android_kernel_google_msm/net/dccp/proto.c
Arnaldo Carvalho de Melo 7c657876b6 [DCCP]: Initial implementation
Development to this point was done on a subversion repository at:

http://oops.ghostprotocols.net:81/cgi-bin/viewcvs.cgi/dccp-2.6/

This repository will be kept at this site for the foreseable future,
so that interested parties can see the history of this code,
attributions, etc.

If I ever decide to take this offline I'll provide the full history at
some other suitable place.

Signed-off-by: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-08-29 15:49:46 -07:00

818 lines
19 KiB
C

/*
* net/dccp/proto.c
*
* An implementation of the DCCP protocol
* Arnaldo Carvalho de Melo <acme@conectiva.com.br>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/config.h>
#include <linux/dccp.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/in.h>
#include <linux/if_arp.h>
#include <linux/init.h>
#include <linux/random.h>
#include <net/checksum.h>
#include <net/inet_common.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <net/sock.h>
#include <net/xfrm.h>
#include <asm/semaphore.h>
#include <linux/spinlock.h>
#include <linux/timer.h>
#include <linux/delay.h>
#include <linux/poll.h>
#include <linux/dccp.h>
#include "ccid.h"
#include "dccp.h"
DEFINE_SNMP_STAT(struct dccp_mib, dccp_statistics);
atomic_t dccp_orphan_count = ATOMIC_INIT(0);
static struct net_protocol dccp_protocol = {
.handler = dccp_v4_rcv,
.err_handler = dccp_v4_err,
};
const char *dccp_packet_name(const int type)
{
static const char *dccp_packet_names[] = {
[DCCP_PKT_REQUEST] = "REQUEST",
[DCCP_PKT_RESPONSE] = "RESPONSE",
[DCCP_PKT_DATA] = "DATA",
[DCCP_PKT_ACK] = "ACK",
[DCCP_PKT_DATAACK] = "DATAACK",
[DCCP_PKT_CLOSEREQ] = "CLOSEREQ",
[DCCP_PKT_CLOSE] = "CLOSE",
[DCCP_PKT_RESET] = "RESET",
[DCCP_PKT_SYNC] = "SYNC",
[DCCP_PKT_SYNCACK] = "SYNCACK",
};
if (type >= DCCP_NR_PKT_TYPES)
return "INVALID";
else
return dccp_packet_names[type];
}
EXPORT_SYMBOL_GPL(dccp_packet_name);
const char *dccp_state_name(const int state)
{
static char *dccp_state_names[] = {
[DCCP_OPEN] = "OPEN",
[DCCP_REQUESTING] = "REQUESTING",
[DCCP_PARTOPEN] = "PARTOPEN",
[DCCP_LISTEN] = "LISTEN",
[DCCP_RESPOND] = "RESPOND",
[DCCP_CLOSING] = "CLOSING",
[DCCP_TIME_WAIT] = "TIME_WAIT",
[DCCP_CLOSED] = "CLOSED",
};
if (state >= DCCP_MAX_STATES)
return "INVALID STATE!";
else
return dccp_state_names[state];
}
EXPORT_SYMBOL_GPL(dccp_state_name);
static inline int dccp_listen_start(struct sock *sk)
{
dccp_sk(sk)->dccps_role = DCCP_ROLE_LISTEN;
return inet_csk_listen_start(sk, TCP_SYNQ_HSIZE);
}
int dccp_disconnect(struct sock *sk, int flags)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct inet_sock *inet = inet_sk(sk);
int err = 0;
const int old_state = sk->sk_state;
if (old_state != DCCP_CLOSED)
dccp_set_state(sk, DCCP_CLOSED);
/* ABORT function of RFC793 */
if (old_state == DCCP_LISTEN) {
inet_csk_listen_stop(sk);
/* FIXME: do the active reset thing */
} else if (old_state == DCCP_REQUESTING)
sk->sk_err = ECONNRESET;
dccp_clear_xmit_timers(sk);
__skb_queue_purge(&sk->sk_receive_queue);
if (sk->sk_send_head != NULL) {
__kfree_skb(sk->sk_send_head);
sk->sk_send_head = NULL;
}
inet->dport = 0;
if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
inet_reset_saddr(sk);
sk->sk_shutdown = 0;
sock_reset_flag(sk, SOCK_DONE);
icsk->icsk_backoff = 0;
inet_csk_delack_init(sk);
__sk_dst_reset(sk);
BUG_TRAP(!inet->num || icsk->icsk_bind_hash);
