>
#include <linux/slab.h>
#include <linux/mfd/pm8xxx/batt-alarm.h>
#include <mach/msm_xo.h>
#include <mach/msm_hsusb.h>
#define CHG_BUCK_CLOCK_CTRL 0x14
#define PBL_ACCESS1 0x04
#define PBL_ACCESS2 0x05
#define SYS_CONFIG_1 0x06
#define SYS_CONFIG_2 0x07
#define CHG_CNTRL 0x204
#define CHG_IBAT_MAX 0x205
#define CHG_TEST 0x206
#define CHG_BUCK_CTRL_TEST1 0x207
#define CHG_BUCK_CTRL_TEST2 0x208
#define CHG_BUCK_CTRL_TEST3 0x209
#define COMPARATOR_OVERRIDE 0x20A
#define PSI_TXRX_SAMPLE_DATA_0 0x20B
#define PSI_TXRX_SAMPLE_DATA_1 0x20C
#define PSI_TXRX_SAMPLE_DATA_2 0x20D
#define PSI_TXRX_SAMPLE_DATA_3 0x20E
#define PSI_CONFIG_STATUS 0x20F
#define CHG_IBAT_SAFE 0x210
#define CHG_ITRICKLE 0x211
#define CHG_CNTRL_2 0x212
#define CHG_VBAT_DET 0x213
#define CHG_VTRICKLE 0x214
#define CHG_ITERM 0x215
#define CHG_CNTRL_3 0x216
#define CHG_VIN_MIN 0x217
#define CHG_TWDOG 0x218
#define CHG_TTRKL_MAX 0x219
#define CHG_TEMP_THRESH 0x21A
#define CHG_TCHG_MAX 0x21B
#define USB_OVP_CONTROL 0x21C
#define DC_OVP_CONTROL 0x21D
#define USB_OVP_TEST 0x21E
#define DC_OVP_TEST 0x21F
#define CHG_VDD_MAX 0x220
#define CHG_VDD_SAFE 0x221
#define CHG_VBAT_BOOT_THRESH 0x222
#define USB_OVP_TRIM 0x355
#define BUCK_CONTROL_TRIM1 0x356
#define BUCK_CONTROL_TRIM2 0x357
#define BUCK_CONTROL_TRIM3 0x358
#define BUCK_CONTROL_TRIM4 0x359
#define CHG_DEFAULTS_TRIM 0x35A
#define CHG_ITRIM 0x35B
#define CHG_TTRIM 0x35C
#define CHG_COMP_OVR 0x20A
#define IUSB_FINE_RES 0x2B6
#define OVP_USB_UVD 0x2B7
/* check EOC every 10 seconds */
#define EOC_CHECK_PERIOD_MS 10000
/* check for USB unplug every 200 msecs */
#define UNPLUG_CHECK_WAIT_PERIOD_MS 200
enum chg_fsm_state {
FSM_STATE_OFF_0 = 0,
FSM_STATE_BATFETDET_START_12 = 12,
FSM_STATE_BATFETDET_END_16 = 16,
FSM_STATE_ON_CHG_HIGHI_1 = 1,
FSM_STATE_ATC_2A = 2,
FSM_STATE_ATC_2B = 18,
FSM_STATE_ON_BAT_3 = 3,
FSM_STATE_ATC_FAIL_4 = 4 ,
FSM_STATE_DELAY_5 = 5,
FSM_STATE_ON_CHG_AND_BAT_6 = 6,
FSM_STATE_FAST_CHG_7 = 7,
FSM_STATE_TRKL_CHG_8 = 8,
FSM_STATE_CHG_FAIL_9 = 9,
FSM_STATE_EOC_10 = 10,
FSM_STATE_ON_CHG_VREGOK_11 = 11,
FSM_STATE_ATC_PAUSE_13 = 13,
FSM_STATE_FAST_CHG_PAUSE_14 = 14,
FSM_STATE_TRKL_CHG_PAUSE_15 = 15,
FSM_STATE_START_BOOT = 20,
FSM_STATE_FLCB_VREGOK = 21,
FSM_STATE_FLCB = 22,
};
struct fsm_state_to_batt_status {
enum chg_fsm_state fsm_state;
int batt_state;
};
static int pm8921_battery_gauge_alarm_notify(struct notifier_block *nb,
unsigned long status, void *unused);
static struct notifier_block alarm_notifier = {
.notifier_call = pm8921_battery_gauge_alarm_notify,
};
static struct fsm_state_to_batt_status map[] = {
{FSM_STATE_OFF_0, POWER_SUPPLY_STATUS_UNKNOWN},
{FSM_STATE_BATFETDET_START_12, POWER_SUPPLY_STATUS_UNKNOWN},
{FSM_STATE_BATFETDET_END_16, POWER_SUPPLY_STATUS_UNKNOWN},
/*
* for CHG_HIGHI_1 report NOT_CHARGING if battery missing,
* too hot/cold, charger too hot
*/
{FSM_STATE_ON_CHG_HIGHI_1, POWER_SUPPLY_STATUS_FULL},
{FSM_STATE_ATC_2A, POWER_SUPPLY_STATUS_CHARGING},
{FSM_STATE_ATC_2B, POWER_SUPPLY_STATUS_CHARGING},
{FSM_STATE_ON_BAT_3, POWER_SUPPLY_STATUS_DISCHARGING},
{FSM_STATE_ATC_FAIL_4, POWER_SUPPLY_STATUS_DISCHARGING},
{FSM_STATE_DELAY_5, POWER_SUPPLY_STATUS_UNKNOWN },
{FSM_STATE_ON_CHG_AND_BAT_6, POWER_SUPPLY_STATUS_CHARGING},
{FSM_STATE_FAST_CHG_7, POWER_SUPPLY_STATUS_CHARGING},
{FSM_STATE_TRKL_CHG_8, POWER_SUPPLY_STATUS_CHARGING},
{FSM_STATE_CHG_FAIL_9, POWER_SUPPLY_STATUS_DISCHARGING},
{FSM_STATE_EOC_10, POWER_SUPPLY_STATUS_FULL},
{FSM_STATE_ON_CHG_VREGOK_11, POWER_SUPPLY_STATUS_NOT_CHARGING},
{FSM_STATE_ATC_PAUSE_13, POWER_SUPPLY_STATUS_NOT_CHARGING},
{FSM_STATE_FAST_CHG_PAUSE_14, POWER_SUPPLY_STATUS_NOT_CHARGING},
{FSM_STATE_TRKL_CHG_PAUSE_15, POWER_SUPPLY_STATUS_NOT_CHARGING},
{FSM_STATE_START_BOOT, POWER_SUPPLY_STATUS_NOT_CHARGING},
{FSM_STATE_FLCB_VREGOK, POWER_SUPPLY_STATUS_NOT_CHARGING},
{FSM_STATE_FLCB, POWER_SUPPLY_STATUS_NOT_CHARGING},
};
enum chg_regulation_loop {
VDD_LOOP = BIT(3),
BAT_CURRENT_LOOP = BIT(2),
INPUT_CURRENT_LOOP = BIT(1),
INPUT_VOLTAGE_LOOP = BIT(0),
CHG_ALL_LOOPS = VDD_LOOP | BAT_CURRENT_LOOP
| INPUT_CURRENT_LOOP | INPUT_VOLTAGE_LOOP,
};
enum pmic_chg_interrupts {
USBIN_VALID_IRQ = 0,
USBIN_OV_IRQ,
BATT_INSERTED_IRQ,
VBATDET_LOW_IRQ,
USBIN_UV_IRQ,
VBAT_OV_IRQ,
CHGWDOG_IRQ,
VCP_IRQ,
ATCDONE_IRQ,
ATCFAIL_IRQ,
CHGDONE_IRQ,
CHGFAIL_IRQ,
CHGSTATE_IRQ,
LOOP_CHANGE_IRQ,
FASTCHG_IRQ,
TRKLCHG_IRQ,
BATT_REMOVED_IRQ,
BATTTEMP_HOT_IRQ,
CHGHOT_IRQ,
BATTTEMP_COLD_IRQ,
CHG_GONE_IRQ,
BAT_TEMP_OK_IRQ,
COARSE_DET_LOW_IRQ,
VDD_LOOP_IRQ,
VREG_OV_IRQ,
VBATDET_IRQ,
BATFET_IRQ,
PSI_IRQ,
DCIN_VALID_IRQ,
DCIN_OV_IRQ,
DCIN_UV_IRQ,
PM_CHG_MAX_INTS,
};
struct bms_notify {
int is_battery_full;
int is_charging;
struct work_struct work;
};
/**
* struct pm8921_chg_chip -device information
* @dev: device pointer to access the parent
* @usb_present: present status of usb
* @dc_present: present status of dc
* @usb_charger_current: usb current to charge the battery with used when
* the usb path is enabled or charging is resumed
* @safety_time: max time for which charging will happen
* @update_time: how frequently the userland needs to be updated
* @max_voltage_mv: the max volts the batt should be charged up to
* @min_voltage_mv: the min battery voltage before turning the FETon
* @uvd_voltage_mv: (PM8917 only) the falling UVD threshold voltage
* @alarm_voltage_mv: the battery alarm voltage
* @cool_temp_dc: the cool temp threshold in deciCelcius
* @warm_temp_dc: the warm temp threshold in deciCelcius
* @resume_voltage_delta: the voltage delta from vdd max at which the
* battery should resume charging
* @term_current: The charging based term current
*
*/
struct pm8921_chg_chip {
struct device *dev;
unsigned int usb_present;
unsigned int dc_present;
unsigned int usb_charger_current;
unsigned int max_bat_chg_current;
unsigned int pmic_chg_irq[PM_CHG_MAX_INTS];
unsigned int safety_time;
unsigned int ttrkl_time;
unsigned int update_time;
unsigned int max_voltage_mv;
unsigned int min_voltage_mv;
unsigned int uvd_voltage_mv;
unsigned int alarm_voltage_mv;
int cool_temp_dc;
int warm_temp_dc;
unsigned int temp_check_period;
unsigned int cool_bat_chg_current;
unsigned int warm_bat_chg_current;
unsigned int cool_bat_voltage;
unsigned int warm_bat_voltage;
unsigned int is_bat_cool;
unsigned int is_bat_warm;
unsigned int resume_voltage_delta;
unsigned int term_current;
unsigned int vbat_channel;
unsigned int batt_temp_channel;
unsigned int batt_id_channel;
struct power_supply usb_psy;
struct power_supply dc_psy;
struct power_supply *ext_psy;
struct power_supply batt_psy;
struct dentry *dent;
struct bms_notify bms_notify;
bool keep_btm_on_suspend;
bool ext_charging;
bool ext_charge_done;
bool iusb_fine_res;
bool dc_unplug_check;
bool disable_hw_clock_switching;
DECLARE_BITMAP(enabled_irqs, PM_CHG_MAX_INTS);
struct work_struct battery_id_valid_work;
int64_t batt_id_min;
int64_t batt_id_max;
int trkl_voltage;
int weak_voltage;
int trkl_current;
int weak_current;
int vin_min;
unsigned int *thermal_mitigation;
int thermal_levels;
struct delayed_work update_heartbeat_work;
struct delayed_work eoc_work;
struct delayed_work unplug_check_work;
struct delayed_work unplug_usbcheck_work;
struct delayed_work vin_collapse_check_work;
struct wake_lock eoc_wake_lock;
enum pm8921_chg_cold_thr cold_thr;
enum pm8921_chg_hot_thr hot_thr;
int rconn_mohm;
enum pm8921_chg_led_src_config led_src_config;
bool host_mode;
u8 active_path;
int recent_reported_soc;
unsigned int ext_warm_i_limit;
int ext_batt_health;
int ext_batt_temp_monitor;
int eoc_check_soc;
};
/* user space parameter to limit usb current */
static unsigned int usb_max_current;
/*
* usb_target_ma is used for wall charger
* adaptive input current limiting only. Use
* pm_iusbmax_get() to get current maximum usb current setting.
*/
static int usb_target_ma;
static int charging_disabled;
static int thermal_mitigation;
static struct pm8921_chg_chip *the_chip;
static struct pm8xxx_adc_arb_btm_param btm_config;
#ifdef CONFIG_WIRELESS_CHARGER
static int wireless_charging;
#endif
static int pm_chg_masked_write(struct pm8921_chg_chip *chip, u16 addr,
u8 mask, u8 val)
{
int rc;
u8 reg;
rc = pm8xxx_readb(chip->dev->parent, addr, &reg);
if (rc) {
pr_err("pm8xxx_readb failed: addr=%03X, rc=%d\n", addr, rc);
return rc;
}
reg &= ~mask;
reg |= val & mask;
rc = pm8xxx_writeb(chip->dev->parent, addr, reg);
if (rc) {
pr_err("pm8xxx_writeb failed: addr=%03X, rc=%d\n", addr, rc);
return rc;
}
return 0;
}
static int pm_chg_get_rt_status(struct pm8921_chg_chip *chip, int irq_id)
{
return pm8xxx_read_irq_stat(chip->dev->parent,
chip->pmic_chg_irq[irq_id]);
}
/* Treat OverVoltage/UnderVoltage as source missing */
static int is_usb_chg_plugged_in(struct pm8921_chg_chip *chip)
{
return pm_chg_get_rt_status(chip, USBIN_VALID_IRQ);
}
/* Treat OverVoltage/UnderVoltage as source missing */
static int is_dc_chg_plugged_in(struct pm8921_chg_chip *chip)
{
return pm_chg_get_rt_status(chip, DCIN_VALID_IRQ);
}
static int is_batfet_closed(struct pm8921_chg_chip *chip)
{
return pm_chg_get_rt_status(chip, BATFET_IRQ);
}
#define CAPTURE_FSM_STATE_CMD 0xC2
#define READ_BANK_7 0x70
#define READ_BANK_4 0x40
static int pm_chg_get_fsm_state(struct pm8921_chg_chip *chip)
{
u8 temp;
int err, ret = 0;
temp = CAPTURE_FSM_STATE_CMD;
err = pm8xxx_writeb(chip->dev->parent, CHG_TEST, temp);
if (err) {
pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST);
return err;
}
temp = READ_BANK_7;
err = pm8xxx_writeb(chip->dev->parent, CHG_TEST, temp);
if (err) {
pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST);
return err;
}
err = pm8xxx_readb(chip->dev->parent, CHG_TEST, &temp);
if (err) {
pr_err("pm8xxx_readb fail: addr=%03X, rc=%d\n", CHG_TEST, err);
return err;
}
/* get the lower 4 bits */
ret = temp & 0xF;
temp = READ_BANK_4;
err = pm8xxx_writeb(chip->dev->parent, CHG_TEST, temp);
if (err) {
pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST);
return err;
}
err = pm8xxx_readb(chip->dev->parent, CHG_TEST, &temp);
if (err) {
pr_err("pm8xxx_readb fail: addr=%03X, rc=%d\n", CHG_TEST, err);
return err;
}
/* get the upper 1 bit */
ret |= (temp & 0x1) << 4;
return ret;
}
#define READ_BANK_6 0x60
static int pm_chg_get_regulation_loop(struct pm8921_chg_chip *chip)
{
u8 temp;
int err;
temp = READ_BANK_6;
err = pm8xxx_writeb(chip->dev->parent, CHG_TEST, temp);
if (err) {
pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST);
return err;
}
err = pm8xxx_readb(chip->dev->parent, CHG_TEST, &temp);
if (err) {
pr_err("pm8xxx_readb fail: addr=%03X, rc=%d\n", CHG_TEST, err);
return err;
}
/* return the lower 4 bits */
return temp & CHG_ALL_LOOPS;
}
#define CHG_USB_SUSPEND_BIT BIT(2)
static int pm_chg_usb_suspend_enable(struct pm8921_chg_chip *chip, int enable)
{
return pm_chg_masked_write(chip, CHG_CNTRL_3, CHG_USB_SUSPEND_BIT,
enable ? CHG_USB_SUSPEND_BIT : 0);
}
#define CHG_EN_BIT BIT(7)
static int pm_chg_auto_enable(struct pm8921_chg_chip *chip, int enable)
{
return pm_chg_masked_write(chip, CHG_CNTRL_3, CHG_EN_BIT,
enable ? CHG_EN_BIT : 0);
}
#define CHG_FAILED_CLEAR BIT(0)
#define ATC_FAILED_CLEAR BIT(1)
static int pm_chg_failed_clear(struct pm8921_chg_chip *chip, int clear)
{
int rc;
rc = pm_chg_masked_write(chip, CHG_CNTRL_3, ATC_FAILED_CLEAR,
clear ? ATC_FAILED_CLEAR : 0);
rc |= pm_chg_masked_write(chip, CHG_CNTRL_3, CHG_FAILED_CLEAR,
clear ? CHG_FAILED_CLEAR : 0);
return rc;
}
#define CHG_CHARGE_DIS_BIT BIT(1)
static int pm_chg_charge_dis(struct pm8921_chg_chip *chip, int disable)
{
return pm_chg_masked_write(chip, CHG_CNTRL, CHG_CHARGE_DIS_BIT,
disable ? CHG_CHARGE_DIS_BIT : 0);
}
static int pm_is_chg_charge_dis(struct pm8921_chg_chip *chip)
{
u8 temp;
pm8xxx_readb(chip->dev->parent, CHG_CNTRL, &temp);
return temp & CHG_CHARGE_DIS_BIT;
}
#define PM8921_CHG_V_MIN_MV 3240
#define PM8921_CHG_V_STEP_MV 20
#define PM8921_CHG_V_STEP_10MV_OFFSET_BIT BIT(7)
#define PM8921_CHG_VDDMAX_MAX 4500
#define PM8921_CHG_VDDMAX_MIN 3400
#define PM8921_CHG_V_MASK 0x7F
static int __pm_chg_vddmax_set(struct pm8921_chg_chip *chip, int voltage)
{
int remainder;
u8 temp = 0;
if (voltage < PM8921_CHG_VDDMAX_MIN
|| voltage > PM8921_CHG_VDDMAX_MAX) {
pr_err("bad mV=%d asked to set\n", voltage);
return -EINVAL;
}
temp = (voltage - PM8921_CHG_V_MIN_MV) / PM8921_CHG_V_STEP_MV;
remainder = voltage % 20;
if (remainder >= 10) {
temp |= PM8921_CHG_V_STEP_10MV_OFFSET_BIT;
}
pr_debug("voltage=%d setting %02x\n", voltage, temp);
return pm8xxx_writeb(chip->dev->parent, CHG_VDD_MAX, temp);
}
static int pm_chg_vddmax_get(struct pm8921_chg_chip *chip, int *voltage)
{
u8 temp;
int rc;
rc = pm8xxx_readb(chip->dev->parent, CHG_VDD_MAX, &temp);
if (rc) {
pr_err("rc = %d while reading vdd max\n", rc);
*voltage = 0;
return rc;
}
*voltage = (int)(temp & PM8921_CHG_V_MASK) * PM8921_CHG_V_STEP_MV
+ PM8921_CHG_V_MIN_MV;
if (temp & PM8921_CHG_V_STEP_10MV_OFFSET_BIT)
*voltage = *voltage + 10;
return 0;
}
static int pm_chg_vddmax_set(struct pm8921_chg_chip *chip, int voltage)
{
int current_mv, ret, steps, i;
bool increase;
ret = 0;
if (voltage < PM8921_CHG_VDDMAX_MIN
|| voltage > PM8921_CHG_VDDMAX_MAX) {
pr_err("bad mV=%d asked to set\n", voltage);
return -EINVAL;
}
ret = pm_chg_vddmax_get(chip, &current_mv);
if (ret) {
pr_err("Failed to read vddmax rc=%d\n", ret);
return -EINVAL;
}
if (current_mv == voltage)
return 0;
/* Only change in increments when USB is present */
if (is_usb_chg_plugged_in(chip)) {
if (current_mv < voltage) {
steps = (voltage - current_mv) / PM8921_CHG_V_STEP_MV;
increase = true;
} else {
steps = (current_mv - voltage) / PM8921_CHG_V_STEP_MV;
increase = false;
}
for (i = 0; i < steps; i++) {
if (increase)
current_mv += PM8921_CHG_V_STEP_MV;
else
current_mv -= PM8921_CHG_V_STEP_MV;
ret |= __pm_chg_vddmax_set(chip, current_mv);
}
}
ret |= __pm_chg_vddmax_set(chip, voltage);
return ret;
}
#define PM8921_CHG_VDDSAFE_MIN 3400
#define PM8921_CHG_VDDSAFE_MAX 4500
