android_kernel_google_msm/drivers/hwmon/vt8231.c
Roger Lucas cbeeb5b7c9 vt8231: Fix unchecked return status
vt8231: Fix unchecked return status

Check the return status from device_create_file() and also use
the newer and cleaner sysfs creation functions.

Signed-off-by: Roger Lucas <roger@planbit.co.uk>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-09-28 15:31:18 -07:00

942 lines
29 KiB
C

/*
vt8231.c - Part of lm_sensors, Linux kernel modules
for hardware monitoring
Copyright (c) 2005 Roger Lucas <roger@planbit.co.uk>
Copyright (c) 2002 Mark D. Studebaker <mdsxyz123@yahoo.com>
Aaron M. Marsh <amarsh@sdf.lonestar.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* Supports VIA VT8231 South Bridge embedded sensors
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/i2c-isa.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <asm/io.h>
static int force_addr;
module_param(force_addr, int, 0);
MODULE_PARM_DESC(force_addr, "Initialize the base address of the sensors");
/* Device address
Note that we can't determine the ISA address until we have initialized
our module */
static unsigned short isa_address;
#define VT8231_EXTENT 0x80
#define VT8231_BASE_REG 0x70
#define VT8231_ENABLE_REG 0x74
/* The VT8231 registers
The reset value for the input channel configuration is used (Reg 0x4A=0x07)
which sets the selected inputs marked with '*' below if multiple options are
possible:
Voltage Mode Temperature Mode
Sensor Linux Id Linux Id VIA Id
-------- -------- -------- ------
CPU Diode N/A temp1 0
UIC1 in0 temp2 * 1
UIC2 in1 * temp3 2
UIC3 in2 * temp4 3
UIC4 in3 * temp5 4
UIC5 in4 * temp6 5
3.3V in5 N/A
Note that the BIOS may set the configuration register to a different value
to match the motherboard configuration.
*/
/* fans numbered 0-1 */
#define VT8231_REG_FAN_MIN(nr) (0x3b + (nr))
#define VT8231_REG_FAN(nr) (0x29 + (nr))
/* Voltage inputs numbered 0-5 */
static const u8 regvolt[] = { 0x21, 0x22, 0x23, 0x24, 0x25, 0x26 };
static const u8 regvoltmax[] = { 0x3d, 0x2b, 0x2d, 0x2f, 0x31, 0x33 };
static const u8 regvoltmin[] = { 0x3e, 0x2c, 0x2e, 0x30, 0x32, 0x34 };
/* Temperatures are numbered 1-6 according to the Linux kernel specification.
**
** In the VIA datasheet, however, the temperatures are numbered from zero.
** Since it is important that this driver can easily be compared to the VIA
** datasheet, we will use the VIA numbering within this driver and map the
** kernel sysfs device name to the VIA number in the sysfs callback.
*/
#define VT8231_REG_TEMP_LOW01 0x49
#define VT8231_REG_TEMP_LOW25 0x4d
static const u8 regtemp[] = { 0x1f, 0x21, 0x22, 0x23, 0x24, 0x25 };
static const u8 regtempmax[] = { 0x39, 0x3d, 0x2b, 0x2d, 0x2f, 0x31 };
static const u8 regtempmin[] = { 0x3a, 0x3e, 0x2c, 0x2e, 0x30, 0x32 };
#define TEMP_FROM_REG(reg) (((253 * 4 - (reg)) * 550 + 105) / 210)
#define TEMP_MAXMIN_FROM_REG(reg) (((253 - (reg)) * 2200 + 105) / 210)
#define TEMP_MAXMIN_TO_REG(val) (253 - ((val) * 210 + 1100) / 2200)
#define VT8231_REG_CONFIG 0x40
#define VT8231_REG_ALARM1 0x41
#define VT8231_REG_ALARM2 0x42
#define VT8231_REG_FANDIV 0x47
#define VT8231_REG_UCH_CONFIG 0x4a
#define VT8231_REG_TEMP1_CONFIG 0x4b
#define VT8231_REG_TEMP2_CONFIG 0x4c
/* temps 0-5 as numbered in VIA datasheet - see later for mapping to Linux
** numbering
*/
#define ISTEMP(i, ch_config) ((i) == 0 ? 1 : \
((ch_config) >> ((i)+1)) & 0x01)
/* voltages 0-5 */
#define ISVOLT(i, ch_config) ((i) == 5 ? 1 : \
!(((ch_config) >> ((i)+2)) & 0x01))
#define DIV_FROM_REG(val) (1 << (val))