sk->sk_error_report(sk);
return err;
}
int dccp_ioctl(struct sock *sk, int cmd, unsigned long arg)
{
dccp_pr_debug("entry\n");
return -ENOIOCTLCMD;
}
int dccp_setsockopt(struct sock *sk, int level, int optname,
char *optval, int optlen)
{
dccp_pr_debug("entry\n");
if (level != SOL_DCCP)
return ip_setsockopt(sk, level, optname, optval, optlen);
return -EOPNOTSUPP;
}
int dccp_getsockopt(struct sock *sk, int level, int optname,
char *optval, int *optlen)
{
dccp_pr_debug("entry\n");
if (level != SOL_DCCP)
return ip_getsockopt(sk, level, optname, optval, optlen);
return -EOPNOTSUPP;
}
int dccp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
size_t len)
{
const struct dccp_sock *dp = dccp_sk(sk);
const int flags = msg->msg_flags;
const int noblock = flags & MSG_DONTWAIT;
struct sk_buff *skb;
int rc, size;
long timeo;
if (len > dp->dccps_mss_cache)
return -EMSGSIZE;
lock_sock(sk);
timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
/*
* We have to use sk_stream_wait_connect here to set sk_write_pending,
* so that the trick in dccp_rcv_request_sent_state_process.
*/
/* Wait for a connection to finish. */
if ((1 << sk->sk_state) & ~(DCCPF_OPEN | DCCPF_PARTOPEN | DCCPF_CLOSING))
if ((rc = sk_stream_wait_connect(sk, &timeo)) != 0)
goto out_err;
size = sk->sk_prot->max_header + len;
release_sock(sk);
skb = sock_alloc_send_skb(sk, size, noblock, &rc);
lock_sock(sk);
if (skb == NULL)
goto out_release;
skb_reserve(skb, sk->sk_prot->max_header);
rc = memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len);
if (rc == 0) {
struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb);
const struct dccp_ackpkts *ap = dp->dccps_hc_rx_ackpkts;
long delay;
/*
* XXX: This is just to match the Waikato tree CA interaction
* points, after the CCID3 code is stable and I have a better
* understanding of behaviour I'll change this to look more like
* TCP.
*/
while (1) {
rc = ccid_hc_tx_send_packet(dp->dccps_hc_tx_ccid, sk,
skb, len, &delay);
if (rc == 0)
break;
if (rc != -EAGAIN)
goto out_discard;
if (delay > timeo)
goto out_discard;
release_sock(sk);
delay = schedule_timeout(delay);
lock_sock(sk);
timeo -= delay;
if (signal_pending(current))
goto out_interrupted;
rc = -EPIPE;
if (!(sk->sk_state == DCCP_PARTOPEN || sk->sk_state == DCCP_OPEN))
goto out_discard;
}
if (sk->sk_state == DCCP_PARTOPEN) {
/* See 8.1.5. Handshake Completion */
inet_csk_schedule_ack(sk);
inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
dcb->dccpd_type = DCCP_PKT_DATAACK;
/* FIXME: we really should have a dccps_ack_pending or use icsk */
} else if (inet_csk_ack_scheduled(sk) ||
(dp->dccps_options.dccpo_send_ack_vector &&
ap->dccpap_buf_ackno != DCCP_MAX_SEQNO + 1 &&
ap->dccpap_ack_seqno == DCCP_MAX_SEQNO + 1))
dcb->dccpd_type = DCCP_PKT_DATAACK;
else
dcb->dccpd_type = DCCP_PKT_DATA;
dccp_transmit_skb(sk, skb);
ccid_hc_tx_packet_sent(dp->dccps_hc_tx_ccid, sk, 0, len);
} else {
out_discard:
kfree_skb(skb);
}
out_release:
release_sock(sk);
return rc ? : len;
out_err:
rc = sk_stream_error(sk, flags, rc);
goto out_release;
out_interrupted:
rc = sock_intr_errno(timeo);
goto out_discard;
}
EXPORT_SYMBOL(dccp_sendmsg);
int dccp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
size_t len, int nonblock, int flags, int *addr_len)
{
const struct dccp_hdr *dh;
int copied = 0;
unsigned long used;
int err;
int target; /* Read at least this many bytes */