static int pm_chg_vddsafe_set(struct pm8921_chg_chip *chip, int voltage)
{
u8 temp;
if (voltage < PM8921_CHG_VDDSAFE_MIN
|| voltage > PM8921_CHG_VDDSAFE_MAX) {
pr_err("bad mV=%d asked to set\n", voltage);
return -EINVAL;
}
temp = (voltage - PM8921_CHG_V_MIN_MV) / PM8921_CHG_V_STEP_MV;
pr_debug("voltage=%d setting %02x\n", voltage, temp);
return pm_chg_masked_write(chip, CHG_VDD_SAFE, PM8921_CHG_V_MASK, temp);
}
#define PM8921_CHG_VBATDET_MIN 3240
#define PM8921_CHG_VBATDET_MAX 5780
static int pm_chg_vbatdet_set(struct pm8921_chg_chip *chip, int voltage)
{
u8 temp;
if (voltage < PM8921_CHG_VBATDET_MIN
|| voltage > PM8921_CHG_VBATDET_MAX) {
pr_err("bad mV=%d asked to set\n", voltage);
return -EINVAL;
}
temp = (voltage - PM8921_CHG_V_MIN_MV) / PM8921_CHG_V_STEP_MV;
pr_debug("voltage=%d setting %02x\n", voltage, temp);
return pm_chg_masked_write(chip, CHG_VBAT_DET, PM8921_CHG_V_MASK, temp);
}
#define PM8921_CHG_VINMIN_MIN_MV 3800
#define PM8921_CHG_VINMIN_STEP_MV 100
#define PM8921_CHG_VINMIN_USABLE_MAX 6500
#define PM8921_CHG_VINMIN_USABLE_MIN 4300
#define PM8921_CHG_VINMIN_MASK 0x1F
static int pm_chg_vinmin_set(struct pm8921_chg_chip *chip, int voltage)
{
u8 temp;
if (voltage < PM8921_CHG_VINMIN_USABLE_MIN
|| voltage > PM8921_CHG_VINMIN_USABLE_MAX) {
pr_err("bad mV=%d asked to set\n", voltage);
return -EINVAL;
}
temp = (voltage - PM8921_CHG_VINMIN_MIN_MV) / PM8921_CHG_VINMIN_STEP_MV;
pr_debug("voltage=%d setting %02x\n", voltage, temp);
return pm_chg_masked_write(chip, CHG_VIN_MIN, PM8921_CHG_VINMIN_MASK,
temp);
}
static int pm_chg_vinmin_get(struct pm8921_chg_chip *chip)
{
u8 temp;
int rc, voltage_mv;
rc = pm8xxx_readb(chip->dev->parent, CHG_VIN_MIN, &temp);
temp &= PM8921_CHG_VINMIN_MASK;
voltage_mv = PM8921_CHG_VINMIN_MIN_MV +
(int)temp * PM8921_CHG_VINMIN_STEP_MV;
return voltage_mv;
}
#define PM8917_USB_UVD_MIN_MV 3850
#define PM8917_USB_UVD_MAX_MV 4350
#define PM8917_USB_UVD_STEP_MV 100
#define PM8917_USB_UVD_MASK 0x7
static int pm_chg_uvd_threshold_set(struct pm8921_chg_chip *chip, int thresh_mv)
{
u8 temp;
if (thresh_mv < PM8917_USB_UVD_MIN_MV
|| thresh_mv > PM8917_USB_UVD_MAX_MV) {
pr_err("bad mV=%d asked to set\n", thresh_mv);
return -EINVAL;
}
temp = (thresh_mv - PM8917_USB_UVD_MIN_MV) / PM8917_USB_UVD_STEP_MV;
return pm_chg_masked_write(chip, OVP_USB_UVD,
PM8917_USB_UVD_MASK, temp);
}
#define PM8921_CHG_IBATMAX_MIN 325
#define PM8921_CHG_IBATMAX_MAX 2000
#define PM8921_CHG_I_MIN_MA 225
#define PM8921_CHG_I_STEP_MA 50
#define PM8921_CHG_I_MASK 0x3F
static int pm_chg_ibatmax_set(struct pm8921_chg_chip *chip, int chg_current)
{
u8 temp;
if (chg_current < PM8921_CHG_IBATMAX_MIN
|| chg_current > PM8921_CHG_IBATMAX_MAX) {
pr_err("bad mA=%d asked to set\n", chg_current);
return -EINVAL;
}
temp = (chg_current - PM8921_CHG_I_MIN_MA) / PM8921_CHG_I_STEP_MA;
return pm_chg_masked_write(chip, CHG_IBAT_MAX, PM8921_CHG_I_MASK, temp);
}
#define PM8921_CHG_IBATSAFE_MIN 225
#define PM8921_CHG_IBATSAFE_MAX 3375
static int pm_chg_ibatsafe_set(struct pm8921_chg_chip *chip, int chg_current)
{
u8 temp;
if (chg_current < PM8921_CHG_IBATSAFE_MIN
|| chg_current > PM8921_CHG_IBATSAFE_MAX) {
pr_err("bad mA=%d asked to set\n", chg_current);
return -EINVAL;
}
temp = (chg_current - PM8921_CHG_I_MIN_MA) / PM8921_CHG_I_STEP_MA;
return pm_chg_masked_write(chip, CHG_IBAT_SAFE,
PM8921_CHG_I_MASK, temp);
}
#define PM8921_CHG_ITERM_MIN_MA 50
#define PM8921_CHG_ITERM_MAX_MA 200
#define PM8921_CHG_ITERM_STEP_MA 10
#define PM8921_CHG_ITERM_MASK 0xF
static int pm_chg_iterm_set(struct pm8921_chg_chip *chip, int chg_current)
{
u8 temp;
if (chg_current < PM8921_CHG_ITERM_MIN_MA
|| chg_current > PM8921_CHG_ITERM_MAX_MA) {
pr_err("bad mA=%d asked to set\n", chg_current);
return -EINVAL;
}
temp = (chg_current - PM8921_CHG_ITERM_MIN_MA)
/ PM8921_CHG_ITERM_STEP_MA;
return pm_chg_masked_write(chip, CHG_ITERM, PM8921_CHG_ITERM_MASK,
temp);
}
static int pm_chg_iterm_get(struct pm8921_chg_chip *chip, int *chg_current)
{
u8 temp;
int rc;
rc = pm8xxx_readb(chip->dev->parent, CHG_ITERM, &temp);
if (rc) {
pr_err("err=%d reading CHG_ITEM\n", rc);
*chg_current = 0;
return rc;
}
temp &= PM8921_CHG_ITERM_MASK;
*chg_current = (int)temp * PM8921_CHG_ITERM_STEP_MA
+ PM8921_CHG_ITERM_MIN_MA;
return 0;
}
struct usb_ma_limit_entry {
int usb_ma;
u8 value;
};
static struct usb_ma_limit_entry usb_ma_table[] = {
{100, 0x0},
{200, 0x1},
{500, 0x2},
{600, 0x3},
{700, 0x4},
{800, 0x5},
{850, 0x6},
{900, 0x8},
{950, 0x7},
{1000, 0x9},
{1100, 0xA},
{1200, 0xB},
{1300, 0xC},
{1400, 0xD},
{1500, 0xE},
{1600, 0xF},
};
#define PM8921_CHG_IUSB_MASK 0x1C
#define PM8921_CHG_IUSB_SHIFT 2
#define PM8921_CHG_IUSB_MAX 7
#define PM8921_CHG_IUSB_MIN 0
#define PM8917_IUSB_FINE_RES BIT(0)
static int pm_chg_iusbmax_set(struct pm8921_chg_chip *chip, int reg_val)
{
u8 temp, fineres;
int rc;
fineres = PM8917_IUSB_FINE_RES & usb_ma_table[reg_val].value;
reg_val = usb_ma_table[reg_val].value >> 1;
if (reg_val < PM8921_CHG_IUSB_MIN || reg_val > PM8921_CHG_IUSB_MAX) {
pr_err("bad mA=%d asked to set\n", reg_val);
return -EINVAL;
}
temp = reg_val << PM8921_CHG_IUSB_SHIFT;
/* IUSB_FINE_RES */
if (chip->iusb_fine_res) {
/* Clear IUSB_FINE_RES bit to avoid overshoot */
rc = pm_chg_masked_write(chip, IUSB_FINE_RES,
PM8917_IUSB_FINE_RES, 0);
rc |= pm_chg_masked_write(chip, PBL_ACCESS2,
PM8921_CHG_IUSB_MASK, temp);
if (rc) {
pr_err("Failed to write PBL_ACCESS2 rc=%d\n", rc);
return rc;
}
if (fineres) {
rc = pm_chg_masked_write(chip, IUSB_FINE_RES,
PM8917_IUSB_FINE_RES, fineres);
if (rc)
pr_err("Failed to write ISUB_FINE_RES rc=%d\n",
rc);
}
} else {
rc = pm_chg_masked_write(chip, PBL_ACCESS2,
PM8921_CHG_IUSB_MASK, temp);
if (rc)
pr_err("Failed to write PBL_ACCESS2 rc=%d\n", rc);
}
return rc;
}
static int pm_chg_iusbmax_get(struct pm8921_chg_chip *chip, int *mA)
{
u8 temp, fineres;
int rc, i;
fineres = 0;
*mA = 0;
rc = pm8xxx_readb(chip->dev->parent, PBL_ACCESS2, &temp);
if (rc) {
pr_err("err=%d reading PBL_ACCESS2\n", rc);
return rc;
}
if (chip->iusb_fine_res) {
rc = pm8xxx_readb(chip->dev->parent, IUSB_FINE_RES, &fineres);
if (rc) {
pr_err("err=%d reading IUSB_FINE_RES\n", rc);
return rc;
}
}
temp &= PM8921_CHG_IUSB_MASK;
temp = temp >> PM8921_CHG_IUSB_SHIFT;
temp = (temp << 1) | (fineres & PM8917_IUSB_FINE_RES);
for (i = ARRAY_SIZE(usb_ma_table) - 1; i >= 0; i--) {
if (usb_ma_table[i].value == temp)
break;
}
*mA = usb_ma_table[i].usb_ma;
return rc;
}
#define PM8921_CHG_WD_MASK 0x1F
static int pm_chg_disable_wd(struct pm8921_chg_chip *chip)
{
/* writing 0 to the wd timer disables it */
return pm_chg_masked_write(chip, CHG_TWDOG, PM8921_CHG_WD_MASK, 0);
}
#define PM8921_CHG_TCHG_MASK 0x7F
#define PM8921_CHG_TCHG_MIN 4
#define PM8921_CHG_TCHG_MAX 512
#define PM8921_CHG_TCHG_STEP 4
static int pm_chg_tchg_max_set(struct pm8921_chg_chip *chip, int minutes)
{
u8 temp;
if (minutes < PM8921_CHG_TCHG_MIN || minutes > PM8921_CHG_TCHG_MAX) {
pr_err("bad max minutes =%d asked to set\n", minutes);
return -EINVAL;
}
temp = (minutes - 1)/PM8921_CHG_TCHG_STEP;
return pm_chg_masked_write(chip, CHG_TCHG_MAX, PM8921_CHG_TCHG_MASK,
temp);
}
#define PM8921_CHG_TTRKL_MASK 0x1F
#define PM8921_CHG_TTRKL_MIN 1
#define PM8921_CHG_TTRKL_MAX 64
static int pm_chg_ttrkl_max_set(struct pm8921_chg_chip *chip, int minutes)
{
u8 temp;
if (minutes < PM8921_CHG_TTRKL_MIN || minutes > PM8921_CHG_TTRKL_MAX) {
pr_err("bad max minutes =%d asked to set\n", minutes);
return -EINVAL;
}
temp = minutes - 1;
return pm_chg_masked_write(chip, CHG_TTRKL_MAX, PM8921_CHG_TTRKL_MASK,
temp);
}
#define PM8921_CHG_VTRKL_MIN_MV 2050
#define PM8921_CHG_VTRKL_MAX_MV 2800
#define PM8921_CHG_VTRKL_STEP_MV 50
#define PM8921_CHG_VTRKL_SHIFT 4
#define PM8921_CHG_VTRKL_MASK 0xF0
static int pm_chg_vtrkl_low_set(struct pm8921_chg_chip *chip, int millivolts)
{
u8 temp;
if (millivolts < PM8921_CHG_VTRKL_MIN_MV
|| millivolts > PM8921_CHG_VTRKL_MAX_MV) {
pr_err("bad voltage = %dmV asked to set\n", millivolts);
return -EINVAL;
}
temp = (millivolts - PM8921_CHG_VTRKL_MIN_MV)/PM8921_CHG_VTRKL_STEP_MV;
temp = temp << PM8921_CHG_VTRKL_SHIFT;
return pm_chg_masked_write(chip, CHG_VTRICKLE, PM8921_CHG_VTRKL_MASK,
temp);
}
#define PM8921_CHG_VWEAK_MIN_MV 2100
#define PM8921_CHG_VWEAK_MAX_MV 3600
#define PM8921_CHG_VWEAK_STEP_MV 100
#define PM8921_CHG_VWEAK_MASK 0x0F
static int pm_chg_vweak_set(struct pm8921_chg_chip *chip, int millivolts)
{
u8 temp;
if (millivolts < PM8921_CHG_VWEAK_MIN_MV
|| millivolts > PM8921_CHG_VWEAK_MAX_MV) {
pr_err("bad voltage = %dmV asked to set\n", millivolts);
return -EINVAL;
}
temp = (millivolts - PM8921_CHG_VWEAK_MIN_MV)/PM8921_CHG_VWEAK_STEP_MV;
return pm_chg_masked_write(chip, CHG_VTRICKLE, PM8921_CHG_VWEAK_MASK,
temp);
}
#define PM8921_CHG_ITRKL_MIN_MA 50
#define PM8921_CHG_ITRKL_MAX_MA 200
#define PM8921_CHG_ITRKL_MASK 0x0F
#define PM8921_CHG_ITRKL_STEP_MA 10
static int pm_chg_itrkl_set(struct pm8921_chg_chip *chip, int milliamps)
{
u8 temp;
if (milliamps < PM8921_CHG_ITRKL_MIN_MA
|| milliamps > PM8921_CHG_ITRKL_MAX_MA) {
pr_err("bad current = %dmA asked to set\n", milliamps);
return -EINVAL;
}
temp = (milliamps - PM8921_CHG_ITRKL_MIN_MA)/PM8921_CHG_ITRKL_STEP_MA;
return pm_chg_masked_write(chip, CHG_ITRICKLE, PM8921_CHG_ITRKL_MASK,
temp);
}
#define PM8921_CHG_IWEAK_MIN_MA 325
#define PM8921_CHG_IWEAK_MAX_MA 525
#define PM8921_CHG_IWEAK_SHIFT 7
#define PM8921_CHG_IWEAK_MASK 0x80
static int pm_chg_iweak_set(struct pm8921_chg_chip *chip, int milliamps)
{
u8 temp;
if (milliamps < PM8921_CHG_IWEAK_MIN_MA
|| milliamps > PM8921_CHG_IWEAK_MAX_MA) {
pr_err("bad current = %dmA asked to set\n", milliamps);
return -EINVAL;
}
if (milliamps < PM8921_CHG_IWEAK_MAX_MA)
temp = 0;
else
temp = 1;
temp = temp << PM8921_CHG_IWEAK_SHIFT;
return pm_chg_masked_write(chip, CHG_ITRICKLE, PM8921_CHG_IWEAK_MASK,
temp);
}
#define PM8921_CHG_BATT_TEMP_THR_COLD BIT(1)
#define PM8921_CHG_BATT_TEMP_THR_COLD_SHIFT 1
static int pm_chg_batt_cold_temp_config(struct pm8921_chg_chip *chip,
enum pm8921_chg_cold_thr cold_thr)
{
u8 temp;
temp = cold_thr << PM8921_CHG_BATT_TEMP_THR_COLD_SHIFT;
temp = temp & PM8921_CHG_BATT_TEMP_THR_COLD;
return pm_chg_masked_write(chip, CHG_CNTRL_2,
PM8921_CHG_BATT_TEMP_THR_COLD,
temp);
}
#define PM8921_CHG_BATT_TEMP_THR_HOT BIT(0)
#define PM8921_CHG_BATT_TEMP_THR_HOT_SHIFT 0
static int pm_chg_batt_hot_temp_config(struct pm8921_chg_chip *chip,
enum pm8921_chg_hot_thr hot_thr)
{
u8 temp;
temp = hot_thr << PM8921_CHG_BATT_TEMP_THR_HOT_SHIFT;
temp = temp & PM8921_CHG_BATT_TEMP_THR_HOT;
return pm_chg_masked_write(chip, CHG_CNTRL_2,
PM8921_CHG_BATT_TEMP_THR_HOT,
temp);
}
#define PM8921_CHG_LED_SRC_CONFIG_SHIFT 4
#define PM8921_CHG_LED_SRC_CONFIG_MASK 0x30
static int pm_chg_led_src_config(struct pm8921_chg_chip *chip,
enum pm8921_chg_led_src_config led_src_config)
{
u8 temp;
if (led_src_config < LED_SRC_GND ||
led_src_config > LED_SRC_BYPASS)
return -EINVAL;
if (led_src_config == LED_SRC_BYPASS)
return 0;
temp = led_src_config << PM8921_CHG_LED_SRC_CONFIG_SHIFT;
return pm_chg_masked_write(chip, CHG_CNTRL_3,
PM8921_CHG_LED_SRC_CONFIG_MASK, temp);
}
static void disable_input_voltage_regulation(struct pm8921_chg_chip *chip)
{
u8 temp;
int rc;
rc = pm8xxx_writeb(chip->dev->parent, CHG_BUCK_CTRL_TEST3, 0x70);
if (rc) {
pr_err("Failed to write 0x70 to CTRL_TEST3 rc = %d\n", rc);
return;
}
rc = pm8xxx_readb(chip->dev->parent, CHG_BUCK_CTRL_TEST3, &temp);
if (rc) {
pr_err("Failed to read CTRL_TEST3 rc = %d\n", rc);
return;
}
/* set the input voltage disable bit and the write bit */
temp |= 0x81;
rc = pm8xxx_writeb(chip->dev->parent, CHG_BUCK_CTRL_TEST3, temp);
if (rc) {
pr_err("Failed to write 0x%x to CTRL_TEST3 rc=%d\n", temp, rc);
return;
}
}
static void enable_input_voltage_regulation(struct pm8921_chg_chip *chip)
{
u8 temp;
int rc;
rc = pm8xxx_writeb(chip->dev->parent, CHG_BUCK_CTRL_TEST3, 0x70);
if (rc) {
pr_err("Failed to write 0x70 to CTRL_TEST3 rc = %d\n", rc);
return;
}
rc = pm8xxx_readb(chip->dev->parent, CHG_BUCK_CTRL_TEST3, &temp);
if (rc) {
pr_err("Failed to read CTRL_TEST3 rc = %d\n", rc);
return;
}
/* unset the input voltage disable bit */
temp &= 0xFE;
/* set the write bit */
temp |= 0x80;
rc = pm8xxx_writeb(chip->dev->parent, CHG_BUCK_CTRL_TEST3, temp);
if (rc) {
pr_err("Failed to write 0x%x to CTRL_TEST3 rc=%d\n", temp, rc);
return;
}
}
static int64_t read_battery_id(struct pm8921_chg_chip *chip)
{
int rc;
struct pm8xxx_adc_chan_result result;
rc = pm8xxx_adc_read(chip->batt_id_channel, &result);
if (rc) {
pr_err("error reading batt id channel = %d, rc = %d\n",
chip->vbat_channel, rc);
return rc;
}
pr_debug("batt_id phy = %lld meas = 0x%llx\n", result.physical,
result.measurement);
return result.physical;
}
static int is_battery_valid(struct pm8921_chg_chip *chip)
{
int64_t rc;
if (chip->batt_id_min == 0 && chip->batt_id_max == 0)
return 1;
rc = read_battery_id(chip);
if (rc < 0) {
pr_err("error reading batt id channel = %d, rc = %lld\n",
chip->vbat_channel, rc);
/* assume battery id is valid when adc error happens */
return 1;
}
if (rc < chip->batt_id_min || rc > chip->batt_id_max) {
pr_err("batt_id phy =%lld is not valid\n", rc);
return 0;
}
return 1;
}
static void check_battery_valid(struct pm8921_chg_chip *chip)
{
if (is_battery_valid(chip) == 0) {
pr_err("batt_id not valid, disbling charging\n");
pm_chg_auto_enable(chip, 0);
} else {
pm_chg_auto_enable(chip, !charging_disabled);
}
}
static void battery_id_valid(struct work_struct *work)
{
struct pm8921_chg_chip *chip = container_of(work,
struct pm8921_chg_chip, battery_id_valid_work);
check_battery_valid(chip);
}
static void pm8921_chg_enable_irq(struct pm8921_chg_chip *chip, int interrupt)
{
if (!__test_and_set_bit(interrupt, chip->enabled_irqs)) {
dev_dbg(chip->dev, "%d\n", chip->pmic_chg_irq[interrupt]);
enable_irq(chip->pmic_chg_irq[interrupt]);
}
}
static void pm8921_chg_disable_irq(struct pm8921_chg_chip *chip, int interrupt)
{
if (__test_and_clear_bit(interrupt, chip->enabled_irqs)) {