/* NB The values returned here are NOT temperatures. The calibration curves
** for the thermistor curves are board-specific and must go in the
** sensors.conf file. Temperature sensors are actually ten bits, but the
** VIA datasheet only considers the 8 MSBs obtained from the regtemp[]
** register. The temperature value returned should have a magnitude of 3,
** so we use the VIA scaling as the "true" scaling and use the remaining 2
** LSBs as fractional precision.
**
** All the on-chip hardware temperature comparisons for the alarms are only
** 8-bits wide, and compare against the 8 MSBs of the temperature. The bits
** in the registers VT8231_REG_TEMP_LOW01 and VT8231_REG_TEMP_LOW25 are
** ignored.
*/
/******** FAN RPM CONVERSIONS ********
** This chip saturates back at 0, not at 255 like many the other chips.
** So, 0 means 0 RPM
*/
static inline u8 FAN_TO_REG(long rpm, int div)
{
if (rpm == 0)
return 0;
return SENSORS_LIMIT(1310720 / (rpm * div), 1, 255);
}
#define FAN_FROM_REG(val, div) ((val) == 0 ? 0 : 1310720 / ((val) * (div)))
struct vt8231_data {
struct i2c_client client;
struct mutex update_lock;
struct class_device *class_dev;
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */
u8 in[6]; /* Register value */
u8 in_max[6]; /* Register value */
u8 in_min[6]; /* Register value */
u16 temp[6]; /* Register value 10 bit, right aligned */
u8 temp_max[6]; /* Register value */
u8 temp_min[6]; /* Register value */
u8 fan[2]; /* Register value */
u8 fan_min[2]; /* Register value */
u8 fan_div[2]; /* Register encoding, shifted right */
u16 alarms; /* Register encoding */
u8 uch_config;
};
static struct pci_dev *s_bridge;
static int vt8231_detect(struct i2c_adapter *adapter);
static int vt8231_detach_client(struct i2c_client *client);
static struct vt8231_data *vt8231_update_device(struct device *dev);
static void vt8231_init_client(struct i2c_client *client);
static inline int vt8231_read_value(struct i2c_client *client, u8 reg)
{
return inb_p(client->addr + reg);
}
static inline void vt8231_write_value(struct i2c_client *client, u8 reg,
u8 value)
{
outb_p(value, client->addr + reg);
}
/* following are the sysfs callback functions */
static ssize_t show_in(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", ((data->in[nr] - 3) * 10000) / 958);
}
static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", ((data->in_min[nr] - 3) * 10000) / 958);
}
static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", (((data->in_max[nr] - 3) * 10000) / 958));
}
static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct vt8231_data *data = i2c_get_clientdata(client);
unsigned long val = simple_strtoul(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_min[nr] = SENSORS_LIMIT(((val * 958) / 10000) + 3, 0, 255);
vt8231_write_value(client, regvoltmin[nr], data->in_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct vt8231_data *data = i2c_get_clientdata(client);
unsigned long val = simple_strtoul(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_max[nr] = SENSORS_LIMIT(((val * 958) / 10000) + 3, 0, 255);
vt8231_write_value(client, regvoltmax[nr], data->in_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
/* Special case for input 5 as this has 3.3V scaling built into the chip */
static ssize_t show_in5(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n",
(((data->in[5] - 3) * 10000 * 54) / (958 * 34)));
}
static ssize_t show_in5_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n",
(((data->in_min[5] - 3) * 10000 * 54) / (958 * 34)));
}
static ssize_t show_in5_max(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n",
(((data->in_max[5] - 3) * 10000 * 54) / (958 * 34)));
}
static ssize_t set_in5_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct vt8231_data *data = i2c_get_clientdata(client);
unsigned long val = simple_strtoul(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_min[5] = SENSORS_LIMIT(((val * 958 * 34) / (10000 * 54)) + 3,
0, 255);
vt8231_write_value(client, regvoltmin[5], data->in_min[5]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_in5_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct vt8231_data *data = i2c_get_clientdata(client);
unsigned long val = simple_strtoul(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_max[5] = SENSORS_LIMIT(((val * 958 * 34) / (10000 * 54)) + 3,
0, 255);
vt8231_write_value(client, regvoltmax[5], data->in_max[5]);