long timeo;
lock_sock(sk);
err = -ENOTCONN;
if (sk->sk_state == DCCP_LISTEN)
goto out;
timeo = sock_rcvtimeo(sk, nonblock);
/* Urgent data needs to be handled specially. */
if (flags & MSG_OOB)
goto recv_urg;
/* FIXME */
#if 0
seq = &tp->copied_seq;
if (flags & MSG_PEEK) {
peek_seq = tp->copied_seq;
seq = &peek_seq;
}
#endif
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
do {
struct sk_buff *skb;
u32 offset;
/* FIXME */
#if 0
/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
if (tp->urg_data && tp->urg_seq == *seq) {
if (copied)
break;
if (signal_pending(current)) {
copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
break;
}
}
#endif
/* Next get a buffer. */
skb = skb_peek(&sk->sk_receive_queue);
do {
if (!skb)
break;
offset = 0;
dh = dccp_hdr(skb);
if (dh->dccph_type == DCCP_PKT_DATA ||
dh->dccph_type == DCCP_PKT_DATAACK)
goto found_ok_skb;
if (dh->dccph_type == DCCP_PKT_RESET ||
dh->dccph_type == DCCP_PKT_CLOSE) {
dccp_pr_debug("found fin ok!\n");
goto found_fin_ok;
}
dccp_pr_debug("packet_type=%s\n", dccp_packet_name(dh->dccph_type));
BUG_TRAP(flags & MSG_PEEK);
skb = skb->next;
} while (skb != (struct sk_buff *)&sk->sk_receive_queue);
/* Well, if we have backlog, try to process it now yet. */
if (copied >= target && !sk->sk_backlog.tail)
break;
if (copied) {
if (sk->sk_err ||
sk->sk_state == DCCP_CLOSED ||
(sk->sk_shutdown & RCV_SHUTDOWN) ||
!timeo ||
signal_pending(current) ||
(flags & MSG_PEEK))
break;
} else {
if (sock_flag(sk, SOCK_DONE))
break;
if (sk->sk_err) {
copied = sock_error(sk);
break;
}
if (sk->sk_shutdown & RCV_SHUTDOWN)
break;
if (sk->sk_state == DCCP_CLOSED) {
if (!sock_flag(sk, SOCK_DONE)) {
/* This occurs when user tries to read
* from never connected socket.
*/
copied = -ENOTCONN;
break;
}
break;
}
if (!timeo) {
copied = -EAGAIN;
break;
}
if (signal_pending(current)) {
copied = sock_intr_errno(timeo);
break;
}
}
/* FIXME: cleanup_rbuf(sk, copied); */
if (copied >= target) {
/* Do not sleep, just process backlog. */
release_sock(sk);
lock_sock(sk);
} else
sk_wait_data(sk, &timeo);
continue;
found_ok_skb:
/* Ok so how much can we use? */
used = skb->len - offset;
if (len < used)
used = len;
if (!(flags & MSG_TRUNC)) {
err = skb_copy_datagram_iovec(skb, offset,
msg->msg_iov, used);
if (err) {
/* Exception. Bailout! */
if (!copied)
copied = -EFAULT;
break;
}
}
copied += used;
len -= used;
/* FIXME: tcp_rcv_space_adjust(sk); */
//skip_copy:
if (used + offset < skb->len)
continue;
if (!(flags & MSG_PEEK))
sk_eat_skb(sk, skb);
continue;
found_fin_ok:
if (!(flags & MSG_PEEK))
sk_eat_skb(sk, skb);
break;
} while (len > 0);
/* According to UNIX98, msg_name/msg_namelen are ignored
* on connected socket. I was just happy when found this 8) --ANK
*/
/* Clean up data we have read: This will do ACK frames. */
/* FIXME: cleanup_rbuf(sk, copied); */
release_sock(sk);
return copied;
out:
release_sock(sk);
return err;
recv_urg:
/* FIXME: err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len); */
goto out;
}
static int inet_dccp_listen(struct socket *sock, int backlog)
{
struct sock *sk = sock->sk;
unsigned char old_state;
int err;
lock_sock(sk);
err = -EINVAL;
if (sock->state != SS_UNCONNECTED || sock->type != SOCK_DCCP)
goto out;
old_state = sk->sk_state;
if (!((1 << old_state) & (DCCPF_CLOSED | DCCPF_LISTEN)))
goto out;
/* Really, if the socket is already in listen state
* we can only allow the backlog to be adjusted.