dev_dbg(chip->dev, "%d\n", chip->pmic_chg_irq[interrupt]);
disable_irq_nosync(chip->pmic_chg_irq[interrupt]);
}
}
static int pm8921_chg_is_enabled(struct pm8921_chg_chip *chip, int interrupt)
{
return test_bit(interrupt, chip->enabled_irqs);
}
static bool is_ext_charging(struct pm8921_chg_chip *chip)
{
union power_supply_propval ret = {0,};
if (!chip->ext_psy)
return false;
if (chip->ext_psy->get_property(chip->ext_psy,
POWER_SUPPLY_PROP_CHARGE_TYPE, &ret))
return false;
if (ret.intval > POWER_SUPPLY_CHARGE_TYPE_NONE)
return ret.intval;
return false;
}
static bool is_ext_trickle_charging(struct pm8921_chg_chip *chip)
{
union power_supply_propval ret = {0,};
if (!chip->ext_psy)
return false;
if (chip->ext_psy->get_property(chip->ext_psy,
POWER_SUPPLY_PROP_CHARGE_TYPE, &ret))
return false;
if (ret.intval == POWER_SUPPLY_CHARGE_TYPE_TRICKLE)
return true;
return false;
}
static int is_battery_charging(int fsm_state)
{
if (is_ext_charging(the_chip))
return 1;
switch (fsm_state) {
case FSM_STATE_ATC_2A:
case FSM_STATE_ATC_2B:
case FSM_STATE_ON_CHG_AND_BAT_6:
case FSM_STATE_FAST_CHG_7:
case FSM_STATE_TRKL_CHG_8:
return 1;
}
return 0;
}
static void bms_notify(struct work_struct *work)
{
struct bms_notify *n = container_of(work, struct bms_notify, work);
if (n->is_charging) {
pm8921_bms_charging_began();
} else {
pm8921_bms_charging_end(n->is_battery_full);
n->is_battery_full = 0;
}
}
static void bms_notify_check(struct pm8921_chg_chip *chip)
{
int fsm_state, new_is_charging;
fsm_state = pm_chg_get_fsm_state(chip);
new_is_charging = is_battery_charging(fsm_state);
if (chip->bms_notify.is_charging ^ new_is_charging) {
chip->bms_notify.is_charging = new_is_charging;
schedule_work(&(chip->bms_notify.work));
}
}
static enum power_supply_property pm_power_props_usb[] = {
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_ONLINE,
POWER_SUPPLY_PROP_CURRENT_MAX,
POWER_SUPPLY_PROP_SCOPE,
};
static enum power_supply_property pm_power_props_mains[] = {
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_ONLINE,
};
static char *pm_power_supplied_to[] = {
"battery",
};
#define USB_WALL_THRESHOLD_MA 500
static int pm_power_get_property_mains(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
/* Check if called before init */
if (!the_chip)
return -EINVAL;
switch (psp) {
case POWER_SUPPLY_PROP_PRESENT:
case POWER_SUPPLY_PROP_ONLINE:
val->intval = 0;
if (charging_disabled)
return 0;
/* check external charger first before the dc path */
if (is_ext_charging(the_chip)) {
val->intval = 1;
return 0;
}
if (pm_is_chg_charge_dis(the_chip)) {
val->intval = 0;
return 0;
}
if (the_chip->dc_present) {
val->intval = 1;
return 0;
}
/* USB with max current greater than 500 mA connected */
if (usb_target_ma > USB_WALL_THRESHOLD_MA)
val->intval = is_usb_chg_plugged_in(the_chip);
return 0;
break;
default:
return -EINVAL;
}
return 0;
}
static int switch_usb_to_charge_mode(struct pm8921_chg_chip *chip)
{
int rc;
if (!chip->host_mode)
return 0;
/* enable usbin valid comparator and remove force usb ovp fet off */
rc = pm8xxx_writeb(chip->dev->parent, USB_OVP_TEST, 0xB2);
if (rc < 0) {
pr_err("Failed to write 0xB2 to USB_OVP_TEST rc = %d\n", rc);
return rc;
}
chip->host_mode = 0;
return 0;
}
static int switch_usb_to_host_mode(struct pm8921_chg_chip *chip)
{
int rc;
if (chip->host_mode)
return 0;
/* disable usbin valid comparator and force usb ovp fet off */
rc = pm8xxx_writeb(chip->dev->parent, USB_OVP_TEST, 0xB3);
if (rc < 0) {
pr_err("Failed to write 0xB3 to USB_OVP_TEST rc = %d\n", rc);
return rc;
}
chip->host_mode = 1;
return 0;
}
static int pm_power_set_property_usb(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct pm8921_chg_chip *chip = the_chip;
/* Check if called before init */
if (!chip)
return -EINVAL;
switch (psp) {
case POWER_SUPPLY_PROP_CURRENT_MAX:
if (val->intval &&
val->intval <= (USB_WALL_THRESHOLD_MA*1000)) {
usb_target_ma = 0;
} else {
usb_target_ma = val->intval/1000;
if (!delayed_work_pending(&chip->unplug_check_work)) {
schedule_delayed_work(
&chip->unplug_check_work,
round_jiffies_relative(msecs_to_jiffies
(UNPLUG_CHECK_WAIT_PERIOD_MS)));
}
}
pr_info("usb_target_ma %d\n", usb_target_ma);
break;
case POWER_SUPPLY_PROP_PRESENT:
case POWER_SUPPLY_PROP_ONLINE:
break;
case POWER_SUPPLY_PROP_SCOPE:
if (val->intval == POWER_SUPPLY_SCOPE_SYSTEM)
return switch_usb_to_host_mode(chip);
if (val->intval == POWER_SUPPLY_SCOPE_DEVICE)
return switch_usb_to_charge_mode(chip);
else
return -EINVAL;
break;
default:
return -EINVAL;
}
return 0;
}
static int pm_power_get_property_usb(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
int current_max;
/* Check if called before init */
if (!the_chip)
return -EINVAL;
switch (psp) {
case POWER_SUPPLY_PROP_CURRENT_MAX:
if (pm_is_chg_charge_dis(the_chip)) {
val->intval = 0;
} else {
pm_chg_iusbmax_get(the_chip, &current_max);
val->intval = current_max;
}
break;
case POWER_SUPPLY_PROP_PRESENT:
case POWER_SUPPLY_PROP_ONLINE:
val->intval = 0;
if (charging_disabled)
return 0;
/*
* if drawing any current from usb is disabled behave
* as if no usb cable is connected
*/
if (pm_is_chg_charge_dis(the_chip))
return 0;
/* USB charging */
if (usb_target_ma == 0)
val->intval = the_chip->usb_present;
else if (usb_target_ma <= USB_WALL_THRESHOLD_MA)
val->intval = is_usb_chg_plugged_in(the_chip);
else
return 0;
break;
case POWER_SUPPLY_PROP_SCOPE:
if (the_chip->host_mode)
val->intval = POWER_SUPPLY_SCOPE_SYSTEM;
else
val->intval = POWER_SUPPLY_SCOPE_DEVICE;
break;
default:
return -EINVAL;
}
return 0;
}
static enum power_supply_property msm_batt_power_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_CHARGE_TYPE,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_ENERGY_FULL,
};
static int get_prop_battery_uvolts(struct pm8921_chg_chip *chip)
{
int rc;
struct pm8xxx_adc_chan_result result;
rc = pm8xxx_adc_read(chip->vbat_channel, &result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
chip->vbat_channel, rc);
return rc;
}
pr_debug("mvolts phy = %lld meas = 0x%llx\n", result.physical,
result.measurement);
return (int)result.physical;
}
static unsigned int voltage_based_capacity(struct pm8921_chg_chip *chip)
{
unsigned int current_voltage_uv = get_prop_battery_uvolts(chip);
unsigned int current_voltage_mv = current_voltage_uv / 1000;
unsigned int low_voltage = chip->min_voltage_mv;
unsigned int high_voltage = chip->max_voltage_mv;
if (current_voltage_mv <= low_voltage)
return 0;
else if (current_voltage_mv >= high_voltage)
return 100;
else
return (current_voltage_mv - low_voltage) * 100
/ (high_voltage - low_voltage);
}
static int get_prop_batt_present(struct pm8921_chg_chip *chip)
{
return pm_chg_get_rt_status(chip, BATT_INSERTED_IRQ);
}
static int get_prop_batt_capacity(struct pm8921_chg_chip *chip)
{
int percent_soc;
if (!get_prop_batt_present(chip))
percent_soc = voltage_based_capacity(chip);
else
percent_soc = pm8921_bms_get_percent_charge();
if (percent_soc == -ENXIO)
percent_soc = voltage_based_capacity(chip);
if (percent_soc <= 10)
pr_warn("low battery charge = %d%%\n", percent_soc);
chip->recent_reported_soc = percent_soc;
return percent_soc;
}
static int get_prop_batt_current(struct pm8921_chg_chip *chip)
{
int result_ua, rc;
rc = pm8921_bms_get_battery_current(&result_ua);
if (rc == -ENXIO) {
rc = pm8xxx_ccadc_get_battery_current(&result_ua);
}
if (rc) {
pr_err("unable to get batt current rc = %d\n", rc);
return rc;
} else {
return result_ua;
}
}
static int get_prop_batt_fcc(struct pm8921_chg_chip *chip)
{
int rc;
rc = pm8921_bms_get_fcc();
if (rc < 0)
pr_err("unable to get batt fcc rc = %d\n", rc);
return rc;
}
static int get_prop_batt_health(struct pm8921_chg_chip *chip)
{
int temp;
if (chip->ext_batt_temp_monitor) {
return chip->ext_batt_health;
} else {
temp = pm_chg_get_rt_status(chip, BATTTEMP_HOT_IRQ);
if (temp)
return POWER_SUPPLY_HEALTH_OVERHEAT;
temp = pm_chg_get_rt_status(chip, BATTTEMP_COLD_IRQ);
if (temp)
return POWER_SUPPLY_HEALTH_COLD;
return POWER_SUPPLY_HEALTH_GOOD;
}
}
static int get_prop_charge_type(struct pm8921_chg_chip *chip)
{
int temp;
if (!get_prop_batt_present(chip))
return POWER_SUPPLY_CHARGE_TYPE_NONE;
if (is_ext_trickle_charging(chip))
return POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
if (is_ext_charging(chip))
return POWER_SUPPLY_CHARGE_TYPE_FAST;
temp = pm_chg_get_rt_status(chip, TRKLCHG_IRQ);
if (temp)
return POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
temp = pm_chg_get_rt_status(chip, FASTCHG_IRQ);
if (temp)
return POWER_SUPPLY_CHARGE_TYPE_FAST;
return POWER_SUPPLY_CHARGE_TYPE_NONE;
}
static int get_prop_batt_status(struct pm8921_chg_chip *chip)
{
int batt_state = POWER_SUPPLY_STATUS_DISCHARGING;
int fsm_state = pm_chg_get_fsm_state(chip);
int i;
if (chip->ext_psy) {
if (chip->ext_charge_done)
return POWER_SUPPLY_STATUS_FULL;
if (chip->ext_charging)
return POWER_SUPPLY_STATUS_CHARGING;
}
for (i = 0; i < ARRAY_SIZE(map); i++)
if (map[i].fsm_state == fsm_state)
batt_state = map[i].batt_state;
if (fsm_state == FSM_STATE_ON_CHG_HIGHI_1) {
if (!pm_chg_get_rt_status(chip, BATT_INSERTED_IRQ)
|| !pm_chg_get_rt_status(chip, BAT_TEMP_OK_IRQ)
|| pm_chg_get_rt_status(chip, CHGHOT_IRQ)
|| (!chip->eoc_check_soc &&
pm_chg_get_rt_status(chip, VBATDET_LOW_IRQ))
|| (chip->ext_batt_temp_monitor &&
(chip->ext_batt_health == POWER_SUPPLY_HEALTH_OVERHEAT)))
batt_state = POWER_SUPPLY_STATUS_NOT_CHARGING;
}
if (chip->eoc_check_soc) {
if (get_prop_batt_capacity(chip) == 100) {
if (batt_state == POWER_SUPPLY_STATUS_CHARGING)
batt_state = POWER_SUPPLY_STATUS_FULL;
} else {
if (batt_state == POWER_SUPPLY_STATUS_FULL)
batt_state = POWER_SUPPLY_STATUS_CHARGING;
}
}
pr_debug("batt_state = %d fsm_state = %d \n",batt_state, fsm_state);
return batt_state;
}
#define MAX_TOLERABLE_BATT_TEMP_DDC 680
static int get_prop_batt_temp(struct pm8921_chg_chip *chip)
{
int rc;
struct pm8xxx_adc_chan_result result;
rc = pm8xxx_adc_read(chip->batt_temp_channel, &result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
chip->vbat_channel, rc);
return rc;
}
pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical,
result.measurement);
if (result.physical > MAX_TOLERABLE_BATT_TEMP_DDC)
pr_err("BATT_TEMP= %d > 68degC, device will be shutdown\n",
(int) result.physical);
return (int)result.physical;
}
static int pm_batt_power_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct pm8921_chg_chip *chip = container_of(psy, struct pm8921_chg_chip,
batt_psy);
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
#ifdef CONFIG_WIRELESS_CHARGER
if(wireless_charging) {
val->intval = 1; //POWER_SUPPLY_STATUS_CHARGING
break;
}
#endif
val->intval = get_prop_batt_status(chip);
break;
case POWER_SUPPLY_PROP_CHARGE_TYPE:
val->intval = get_prop_charge_type(chip);
break;
case POWER_SUPPLY_PROP_HEALTH:
val->intval = get_prop_batt_health(chip);
break;
case POWER_SUPPLY_PROP_PRESENT:
val->intval = get_prop_batt_present(chip);
break;
case POWER_SUPPLY_PROP_TECHNOLOGY:
val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
break;
case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
val->intval = chip->max_voltage_mv * 1000;
break;
case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
val->intval = chip->min_voltage_mv * 1000;
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
val->intval = get_prop_battery_uvolts(chip);
break;
case POWER_SUPPLY_PROP_CAPACITY:
val->intval = get_prop_batt_capacity(chip);
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
val->intval = get_prop_batt_current(chip);
break;
case POWER_SUPPLY_PROP_TEMP:
val->intval = get_prop_batt_temp(chip);
break;
case POWER_SUPPLY_PROP_ENERGY_FULL:
val->intval = get_prop_batt_fcc(chip) * 1000;
break;
default:
return -EINVAL;
}
return 0;
}
static void (*notify_vbus_state_func_ptr)(int);
static int usb_chg_current;
static DEFINE_SPINLOCK(vbus_lock);
int pm8921_charger_register_vbus_sn(void (*callback)(int))
{
pr_debug("%p\n", callback);
notify_vbus_state_func_ptr = callback;
return 0;
}
EXPORT_SYMBOL_GPL(pm8921_charger_register_vbus_sn);
/* this is passed to the hsusb via platform_data msm_otg_pdata */
void pm8921_charger_unregister_vbus_sn(void (*callback)(int))
{
pr_debug("%p\n", callback);
notify_vbus_state_func_ptr = NULL;
}
EXPORT_SYMBOL_GPL(pm8921_charger_unregister_vbus_sn);
static void notify_usb_of_the_plugin_event(int plugin)
{
plugin = !!plugin;
if (notify_vbus_state_func_ptr) {
pr_debug("notifying plugin\n");
(*notify_vbus_state_func_ptr) (plugin);
} else {
pr_debug("unable to notify plugin\n");
}
}
/* assumes vbus_lock is held */
static void __pm8921_charger_vbus_draw(unsigned int mA)
{
int i, rc;
if (!the_chip) {
pr_err("called before init\n");
return;
}
if (mA >= 0 && mA <= 2) {
usb_chg_current = 0;
rc = pm_chg_iusbmax_set(the_chip, 0);
if (rc) {
pr_err("unable to set iusb to %d rc = %d\n", 0, rc);
}
rc = pm_chg_usb_suspend_enable(the_chip, 1);
if (rc)
pr_err("fail to set suspend bit rc=%d\n", rc);
} else {
rc = pm_chg_usb_suspend_enable(the_chip, 0);
if (rc)
pr_err("fail to reset suspend bit rc=%d\n", rc);
for (i = ARRAY_SIZE(usb_ma_table) - 1; i >= 0; i--) {
if (usb_ma_table[i].usb_ma <= mA)
break;
}
/* Check if IUSB_FINE_RES is available */
if ((usb_ma_table[i].value & PM8917_IUSB_FINE_RES)
&& !the_chip->iusb_fine_res)
i--;
if (i < 0)
i = 0;
rc = pm_chg_iusbmax_set(the_chip, i);
if (rc) {
pr_err("unable to set iusb to %d rc = %d\n", i, rc);
}
}
}
/* USB calls these to tell us how much max usb current the system can draw */
void pm8921_charger_vbus_draw(unsigned int mA)
{
unsigned long flags;
pr_debug("Enter charge=%d\n", mA);
if (!the_chip) {
pr_err("chip not yet initalized\n");
return;
}
/*
* Reject VBUS requests if USB connection is the only available
* power source. This makes sure that if booting without
* battery the iusb_max value is not decreased avoiding potential
* brown_outs.
*
* This would also apply when the battery has been
* removed from the running system.