mutex_unlock(&data->update_lock);
return count;
}
#define define_voltage_sysfs(offset) \
static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
show_in, NULL, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
show_in_min, set_in_min, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
show_in_max, set_in_max, offset)
define_voltage_sysfs(0);
define_voltage_sysfs(1);
define_voltage_sysfs(2);
define_voltage_sysfs(3);
define_voltage_sysfs(4);
static DEVICE_ATTR(in5_input, S_IRUGO, show_in5, NULL);
static DEVICE_ATTR(in5_min, S_IRUGO | S_IWUSR, show_in5_min, set_in5_min);
static DEVICE_ATTR(in5_max, S_IRUGO | S_IWUSR, show_in5_max, set_in5_max);
/* Temperatures */
static ssize_t show_temp0(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", data->temp[0] * 250);
}
static ssize_t show_temp0_max(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", data->temp_max[0] * 1000);
}
static ssize_t show_temp0_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", data->temp_min[0] * 1000);
}
static ssize_t set_temp0_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct vt8231_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_max[0] = SENSORS_LIMIT((val + 500) / 1000, 0, 255);
vt8231_write_value(client, regtempmax[0], data->temp_max[0]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_temp0_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct vt8231_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_min[0] = SENSORS_LIMIT((val + 500) / 1000, 0, 255);
vt8231_write_value(client, regtempmin[0], data->temp_min[0]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[nr]));
}
static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", TEMP_MAXMIN_FROM_REG(data->temp_max[nr]));
}
static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", TEMP_MAXMIN_FROM_REG(data->temp_min[nr]));
}
static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct vt8231_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_max[nr] = SENSORS_LIMIT(TEMP_MAXMIN_TO_REG(val), 0, 255);
vt8231_write_value(client, regtempmax[nr], data->temp_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct vt8231_data *data = i2c_get_clientdata(client);
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_min[nr] = SENSORS_LIMIT(TEMP_MAXMIN_TO_REG(val), 0, 255);
vt8231_write_value(client, regtempmin[nr], data->temp_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
/* Note that these map the Linux temperature sensor numbering (1-6) to the VIA
** temperature sensor numbering (0-5)
*/
#define define_temperature_sysfs(offset) \
static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
show_temp, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
show_temp_max, set_temp_max, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_max_hyst, S_IRUGO | S_IWUSR, \
show_temp_min, set_temp_min, offset - 1)
static DEVICE_ATTR(temp1_input, S_IRUGO, show_temp0, NULL);
static DEVICE_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp0_max, set_temp0_max);
static DEVICE_ATTR(temp1_max_hyst, S_IRUGO | S_IWUSR, show_temp0_min, set_temp0_min);
define_temperature_sysfs(2);
define_temperature_sysfs(3);
define_temperature_sysfs(4);
define_temperature_sysfs(5);
define_temperature_sysfs(6);
/* Fans */
static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
DIV_FROM_REG(data->fan_div[nr])));
}
static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
DIV_FROM_REG(data->fan_div[nr])));
}
static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
}
static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct vt8231_data *data = i2c_get_clientdata(client);
int val = simple_strtoul(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
vt8231_write_value(client, VT8231_REG_FAN_MIN(nr), data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct vt8231_data *data = i2c_get_clientdata(client);
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
unsigned long val = simple_strtoul(buf, NULL, 10);
int nr = sensor_attr->index;
int old = vt8231_read_value(client, VT8231_REG_FANDIV);
long min = FAN_FROM_REG(data->fan_min[nr],
DIV_FROM_REG(data->fan_div[nr]));
mutex_lock(&data->update_lock);
switch (val) {
case 1: data->fan_div[nr] = 0; break;
case 2: data->fan_div[nr] = 1; break;
case 4: data->fan_div[nr] = 2; break;
case 8: data->fan_div[nr] = 3; break;
default:
dev_err(&client->dev, "fan_div value %ld not supported."
