android_kernel_google_msm/kernel/kprobes.c
Ananth N Mavinakayanahalli 9ec4b1f356 [PATCH] kprobes: fix single-step out of line - take2
Now that PPC64 has no-execute support, here is a second try to fix the
single step out of line during kprobe execution.  Kprobes on x86_64 already
solved this problem by allocating an executable page and using it as the
scratch area for stepping out of line.  Reuse that.

Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 15:23:52 -07:00

624 lines
16 KiB
C

/*
* Kernel Probes (KProbes)
* kernel/kprobes.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) IBM Corporation, 2002, 2004
*
* 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
* Probes initial implementation (includes suggestions from
* Rusty Russell).
* 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
* hlists and exceptions notifier as suggested by Andi Kleen.
* 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
* interface to access function arguments.
* 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
* exceptions notifier to be first on the priority list.
* 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
* <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
* <prasanna@in.ibm.com> added function-return probes.
*/
#include <linux/kprobes.h>
#include <linux/spinlock.h>
#include <linux/hash.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleloader.h>
#include <asm/cacheflush.h>
#include <asm/errno.h>
#include <asm/kdebug.h>
#define KPROBE_HASH_BITS 6
#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
unsigned int kprobe_cpu = NR_CPUS;
static DEFINE_SPINLOCK(kprobe_lock);
static struct kprobe *curr_kprobe;
/*
* kprobe->ainsn.insn points to the copy of the instruction to be
* single-stepped. x86_64, POWER4 and above have no-exec support and
* stepping on the instruction on a vmalloced/kmalloced/data page
* is a recipe for disaster
*/
#define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
struct kprobe_insn_page {
struct hlist_node hlist;
kprobe_opcode_t *insns; /* Page of instruction slots */
char slot_used[INSNS_PER_PAGE];
int nused;
};
static struct hlist_head kprobe_insn_pages;
/**
* get_insn_slot() - Find a slot on an executable page for an instruction.
* We allocate an executable page if there's no room on existing ones.
*/
kprobe_opcode_t *get_insn_slot(void)
{
struct kprobe_insn_page *kip;
struct hlist_node *pos;
hlist_for_each(pos, &kprobe_insn_pages) {
kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
if (kip->nused < INSNS_PER_PAGE) {
int i;
for (i = 0; i < INSNS_PER_PAGE; i++) {
if (!kip->slot_used[i]) {
kip->slot_used[i] = 1;
kip->nused++;
return kip->insns + (i * MAX_INSN_SIZE);
}
}
/* Surprise! No unused slots. Fix kip->nused. */
kip->nused = INSNS_PER_PAGE;
}
}
/* All out of space. Need to allocate a new page. Use slot 0.*/
kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
if (!kip) {
return NULL;
}
/*
* Use module_alloc so this page is within +/- 2GB of where the
* kernel image and loaded module images reside. This is required
* so x86_64 can correctly handle the %rip-relative fixups.
*/
kip->insns = module_alloc(PAGE_SIZE);
if (!kip->insns) {
kfree(kip);
return NULL;
}
INIT_HLIST_NODE(&kip->hlist);
hlist_add_head(&kip->hlist, &kprobe_insn_pages);
memset(kip->slot_used, 0, INSNS_PER_PAGE);
kip->slot_used[0] = 1;
kip->nused = 1;
return kip->insns;
}
void free_insn_slot(kprobe_opcode_t *slot)
{
struct kprobe_insn_page *kip;
struct hlist_node *pos;
hlist_for_each(pos, &kprobe_insn_pages) {
kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
if (kip->insns <= slot &&
slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
int i = (slot - kip->insns) / MAX_INSN_SIZE;
kip->slot_used[i] = 0;
kip->nused--;
if (kip->nused == 0) {
/*
* Page is no longer in use. Free it unless
* it's the last one. We keep the last one
* so as not to have to set it up again the
* next time somebody inserts a probe.