*/
if (!get_prop_batt_present(the_chip)
&& !is_dc_chg_plugged_in(the_chip)) {
pr_err("rejected: no other power source connected\n");
return;
}
if (usb_max_current && mA > usb_max_current) {
pr_warn("restricting usb current to %d instead of %d\n",
usb_max_current, mA);
mA = usb_max_current;
}
if (usb_target_ma == 0 && mA > USB_WALL_THRESHOLD_MA)
usb_target_ma = mA;
spin_lock_irqsave(&vbus_lock, flags);
if (the_chip) {
if (mA > USB_WALL_THRESHOLD_MA)
__pm8921_charger_vbus_draw(USB_WALL_THRESHOLD_MA);
else
__pm8921_charger_vbus_draw(mA);
} else {
/*
* called before pmic initialized,
* save this value and use it at probe
*/
if (mA > USB_WALL_THRESHOLD_MA)
usb_chg_current = USB_WALL_THRESHOLD_MA;
else
usb_chg_current = mA;
}
spin_unlock_irqrestore(&vbus_lock, flags);
}
EXPORT_SYMBOL_GPL(pm8921_charger_vbus_draw);
int pm8921_charger_enable(bool enable)
{
int rc;
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
enable = !!enable;
rc = pm_chg_auto_enable(the_chip, enable);
if (rc)
pr_err("Failed rc=%d\n", rc);
return rc;
}
EXPORT_SYMBOL(pm8921_charger_enable);
int pm8921_force_start_charging(void)
{
int rc;
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
if (the_chip->eoc_check_soc) {
rc = pm_chg_vbatdet_set(the_chip,
the_chip->max_voltage_mv);
if (rc) {
pr_err("failed to set vbatdet\n");
return rc;
}
}
rc = pm_chg_auto_enable(the_chip, 1);
if (rc)
pr_err("Failed rc=%d\n", rc);
return rc;
}
EXPORT_SYMBOL(pm8921_force_start_charging);
int pm8921_is_usb_chg_plugged_in(void)
{
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
return is_usb_chg_plugged_in(the_chip);
}
EXPORT_SYMBOL(pm8921_is_usb_chg_plugged_in);
int pm8921_is_dc_chg_plugged_in(void)
{
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
return is_dc_chg_plugged_in(the_chip);
}
EXPORT_SYMBOL(pm8921_is_dc_chg_plugged_in);
int pm8921_is_battery_present(void)
{
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
return get_prop_batt_present(the_chip);
}
EXPORT_SYMBOL(pm8921_is_battery_present);
int pm8921_is_batfet_closed(void)
{
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
return is_batfet_closed(the_chip);
}
EXPORT_SYMBOL(pm8921_is_batfet_closed);
/*
* Disabling the charge current limit causes current
* current limits to have no monitoring. An adequate charger
* capable of supplying high current while sustaining VIN_MIN
* is required if the limiting is disabled.
*/
int pm8921_disable_input_current_limit(bool disable)
{
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
if (disable) {
pr_warn("Disabling input current limit!\n");
return pm8xxx_writeb(the_chip->dev->parent,
CHG_BUCK_CTRL_TEST3, 0xF2);
}
return 0;
}
EXPORT_SYMBOL(pm8921_disable_input_current_limit);
int pm8917_set_under_voltage_detection_threshold(int mv)
{
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
return pm_chg_uvd_threshold_set(the_chip, mv);
}
EXPORT_SYMBOL(pm8917_set_under_voltage_detection_threshold);
int pm8921_set_max_battery_charge_current(int ma)
{
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
if (thermal_mitigation != 0 && the_chip->thermal_mitigation)
ma = min((unsigned int)ma,
the_chip->thermal_mitigation[thermal_mitigation]);
return pm_chg_ibatmax_set(the_chip, ma);
}
EXPORT_SYMBOL(pm8921_set_max_battery_charge_current);
int pm8921_disable_source_current(bool disable)
{
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
if (disable)
pr_warn("current drawn from chg=0, battery provides current\n");
return pm_chg_charge_dis(the_chip, disable);
}
EXPORT_SYMBOL(pm8921_disable_source_current);
int pm8921_regulate_input_voltage(int voltage)
{
int rc;
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
rc = pm_chg_vinmin_set(the_chip, voltage);
if (rc == 0)
the_chip->vin_min = voltage;
return rc;
}
#define USB_OV_THRESHOLD_MASK 0x60
#define USB_OV_THRESHOLD_SHIFT 5
int pm8921_usb_ovp_set_threshold(enum pm8921_usb_ov_threshold ov)
{
u8 temp;
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
if (ov > PM_USB_OV_7V) {
pr_err("limiting to over voltage threshold to 7volts\n");
ov = PM_USB_OV_7V;
}
temp = USB_OV_THRESHOLD_MASK & (ov << USB_OV_THRESHOLD_SHIFT);
return pm_chg_masked_write(the_chip, USB_OVP_CONTROL,
USB_OV_THRESHOLD_MASK, temp);
}
EXPORT_SYMBOL(pm8921_usb_ovp_set_threshold);
#define USB_DEBOUNCE_TIME_MASK 0x06
#define USB_DEBOUNCE_TIME_SHIFT 1
int pm8921_usb_ovp_set_hystersis(enum pm8921_usb_debounce_time ms)
{
u8 temp;
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
if (ms > PM_USB_DEBOUNCE_80P5MS) {
pr_err("limiting debounce to 80.5ms\n");
ms = PM_USB_DEBOUNCE_80P5MS;
}
temp = USB_DEBOUNCE_TIME_MASK & (ms << USB_DEBOUNCE_TIME_SHIFT);
return pm_chg_masked_write(the_chip, USB_OVP_CONTROL,
USB_DEBOUNCE_TIME_MASK, temp);
}
EXPORT_SYMBOL(pm8921_usb_ovp_set_hystersis);
#define USB_OVP_DISABLE_MASK 0x80
int pm8921_usb_ovp_disable(int disable)
{
u8 temp = 0;
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
if (disable)
temp = USB_OVP_DISABLE_MASK;
return pm_chg_masked_write(the_chip, USB_OVP_CONTROL,
USB_OVP_DISABLE_MASK, temp);
}
bool pm8921_is_battery_charging(int *source)
{
int fsm_state, is_charging, dc_present, usb_present;
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
fsm_state = pm_chg_get_fsm_state(the_chip);
is_charging = is_battery_charging(fsm_state);
if (is_charging == 0) {
*source = PM8921_CHG_SRC_NONE;
return is_charging;
}
if (source == NULL)
return is_charging;
/* the battery is charging, the source is requested, find it */
dc_present = is_dc_chg_plugged_in(the_chip);
usb_present = is_usb_chg_plugged_in(the_chip);
if (dc_present && !usb_present)
*source = PM8921_CHG_SRC_DC;
if (usb_present && !dc_present)
*source = PM8921_CHG_SRC_USB;
if (usb_present && dc_present)
/*
* The system always chooses dc for charging since it has
* higher priority.
*/
*source = PM8921_CHG_SRC_DC;
return is_charging;
}
EXPORT_SYMBOL(pm8921_is_battery_charging);
int pm8921_set_usb_power_supply_type(enum power_supply_type type)
{
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
if (type < POWER_SUPPLY_TYPE_USB)
return -EINVAL;
the_chip->usb_psy.type = type;
power_supply_changed(&the_chip->usb_psy);
power_supply_changed(&the_chip->dc_psy);
return 0;
}
EXPORT_SYMBOL_GPL(pm8921_set_usb_power_supply_type);
#ifdef CONFIG_WIRELESS_CHARGER
int set_wireless_power_supply_control(int value)
{
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
wireless_charging = value;
power_supply_changed(&the_chip->batt_psy);
return 0;
}
EXPORT_SYMBOL(set_wireless_power_supply_control);
#endif
int pm8921_set_ext_battery_health(int health, int i_limit)
{
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
the_chip->ext_batt_health = health;
the_chip->ext_warm_i_limit = i_limit;
pr_debug("health = %d i_decrease = %d\n", the_chip->ext_batt_health,
the_chip->ext_warm_i_limit);
return 0;
}
EXPORT_SYMBOL(pm8921_set_ext_battery_health);
int pm8921_get_batt_state(void)
{
int batt_state = POWER_SUPPLY_STATUS_DISCHARGING;
int fsm_state;
int i;
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
fsm_state = pm_chg_get_fsm_state(the_chip);
for (i = 0; i < ARRAY_SIZE(map); i++)
if (map[i].fsm_state == fsm_state)
batt_state = map[i].batt_state;
pr_debug("batt_state = %d fsm_state = %d \n",batt_state, fsm_state);
return batt_state;
}
EXPORT_SYMBOL(pm8921_get_batt_state);
int pm8921_get_batt_health(void)
{
int batt_health;
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
batt_health = get_prop_batt_health(the_chip);
pr_debug("batt health = %d\n", batt_health);
return batt_health;
}
EXPORT_SYMBOL(pm8921_get_batt_health);
int pm8921_batt_temperature(void)
{
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
return get_prop_batt_temp(the_chip);
}
static int pm8921_charger_enable_batt_alarm(struct pm8921_chg_chip *chip)
{
int rc = 0;
rc = pm8xxx_batt_alarm_disable(PM8XXX_BATT_ALARM_UPPER_COMPARATOR);
if (!rc)
rc = pm8xxx_batt_alarm_enable(
PM8XXX_BATT_ALARM_LOWER_COMPARATOR);
if (rc) {
pr_err("unable to set batt alarm state rc=%d\n", rc);
return rc;
}
return rc;
}
static int pm8921_charger_configure_batt_alarm(struct pm8921_chg_chip *chip)
{
int rc = 0;
rc = pm8xxx_batt_alarm_disable(PM8XXX_BATT_ALARM_UPPER_COMPARATOR);
if (!rc)
rc = pm8xxx_batt_alarm_disable(
PM8XXX_BATT_ALARM_LOWER_COMPARATOR);
if (rc) {
pr_err("unable to set batt alarm state rc=%d\n", rc);
return rc;
}
/*
* The batt-alarm driver requires sane values for both min / max,
* regardless of whether they're both activated.
*/
rc = pm8xxx_batt_alarm_threshold_set(
PM8XXX_BATT_ALARM_LOWER_COMPARATOR,
chip->alarm_voltage_mv);
/* We only handle the lower limit of the battery alarm, thus
* set a high sane maximum.
*/
if (!rc)
rc = pm8xxx_batt_alarm_threshold_set(
PM8XXX_BATT_ALARM_UPPER_COMPARATOR, 5000);
if (rc) {
pr_err("unable to set batt alarm threshold rc=%d\n", rc);
return rc;
}
rc = pm8xxx_batt_alarm_hold_time_set(
PM8XXX_BATT_ALARM_HOLD_TIME_16_MS);
if (rc) {
pr_err("unable to set batt alarm hold time rc=%d\n", rc);
return rc;
}
/* PWM enabled at 2Hz */
rc = pm8xxx_batt_alarm_pwm_rate_set(1, 7, 4);
if (rc) {
pr_err("unable to set batt alarm pwm rate rc=%d\n", rc);
return rc;
}
rc = pm8xxx_batt_alarm_register_notifier(&alarm_notifier);
if (rc) {
pr_err("unable to register alarm notifier rc=%d\n", rc);
return rc;
}
return rc;
}
static void handle_usb_insertion_removal(struct pm8921_chg_chip *chip)
{
int usb_present;
pm_chg_failed_clear(chip, 1);
usb_present = is_usb_chg_plugged_in(chip);
if (chip->usb_present ^ usb_present) {
notify_usb_of_the_plugin_event(usb_present);
chip->usb_present = usb_present;
power_supply_changed(&chip->usb_psy);
power_supply_changed(&chip->batt_psy);
pm8921_bms_calibrate_hkadc();
}
if (usb_present) {
schedule_delayed_work(&chip->unplug_check_work,
round_jiffies_relative(msecs_to_jiffies
(UNPLUG_CHECK_WAIT_PERIOD_MS)));
pm8921_chg_enable_irq(chip, CHG_GONE_IRQ);
} else {
/* USB unplugged reset target current */
usb_target_ma = 0;
pm8921_chg_disable_irq(chip, CHG_GONE_IRQ);
}
enable_input_voltage_regulation(chip);
bms_notify_check(chip);
}
static void handle_stop_ext_chg(struct pm8921_chg_chip *chip)
{
if (!chip->ext_psy) {
pr_debug("external charger not registered.\n");
return;
}
if (!chip->ext_charging) {
pr_debug("already not charging.\n");
return;
}
power_supply_set_charge_type(chip->ext_psy,
POWER_SUPPLY_CHARGE_TYPE_NONE);
pm8921_disable_source_current(false); /* release BATFET */
power_supply_changed(&chip->dc_psy);
chip->ext_charging = false;
chip->ext_charge_done = false;
bms_notify_check(chip);
/* Update battery charging LEDs and user space battery info */
power_supply_changed(&chip->batt_psy);
}
static void handle_start_ext_chg(struct pm8921_chg_chip *chip)
{
int dc_present;
int batt_present;
int batt_temp_ok;
int vbat_ov;
unsigned long delay =
round_jiffies_relative(msecs_to_jiffies(EOC_CHECK_PERIOD_MS));
if (!chip->ext_psy) {
pr_debug("external charger not registered.\n");
return;
}
if (chip->ext_charging) {
pr_debug("already charging.\n");
return;
}
dc_present = is_dc_chg_plugged_in(the_chip);
batt_present = pm_chg_get_rt_status(chip, BATT_INSERTED_IRQ);
batt_temp_ok = pm_chg_get_rt_status(chip, BAT_TEMP_OK_IRQ);
if (!dc_present) {
pr_warn("%s. dc not present.\n", __func__);
return;
}
if (!batt_present) {
pr_warn("%s. battery not present.\n", __func__);
return;
}
if (!batt_temp_ok) {
pr_warn("%s. battery temperature not ok.\n", __func__);
return;
}
pm8921_disable_source_current(true); /* Force BATFET=ON */
vbat_ov = pm_chg_get_rt_status(chip, VBAT_OV_IRQ);
if (vbat_ov) {
pr_warn("%s. battery over voltage.\n", __func__);
return;
}
schedule_delayed_work(&chip->unplug_check_work,
round_jiffies_relative(msecs_to_jiffies
(UNPLUG_CHECK_WAIT_PERIOD_MS)));
pm8921_chg_enable_irq(chip, CHG_GONE_IRQ);
power_supply_set_online(chip->ext_psy, dc_present);
power_supply_set_charge_type(chip->ext_psy,
POWER_SUPPLY_CHARGE_TYPE_FAST);
power_supply_changed(&chip->dc_psy);
chip->ext_charging = true;
chip->ext_charge_done = false;
bms_notify_check(chip);
/* Start BMS */
schedule_delayed_work(&chip->eoc_work, delay);
wake_lock(&chip->eoc_wake_lock);
/* Update battery charging LEDs and user space battery info */
power_supply_changed(&chip->batt_psy);
}
static void turn_off_ovp_fet(struct pm8921_chg_chip *chip, u16 ovptestreg)
{
u8 temp;
int rc;
rc = pm8xxx_writeb(chip->dev->parent, ovptestreg, 0x30);
if (rc) {
pr_err("Failed to write 0x30 to OVP_TEST rc = %d\n", rc);
return;
}
rc = pm8xxx_readb(chip->dev->parent, ovptestreg, &temp);
if (rc) {
pr_err("Failed to read from OVP_TEST rc = %d\n", rc);
return;
}
/* set ovp fet disable bit and the write bit */
temp |= 0x81;
rc = pm8xxx_writeb(chip->dev->parent, ovptestreg, temp);
if (rc) {
pr_err("Failed to write 0x%x OVP_TEST rc=%d\n", temp, rc);
return;
}
}
static int pm8921_battery_gauge_alarm_notify(struct notifier_block *nb,
unsigned long status, void *unused)
{
int rc, fsm_state;
pr_info("status: %lu\n", status);
/* Check if called before init */
switch (status) {
case 0:
pr_err("spurious interrupt\n");
break;
/* expected case - trip of low threshold */
case 1:
if (!the_chip) {
pr_err("not initialized\n");
return -EINVAL;
}
fsm_state = pm_chg_get_fsm_state(the_chip);
the_chip->disable_hw_clock_switching = 1;
rc = pm8xxx_batt_alarm_disable(
PM8XXX_BATT_ALARM_UPPER_COMPARATOR);
if (!rc)
rc = pm8xxx_batt_alarm_disable(
PM8XXX_BATT_ALARM_LOWER_COMPARATOR);
if (rc)
pr_err("unable to set alarm state rc=%d\n", rc);
break;
case 2:
pr_err("trip of high threshold\n");
break;
default:
pr_err("error received\n");
};
return 0;
}
static void turn_on_ovp_fet(struct pm8921_chg_chip *chip, u16 ovptestreg)
{
u8 temp;
int rc;
rc = pm8xxx_writeb(chip->dev->parent, ovptestreg, 0x30);
if (rc) {
pr_err("Failed to write 0x30 to OVP_TEST rc = %d\n", rc);
return;
}
rc = pm8xxx_readb(chip->dev->parent, ovptestreg, &temp);
if (rc) {
pr_err("Failed to read from OVP_TEST rc = %d\n", rc);
return;
}
/* unset ovp fet disable bit and set the write bit */
temp &= 0xFE;
temp |= 0x80;
rc = pm8xxx_writeb(chip->dev->parent, ovptestreg, temp);
if (rc) {
pr_err("Failed to write 0x%x to OVP_TEST rc = %d\n",
temp, rc);
return;
}
}
static int param_open_ovp_counter = 10;
module_param(param_open_ovp_counter, int, 0644);
#define USB_ACTIVE_BIT BIT(5)
#define DC_ACTIVE_BIT BIT(6)
static int is_active_chg_plugged_in(struct pm8921_chg_chip *chip,
u8 active_chg_mask)
{
if (active_chg_mask & USB_ACTIVE_BIT)
return pm_chg_get_rt_status(chip, USBIN_VALID_IRQ);
else if (active_chg_mask & DC_ACTIVE_BIT)
return pm_chg_get_rt_status(chip, DCIN_VALID_IRQ);
else
return 0;
}
#define WRITE_BANK_4 0xC0
#define OVP_DEBOUNCE_TIME 0x06
static void unplug_ovp_fet_open(struct pm8921_chg_chip *chip)
{
int chg_gone = 0, active_chg_plugged_in = 0;
int count = 0;
u8 active_mask = 0;
u16 ovpreg, ovptestreg;
if (is_usb_chg_plugged_in(chip) &&
(chip->active_path & USB_ACTIVE_BIT)) {
ovpreg = USB_OVP_CONTROL;
ovptestreg = USB_OVP_TEST;
active_mask = USB_ACTIVE_BIT;
} else if (is_dc_chg_plugged_in(chip) &&
(chip->active_path & DC_ACTIVE_BIT)) {
ovpreg = DC_OVP_CONTROL;
ovptestreg = DC_OVP_TEST;
active_mask = DC_ACTIVE_BIT;
} else {
return;
}
while (count++ < param_open_ovp_counter) {
pm_chg_masked_write(chip, ovpreg, OVP_DEBOUNCE_TIME, 0x0);
usleep(10);
active_chg_plugged_in
= is_active_chg_plugged_in(chip, active_mask);
chg_gone = pm_chg_get_rt_status(chip, CHG_GONE_IRQ);
pr_debug("OVP FET count = %d chg_gone=%d, active_valid = %d\n",
count, chg_gone, active_chg_plugged_in);
/* note usb_chg_plugged_in=0 => chg_gone=1 */
if (chg_gone == 1 && active_chg_plugged_in == 1) {
pr_debug("since chg_gone = 1 dis ovp_fet for 20msec\n");
turn_off_ovp_fet(chip, ovptestreg);
msleep(20);
turn_on_ovp_fet(chip, ovptestreg);
} else {
break;
}
}
pm_chg_masked_write(chip, ovpreg, OVP_DEBOUNCE_TIME, 0x2);
pr_debug("Exit count=%d chg_gone=%d, active_valid=%d\n",
count, chg_gone, active_chg_plugged_in);
return;
}
static int find_usb_ma_value(int value)
{
int i;
for (i = ARRAY_SIZE(usb_ma_table) - 1; i >= 0; i--) {
if (value >= usb_ma_table[i].usb_ma)
break;
}
return i;
}
static void decrease_usb_ma_value(int *value)
{
int i;
if (value) {
i = find_usb_ma_value(*value);
if (i > 0)
i--;
while (!the_chip->iusb_fine_res && i > 0
&& (usb_ma_table[i].value & PM8917_IUSB_FINE_RES))
i--;
*value = usb_ma_table[i].usb_ma;
}
}
static void increase_usb_ma_value(int *value)
{
int i;
if (value) {
i = find_usb_ma_value(*value);
if (i < (ARRAY_SIZE(usb_ma_table) - 1))
i++;
/* Get next correct entry if IUSB_FINE_RES is not available */
while (!the_chip->iusb_fine_res
&& (usb_ma_table[i].value & PM8917_IUSB_FINE_RES)
&& i < (ARRAY_SIZE(usb_ma_table) - 1))
i++;
*value = usb_ma_table[i].usb_ma;
}
}
static void vin_collapse_check_worker(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct pm8921_chg_chip *chip = container_of(dwork,
struct pm8921_chg_chip, vin_collapse_check_work);
/* AICL only for wall-chargers */
if (is_usb_chg_plugged_in(chip) &&
usb_target_ma > USB_WALL_THRESHOLD_MA) {
/* decrease usb_target_ma */
decrease_usb_ma_value(&usb_target_ma);
/* reset here, increase in unplug_check_worker */
__pm8921_charger_vbus_draw(USB_WALL_THRESHOLD_MA);
pr_debug("usb_now=%d, usb_target = %d\n",
USB_WALL_THRESHOLD_MA, usb_target_ma);
} else {
handle_usb_insertion_removal(chip);
}
}
#define VIN_MIN_COLLAPSE_CHECK_MS 50
static irqreturn_t usbin_valid_irq_handler(int irq, void *data)
{
if (usb_target_ma)
schedule_delayed_work(&the_chip->vin_collapse_check_work,
round_jiffies_relative(msecs_to_jiffies
(VIN_MIN_COLLAPSE_CHECK_MS)));
else
handle_usb_insertion_removal(data);
return IRQ_HANDLED;
}
static irqreturn_t usbin_ov_irq_handler(int irq, void *data)
{
pr_err("USB OverVoltage\n");
return IRQ_HANDLED;
}
static irqreturn_t batt_inserted_irq_handler(int irq, void *data)
{
struct pm8921_chg_chip *chip = data;
int status;
status = pm_chg_get_rt_status(chip, BATT_INSERTED_IRQ);
schedule_work(&chip->battery_id_valid_work);
handle_start_ext_chg(chip);
pr_debug("battery present=%d", status);
power_supply_changed(&chip->batt_psy);
return IRQ_HANDLED;
}
/*
* this interrupt used to restart charging a battery.