"Choose one of 1, 2, 4 or 8!\n", val);
mutex_unlock(&data->update_lock);
return -EINVAL;
}
/* Correct the fan minimum speed */
data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
vt8231_write_value(client, VT8231_REG_FAN_MIN(nr), data->fan_min[nr]);
old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4);
vt8231_write_value(client, VT8231_REG_FANDIV, old);
mutex_unlock(&data->update_lock);
return count;
}
#define define_fan_sysfs(offset) \
static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
show_fan, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
show_fan_div, set_fan_div, offset - 1); \
static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
show_fan_min, set_fan_min, offset - 1)
define_fan_sysfs(1);
define_fan_sysfs(2);
/* Alarms */
static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct vt8231_data *data = vt8231_update_device(dev);
return sprintf(buf, "%d\n", data->alarms);
}
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
static struct attribute *vt8231_attributes_temps[6][4] = {
{
&dev_attr_temp1_input.attr,
&dev_attr_temp1_max_hyst.attr,
&dev_attr_temp1_max.attr,
NULL
}, {
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_temp4_input.dev_attr.attr,
&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp4_max.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_temp5_input.dev_attr.attr,
&sensor_dev_attr_temp5_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp5_max.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_temp6_input.dev_attr.attr,
&sensor_dev_attr_temp6_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp6_max.dev_attr.attr,
NULL
}
};
static const struct attribute_group vt8231_group_temps[6] = {
{ .attrs = vt8231_attributes_temps[0] },
{ .attrs = vt8231_attributes_temps[1] },
{ .attrs = vt8231_attributes_temps[2] },
{ .attrs = vt8231_attributes_temps[3] },
{ .attrs = vt8231_attributes_temps[4] },
{ .attrs = vt8231_attributes_temps[5] },
};
static struct attribute *vt8231_attributes_volts[6][4] = {
{
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in0_min.dev_attr.attr,
&sensor_dev_attr_in0_max.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
NULL
}, {
&dev_attr_in5_input.attr,
&dev_attr_in5_min.attr,
&dev_attr_in5_max.attr,
NULL
}
};
static const struct attribute_group vt8231_group_volts[6] = {
{ .attrs = vt8231_attributes_volts[0] },
{ .attrs = vt8231_attributes_volts[1] },
{ .attrs = vt8231_attributes_volts[2] },
{ .attrs = vt8231_attributes_volts[3] },
{ .attrs = vt8231_attributes_volts[4] },
{ .attrs = vt8231_attributes_volts[5] },
};
static struct attribute *vt8231_attributes[] = {
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan1_div.dev_attr.attr,
&sensor_dev_attr_fan2_div.dev_attr.attr,
&dev_attr_alarms.attr,
NULL
};
static const struct attribute_group vt8231_group = {
.attrs = vt8231_attributes,
};
static struct i2c_driver vt8231_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "vt8231",
},
.attach_adapter = vt8231_detect,
.detach_client = vt8231_detach_client,
};
static struct pci_device_id vt8231_pci_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_8231_4) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, vt8231_pci_ids);