*/
hlist_del(&kip->hlist);
if (hlist_empty(&kprobe_insn_pages)) {
INIT_HLIST_NODE(&kip->hlist);
hlist_add_head(&kip->hlist,
&kprobe_insn_pages);
} else {
module_free(NULL, kip->insns);
kfree(kip);
}
}
return;
}
}
}
/* Locks kprobe: irqs must be disabled */
void lock_kprobes(void)
{
spin_lock(&kprobe_lock);
kprobe_cpu = smp_processor_id();
}
void unlock_kprobes(void)
{
kprobe_cpu = NR_CPUS;
spin_unlock(&kprobe_lock);
}
/* You have to be holding the kprobe_lock */
struct kprobe *get_kprobe(void *addr)
{
struct hlist_head *head;
struct hlist_node *node;
head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
hlist_for_each(node, head) {
struct kprobe *p = hlist_entry(node, struct kprobe, hlist);
if (p->addr == addr)
return p;
}
return NULL;
}
/*
* Aggregate handlers for multiple kprobes support - these handlers
* take care of invoking the individual kprobe handlers on p->list
*/
static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
struct kprobe *kp;
list_for_each_entry(kp, &p->list, list) {
if (kp->pre_handler) {
curr_kprobe = kp;
if (kp->pre_handler(kp, regs))
return 1;
}
curr_kprobe = NULL;
}
return 0;
}
static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
unsigned long flags)
{
struct kprobe *kp;
list_for_each_entry(kp, &p->list, list) {
if (kp->post_handler) {
curr_kprobe = kp;
kp->post_handler(kp, regs, flags);
curr_kprobe = NULL;
}
}
return;
}
static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
int trapnr)
{
/*
* if we faulted "during" the execution of a user specified
* probe handler, invoke just that probe's fault handler
*/
if (curr_kprobe && curr_kprobe->fault_handler) {
if (curr_kprobe->fault_handler(curr_kprobe, regs, trapnr))
return 1;
}
return 0;
}
static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
{
struct kprobe *kp = curr_kprobe;
if (curr_kprobe && kp->break_handler) {
if (kp->break_handler(kp, regs)) {
curr_kprobe = NULL;
return 1;
}
}
curr_kprobe = NULL;
return 0;
}
struct kprobe trampoline_p = {
.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
.pre_handler = trampoline_probe_handler,
.post_handler = trampoline_post_handler
};
struct kretprobe_instance *get_free_rp_inst(struct kretprobe *rp)
{
struct hlist_node *node;
struct kretprobe_instance *ri;
hlist_for_each_entry(ri, node, &rp->free_instances, uflist)
return ri;
return NULL;
}
static struct kretprobe_instance *get_used_rp_inst(struct kretprobe *rp)
{
struct hlist_node *node;
struct kretprobe_instance *ri;
hlist_for_each_entry(ri, node, &rp->used_instances, uflist)
return ri;
return NULL;
}
struct kretprobe_instance *get_rp_inst(void *sara)
{
struct hlist_head *head;
struct hlist_node *node;
struct task_struct *tsk;
struct kretprobe_instance *ri;
tsk = arch_get_kprobe_task(sara);
head = &kretprobe_inst_table[hash_ptr(tsk, KPROBE_HASH_BITS)];
hlist_for_each_entry(ri, node, head, hlist) {
if (ri->stack_addr == sara)
return ri;
}
return NULL;
}
void add_rp_inst(struct kretprobe_instance *ri)
{
struct task_struct *tsk;
/*
* Remove rp inst off the free list -
* Add it back when probed function returns
*/
hlist_del(&ri->uflist);
tsk = arch_get_kprobe_task(ri->stack_addr);
/* Add rp inst onto table */
INIT_HLIST_NODE(&ri->hlist);
hlist_add_head(&ri->hlist,
&kretprobe_inst_table[hash_ptr(tsk, KPROBE_HASH_BITS)]);
/* Also add this rp inst to the used list. */
INIT_HLIST_NODE(&ri->uflist);
hlist_add_head(&ri->uflist, &ri->rp->used_instances);
}
void recycle_rp_inst(struct kretprobe_instance *ri)
{
/* remove rp inst off the rprobe_inst_table */
hlist_del(&ri->hlist);
if (ri->rp) {
/* remove rp inst off the used list */
hlist_del(&ri->uflist);
/* put rp inst back onto the free list */
INIT_HLIST_NODE(&ri->uflist);
hlist_add_head(&ri->uflist, &ri->rp->free_instances);
} else
/* Unregistering */
kfree(ri);
}
struct hlist_head * kretprobe_inst_table_head(struct task_struct *tsk)
{
return &kretprobe_inst_table[hash_ptr(tsk, KPROBE_HASH_BITS)];
}
struct kretprobe_instance *get_rp_inst_tsk(struct task_struct *tk)
{
struct task_struct *tsk;
struct hlist_head *head;
struct hlist_node *node;
struct kretprobe_instance *ri;
head = &kretprobe_inst_table[hash_ptr(tk, KPROBE_HASH_BITS)];
hlist_for_each_entry(ri, node, head, hlist) {
tsk = arch_get_kprobe_task(ri->stack_addr);
if (tsk == tk)
return ri;
}
return NULL;
}
/*
* This function is called from do_exit or do_execv when task tk's stack is
* about to be recycled. Recycle any function-return probe instances
* associated with this task. These represent probed functions that have
* been called but may never return.