*/
if (old_state != DCCP_LISTEN) {
/*
* FIXME: here it probably should be sk->sk_prot->listen_start
* see tcp_listen_start
*/
err = dccp_listen_start(sk);
if (err)
goto out;
}
sk->sk_max_ack_backlog = backlog;
err = 0;
out:
release_sock(sk);
return err;
}
static const unsigned char dccp_new_state[] = {
/* current state: new state: action: */
[0] = DCCP_CLOSED,
[DCCP_OPEN] = DCCP_CLOSING | DCCP_ACTION_FIN,
[DCCP_REQUESTING] = DCCP_CLOSED,
[DCCP_PARTOPEN] = DCCP_CLOSING | DCCP_ACTION_FIN,
[DCCP_LISTEN] = DCCP_CLOSED,
[DCCP_RESPOND] = DCCP_CLOSED,
[DCCP_CLOSING] = DCCP_CLOSED,
[DCCP_TIME_WAIT] = DCCP_CLOSED,
[DCCP_CLOSED] = DCCP_CLOSED,
};
static int dccp_close_state(struct sock *sk)
{
const int next = dccp_new_state[sk->sk_state];
const int ns = next & DCCP_STATE_MASK;
if (ns != sk->sk_state)
dccp_set_state(sk, ns);
return next & DCCP_ACTION_FIN;
}
void dccp_close(struct sock *sk, long timeout)
{
struct sk_buff *skb;
lock_sock(sk);
sk->sk_shutdown = SHUTDOWN_MASK;
if (sk->sk_state == DCCP_LISTEN) {
dccp_set_state(sk, DCCP_CLOSED);
/* Special case. */
inet_csk_listen_stop(sk);
goto adjudge_to_death;
}
/*
* We need to flush the recv. buffs. We do this only on the
* descriptor close, not protocol-sourced closes, because the
*reader process may not have drained the data yet!
*/
/* FIXME: check for unread data */
while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
__kfree_skb(skb);
}
if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
/* Check zero linger _after_ checking for unread data. */
sk->sk_prot->disconnect(sk, 0);
} else if (dccp_close_state(sk)) {
dccp_send_close(sk);
}
sk_stream_wait_close(sk, timeout);
adjudge_to_death:
release_sock(sk);
/*
* Now socket is owned by kernel and we acquire BH lock
* to finish close. No need to check for user refs.