*
* Note: When DC-inserted the VBAT can't go low.
* VPH_PWR is provided by the ext-charger.
* After End-Of-Charging from DC, charging can be resumed only
* if DC is removed and then inserted after the battery was in use.
* Therefore the handle_start_ext_chg() is not called.
*/
static irqreturn_t vbatdet_low_irq_handler(int irq, void *data)
{
struct pm8921_chg_chip *chip = data;
int high_transition;
high_transition = pm_chg_get_rt_status(chip, VBATDET_LOW_IRQ);
if (high_transition) {
if (!chip->eoc_check_soc
|| pm_chg_get_fsm_state(data) == FSM_STATE_ON_BAT_3) {
/* enable auto charging */
pm_chg_auto_enable(chip, !charging_disabled);
pr_info("batt fell below resume voltage %s\n",
charging_disabled ? "" : "charger enabled");
}
}
pr_debug("fsm_state=%d\n", pm_chg_get_fsm_state(data));
power_supply_changed(&chip->batt_psy);
power_supply_changed(&chip->usb_psy);
power_supply_changed(&chip->dc_psy);
return IRQ_HANDLED;
}
static irqreturn_t usbin_uv_irq_handler(int irq, void *data)
{
pr_err("USB UnderVoltage\n");
return IRQ_HANDLED;
}
static irqreturn_t vbat_ov_irq_handler(int irq, void *data)
{
pr_debug("fsm_state=%d\n", pm_chg_get_fsm_state(data));
return IRQ_HANDLED;
}
static irqreturn_t chgwdog_irq_handler(int irq, void *data)
{
pr_debug("fsm_state=%d\n", pm_chg_get_fsm_state(data));
return IRQ_HANDLED;
}
static irqreturn_t vcp_irq_handler(int irq, void *data)
{
pr_debug("fsm_state=%d\n", pm_chg_get_fsm_state(data));
return IRQ_HANDLED;
}
static irqreturn_t atcdone_irq_handler(int irq, void *data)
{
pr_debug("fsm_state=%d\n", pm_chg_get_fsm_state(data));
return IRQ_HANDLED;
}
static irqreturn_t atcfail_irq_handler(int irq, void *data)
{
pr_debug("fsm_state=%d\n", pm_chg_get_fsm_state(data));
return IRQ_HANDLED;
}
static irqreturn_t chgdone_irq_handler(int irq, void *data)
{
struct pm8921_chg_chip *chip = data;
pr_debug("state_changed_to=%d\n", pm_chg_get_fsm_state(data));
handle_stop_ext_chg(chip);
power_supply_changed(&chip->batt_psy);
power_supply_changed(&chip->usb_psy);
power_supply_changed(&chip->dc_psy);
bms_notify_check(chip);
return IRQ_HANDLED;
}
static irqreturn_t chgfail_irq_handler(int irq, void *data)
{
struct pm8921_chg_chip *chip = data;
int ret;
ret = pm_chg_failed_clear(chip, 1);
if (ret)
pr_err("Failed to write CHG_FAILED_CLEAR bit\n");
pr_err("batt_present = %d, batt_temp_ok = %d, state_changed_to=%d\n",
get_prop_batt_present(chip),
pm_chg_get_rt_status(chip, BAT_TEMP_OK_IRQ),
pm_chg_get_fsm_state(data));
power_supply_changed(&chip->batt_psy);
power_supply_changed(&chip->usb_psy);
power_supply_changed(&chip->dc_psy);
return IRQ_HANDLED;
}
static irqreturn_t chgstate_irq_handler(int irq, void *data)
{
struct pm8921_chg_chip *chip = data;
pr_debug("state_changed_to=%d\n", pm_chg_get_fsm_state(data));
power_supply_changed(&chip->batt_psy);
power_supply_changed(&chip->usb_psy);
power_supply_changed(&chip->dc_psy);
bms_notify_check(chip);
return IRQ_HANDLED;
}
static int param_vin_disable_counter = 5;
module_param(param_vin_disable_counter, int, 0644);
static void attempt_reverse_boost_fix(struct pm8921_chg_chip *chip,
int count, int usb_ma)
{
if (usb_ma)
__pm8921_charger_vbus_draw(500);
pr_debug("count = %d iusb=500mA\n", count);
disable_input_voltage_regulation(chip);
pr_debug("count = %d disable_input_regulation\n", count);
msleep(20);
pr_debug("count = %d end sleep 20ms chg_gone=%d, usb_valid = %d\n",
count,
pm_chg_get_rt_status(chip, CHG_GONE_IRQ),
is_usb_chg_plugged_in(chip));
pr_debug("count = %d restoring input regulation and usb_ma = %d\n",
count, usb_ma);
enable_input_voltage_regulation(chip);
if (usb_ma)
__pm8921_charger_vbus_draw(usb_ma);
}
#define VIN_ACTIVE_BIT BIT(0)
#define UNPLUG_WRKARND_RESTORE_WAIT_PERIOD_US 200
#define VIN_MIN_INCREASE_MV 100
static void unplug_check_worker(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct pm8921_chg_chip *chip = container_of(dwork,
struct pm8921_chg_chip, unplug_check_work);
u8 reg_loop, active_path;
int rc, ibat, active_chg_plugged_in, usb_ma;
int chg_gone = 0;
reg_loop = 0;
rc = pm8xxx_readb(chip->dev->parent, PBL_ACCESS1, &active_path);
if (rc) {
pr_warn("Failed to read PBL_ACCESS1 rc=%d\n", rc);
//return;
}
chip->active_path = active_path;
if (the_chip->usb_present) {
active_path = USB_ACTIVE_BIT;
active_chg_plugged_in = the_chip->usb_present;
} else {
active_chg_plugged_in = is_active_chg_plugged_in(chip,
active_path);
}
pr_debug("active_path = 0x%x, active_chg_plugged_in = %d\n",
active_path, active_chg_plugged_in);
if (active_path & USB_ACTIVE_BIT) {
pr_debug("USB charger active\n");
pm_chg_iusbmax_get(chip, &usb_ma);
if (!usb_target_ma) {
if (usb_ma > 500) {
usb_ma = 500;
__pm8921_charger_vbus_draw(usb_ma);
pr_info("usb_now=%d, usb_target = %d\n",
usb_ma, 500);
goto check_again_later;
} else if (usb_ma == 500) {
pr_info("Stopping Unplug Check Worker"
" USB == 500mA\n");
disable_input_voltage_regulation(chip);
return;
}
if (usb_ma <= 100) {
pr_debug(
"Unenumerated or suspended usb_ma = %d"
" skip\n", usb_ma);
goto check_again_later;
}
}
} else if (active_path & DC_ACTIVE_BIT) {
pr_debug("DC charger active\n");
/* Some board designs are not prone to reverse boost on DC
* charging path */
if (!chip->dc_unplug_check)
return;
} else {
/* No charger active */
if (!(is_usb_chg_plugged_in(chip)
&& !(is_dc_chg_plugged_in(chip)))) {
pr_info(
"Stop: chg removed reg_loop = %d, fsm = %d ibat = %d\n",
pm_chg_get_regulation_loop(chip),
pm_chg_get_fsm_state(chip),
get_prop_batt_current(chip)
);
}
return;
}
if (active_path & USB_ACTIVE_BIT) {
reg_loop = pm_chg_get_regulation_loop(chip);
pr_debug("reg_loop=0x%x usb_ma = %d\n", reg_loop, usb_ma);
if ((reg_loop & VIN_ACTIVE_BIT) &&
(usb_ma > USB_WALL_THRESHOLD_MA)) {
decrease_usb_ma_value(&usb_ma);
usb_target_ma = usb_ma;
/* end AICL here */
__pm8921_charger_vbus_draw(usb_ma);
pr_info("VIN: usb_now=%d, usb_target = %d\n",
usb_ma, usb_target_ma);
}
}
reg_loop = pm_chg_get_regulation_loop(chip);
pr_debug("reg_loop=0x%x usb_ma = %d\n", reg_loop, usb_ma);
ibat = get_prop_batt_current(chip);
if (reg_loop & VIN_ACTIVE_BIT) {
pr_debug("ibat = %d fsm = %d reg_loop = 0x%x\n",
ibat, pm_chg_get_fsm_state(chip), reg_loop);
if (ibat > 0) {
int count = 0;
while (count++ < param_vin_disable_counter
&& active_chg_plugged_in == 1) {
if (active_path & USB_ACTIVE_BIT)
attempt_reverse_boost_fix(chip,
count, usb_ma);
else
attempt_reverse_boost_fix(chip,
count, 0);
/* after reverse boost fix check if the active
* charger was detected as removed */
active_chg_plugged_in
= is_active_chg_plugged_in(chip,
active_path);
pr_debug("active_chg_plugged_in = %d\n",
active_chg_plugged_in);
}
}
}
if(the_chip->usb_present) {
active_path = USB_ACTIVE_BIT;
active_chg_plugged_in =the_chip->usb_present;
} else {
active_chg_plugged_in = is_active_chg_plugged_in(chip,
active_path);
}
pr_debug("active_path = 0x%x, active_chg = %d\n",
active_path, active_chg_plugged_in);
chg_gone = pm_chg_get_rt_status(chip, CHG_GONE_IRQ);
if (chg_gone == 1 && active_chg_plugged_in == 1) {
pr_debug("chg_gone=%d, active_chg_plugged_in = %d\n",
chg_gone, active_chg_plugged_in);
unplug_ovp_fet_open(chip);
}
if (!(reg_loop & VIN_ACTIVE_BIT) && (active_path & USB_ACTIVE_BIT)) {
/* only increase iusb_max if vin loop not active */
if (usb_ma < usb_target_ma) {
increase_usb_ma_value(&usb_ma);
__pm8921_charger_vbus_draw(usb_ma);
pr_info("usb_now=%d, usb_target = %d\n",
usb_ma, usb_target_ma);
} else {
usb_target_ma = usb_ma;
}
}
check_again_later:
/* schedule to check again later */
schedule_delayed_work(&chip->unplug_check_work,
round_jiffies_relative(msecs_to_jiffies
(UNPLUG_CHECK_WAIT_PERIOD_MS)));
}
static irqreturn_t loop_change_irq_handler(int irq, void *data)
{
struct pm8921_chg_chip *chip = data;
pr_debug("fsm_state=%d reg_loop=0x%x\n",
pm_chg_get_fsm_state(data),
pm_chg_get_regulation_loop(data));
schedule_work(&chip->unplug_check_work.work);
return IRQ_HANDLED;
}
static irqreturn_t fastchg_irq_handler(int irq, void *data)
{
struct pm8921_chg_chip *chip = data;
int high_transition;
int rc;
if (chip->eoc_check_soc) {
rc = pm_chg_vbatdet_set(chip,
chip->max_voltage_mv
- chip->resume_voltage_delta);
if (rc)
pr_err("failed to set vbatdet rc=%d\n", rc);
}
high_transition = pm_chg_get_rt_status(chip, FASTCHG_IRQ);
if (high_transition && !delayed_work_pending(&chip->eoc_work)) {
wake_lock(&chip->eoc_wake_lock);
schedule_delayed_work(&chip->eoc_work,
round_jiffies_relative(msecs_to_jiffies
(EOC_CHECK_PERIOD_MS)));
}
power_supply_changed(&chip->batt_psy);
bms_notify_check(chip);
return IRQ_HANDLED;
}
static irqreturn_t trklchg_irq_handler(int irq, void *data)
{
struct pm8921_chg_chip *chip = data;
power_supply_changed(&chip->batt_psy);
return IRQ_HANDLED;
}
static irqreturn_t batt_removed_irq_handler(int irq, void *data)
{
struct pm8921_chg_chip *chip = data;
int status;
status = pm_chg_get_rt_status(chip, BATT_REMOVED_IRQ);
pr_debug("battery present=%d state=%d", !status,
pm_chg_get_fsm_state(data));
handle_stop_ext_chg(chip);
power_supply_changed(&chip->batt_psy);
return IRQ_HANDLED;
}
static irqreturn_t batttemp_hot_irq_handler(int irq, void *data)
{
struct pm8921_chg_chip *chip = data;
handle_stop_ext_chg(chip);
power_supply_changed(&chip->batt_psy);
return IRQ_HANDLED;
}
static irqreturn_t chghot_irq_handler(int irq, void *data)
{
struct pm8921_chg_chip *chip = data;
pr_debug("Chg hot fsm_state=%d\n", pm_chg_get_fsm_state(data));
power_supply_changed(&chip->batt_psy);
power_supply_changed(&chip->usb_psy);
handle_stop_ext_chg(chip);
return IRQ_HANDLED;
}
static irqreturn_t batttemp_cold_irq_handler(int irq, void *data)
{
struct pm8921_chg_chip *chip = data;
pr_debug("Batt cold fsm_state=%d\n", pm_chg_get_fsm_state(data));
handle_stop_ext_chg(chip);
power_supply_changed(&chip->batt_psy);
power_supply_changed(&chip->usb_psy);
return IRQ_HANDLED;
}
static void unplug_usbcheck_work(struct work_struct *work)
{
int usb_vin;
struct pm8xxx_adc_chan_result vchg;
struct delayed_work *dwork = to_delayed_work(work);
struct pm8921_chg_chip *chip = container_of(dwork,
struct pm8921_chg_chip, unplug_usbcheck_work);
pm8xxx_adc_read(CHANNEL_USBIN, &vchg);
usb_vin = vchg.physical;
pr_info("usb_vin : %d, max_voltage_mv=%d\n", usb_vin, chip->max_voltage_mv);
if ((usb_vin/1000 <= chip->max_voltage_mv) &&
(usb_vin/1000 > PM8921_CHG_VDDMAX_MIN)){
pr_info(" Turn off USB ovp \n");
unplug_ovp_fet_open(chip);
}
power_supply_changed(&chip->batt_psy);
power_supply_changed(&chip->usb_psy);
power_supply_changed(&chip->dc_psy);
}
static irqreturn_t chg_gone_irq_handler(int irq, void *data)
{
struct pm8921_chg_chip *chip = data;
int chg_gone, usb_chg_plugged_in;
usb_chg_plugged_in = is_usb_chg_plugged_in(chip);
chg_gone = pm_chg_get_rt_status(chip, CHG_GONE_IRQ);
pr_info("chg_gone=%d, usb_valid = %d\n", chg_gone, usb_chg_plugged_in);
pr_info("Chg gone fsm_state=%d\n", pm_chg_get_fsm_state(data));
if (chg_gone && usb_chg_plugged_in) {
pr_info("schedule to check again here\n");
/* schedule to check again later */
schedule_delayed_work(&chip->unplug_usbcheck_work,
round_jiffies_relative(msecs_to_jiffies
(UNPLUG_CHECK_WAIT_PERIOD_MS)));
}
power_supply_changed(&chip->batt_psy);
power_supply_changed(&chip->usb_psy);
power_supply_changed(&chip->dc_psy);
return IRQ_HANDLED;
}
/*
*
* bat_temp_ok_irq_handler - is edge triggered, hence it will
* fire for two cases:
*
* If the interrupt line switches to high temperature is okay
* and thus charging begins.
* If bat_temp_ok is low this means the temperature is now
* too hot or cold, so charging is stopped.