static int __devinit vt8231_pci_probe(struct pci_dev *dev,
const struct pci_device_id *id);
static struct pci_driver vt8231_pci_driver = {
.name = "vt8231",
.id_table = vt8231_pci_ids,
.probe = vt8231_pci_probe,
};
int vt8231_detect(struct i2c_adapter *adapter)
{
struct i2c_client *client;
struct vt8231_data *data;
int err = 0, i;
u16 val;
/* 8231 requires multiple of 256 */
if (force_addr) {
isa_address = force_addr & 0xFF00;
dev_warn(&adapter->dev, "forcing ISA address 0x%04X\n",
isa_address);
if (PCIBIOS_SUCCESSFUL != pci_write_config_word(s_bridge,
VT8231_BASE_REG, isa_address))
return -ENODEV;
}
if (PCIBIOS_SUCCESSFUL !=
pci_read_config_word(s_bridge, VT8231_ENABLE_REG, &val))
return -ENODEV;
if (!(val & 0x0001)) {
dev_warn(&adapter->dev, "enabling sensors\n");
if (PCIBIOS_SUCCESSFUL !=
pci_write_config_word(s_bridge, VT8231_ENABLE_REG,
val | 0x0001))
return -ENODEV;
}
/* Reserve the ISA region */
if (!request_region(isa_address, VT8231_EXTENT,
vt8231_pci_driver.name)) {
dev_err(&adapter->dev, "region 0x%x already in use!\n",
isa_address);
return -ENODEV;
}
if (!(data = kzalloc(sizeof(struct vt8231_data), GFP_KERNEL))) {
err = -ENOMEM;
goto exit_release;
}
client = &data->client;
i2c_set_clientdata(client, data);
client->addr = isa_address;
client->adapter = adapter;
client->driver = &vt8231_driver;
client->dev.parent = &adapter->dev;
/* Fill in the remaining client fields and put into the global list */
strlcpy(client->name, "vt8231", I2C_NAME_SIZE);
mutex_init(&data->update_lock);
/* Tell the I2C layer a new client has arrived */
if ((err = i2c_attach_client(client)))
goto exit_free;
vt8231_init_client(client);
/* Register sysfs hooks */
if ((err = sysfs_create_group(&client->dev.kobj, &vt8231_group)))
goto exit_detach;
/* Must update device information to find out the config field */
data->uch_config = vt8231_read_value(client, VT8231_REG_UCH_CONFIG);
for (i = 0; i < ARRAY_SIZE(vt8231_group_temps); i++) {
if (ISTEMP(i, data->uch_config)) {
if ((err = sysfs_create_group(&client->dev.kobj,
&vt8231_group_temps[i])))
goto exit_remove_files;
}
}
for (i = 0; i < ARRAY_SIZE(vt8231_group_volts); i++) {
if (ISVOLT(i, data->uch_config)) {
if ((err = sysfs_create_group(&client->dev.kobj,
&vt8231_group_volts[i])))
goto exit_remove_files;
}
}
data->class_dev = hwmon_device_register(&client->dev);
if (IS_ERR(data->class_dev)) {
err = PTR_ERR(data->class_dev);
goto exit_remove_files;
}
return 0;
exit_remove_files:
for (i = 0; i < ARRAY_SIZE(vt8231_group_volts); i++)
sysfs_remove_group(&client->dev.kobj, &vt8231_group_volts[i]);
for (i = 0; i < ARRAY_SIZE(vt8231_group_temps); i++)
sysfs_remove_group(&client->dev.kobj, &vt8231_group_temps[i]);
sysfs_remove_group(&client->dev.kobj, &vt8231_group);
exit_detach:
i2c_detach_client(client);
exit_free:
kfree(data);
exit_release:
release_region(isa_address, VT8231_EXTENT);
return err;
}
static int vt8231_detach_client(struct i2c_client *client)
{
struct vt8231_data *data = i2c_get_clientdata(client);
int err, i;
hwmon_device_unregister(data->class_dev);
for (i = 0; i < ARRAY_SIZE(vt8231_group_volts); i++)
sysfs_remove_group(&client->dev.kobj, &vt8231_group_volts[i]);
for (i = 0; i < ARRAY_SIZE(vt8231_group_temps); i++)