*/
void kprobe_flush_task(struct task_struct *tk)
{
unsigned long flags = 0;
spin_lock_irqsave(&kprobe_lock, flags);
arch_kprobe_flush_task(tk);
spin_unlock_irqrestore(&kprobe_lock, flags);
}
/*
* This kprobe pre_handler is registered with every kretprobe. When probe
* hits it will set up the return probe.
*/
static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
{
struct kretprobe *rp = container_of(p, struct kretprobe, kp);
/*TODO: consider to only swap the RA after the last pre_handler fired */
arch_prepare_kretprobe(rp, regs);
return 0;
}
static inline void free_rp_inst(struct kretprobe *rp)
{
struct kretprobe_instance *ri;
while ((ri = get_free_rp_inst(rp)) != NULL) {
hlist_del(&ri->uflist);
kfree(ri);
}
}
/*
* Keep all fields in the kprobe consistent
*/
static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
{
memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
}
/*
* Add the new probe to old_p->list. Fail if this is the
* second jprobe at the address - two jprobes can't coexist
*/
static int add_new_kprobe(struct kprobe *old_p, struct kprobe *p)
{
struct kprobe *kp;
if (p->break_handler) {
list_for_each_entry(kp, &old_p->list, list) {
if (kp->break_handler)
return -EEXIST;
}
list_add_tail(&p->list, &old_p->list);
} else
list_add(&p->list, &old_p->list);
return 0;
}
/*
* Fill in the required fields of the "manager kprobe". Replace the
* earlier kprobe in the hlist with the manager kprobe
*/
static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
{
copy_kprobe(p, ap);
ap->addr = p->addr;
ap->pre_handler = aggr_pre_handler;
ap->post_handler = aggr_post_handler;
ap->fault_handler = aggr_fault_handler;
ap->break_handler = aggr_break_handler;
INIT_LIST_HEAD(&ap->list);
list_add(&p->list, &ap->list);
INIT_HLIST_NODE(&ap->hlist);
hlist_del(&p->hlist);
hlist_add_head(&ap->hlist,
&kprobe_table[hash_ptr(ap->addr, KPROBE_HASH_BITS)]);
}
/*
* This is the second or subsequent kprobe at the address - handle
* the intricacies
* TODO: Move kcalloc outside the spinlock
*/
static int register_aggr_kprobe(struct kprobe *old_p, struct kprobe *p)
{
int ret = 0;
struct kprobe *ap;
if (old_p->pre_handler == aggr_pre_handler) {
copy_kprobe(old_p, p);
ret = add_new_kprobe(old_p, p);
} else {
ap = kcalloc(1, sizeof(struct kprobe), GFP_ATOMIC);
if (!ap)
return -ENOMEM;
add_aggr_kprobe(ap, old_p);
copy_kprobe(ap, p);
ret = add_new_kprobe(ap, p);
}
return ret;
}
/* kprobe removal house-keeping routines */
static inline void cleanup_kprobe(struct kprobe *p, unsigned long flags)
{
arch_disarm_kprobe(p);
hlist_del(&p->hlist);
spin_unlock_irqrestore(&kprobe_lock, flags);
arch_remove_kprobe(p);
}
static inline void cleanup_aggr_kprobe(struct kprobe *old_p,
struct kprobe *p, unsigned long flags)
{
list_del(&p->list);
if (list_empty(&old_p->list)) {
cleanup_kprobe(old_p, flags);
kfree(old_p);
} else
spin_unlock_irqrestore(&kprobe_lock, flags);
}
int register_kprobe(struct kprobe *p)
{
int ret = 0;
unsigned long flags = 0;
struct kprobe *old_p;
if ((ret = arch_prepare_kprobe(p)) != 0) {
goto rm_kprobe;
}
spin_lock_irqsave(&kprobe_lock, flags);
old_p = get_kprobe(p->addr);
p->nmissed = 0;
if (old_p) {