*
*/
static irqreturn_t bat_temp_ok_irq_handler(int irq, void *data)
{
int bat_temp_ok;
struct pm8921_chg_chip *chip = data;
bat_temp_ok = pm_chg_get_rt_status(chip, BAT_TEMP_OK_IRQ);
pr_debug("batt_temp_ok = %d fsm_state%d\n",
bat_temp_ok, pm_chg_get_fsm_state(data));
if (bat_temp_ok)
handle_start_ext_chg(chip);
else
handle_stop_ext_chg(chip);
power_supply_changed(&chip->batt_psy);
power_supply_changed(&chip->usb_psy);
bms_notify_check(chip);
return IRQ_HANDLED;
}
static irqreturn_t coarse_det_low_irq_handler(int irq, void *data)
{
pr_debug("fsm_state=%d\n", pm_chg_get_fsm_state(data));
return IRQ_HANDLED;
}
static irqreturn_t vdd_loop_irq_handler(int irq, void *data)
{
pr_debug("fsm_state=%d\n", pm_chg_get_fsm_state(data));
return IRQ_HANDLED;
}
static irqreturn_t vreg_ov_irq_handler(int irq, void *data)
{
pr_debug("fsm_state=%d\n", pm_chg_get_fsm_state(data));
return IRQ_HANDLED;
}
static irqreturn_t vbatdet_irq_handler(int irq, void *data)
{
pr_debug("fsm_state=%d\n", pm_chg_get_fsm_state(data));
return IRQ_HANDLED;
}
static irqreturn_t batfet_irq_handler(int irq, void *data)
{
struct pm8921_chg_chip *chip = data;
pr_debug("vreg ov\n");
power_supply_changed(&chip->batt_psy);
return IRQ_HANDLED;
}
static irqreturn_t dcin_valid_irq_handler(int irq, void *data)
{
struct pm8921_chg_chip *chip = data;
int dc_present;
dc_present = pm_chg_get_rt_status(chip, DCIN_VALID_IRQ);
if (chip->ext_psy)
power_supply_set_online(chip->ext_psy, dc_present);
chip->dc_present = dc_present;
if (dc_present)
handle_start_ext_chg(chip);
else
handle_stop_ext_chg(chip);
return IRQ_HANDLED;
}
static irqreturn_t dcin_ov_irq_handler(int irq, void *data)
{
struct pm8921_chg_chip *chip = data;
handle_stop_ext_chg(chip);
return IRQ_HANDLED;
}
static irqreturn_t dcin_uv_irq_handler(int irq, void *data)
{
struct pm8921_chg_chip *chip = data;
handle_stop_ext_chg(chip);
return IRQ_HANDLED;
}
static int __pm_batt_external_power_changed_work(struct device *dev, void *data)
{
struct power_supply *psy = &the_chip->batt_psy;
struct power_supply *epsy = dev_get_drvdata(dev);
int i, dcin_irq;
/* Only search for external supply if none is registered */
if (!the_chip->ext_psy) {
dcin_irq = the_chip->pmic_chg_irq[DCIN_VALID_IRQ];
for (i = 0; i < epsy->num_supplicants; i++) {
if (!strncmp(epsy->supplied_to[i], psy->name, 7)) {
if (!strncmp(epsy->name, "dc", 2)) {
the_chip->ext_psy = epsy;
dcin_valid_irq_handler(dcin_irq,
the_chip);
}
}
}
}
return 0;
}
static void pm_batt_external_power_changed(struct power_supply *psy)
{
/* Only look for an external supply if it hasn't been registered */
if (!the_chip->ext_psy)
class_for_each_device(power_supply_class, NULL, psy,
__pm_batt_external_power_changed_work);
}
/**
* update_heartbeat - internal function to update userspace
* per update_time minutes
*
*/
#define LOW_SOC_HEARTBEAT_MS 20000
static void update_heartbeat(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct pm8921_chg_chip *chip = container_of(dwork,
struct pm8921_chg_chip, update_heartbeat_work);
pm_chg_failed_clear(chip, 1);
power_supply_changed(&chip->batt_psy);
if (chip->recent_reported_soc <= 20)
schedule_delayed_work(&chip->update_heartbeat_work,
round_jiffies_relative(msecs_to_jiffies
(LOW_SOC_HEARTBEAT_MS)));
else
schedule_delayed_work(&chip->update_heartbeat_work,
round_jiffies_relative(msecs_to_jiffies
(chip->update_time)));
}
#define VDD_LOOP_ACTIVE_BIT BIT(3)
#define VDD_MAX_INCREASE_MV 400
static int vdd_max_increase_mv = VDD_MAX_INCREASE_MV;
module_param(vdd_max_increase_mv, int, 0644);
static int ichg_threshold_ua = -400000;
module_param(ichg_threshold_ua, int, 0644);
#define PM8921_CHG_VDDMAX_RES_MV 10
static void adjust_vdd_max_for_fastchg(struct pm8921_chg_chip *chip)
{
int ichg_meas_ua, vbat_uv;
int ichg_meas_ma;
int adj_vdd_max_mv, programmed_vdd_max;
int vbat_batt_terminal_uv;
int vbat_batt_terminal_mv;
int reg_loop;
int delta_mv = 0;
if (chip->rconn_mohm == 0) {
pr_debug("Exiting as rconn_mohm is 0\n");
return;
}
/* adjust vdd_max only in normal temperature zone */
if (chip->is_bat_cool || chip->is_bat_warm) {
pr_debug("Exiting is_bat_cool = %d is_batt_warm = %d\n",
chip->is_bat_cool, chip->is_bat_warm);
return;
}
reg_loop = pm_chg_get_regulation_loop(chip);
if (!(reg_loop & VDD_LOOP_ACTIVE_BIT)) {
pr_debug("Exiting Vdd loop is not active reg loop=0x%x\n",
reg_loop);
return;
}
pm8921_bms_get_simultaneous_battery_voltage_and_current(&ichg_meas_ua,
&vbat_uv);
if (ichg_meas_ua >= 0) {
pr_debug("Exiting ichg_meas_ua = %d > 0\n", ichg_meas_ua);
return;
}
ichg_meas_ma = ichg_meas_ua / 1000;
/* rconn_mohm is in milliOhms */
vbat_batt_terminal_uv = vbat_uv + ichg_meas_ma * the_chip->rconn_mohm;
vbat_batt_terminal_mv = vbat_batt_terminal_uv/1000;
pm_chg_vddmax_get(the_chip, &programmed_vdd_max);
delta_mv = chip->max_voltage_mv - vbat_batt_terminal_mv;
adj_vdd_max_mv = programmed_vdd_max + delta_mv;
pr_debug("vdd_max needs to be changed by %d mv from %d to %d\n",
delta_mv,
programmed_vdd_max,
adj_vdd_max_mv);
if (adj_vdd_max_mv < chip->max_voltage_mv) {
pr_debug("adj vdd_max lower than default max voltage\n");
return;
}
adj_vdd_max_mv = DIV_ROUND_UP(adj_vdd_max_mv, PM8921_CHG_VDDMAX_RES_MV)
* PM8921_CHG_VDDMAX_RES_MV;
if (adj_vdd_max_mv > (chip->max_voltage_mv + vdd_max_increase_mv))
adj_vdd_max_mv = chip->max_voltage_mv + vdd_max_increase_mv;
pr_debug("adjusting vdd_max_mv to %d to make "
"vbat_batt_termial_uv = %d to %d\n",
adj_vdd_max_mv, vbat_batt_terminal_uv, chip->max_voltage_mv);
pm_chg_vddmax_set(chip, adj_vdd_max_mv);
}
enum {
CHG_IN_PROGRESS,
CHG_NOT_IN_PROGRESS,
CHG_FINISHED,
};
#define VBAT_TOLERANCE_MV 70
#define CHG_DISABLE_MSLEEP 100
static int is_charging_finished(struct pm8921_chg_chip *chip)
{
int vbat_meas_uv, vbat_meas_mv, vbat_programmed, vbatdet_low;
int ichg_meas_ma, iterm_programmed;
int regulation_loop, fast_chg, vcp;
int rc;
static int last_vbat_programmed = -EINVAL;
if (!is_ext_charging(chip)) {
/* return if the battery is not being fastcharged */
fast_chg = pm_chg_get_rt_status(chip, FASTCHG_IRQ);
pr_debug("fast_chg = %d\n", fast_chg);
if (fast_chg == 0)
return CHG_NOT_IN_PROGRESS;
vcp = pm_chg_get_rt_status(chip, VCP_IRQ);
pr_debug("vcp = %d\n", vcp);
if (vcp == 1)
return CHG_IN_PROGRESS;
vbatdet_low = pm_chg_get_rt_status(chip, VBATDET_LOW_IRQ);
pr_debug("vbatdet_low = %d\n", vbatdet_low);
if (vbatdet_low == 1)
return CHG_IN_PROGRESS;
/* reset count if battery is hot/cold */
rc = pm_chg_get_rt_status(chip, BAT_TEMP_OK_IRQ);
pr_debug("batt_temp_ok = %d\n", rc);
if (rc == 0)
return CHG_IN_PROGRESS;
/* reset count if battery voltage is less than vddmax */
vbat_meas_uv = get_prop_battery_uvolts(chip);
if (vbat_meas_uv < 0)
return CHG_IN_PROGRESS;
vbat_meas_mv = vbat_meas_uv / 1000;
rc = pm_chg_vddmax_get(chip, &vbat_programmed);
if (rc) {
pr_err("couldnt read vddmax rc = %d\n", rc);
return CHG_IN_PROGRESS;
}
pr_debug("vddmax = %d vbat_meas_mv=%d\n",
vbat_programmed, vbat_meas_mv);
if (last_vbat_programmed == -EINVAL)
last_vbat_programmed = vbat_programmed;
if (last_vbat_programmed != vbat_programmed) {
/* vddmax changed, reset and check again */
pr_debug("vddmax = %d last_vdd_max=%d\n",
vbat_programmed, last_vbat_programmed);
last_vbat_programmed = vbat_programmed;
return CHG_IN_PROGRESS;
}
regulation_loop = pm_chg_get_regulation_loop(chip);
if (regulation_loop < 0) {
pr_err("couldnt read the regulation loop err=%d\n",
regulation_loop);
return CHG_IN_PROGRESS;
}
pr_debug("regulation_loop=%d\n", regulation_loop);
if (regulation_loop != 0 && regulation_loop != VDD_LOOP)
return CHG_IN_PROGRESS;
} /* !is_ext_charging */
/* reset count if battery chg current is more than iterm */
rc = pm_chg_iterm_get(chip, &iterm_programmed);
if (rc) {
pr_err("couldnt read iterm rc = %d\n", rc);
return CHG_IN_PROGRESS;
}
ichg_meas_ma = (get_prop_batt_current(chip)) / 1000;
pr_debug("iterm_programmed = %d ichg_meas_ma=%d\n",
iterm_programmed, ichg_meas_ma);
/*
* ichg_meas_ma < 0 means battery is drawing current
* ichg_meas_ma > 0 means battery is providing current
*/
if (ichg_meas_ma > 0)
return CHG_IN_PROGRESS;
if (ichg_meas_ma * -1 > iterm_programmed)
return CHG_IN_PROGRESS;
return CHG_FINISHED;
}
/**
* eoc_worker - internal function to check if battery EOC
* has happened
*
* If all conditions favouring, if the charge current is
* less than the term current for three consecutive times
* an EOC has happened.
* The wakelock is released if there is no need to reshedule
* - this happens when the battery is removed or EOC has
* happened
*/
#define CONSECUTIVE_COUNT 3
static void eoc_worker(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct pm8921_chg_chip *chip = container_of(dwork,
struct pm8921_chg_chip, eoc_work);
static int count;
int end;
int percent_soc;
pm_chg_failed_clear(chip, 1);
end = is_charging_finished(chip);
if (end == CHG_NOT_IN_PROGRESS) {
count = 0;
wake_unlock(&chip->eoc_wake_lock);
return;
}
/* If the disable hw clock switching
* flag was set it can now be unset. Also, re-enable
* the battery alarm to set the flag again when needed
*/
if (chip->disable_hw_clock_switching) {
/* Unset the hw clock switching flag */
chip->disable_hw_clock_switching = 0;
if (pm8921_charger_enable_batt_alarm(chip))
pr_err("couldn't set up batt alarm!\n");
}
if (end == CHG_FINISHED) {
count++;
} else {
count = 0;
}
if (chip->eoc_check_soc) {
percent_soc = get_prop_batt_capacity(chip);
if (percent_soc == 100)
count = CONSECUTIVE_COUNT;
}
if (count == CONSECUTIVE_COUNT) {
count = 0;
pr_info("End of Charging\n");
pm_chg_auto_enable(chip, 0);
if (is_ext_charging(chip))
chip->ext_charge_done = true;
if (chip->is_bat_warm || chip->is_bat_cool)
chip->bms_notify.is_battery_full = 0;
else
chip->bms_notify.is_battery_full = 1;
/* declare end of charging by invoking chgdone interrupt */
chgdone_irq_handler(chip->pmic_chg_irq[CHGDONE_IRQ], chip);
wake_unlock(&chip->eoc_wake_lock);
} else {
adjust_vdd_max_for_fastchg(chip);
pr_debug("EOC count = %d\n", count);
schedule_delayed_work(&chip->eoc_work,
round_jiffies_relative(msecs_to_jiffies
(EOC_CHECK_PERIOD_MS)));
}
}
static void btm_configure_work(struct work_struct *work)
{
int rc;
rc = pm8xxx_adc_btm_configure(&btm_config);
if (rc)
pr_err("failed to configure btm rc=%d", rc);
}
DECLARE_WORK(btm_config_work, btm_configure_work);
static void set_appropriate_battery_current(struct pm8921_chg_chip *chip)
{
unsigned int chg_current = chip->max_bat_chg_current;
if (chip->is_bat_cool)
chg_current = min(chg_current, chip->cool_bat_chg_current);
if (chip->is_bat_warm)
chg_current = min(chg_current, chip->warm_bat_chg_current);
if (chip->ext_warm_i_limit && chip->ext_batt_temp_monitor)
chg_current = min(chg_current, chip->ext_warm_i_limit);
if (thermal_mitigation != 0 && chip->thermal_mitigation)
chg_current = min(chg_current,
chip->thermal_mitigation[thermal_mitigation]);
pm_chg_ibatmax_set(the_chip, chg_current);
}
#define TEMP_HYSTERISIS_DEGC 2
static void battery_cool(bool enter)
{
pr_debug("enter = %d\n", enter);
if (enter == the_chip->is_bat_cool)
return;
the_chip->is_bat_cool = enter;
if (enter) {
btm_config.low_thr_temp =
the_chip->cool_temp_dc + TEMP_HYSTERISIS_DEGC;
set_appropriate_battery_current(the_chip);
pm_chg_vddmax_set(the_chip, the_chip->cool_bat_voltage);
pm_chg_vbatdet_set(the_chip,
the_chip->cool_bat_voltage
- the_chip->resume_voltage_delta);
} else {
btm_config.low_thr_temp = the_chip->cool_temp_dc;
set_appropriate_battery_current(the_chip);
pm_chg_vddmax_set(the_chip, the_chip->max_voltage_mv);
pm_chg_vbatdet_set(the_chip,
the_chip->max_voltage_mv
- the_chip->resume_voltage_delta);
}
schedule_work(&btm_config_work);
}
static void battery_warm(bool enter)
{
pr_debug("enter = %d\n", enter);
if (enter == the_chip->is_bat_warm)
return;
the_chip->is_bat_warm = enter;
if (enter) {
btm_config.high_thr_temp =
the_chip->warm_temp_dc - TEMP_HYSTERISIS_DEGC;
set_appropriate_battery_current(the_chip);
pm_chg_vddmax_set(the_chip, the_chip->warm_bat_voltage);
pm_chg_vbatdet_set(the_chip,
the_chip->warm_bat_voltage
- the_chip->resume_voltage_delta);
} else {
btm_config.high_thr_temp = the_chip->warm_temp_dc;
set_appropriate_battery_current(the_chip);
pm_chg_vddmax_set(the_chip, the_chip->max_voltage_mv);
pm_chg_vbatdet_set(the_chip,
the_chip->max_voltage_mv
- the_chip->resume_voltage_delta);
}
schedule_work(&btm_config_work);
}
static int configure_btm(struct pm8921_chg_chip *chip)
{
int rc;
if (chip->warm_temp_dc != INT_MIN)
btm_config.btm_warm_fn = battery_warm;
else
btm_config.btm_warm_fn = NULL;
if (chip->cool_temp_dc != INT_MIN)
btm_config.btm_cool_fn = battery_cool;
else
btm_config.btm_cool_fn = NULL;
btm_config.low_thr_temp = chip->cool_temp_dc;
btm_config.high_thr_temp = chip->warm_temp_dc;
btm_config.interval = chip->temp_check_period;
rc = pm8xxx_adc_btm_configure(&btm_config);
if (rc)
pr_err("failed to configure btm rc = %d\n", rc);
rc = pm8xxx_adc_btm_start();
if (rc)
pr_err("failed to start btm rc = %d\n", rc);
return rc;
}
/**
* set_disable_status_param -
*
* Internal function to disable battery charging and also disable drawing
* any current from the source. The device is forced to run on a battery
* after this.