*/
local_bh_disable();
bh_lock_sock(sk);
BUG_TRAP(!sock_owned_by_user(sk));
sock_hold(sk);
sock_orphan(sk);
if (sk->sk_state != DCCP_CLOSED)
dccp_set_state(sk, DCCP_CLOSED);
atomic_inc(&dccp_orphan_count);
if (sk->sk_state == DCCP_CLOSED)
inet_csk_destroy_sock(sk);
/* Otherwise, socket is reprieved until protocol close. */
bh_unlock_sock(sk);
local_bh_enable();
sock_put(sk);
}
void dccp_shutdown(struct sock *sk, int how)
{
dccp_pr_debug("entry\n");
}
struct proto_ops inet_dccp_ops = {
.family = PF_INET,
.owner = THIS_MODULE,
.release = inet_release,
.bind = inet_bind,
.connect = inet_stream_connect,
.socketpair = sock_no_socketpair,
.accept = inet_accept,
.getname = inet_getname,
.poll = sock_no_poll,
.ioctl = inet_ioctl,
.listen = inet_dccp_listen, /* FIXME: work on inet_listen to rename it to sock_common_listen */
.shutdown = inet_shutdown,
.setsockopt = sock_common_setsockopt,
.getsockopt = sock_common_getsockopt,
.sendmsg = inet_sendmsg,
.recvmsg = sock_common_recvmsg,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
};
extern struct net_proto_family inet_family_ops;
static struct inet_protosw dccp_v4_protosw = {
.type = SOCK_DCCP,
.protocol = IPPROTO_DCCP,
.prot = &dccp_v4_prot,
.ops = &inet_dccp_ops,
.capability = -1,
.no_check = 0,
.flags = 0,
};
/*
* This is the global socket data structure used for responding to
* the Out-of-the-blue (OOTB) packets. A control sock will be created
* for this socket at the initialization time.
*/
struct socket *dccp_ctl_socket;
static char dccp_ctl_socket_err_msg[] __initdata =
KERN_ERR "DCCP: Failed to create the control socket.\n";
static int __init dccp_ctl_sock_init(void)
{
int rc = sock_create_kern(PF_INET, SOCK_DCCP, IPPROTO_DCCP,
&dccp_ctl_socket);
if (rc < 0)
printk(dccp_ctl_socket_err_msg);
else {
dccp_ctl_socket->sk->sk_allocation = GFP_ATOMIC;
inet_sk(dccp_ctl_socket->sk)->uc_ttl = -1;
/* Unhash it so that IP input processing does not even
* see it, we do not wish this socket to see incoming
* packets.
*/
dccp_ctl_socket->sk->sk_prot->unhash(dccp_ctl_socket->sk);
}
return rc;
}
static void __exit dccp_ctl_sock_exit(void)
{
if (dccp_ctl_socket != NULL)
sock_release(dccp_ctl_socket);
}
static int __init init_dccp_v4_mibs(void)
{
int rc = -ENOMEM;
dccp_statistics[0] = alloc_percpu(struct dccp_mib);
if (dccp_statistics[0] == NULL)
goto out;
dccp_statistics[1] = alloc_percpu(struct dccp_mib);
if (dccp_statistics[1] == NULL)
goto out_free_one;
rc = 0;
out:
return rc;
out_free_one:
free_percpu(dccp_statistics[0]);
dccp_statistics[0] = NULL;
goto out;
}
static int thash_entries;
module_param(thash_entries, int, 0444);
MODULE_PARM_DESC(thash_entries, "Number of ehash buckets");
int dccp_debug;
module_param(dccp_debug, int, 0444);
MODULE_PARM_DESC(dccp_debug, "Enable debug messages");
static int __init dccp_init(void)
{
unsigned long goal;
int ehash_order, bhash_order, i;
int rc = proto_register(&dccp_v4_prot, 1);
if (rc)
goto out;
dccp_hashinfo.bind_bucket_cachep = kmem_cache_create("dccp_bind_bucket",
sizeof(struct inet_bind_bucket),
0, SLAB_HWCACHE_ALIGN,
NULL, NULL);
if (!dccp_hashinfo.bind_bucket_cachep)
goto out_proto_unregister;
/*
* Size and allocate the main established and bind bucket
* hash tables.
*
* The methodology is similar to that of the buffer cache.