sysfs_remove_group(&client->dev.kobj, &vt8231_group_temps[i]);
sysfs_remove_group(&client->dev.kobj, &vt8231_group);
if ((err = i2c_detach_client(client))) {
return err;
}
release_region(client->addr, VT8231_EXTENT);
kfree(data);
return 0;
}
static void vt8231_init_client(struct i2c_client *client)
{
vt8231_write_value(client, VT8231_REG_TEMP1_CONFIG, 0);
vt8231_write_value(client, VT8231_REG_TEMP2_CONFIG, 0);
}
static struct vt8231_data *vt8231_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct vt8231_data *data = i2c_get_clientdata(client);
int i;
u16 low;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
|| !data->valid) {
for (i = 0; i < 6; i++) {
if (ISVOLT(i, data->uch_config)) {
data->in[i] = vt8231_read_value(client,
regvolt[i]);
data->in_min[i] = vt8231_read_value(client,
regvoltmin[i]);
data->in_max[i] = vt8231_read_value(client,
regvoltmax[i]);
}
}
for (i = 0; i < 2; i++) {
data->fan[i] = vt8231_read_value(client,
VT8231_REG_FAN(i));
data->fan_min[i] = vt8231_read_value(client,
VT8231_REG_FAN_MIN(i));
}
low = vt8231_read_value(client, VT8231_REG_TEMP_LOW01);
low = (low >> 6) | ((low & 0x30) >> 2)
| (vt8231_read_value(client, VT8231_REG_TEMP_LOW25) << 4);
for (i = 0; i < 6; i++) {
if (ISTEMP(i, data->uch_config)) {
data->temp[i] = (vt8231_read_value(client,
regtemp[i]) << 2)
| ((low >> (2 * i)) & 0x03);
data->temp_max[i] = vt8231_read_value(client,
regtempmax[i]);
data->temp_min[i] = vt8231_read_value(client,
regtempmin[i]);
}
}
i = vt8231_read_value(client, VT8231_REG_FANDIV);
data->fan_div[0] = (i >> 4) & 0x03;
data->fan_div[1] = i >> 6;
data->alarms = vt8231_read_value(client, VT8231_REG_ALARM1) |
(vt8231_read_value(client, VT8231_REG_ALARM2) << 8);
/* Set alarm flags correctly */
if (!data->fan[0] && data->fan_min[0]) {
data->alarms |= 0x40;
} else if (data->fan[0] && !data->fan_min[0]) {
data->alarms &= ~0x40;
}
if (!data->fan[1] && data->fan_min[1]) {
data->alarms |= 0x80;
} else if (data->fan[1] && !data->fan_min[1]) {
data->alarms &= ~0x80;
}
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
static int __devinit vt8231_pci_probe(struct pci_dev *dev,
const struct pci_device_id *id)
{
u16 val;
if (PCIBIOS_SUCCESSFUL != pci_read_config_word(dev, VT8231_BASE_REG,
&val))
return -ENODEV;
isa_address = val & ~(VT8231_EXTENT - 1);
if (isa_address == 0 && force_addr == 0) {
dev_err(&dev->dev, "base address not set -\
upgrade BIOS or use force_addr=0xaddr\n");
return -ENODEV;
}
s_bridge = pci_dev_get(dev);
if (i2c_isa_add_driver(&vt8231_driver)) {
pci_dev_put(s_bridge);
s_bridge = NULL;
}
/* Always return failure here. This is to allow other drivers to bind
* to this pci device. We don't really want to have control over the
* pci device, we only wanted to read as few register values from it.
*/
return -ENODEV;
}
static int __init sm_vt8231_init(void)
{
return pci_register_driver(&vt8231_pci_driver);
}
static void __exit sm_vt8231_exit(void)
{
pci_unregister_driver(&vt8231_pci_driver);
if (s_bridge != NULL) {
i2c_isa_del_driver(&vt8231_driver);
pci_dev_put(s_bridge);
s_bridge = NULL;
}
}
MODULE_AUTHOR("Roger Lucas <roger@planbit.co.uk>");
MODULE_DESCRIPTION("VT8231 sensors");
MODULE_LICENSE("GPL");
module_init(sm_vt8231_init);
module_exit(sm_vt8231_exit);