*/
static int set_disable_status_param(const char *val, struct kernel_param *kp)
{
int ret;
struct pm8921_chg_chip *chip = the_chip;
ret = param_set_int(val, kp);
if (ret) {
pr_err("error setting value %d\n", ret);
return ret;
}
pr_info("factory set disable param to %d\n", charging_disabled);
if (chip) {
pm_chg_auto_enable(chip, !charging_disabled);
pm_chg_charge_dis(chip, charging_disabled);
}
return 0;
}
module_param_call(disabled, set_disable_status_param, param_get_uint,
&charging_disabled, 0644);
static int rconn_mohm;
static int set_rconn_mohm(const char *val, struct kernel_param *kp)
{
int ret;
struct pm8921_chg_chip *chip = the_chip;
ret = param_set_int(val, kp);
if (ret) {
pr_err("error setting value %d\n", ret);
return ret;
}
if (chip)
chip->rconn_mohm = rconn_mohm;
return 0;
}
module_param_call(rconn_mohm, set_rconn_mohm, param_get_uint,
&rconn_mohm, 0644);
/**
* set_thermal_mitigation_level -
*
* Internal function to control battery charging current to reduce
* temperature
*/
static int set_therm_mitigation_level(const char *val, struct kernel_param *kp)
{
int ret;
struct pm8921_chg_chip *chip = the_chip;
ret = param_set_int(val, kp);
if (ret) {
pr_err("error setting value %d\n", ret);
return ret;
}
if (!chip) {
pr_err("called before init\n");
return -EINVAL;
}
if (!chip->thermal_mitigation) {
pr_err("no thermal mitigation\n");
return -EINVAL;
}
if (thermal_mitigation < 0
|| thermal_mitigation >= chip->thermal_levels) {
pr_err("out of bound level selected\n");
return -EINVAL;
}
set_appropriate_battery_current(chip);
return ret;
}
module_param_call(thermal_mitigation, set_therm_mitigation_level,
param_get_uint,
&thermal_mitigation, 0644);
static int set_usb_max_current(const char *val, struct kernel_param *kp)
{
int ret, mA;
struct pm8921_chg_chip *chip = the_chip;
ret = param_set_int(val, kp);
if (ret) {
pr_err("error setting value %d\n", ret);
return ret;
}
if (chip) {
pr_warn("setting current max to %d\n", usb_max_current);
pm_chg_iusbmax_get(chip, &mA);
if (mA > usb_max_current)
pm8921_charger_vbus_draw(usb_max_current);
return 0;
}
return -EINVAL;
}
module_param_call(usb_max_current, set_usb_max_current,
param_get_uint, &usb_max_current, 0644);
static void free_irqs(struct pm8921_chg_chip *chip)
{
int i;
for (i = 0; i < PM_CHG_MAX_INTS; i++)
if (chip->pmic_chg_irq[i]) {
free_irq(chip->pmic_chg_irq[i], chip);
chip->pmic_chg_irq[i] = 0;
}
}
/* determines the initial present states */
static void __devinit determine_initial_state(struct pm8921_chg_chip *chip)
{
unsigned long flags;
int fsm_state;
chip->dc_present = !!is_dc_chg_plugged_in(chip);
chip->usb_present = !!is_usb_chg_plugged_in(chip);
notify_usb_of_the_plugin_event(chip->usb_present);
if (chip->usb_present) {
schedule_delayed_work(&chip->unplug_check_work,
round_jiffies_relative(msecs_to_jiffies
(UNPLUG_CHECK_WAIT_PERIOD_MS)));
pm8921_chg_enable_irq(chip, CHG_GONE_IRQ);
}
pm8921_chg_enable_irq(chip, DCIN_VALID_IRQ);
pm8921_chg_enable_irq(chip, USBIN_VALID_IRQ);
pm8921_chg_enable_irq(chip, BATT_REMOVED_IRQ);
pm8921_chg_enable_irq(chip, BATT_INSERTED_IRQ);
pm8921_chg_enable_irq(chip, DCIN_OV_IRQ);
pm8921_chg_enable_irq(chip, DCIN_UV_IRQ);
pm8921_chg_enable_irq(chip, CHGFAIL_IRQ);
pm8921_chg_enable_irq(chip, FASTCHG_IRQ);
pm8921_chg_enable_irq(chip, VBATDET_LOW_IRQ);
if (!chip->ext_batt_temp_monitor)
pm8921_chg_enable_irq(chip, BAT_TEMP_OK_IRQ);
spin_lock_irqsave(&vbus_lock, flags);
if (usb_chg_current) {
/* reissue a vbus draw call */
__pm8921_charger_vbus_draw(usb_chg_current);
fastchg_irq_handler(chip->pmic_chg_irq[FASTCHG_IRQ], chip);
}
spin_unlock_irqrestore(&vbus_lock, flags);
fsm_state = pm_chg_get_fsm_state(chip);
if (is_battery_charging(fsm_state)) {
chip->bms_notify.is_charging = 1;
pm8921_bms_charging_began();
}
check_battery_valid(chip);
pr_debug("usb = %d, dc = %d batt = %d state=%d\n",
chip->usb_present,
chip->dc_present,
get_prop_batt_present(chip),
fsm_state);
}
struct pm_chg_irq_init_data {
unsigned int irq_id;
char *name;
unsigned long flags;
irqreturn_t (*handler)(int, void *);
};
#define CHG_IRQ(_id, _flags, _handler) \
{ \
.irq_id = _id, \
.name = #_id, \
.flags = _flags, \
.handler = _handler, \
}
struct pm_chg_irq_init_data chg_irq_data[] = {
CHG_IRQ(USBIN_VALID_IRQ, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
usbin_valid_irq_handler),
CHG_IRQ(USBIN_OV_IRQ, IRQF_TRIGGER_RISING, usbin_ov_irq_handler),
CHG_IRQ(BATT_INSERTED_IRQ, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
batt_inserted_irq_handler),
CHG_IRQ(VBATDET_LOW_IRQ, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
vbatdet_low_irq_handler),
CHG_IRQ(USBIN_UV_IRQ, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
usbin_uv_irq_handler),
CHG_IRQ(VBAT_OV_IRQ, IRQF_TRIGGER_RISING, vbat_ov_irq_handler),
CHG_IRQ(CHGWDOG_IRQ, IRQF_TRIGGER_RISING, chgwdog_irq_handler),
CHG_IRQ(VCP_IRQ, IRQF_TRIGGER_RISING, vcp_irq_handler),
CHG_IRQ(ATCDONE_IRQ, IRQF_TRIGGER_RISING, atcdone_irq_handler),
CHG_IRQ(ATCFAIL_IRQ, IRQF_TRIGGER_RISING, atcfail_irq_handler),
CHG_IRQ(CHGDONE_IRQ, IRQF_TRIGGER_RISING, chgdone_irq_handler),
CHG_IRQ(CHGFAIL_IRQ, IRQF_TRIGGER_RISING, chgfail_irq_handler),
CHG_IRQ(CHGSTATE_IRQ, IRQF_TRIGGER_RISING, chgstate_irq_handler),
CHG_IRQ(LOOP_CHANGE_IRQ, IRQF_TRIGGER_RISING, loop_change_irq_handler),
CHG_IRQ(FASTCHG_IRQ, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
fastchg_irq_handler),
CHG_IRQ(TRKLCHG_IRQ, IRQF_TRIGGER_RISING, trklchg_irq_handler),
CHG_IRQ(BATT_REMOVED_IRQ, IRQF_TRIGGER_RISING,
batt_removed_irq_handler),
CHG_IRQ(BATTTEMP_HOT_IRQ, IRQF_TRIGGER_RISING,
batttemp_hot_irq_handler),
CHG_IRQ(CHGHOT_IRQ, IRQF_TRIGGER_RISING, chghot_irq_handler),
CHG_IRQ(BATTTEMP_COLD_IRQ, IRQF_TRIGGER_RISING,
batttemp_cold_irq_handler),
CHG_IRQ(CHG_GONE_IRQ, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
chg_gone_irq_handler),
CHG_IRQ(BAT_TEMP_OK_IRQ, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
bat_temp_ok_irq_handler),
CHG_IRQ(COARSE_DET_LOW_IRQ, IRQF_TRIGGER_RISING,
coarse_det_low_irq_handler),
CHG_IRQ(VDD_LOOP_IRQ, IRQF_TRIGGER_RISING, vdd_loop_irq_handler),
CHG_IRQ(VREG_OV_IRQ, IRQF_TRIGGER_RISING, vreg_ov_irq_handler),
CHG_IRQ(VBATDET_IRQ, IRQF_TRIGGER_RISING, vbatdet_irq_handler),
CHG_IRQ(BATFET_IRQ, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
batfet_irq_handler),
CHG_IRQ(DCIN_VALID_IRQ, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
dcin_valid_irq_handler),
CHG_IRQ(DCIN_OV_IRQ, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
dcin_ov_irq_handler),
CHG_IRQ(DCIN_UV_IRQ, IRQF_TRIGGER_RISING, dcin_uv_irq_handler),
};
static int __devinit request_irqs(struct pm8921_chg_chip *chip,
struct platform_device *pdev)
{
struct resource *res;
int ret, i;
ret = 0;
bitmap_fill(chip->enabled_irqs, PM_CHG_MAX_INTS);
for (i = 0; i < ARRAY_SIZE(chg_irq_data); i++) {
res = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
chg_irq_data[i].name);
if (res == NULL) {
pr_err("couldn't find %s\n", chg_irq_data[i].name);
goto err_out;
}
chip->pmic_chg_irq[chg_irq_data[i].irq_id] = res->start;
ret = request_irq(res->start, chg_irq_data[i].handler,
chg_irq_data[i].flags,
chg_irq_data[i].name, chip);
if (ret < 0) {
pr_err("couldn't request %d (%s) %d\n", res->start,
chg_irq_data[i].name, ret);
chip->pmic_chg_irq[chg_irq_data[i].irq_id] = 0;
goto err_out;
}
pm8921_chg_disable_irq(chip, chg_irq_data[i].irq_id);
}
return 0;
err_out:
free_irqs(chip);
return -EINVAL;
}
static void pm8921_chg_force_19p2mhz_clk(struct pm8921_chg_chip *chip)
{
int err;
u8 temp;
temp = 0xD1;
err = pm8xxx_writeb(chip->dev->parent, CHG_TEST, temp);
if (err) {
pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST);
return;
}
temp = 0xD3;
err = pm8xxx_writeb(chip->dev->parent, CHG_TEST, temp);
if (err) {
pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST);
return;
}
temp = 0xD1;
err = pm8xxx_writeb(chip->dev->parent, CHG_TEST, temp);
if (err) {
pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST);
return;
}
temp = 0xD5;
err = pm8xxx_writeb(chip->dev->parent, CHG_TEST, temp);
if (err) {
pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST);
return;
}
udelay(183);
temp = 0xD1;
err = pm8xxx_writeb(chip->dev->parent, CHG_TEST, temp);
if (err) {
pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST);
return;
}
temp = 0xD0;
err = pm8xxx_writeb(chip->dev->parent, CHG_TEST, temp);
if (err) {
pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST);
return;
}
udelay(32);
temp = 0xD1;
err = pm8xxx_writeb(chip->dev->parent, CHG_TEST, temp);
if (err) {
pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST);
return;
}
temp = 0xD3;
err = pm8xxx_writeb(chip->dev->parent, CHG_TEST, temp);
if (err) {
pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST);
return;
}
}
static void pm8921_chg_set_hw_clk_switching(struct pm8921_chg_chip *chip)
{
int err;
u8 temp;
temp = 0xD1;
err = pm8xxx_writeb(chip->dev->parent, CHG_TEST, temp);
if (err) {
pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST);
return;
}
temp = 0xD0;
err = pm8xxx_writeb(chip->dev->parent, CHG_TEST, temp);
if (err) {
pr_err("Error %d writing %d to addr %d\n", err, temp, CHG_TEST);
return;
}
}
#define VREF_BATT_THERM_FORCE_ON BIT(7)
static void detect_battery_removal(struct pm8921_chg_chip *chip)
{
u8 temp;
pm8xxx_readb(chip->dev->parent, CHG_CNTRL, &temp);
pr_debug("upon restart CHG_CNTRL = 0x%x\n", temp);
if (!(temp & VREF_BATT_THERM_FORCE_ON))
/*
* batt therm force on bit is battery backed and is default 0
* The charger sets this bit at init time. If this bit is found
* 0 that means the battery was removed. Tell the bms about it
*/
pm8921_bms_invalidate_shutdown_soc();
}
#define ENUM_TIMER_STOP_BIT BIT(1)
#define BOOT_DONE_BIT BIT(6)
#define BOOT_TIMER_EN_BIT BIT(1)
#define BOOT_DONE_MASK (BOOT_DONE_BIT | BOOT_TIMER_EN_BIT)
#define CHG_BATFET_ON_BIT BIT(3)
#define CHG_VCP_EN BIT(0)
#define CHG_BAT_TEMP_DIS_BIT BIT(2)
#define SAFE_CURRENT_MA 1500
static int __devinit pm8921_chg_hw_init(struct pm8921_chg_chip *chip)
{
int rc;
int vdd_safe;
/* forcing 19p2mhz before accessing any charger registers */
pm8921_chg_force_19p2mhz_clk(chip);
detect_battery_removal(chip);
rc = pm_chg_masked_write(chip, SYS_CONFIG_2,
BOOT_DONE_MASK, BOOT_DONE_MASK);
if (rc) {
pr_err("Failed to set BOOT_DONE_BIT rc=%d\n", rc);
return rc;
}
vdd_safe = chip->max_voltage_mv + VDD_MAX_INCREASE_MV;
if (vdd_safe > PM8921_CHG_VDDSAFE_MAX)
vdd_safe = PM8921_CHG_VDDSAFE_MAX;
rc = pm_chg_vddsafe_set(chip, vdd_safe);
if (rc) {
pr_err("Failed to set safe voltage to %d rc=%d\n",
chip->max_voltage_mv, rc);
return rc;
}
rc = pm_chg_vbatdet_set(chip,
chip->max_voltage_mv
- chip->resume_voltage_delta);
if (rc) {
pr_err("Failed to set vbatdet comprator voltage to %d rc=%d\n",
chip->max_voltage_mv - chip->resume_voltage_delta, rc);
return rc;
}
rc = pm_chg_vddmax_set(chip, chip->max_voltage_mv);
if (rc) {
pr_err("Failed to set max voltage to %d rc=%d\n",
chip->max_voltage_mv, rc);
return rc;
}
rc = pm_chg_ibatsafe_set(chip, SAFE_CURRENT_MA);
if (rc) {
pr_err("Failed to set max voltage to %d rc=%d\n",
SAFE_CURRENT_MA, rc);
return rc;
}
rc = pm_chg_ibatmax_set(chip, chip->max_bat_chg_current);
if (rc) {
pr_err("Failed to set max current to 400 rc=%d\n", rc);
return rc;
}
rc = pm_chg_iterm_set(chip, chip->term_current);
if (rc) {
pr_err("Failed to set term current to %d rc=%d\n",
chip->term_current, rc);
return rc;
}
/* Disable the ENUM TIMER */
rc = pm_chg_masked_write(chip, PBL_ACCESS2, ENUM_TIMER_STOP_BIT,
ENUM_TIMER_STOP_BIT);
if (rc) {
pr_err("Failed to set enum timer stop rc=%d\n", rc);
return rc;
}
if (chip->safety_time != 0) {
rc = pm_chg_tchg_max_set(chip, chip->safety_time);
if (rc) {
pr_err("Failed to set max time to %d minutes rc=%d\n",
chip->safety_time, rc);
return rc;
}
}
if (chip->ttrkl_time != 0) {
rc = pm_chg_ttrkl_max_set(chip, chip->ttrkl_time);
if (rc) {
pr_err("Failed to set trkl time to %d minutes rc=%d\n",
chip->safety_time, rc);
return rc;
}
}
if (chip->vin_min != 0) {
rc = pm_chg_vinmin_set(chip, chip->vin_min);
if (rc) {
pr_err("Failed to set vin min to %d mV rc=%d\n",
chip->vin_min, rc);
return rc;
}
} else {
chip->vin_min = pm_chg_vinmin_get(chip);
}
rc = pm_chg_disable_wd(chip);
if (rc) {
pr_err("Failed to disable wd rc=%d\n", rc);
return rc;
}
rc = pm_chg_masked_write(chip, CHG_CNTRL_2,
CHG_BAT_TEMP_DIS_BIT, 0);
if (rc) {
pr_err("Failed to enable temp control chg rc=%d\n", rc);
return rc;
}
/* switch to a 3.2Mhz for the buck */
rc = pm8xxx_writeb(chip->dev->parent, CHG_BUCK_CLOCK_CTRL, 0x15);
if (rc) {
pr_err("Failed to switch buck clk rc=%d\n", rc);
return rc;
}
if (chip->trkl_voltage != 0) {
rc = pm_chg_vtrkl_low_set(chip, chip->trkl_voltage);
if (rc) {
pr_err("Failed to set trkl voltage to %dmv rc=%d\n",
chip->trkl_voltage, rc);
return rc;
}
}
if (chip->weak_voltage != 0) {
rc = pm_chg_vweak_set(chip, chip->weak_voltage);
if (rc) {
pr_err("Failed to set weak voltage to %dmv rc=%d\n",
chip->weak_voltage, rc);
return rc;
}
}
if (chip->trkl_current != 0) {
rc = pm_chg_itrkl_set(chip, chip->trkl_current);
if (rc) {
pr_err("Failed to set trkl current to %dmA rc=%d\n",
chip->trkl_voltage, rc);
return rc;
}
}
if (chip->weak_current != 0) {
rc = pm_chg_iweak_set(chip, chip->weak_current);
if (rc) {
pr_err("Failed to set weak current to %dmA rc=%d\n",
chip->weak_current, rc);
return rc;
}
}
rc = pm_chg_batt_cold_temp_config(chip, chip->cold_thr);
if (rc) {
pr_err("Failed to set cold config %d rc=%d\n",
chip->cold_thr, rc);
}
rc = pm_chg_batt_hot_temp_config(chip, chip->hot_thr);
if (rc) {
pr_err("Failed to set hot config %d rc=%d\n",
chip->hot_thr, rc);
}
rc = pm_chg_led_src_config(chip, chip->led_src_config);
if (rc) {
pr_err("Failed to set charger LED src config %d rc=%d\n",
chip->led_src_config, rc);
}
/* Workarounds for die 1.1 and 1.0 */
if (pm8xxx_get_revision(chip->dev->parent) < PM8XXX_REVISION_8921_2p0) {
pm8xxx_writeb(chip->dev->parent, CHG_BUCK_CTRL_TEST2, 0xF1);
pm8xxx_writeb(chip->dev->parent, CHG_BUCK_CTRL_TEST3, 0xCE);
pm8xxx_writeb(chip->dev->parent, CHG_BUCK_CTRL_TEST3, 0xD8);
/* software workaround for correct battery_id detection */
pm8xxx_writeb(chip->dev->parent, PSI_TXRX_SAMPLE_DATA_0, 0xFF);
pm8xxx_writeb(chip->dev->parent, PSI_TXRX_SAMPLE_DATA_1, 0xFF);
pm8xxx_writeb(chip->dev->parent, PSI_TXRX_SAMPLE_DATA_2, 0xFF);
pm8xxx_writeb(chip->dev->parent, PSI_TXRX_SAMPLE_DATA_3, 0xFF);
pm8xxx_writeb(chip->dev->parent, PSI_CONFIG_STATUS, 0x0D);
udelay(100);
pm8xxx_writeb(chip->dev->parent, PSI_CONFIG_STATUS, 0x0C);
}
/* Workarounds for die 3.0 */
if (pm8xxx_get_revision(chip->dev->parent) == PM8XXX_REVISION_8921_3p0)
pm8xxx_writeb(chip->dev->parent, CHG_BUCK_CTRL_TEST3, 0xAC);
/* Enable isub_fine resolution AICL for PM8917 */
if (pm8xxx_get_version(chip->dev->parent) == PM8XXX_VERSION_8917) {
chip->iusb_fine_res = true;
if (chip->uvd_voltage_mv)
rc = pm_chg_uvd_threshold_set(chip,
chip->uvd_voltage_mv);
if (rc) {
pr_err("Failed to set UVD threshold %drc=%d\n",
chip->uvd_voltage_mv, rc);
return rc;
}
}
pm8xxx_writeb(chip->dev->parent, CHG_BUCK_CTRL_TEST3, 0xD9);
/* Disable EOC FSM processing */
pm8xxx_writeb(chip->dev->parent, CHG_BUCK_CTRL_TEST3, 0x91);
rc = pm_chg_masked_write(chip, CHG_CNTRL, VREF_BATT_THERM_FORCE_ON,
VREF_BATT_THERM_FORCE_ON);
if (rc)
pr_err("Failed to Force Vref therm rc=%d\n", rc);
rc = pm_chg_charge_dis(chip, charging_disabled);
if (rc) {
pr_err("Failed to disable CHG_CHARGE_DIS bit rc=%d\n", rc);
return rc;
}
rc = pm_chg_auto_enable(chip, !charging_disabled);
if (rc) {
pr_err("Failed to enable charging rc=%d\n", rc);
return rc;
}
return 0;
}
static int get_rt_status(void *data, u64 * val)
{
int i = (int)data;
int ret;
/* global irq number is passed in via data */
ret = pm_chg_get_rt_status(the_chip, i);
*val = ret;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(rt_fops, get_rt_status, NULL, "%llu\n");
static int get_fsm_status(void *data, u64 * val)
{
u8 temp;