*/
if (num_physpages >= (128 * 1024))
goal = num_physpages >> (21 - PAGE_SHIFT);
else
goal = num_physpages >> (23 - PAGE_SHIFT);
if (thash_entries)
goal = (thash_entries * sizeof(struct inet_ehash_bucket)) >> PAGE_SHIFT;
for (ehash_order = 0; (1UL << ehash_order) < goal; ehash_order++)
;
do {
dccp_hashinfo.ehash_size = (1UL << ehash_order) * PAGE_SIZE /
sizeof(struct inet_ehash_bucket);
dccp_hashinfo.ehash_size >>= 1;
while (dccp_hashinfo.ehash_size & (dccp_hashinfo.ehash_size - 1))
dccp_hashinfo.ehash_size--;
dccp_hashinfo.ehash = (struct inet_ehash_bucket *)
__get_free_pages(GFP_ATOMIC, ehash_order);
} while (!dccp_hashinfo.ehash && --ehash_order > 0);
if (!dccp_hashinfo.ehash) {
printk(KERN_CRIT "Failed to allocate DCCP "
"established hash table\n");
goto out_free_bind_bucket_cachep;
}
for (i = 0; i < (dccp_hashinfo.ehash_size << 1); i++) {
rwlock_init(&dccp_hashinfo.ehash[i].lock);
INIT_HLIST_HEAD(&dccp_hashinfo.ehash[i].chain);
}
bhash_order = ehash_order;
do {
dccp_hashinfo.bhash_size = (1UL << bhash_order) * PAGE_SIZE /
sizeof(struct inet_bind_hashbucket);
if ((dccp_hashinfo.bhash_size > (64 * 1024)) && bhash_order > 0)
continue;
dccp_hashinfo.bhash = (struct inet_bind_hashbucket *)
__get_free_pages(GFP_ATOMIC, bhash_order);
} while (!dccp_hashinfo.bhash && --bhash_order >= 0);
if (!dccp_hashinfo.bhash) {
printk(KERN_CRIT "Failed to allocate DCCP bind hash table\n");
goto out_free_dccp_ehash;
}
for (i = 0; i < dccp_hashinfo.bhash_size; i++) {
spin_lock_init(&dccp_hashinfo.bhash[i].lock);
INIT_HLIST_HEAD(&dccp_hashinfo.bhash[i].chain);
}
if (init_dccp_v4_mibs())
goto out_free_dccp_bhash;
rc = -EAGAIN;
if (inet_add_protocol(&dccp_protocol, IPPROTO_DCCP))
goto out_free_dccp_v4_mibs;
inet_register_protosw(&dccp_v4_protosw);
rc = dccp_ctl_sock_init();
if (rc)
goto out_unregister_protosw;
out:
return rc;
out_unregister_protosw:
inet_unregister_protosw(&dccp_v4_protosw);
inet_del_protocol(&dccp_protocol, IPPROTO_DCCP);
out_free_dccp_v4_mibs:
free_percpu(dccp_statistics[0]);
free_percpu(dccp_statistics[1]);
dccp_statistics[0] = dccp_statistics[1] = NULL;
out_free_dccp_bhash:
free_pages((unsigned long)dccp_hashinfo.bhash, bhash_order);
dccp_hashinfo.bhash = NULL;
out_free_dccp_ehash:
free_pages((unsigned long)dccp_hashinfo.ehash, ehash_order);
dccp_hashinfo.ehash = NULL;
out_free_bind_bucket_cachep:
kmem_cache_destroy(dccp_hashinfo.bind_bucket_cachep);
dccp_hashinfo.bind_bucket_cachep = NULL;
out_proto_unregister:
proto_unregister(&dccp_v4_prot);
goto out;
}
static const char dccp_del_proto_err_msg[] __exitdata =
KERN_ERR "can't remove dccp net_protocol\n";
static void __exit dccp_fini(void)
{
dccp_ctl_sock_exit();
inet_unregister_protosw(&dccp_v4_protosw);
if (inet_del_protocol(&dccp_protocol, IPPROTO_DCCP) < 0)
printk(dccp_del_proto_err_msg);
/* Free the control endpoint. */
sock_release(dccp_ctl_socket);
proto_unregister(&dccp_v4_prot);
kmem_cache_destroy(dccp_hashinfo.bind_bucket_cachep);
}
module_init(dccp_init);
module_exit(dccp_fini);
/* __stringify doesn't likes enums, so use SOCK_DCCP (6) value directly */
MODULE_ALIAS("net-pf-" __stringify(PF_INET) "-6");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Arnaldo Carvalho de Melo <acme@conectiva.com.br>");
MODULE_DESCRIPTION("DCCP - Datagram Congestion Controlled Protocol");