ret = register_aggr_kprobe(old_p, p);
goto out;
}
arch_copy_kprobe(p);
INIT_HLIST_NODE(&p->hlist);
hlist_add_head(&p->hlist,
&kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
arch_arm_kprobe(p);
out:
spin_unlock_irqrestore(&kprobe_lock, flags);
rm_kprobe:
if (ret == -EEXIST)
arch_remove_kprobe(p);
return ret;
}
void unregister_kprobe(struct kprobe *p)
{
unsigned long flags;
struct kprobe *old_p;
spin_lock_irqsave(&kprobe_lock, flags);
old_p = get_kprobe(p->addr);
if (old_p) {
if (old_p->pre_handler == aggr_pre_handler)
cleanup_aggr_kprobe(old_p, p, flags);
else
cleanup_kprobe(p, flags);
} else
spin_unlock_irqrestore(&kprobe_lock, flags);
}
static struct notifier_block kprobe_exceptions_nb = {
.notifier_call = kprobe_exceptions_notify,
.priority = 0x7fffffff /* we need to notified first */
};
int register_jprobe(struct jprobe *jp)
{
/* Todo: Verify probepoint is a function entry point */
jp->kp.pre_handler = setjmp_pre_handler;
jp->kp.break_handler = longjmp_break_handler;
return register_kprobe(&jp->kp);
}
void unregister_jprobe(struct jprobe *jp)
{
unregister_kprobe(&jp->kp);
}
#ifdef ARCH_SUPPORTS_KRETPROBES
int register_kretprobe(struct kretprobe *rp)
{
int ret = 0;
struct kretprobe_instance *inst;
int i;
rp->kp.pre_handler = pre_handler_kretprobe;
/* Pre-allocate memory for max kretprobe instances */
if (rp->maxactive <= 0) {
#ifdef CONFIG_PREEMPT
rp->maxactive = max(10, 2 * NR_CPUS);
#else
rp->maxactive = NR_CPUS;
#endif
}
INIT_HLIST_HEAD(&rp->used_instances);
INIT_HLIST_HEAD(&rp->free_instances);
for (i = 0; i < rp->maxactive; i++) {
inst = kmalloc(sizeof(struct kretprobe_instance), GFP_KERNEL);
if (inst == NULL) {
free_rp_inst(rp);
return -ENOMEM;
}
INIT_HLIST_NODE(&inst->uflist);
hlist_add_head(&inst->uflist, &rp->free_instances);
}
rp->nmissed = 0;
/* Establish function entry probe point */
if ((ret = register_kprobe(&rp->kp)) != 0)
free_rp_inst(rp);
return ret;
}
#else /* ARCH_SUPPORTS_KRETPROBES */
int register_kretprobe(struct kretprobe *rp)
{
return -ENOSYS;
}
#endif /* ARCH_SUPPORTS_KRETPROBES */
void unregister_kretprobe(struct kretprobe *rp)
{
unsigned long flags;
struct kretprobe_instance *ri;
unregister_kprobe(&rp->kp);
/* No race here */
spin_lock_irqsave(&kprobe_lock, flags);
free_rp_inst(rp);
while ((ri = get_used_rp_inst(rp)) != NULL) {
ri->rp = NULL;
hlist_del(&ri->uflist);
}
spin_unlock_irqrestore(&kprobe_lock, flags);
}
static int __init init_kprobes(void)
{
int i, err = 0;
/* FIXME allocate the probe table, currently defined statically */
/* initialize all list heads */
for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
INIT_HLIST_HEAD(&kprobe_table[i]);
INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
}
err = register_die_notifier(&kprobe_exceptions_nb);
/* Register the trampoline probe for return probe */
register_kprobe(&trampoline_p);
return err;
}
__initcall(init_kprobes);
EXPORT_SYMBOL_GPL(register_kprobe);
EXPORT_SYMBOL_GPL(unregister_kprobe);
EXPORT_SYMBOL_GPL(register_jprobe);
EXPORT_SYMBOL_GPL(unregister_jprobe);
EXPORT_SYMBOL_GPL(jprobe_return);
EXPORT_SYMBOL_GPL(register_kretprobe);
EXPORT_SYMBOL_GPL(unregister_kretprobe);