temp = pm_chg_get_fsm_state(the_chip);
*val = temp;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fsm_fops, get_fsm_status, NULL, "%llu\n");
static int get_reg_loop(void *data, u64 * val)
{
u8 temp;
if (!the_chip) {
pr_err("%s called before init\n", __func__);
return -EINVAL;
}
temp = pm_chg_get_regulation_loop(the_chip);
*val = temp;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(reg_loop_fops, get_reg_loop, NULL, "0x%02llx\n");
static int get_reg(void *data, u64 * val)
{
int addr = (int)data;
int ret;
u8 temp;
ret = pm8xxx_readb(the_chip->dev->parent, addr, &temp);
if (ret) {
pr_err("pm8xxx_readb to %x value =%d errored = %d\n",
addr, temp, ret);
return -EAGAIN;
}
*val = temp;
return 0;
}
static int set_reg(void *data, u64 val)
{
int addr = (int)data;
int ret;
u8 temp;
temp = (u8) val;
ret = pm8xxx_writeb(the_chip->dev->parent, addr, temp);
if (ret) {
pr_err("pm8xxx_writeb to %x value =%d errored = %d\n",
addr, temp, ret);
return -EAGAIN;
}
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(reg_fops, get_reg, set_reg, "0x%02llx\n");
enum {
BAT_WARM_ZONE,
BAT_COOL_ZONE,
};
static int get_warm_cool(void *data, u64 * val)
{
if (!the_chip) {
pr_err("%s called before init\n", __func__);
return -EINVAL;
}
if ((int)data == BAT_WARM_ZONE)
*val = the_chip->is_bat_warm;
if ((int)data == BAT_COOL_ZONE)
*val = the_chip->is_bat_cool;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(warm_cool_fops, get_warm_cool, NULL, "0x%lld\n");
static void create_debugfs_entries(struct pm8921_chg_chip *chip)
{
int i;
chip->dent = debugfs_create_dir("pm8921_chg", NULL);
if (IS_ERR(chip->dent)) {
pr_err("pmic charger couldnt create debugfs dir\n");
return;
}
debugfs_create_file("CHG_CNTRL", 0644, chip->dent,
(void *)CHG_CNTRL, &reg_fops);
debugfs_create_file("CHG_CNTRL_2", 0644, chip->dent,
(void *)CHG_CNTRL_2, &reg_fops);
debugfs_create_file("CHG_CNTRL_3", 0644, chip->dent,
(void *)CHG_CNTRL_3, &reg_fops);
debugfs_create_file("PBL_ACCESS1", 0644, chip->dent,
(void *)PBL_ACCESS1, &reg_fops);
debugfs_create_file("PBL_ACCESS2", 0644, chip->dent,
(void *)PBL_ACCESS2, &reg_fops);
debugfs_create_file("SYS_CONFIG_1", 0644, chip->dent,
(void *)SYS_CONFIG_1, &reg_fops);
debugfs_create_file("SYS_CONFIG_2", 0644, chip->dent,
(void *)SYS_CONFIG_2, &reg_fops);
debugfs_create_file("CHG_VDD_MAX", 0644, chip->dent,
(void *)CHG_VDD_MAX, &reg_fops);
debugfs_create_file("CHG_VDD_SAFE", 0644, chip->dent,
(void *)CHG_VDD_SAFE, &reg_fops);
debugfs_create_file("CHG_VBAT_DET", 0644, chip->dent,
(void *)CHG_VBAT_DET, &reg_fops);
debugfs_create_file("CHG_IBAT_MAX", 0644, chip->dent,
(void *)CHG_IBAT_MAX, &reg_fops);
debugfs_create_file("CHG_IBAT_SAFE", 0644, chip->dent,
(void *)CHG_IBAT_SAFE, &reg_fops);
debugfs_create_file("CHG_VIN_MIN", 0644, chip->dent,
(void *)CHG_VIN_MIN, &reg_fops);
debugfs_create_file("CHG_VTRICKLE", 0644, chip->dent,
(void *)CHG_VTRICKLE, &reg_fops);
debugfs_create_file("CHG_ITRICKLE", 0644, chip->dent,
(void *)CHG_ITRICKLE, &reg_fops);
debugfs_create_file("CHG_ITERM", 0644, chip->dent,
(void *)CHG_ITERM, &reg_fops);
debugfs_create_file("CHG_TCHG_MAX", 0644, chip->dent,
(void *)CHG_TCHG_MAX, &reg_fops);
debugfs_create_file("CHG_TWDOG", 0644, chip->dent,
(void *)CHG_TWDOG, &reg_fops);
debugfs_create_file("CHG_TEMP_THRESH", 0644, chip->dent,
(void *)CHG_TEMP_THRESH, &reg_fops);
debugfs_create_file("CHG_COMP_OVR", 0644, chip->dent,
(void *)CHG_COMP_OVR, &reg_fops);
debugfs_create_file("CHG_BUCK_CTRL_TEST1", 0644, chip->dent,
(void *)CHG_BUCK_CTRL_TEST1, &reg_fops);
debugfs_create_file("CHG_BUCK_CTRL_TEST2", 0644, chip->dent,
(void *)CHG_BUCK_CTRL_TEST2, &reg_fops);
debugfs_create_file("CHG_BUCK_CTRL_TEST3", 0644, chip->dent,
(void *)CHG_BUCK_CTRL_TEST3, &reg_fops);
debugfs_create_file("CHG_TEST", 0644, chip->dent,
(void *)CHG_TEST, &reg_fops);
debugfs_create_file("FSM_STATE", 0644, chip->dent, NULL,
&fsm_fops);
debugfs_create_file("REGULATION_LOOP_CONTROL", 0644, chip->dent, NULL,
&reg_loop_fops);
debugfs_create_file("BAT_WARM_ZONE", 0644, chip->dent,
(void *)BAT_WARM_ZONE, &warm_cool_fops);
debugfs_create_file("BAT_COOL_ZONE", 0644, chip->dent,
(void *)BAT_COOL_ZONE, &warm_cool_fops);
for (i = 0; i < ARRAY_SIZE(chg_irq_data); i++) {
if (chip->pmic_chg_irq[chg_irq_data[i].irq_id])
debugfs_create_file(chg_irq_data[i].name, 0444,
chip->dent,
(void *)chg_irq_data[i].irq_id,
&rt_fops);
}
}
int pm8921_stop_chg_disable_irq(void)
{
struct pm8921_chg_chip *chip = the_chip;
pm8921_chg_disable_irq(chip, ATCFAIL_IRQ);
pm8921_chg_disable_irq(chip, CHGHOT_IRQ);
pm8921_chg_disable_irq(chip, ATCDONE_IRQ);
pm8921_chg_disable_irq(chip, FASTCHG_IRQ);
pm8921_chg_disable_irq(chip, CHGDONE_IRQ);
pm8921_chg_disable_irq(chip, VBATDET_IRQ);
pm8921_chg_disable_irq(chip, VBATDET_LOW_IRQ);
return 1;
}
int pm8921_start_chg_enable_irq(void)
{
struct pm8921_chg_chip *chip = the_chip;
pm8921_chg_enable_irq(chip, ATCFAIL_IRQ);
pm8921_chg_enable_irq(chip, CHGHOT_IRQ);
pm8921_chg_enable_irq(chip, ATCDONE_IRQ);
pm8921_chg_enable_irq(chip, FASTCHG_IRQ);
pm8921_chg_enable_irq(chip, CHGDONE_IRQ);
pm8921_chg_enable_irq(chip, VBATDET_IRQ);
pm8921_chg_enable_irq(chip, VBATDET_LOW_IRQ);
return 1;
}
static ssize_t pm8921_chg_status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int fsm_state, is_charging, r;
bool b_chg_ok = false;
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
fsm_state = pm_chg_get_fsm_state(the_chip);
is_charging = is_battery_charging(fsm_state);
if (is_charging) {
b_chg_ok = true;
r = sprintf(buf, "%d\n", b_chg_ok);
pr_info("pm8921_chg_status_show , true ! buf = %s, is_charging = %d\n",
buf, is_charging);
} else {
b_chg_ok = false;
r = sprintf(buf, "%d\n", b_chg_ok);
pr_info("pm8921_chg_status_show , false ! buf = %s, is_charging = %d\n",
buf, is_charging);
}
return r;
}
static ssize_t pm8921_chg_status_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret = 0, batt_status = 0;
struct pm8921_chg_chip *chip = the_chip;
if (!count)
return -EINVAL;
batt_status = get_prop_batt_status(chip);
if (strncmp(buf, "0", 1) == 0) {
/* stop charging */
pr_info("pm8921_chg_status_store : stop charging start\n");
if (batt_status == POWER_SUPPLY_STATUS_CHARGING) {
ret = pm8921_stop_chg_disable_irq();
pm_chg_auto_enable(chip, 0);
pm_chg_charge_dis(chip,1);
pr_info("pm8921_chg_status_store : stop charging end\n");
}
} else if (strncmp(buf, "1", 1) == 0) {
/* start charging */
pr_info("pm8921_chg_status_store : start charging start\n");
if (batt_status != POWER_SUPPLY_STATUS_CHARGING) {
ret = pm8921_start_chg_enable_irq();
pm_chg_auto_enable(chip, 1);
pm_chg_charge_dis(chip,0);
pr_info("pm8921_chg_status_store : start charging end\n");
}
}
if(ret == 0)
return -EINVAL;
return ret;
}
DEVICE_ATTR(charge, 0664, pm8921_chg_status_show, pm8921_chg_status_store);
static int pm8921_charger_suspend_noirq(struct device *dev)
{
int rc;
struct pm8921_chg_chip *chip = dev_get_drvdata(dev);
rc = pm_chg_masked_write(chip, CHG_CNTRL, VREF_BATT_THERM_FORCE_ON, 0);
if (rc)
pr_err("Failed to Force Vref therm off rc=%d\n", rc);
if (!(chip->disable_hw_clock_switching))
pm8921_chg_set_hw_clk_switching(chip);
return 0;
}
static int pm8921_charger_resume_noirq(struct device *dev)
{
int rc;
struct pm8921_chg_chip *chip = dev_get_drvdata(dev);
pm8921_chg_force_19p2mhz_clk(chip);
rc = pm_chg_masked_write(chip, CHG_CNTRL, VREF_BATT_THERM_FORCE_ON,
VREF_BATT_THERM_FORCE_ON);
if (rc)
pr_err("Failed to Force Vref therm on rc=%d\n", rc);
return 0;
}
static int pm8921_charger_resume(struct device *dev)
{
int rc;
struct pm8921_chg_chip *chip = dev_get_drvdata(dev);
if (!(chip->cool_temp_dc == INT_MIN && chip->warm_temp_dc == INT_MIN)
&& !(chip->keep_btm_on_suspend)) {
rc = pm8xxx_adc_btm_configure(&btm_config);
if (rc)
pr_err("couldn't reconfigure btm rc=%d\n", rc);
rc = pm8xxx_adc_btm_start();
if (rc)
pr_err("couldn't restart btm rc=%d\n", rc);
}
if (pm8921_chg_is_enabled(chip, LOOP_CHANGE_IRQ)) {
disable_irq_wake(chip->pmic_chg_irq[LOOP_CHANGE_IRQ]);
pm8921_chg_disable_irq(chip, LOOP_CHANGE_IRQ);
}
return 0;
}
static int pm8921_charger_suspend(struct device *dev)
{
int rc;
struct pm8921_chg_chip *chip = dev_get_drvdata(dev);
if (!(chip->cool_temp_dc == INT_MIN && chip->warm_temp_dc == INT_MIN)
&& !(chip->keep_btm_on_suspend)) {
rc = pm8xxx_adc_btm_end();
if (rc)
pr_err("Failed to disable BTM on suspend rc=%d\n", rc);
}
if (is_usb_chg_plugged_in(chip)) {
pm8921_chg_enable_irq(chip, LOOP_CHANGE_IRQ);
enable_irq_wake(chip->pmic_chg_irq[LOOP_CHANGE_IRQ]);
}
return 0;
}
static int __devinit pm8921_charger_probe(struct platform_device *pdev)
{
int rc = 0;
struct pm8921_chg_chip *chip;
const struct pm8921_charger_platform_data *pdata
= pdev->dev.platform_data;
if (!pdata) {
pr_err("missing platform data\n");
return -EINVAL;
}
chip = kzalloc(sizeof(struct pm8921_chg_chip),
GFP_KERNEL);
if (!chip) {
pr_err("Cannot allocate pm_chg_chip\n");
return -ENOMEM;
}
chip->dev = &pdev->dev;
chip->safety_time = pdata->safety_time;
chip->ttrkl_time = pdata->ttrkl_time;
chip->update_time = pdata->update_time;
chip->max_voltage_mv = pdata->max_voltage;
chip->alarm_voltage_mv = pdata->alarm_voltage;
chip->min_voltage_mv = pdata->min_voltage;
chip->uvd_voltage_mv = pdata->uvd_thresh_voltage;
chip->resume_voltage_delta = pdata->resume_voltage_delta;
chip->term_current = pdata->term_current;
chip->vbat_channel = pdata->charger_cdata.vbat_channel;
chip->batt_temp_channel = pdata->charger_cdata.batt_temp_channel;
chip->batt_id_channel = pdata->charger_cdata.batt_id_channel;
chip->batt_id_min = pdata->batt_id_min;
chip->batt_id_max = pdata->batt_id_max;
if (pdata->cool_temp != INT_MIN)
chip->cool_temp_dc = pdata->cool_temp * 10;
else
chip->cool_temp_dc = INT_MIN;
if (pdata->warm_temp != INT_MIN)
chip->warm_temp_dc = pdata->warm_temp * 10;
else
chip->warm_temp_dc = INT_MIN;
chip->temp_check_period = pdata->temp_check_period;
chip->dc_unplug_check = pdata->dc_unplug_check;
chip->max_bat_chg_current = pdata->max_bat_chg_current;
chip->cool_bat_chg_current = pdata->cool_bat_chg_current;
chip->warm_bat_chg_current = pdata->warm_bat_chg_current;
chip->cool_bat_voltage = pdata->cool_bat_voltage;
chip->warm_bat_voltage = pdata->warm_bat_voltage;
chip->keep_btm_on_suspend = pdata->keep_btm_on_suspend;
chip->trkl_voltage = pdata->trkl_voltage;
chip->weak_voltage = pdata->weak_voltage;
chip->trkl_current = pdata->trkl_current;
chip->weak_current = pdata->weak_current;
chip->vin_min = pdata->vin_min;
chip->thermal_mitigation = pdata->thermal_mitigation;
chip->thermal_levels = pdata->thermal_levels;
chip->cold_thr = pdata->cold_thr;
chip->hot_thr = pdata->hot_thr;
chip->rconn_mohm = pdata->rconn_mohm;
chip->led_src_config = pdata->led_src_config;
chip->ext_batt_temp_monitor = pdata->ext_batt_temp_monitor;
chip->eoc_check_soc = pdata->eoc_check_soc;
if (chip->ext_batt_temp_monitor)
chip->ext_batt_health = POWER_SUPPLY_HEALTH_GOOD;
rc = pm8921_chg_hw_init(chip);
if (rc) {
pr_err("couldn't init hardware rc=%d\n", rc);
goto free_chip;
}
chip->usb_psy.name = "usb",
chip->usb_psy.type = POWER_SUPPLY_TYPE_USB,
chip->usb_psy.supplied_to = pm_power_supplied_to,
chip->usb_psy.num_supplicants = ARRAY_SIZE(pm_power_supplied_to),
chip->usb_psy.properties = pm_power_props_usb,
chip->usb_psy.num_properties = ARRAY_SIZE(pm_power_props_usb),
chip->usb_psy.get_property = pm_power_get_property_usb,
chip->usb_psy.set_property = pm_power_set_property_usb,
chip->dc_psy.name = "pm8921-dc",
chip->dc_psy.type = POWER_SUPPLY_TYPE_MAINS,
chip->dc_psy.supplied_to = pm_power_supplied_to,
chip->dc_psy.num_supplicants = ARRAY_SIZE(pm_power_supplied_to),
chip->dc_psy.properties = pm_power_props_mains,
chip->dc_psy.num_properties = ARRAY_SIZE(pm_power_props_mains),
chip->dc_psy.get_property = pm_power_get_property_mains,
chip->batt_psy.name = "battery",
chip->batt_psy.type = POWER_SUPPLY_TYPE_BATTERY,
chip->batt_psy.properties = msm_batt_power_props,
chip->batt_psy.num_properties = ARRAY_SIZE(msm_batt_power_props),
chip->batt_psy.get_property = pm_batt_power_get_property,
chip->batt_psy.external_power_changed = pm_batt_external_power_changed,
rc = power_supply_register(chip->dev, &chip->usb_psy);
if (rc < 0) {
pr_err("power_supply_register usb failed rc = %d\n", rc);
goto free_chip;
}
rc = power_supply_register(chip->dev, &chip->dc_psy);
if (rc < 0) {
pr_err("power_supply_register usb failed rc = %d\n", rc);
goto unregister_usb;
}
rc = power_supply_register(chip->dev, &chip->batt_psy);
if (rc < 0) {
pr_err("power_supply_register batt failed rc = %d\n", rc);
goto unregister_dc;
}
platform_set_drvdata(pdev, chip);
the_chip = chip;
wake_lock_init(&chip->eoc_wake_lock, WAKE_LOCK_SUSPEND, "pm8921_eoc");
INIT_DELAYED_WORK(&chip->eoc_work, eoc_worker);
INIT_DELAYED_WORK(&chip->vin_collapse_check_work,
vin_collapse_check_worker);
INIT_DELAYED_WORK(&chip->unplug_check_work, unplug_check_worker);
INIT_DELAYED_WORK(&chip->unplug_usbcheck_work, unplug_usbcheck_work);
rc = request_irqs(chip, pdev);
if (rc) {
pr_err("couldn't register interrupts rc=%d\n", rc);
goto unregister_batt;
}
enable_irq_wake(chip->pmic_chg_irq[USBIN_VALID_IRQ]);
enable_irq_wake(chip->pmic_chg_irq[USBIN_OV_IRQ]);
enable_irq_wake(chip->pmic_chg_irq[USBIN_UV_IRQ]);
if (!chip->ext_batt_temp_monitor)
enable_irq_wake(chip->pmic_chg_irq[BAT_TEMP_OK_IRQ]);
enable_irq_wake(chip->pmic_chg_irq[VBATDET_LOW_IRQ]);
enable_irq_wake(chip->pmic_chg_irq[FASTCHG_IRQ]);
/*
* if both the cool_temp_dc and warm_temp_dc are invalid device doesnt
* care for jeita compliance
*/
if (!(chip->cool_temp_dc == INT_MIN && chip->warm_temp_dc == INT_MIN)) {
rc = configure_btm(chip);
if (rc) {
pr_err("couldn't register with btm rc=%d\n", rc);
goto free_irq;
}
}
rc = pm8921_charger_configure_batt_alarm(chip);
if (rc) {
pr_err("Couldn't configure battery alarm! rc=%d\n", rc);
goto free_irq;
}
rc = pm8921_charger_enable_batt_alarm(chip);
if (rc) {
pr_err("Couldn't enable battery alarm! rc=%d\n", rc);
goto free_irq;
}
create_debugfs_entries(chip);
INIT_WORK(&chip->bms_notify.work, bms_notify);
INIT_WORK(&chip->battery_id_valid_work, battery_id_valid);
/* determine what state the charger is in */
determine_initial_state(chip);
rc = device_create_file(&pdev->dev, &dev_attr_charge);
if (rc) {
pr_err("Couldn't device_create_file charge! rc=%d\n",rc);
goto free_irq;
}
if (chip->update_time) {
INIT_DELAYED_WORK(&chip->update_heartbeat_work,
update_heartbeat);
schedule_delayed_work(&chip->update_heartbeat_work,
round_jiffies_relative(msecs_to_jiffies
(chip->update_time)));
}
return 0;
free_irq:
free_irqs(chip);
unregister_batt:
power_supply_unregister(&chip->batt_psy);
unregister_dc:
power_supply_unregister(&chip->dc_psy);
unregister_usb:
power_supply_unregister(&chip->usb_psy);
free_chip:
kfree(chip);
return rc;
}
static int __devexit pm8921_charger_remove(struct platform_device *pdev)
{
struct pm8921_chg_chip *chip = platform_get_drvdata(pdev);
device_remove_file(&pdev->dev, &dev_attr_charge);
free_irqs(chip);
platform_set_drvdata(pdev, NULL);
the_chip = NULL;
kfree(chip);
return 0;
}
static const struct dev_pm_ops pm8921_pm_ops = {
.suspend = pm8921_charger_suspend,
.suspend_noirq = pm8921_charger_suspend_noirq,
.resume_noirq = pm8921_charger_resume_noirq,
.resume = pm8921_charger_resume,
};
static struct platform_driver pm8921_charger_driver = {
.probe = pm8921_charger_probe,
.remove = __devexit_p(pm8921_charger_remove),
.driver = {
.name = PM8921_CHARGER_DEV_NAME,
.owner = THIS_MODULE,
.pm = &pm8921_pm_ops,
},
};
static int __init pm8921_charger_init(void)
{
return platform_driver_register(&pm8921_charger_driver);
}
static void __exit pm8921_charger_exit(void)
{
platform_driver_unregister(&pm8921_charger_driver);
}
late_initcall(pm8921_charger_init);
module_exit(pm8921_charger_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("PMIC8921 charger/battery driver");
MODULE_VERSION("1.0");
MODULE_ALIAS("platform:" PM8921_CHARGER_DEV_NAME);