android_kernel_google_msm/arch/arm/mach-msm/rpm_resources.c
Stepan Moskovchenko 88a16cc82a msm: Refactor cpu_is macros into SoC classes
Refactor common combinations of cpu_is macros into logical
SoC class macros to reduce the maintenance burden of
implementing support for additional product variants.

Conflicts:

	arch/arm/mach-msm/include/mach/socinfo.h

Change-Id: I6916dcb30378cd3ba33ea8d863403f93f62a13f2
Signed-off-by: Stepan Moskovchenko <stepanm@codeaurora.org>
Signed-off-by: Neha Pandey <nehap@codeaurora.org>
2013-03-07 15:23:00 -08:00

1156 lines
30 KiB
C

/* Copyright (c) 2010-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/bug.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/spinlock.h>
#include <linux/cpu.h>
#include <linux/hrtimer.h>
#include <mach/rpm.h>
#include <mach/msm_iomap.h>
#include <asm/mach-types.h>
#include <linux/io.h>
#include <mach/socinfo.h>
#include <mach/mpm.h>
#include "rpm_resources.h"
#include "spm.h"
#include "idle.h"
/******************************************************************************
* Debug Definitions
*****************************************************************************/
enum {
MSM_RPMRS_DEBUG_OUTPUT = BIT(0),
MSM_RPMRS_DEBUG_BUFFER = BIT(1),
MSM_RPMRS_DEBUG_EVENT_TIMER = BIT(2),
};
static int msm_rpmrs_debug_mask;
module_param_named(
debug_mask, msm_rpmrs_debug_mask, int, S_IRUGO | S_IWUSR | S_IWGRP
);
static struct msm_rpmrs_level *msm_rpmrs_levels;
static int msm_rpmrs_level_count;
static bool msm_rpmrs_pxo_beyond_limits(struct msm_rpmrs_limits *limits);
static void msm_rpmrs_aggregate_pxo(struct msm_rpmrs_limits *limits);
static void msm_rpmrs_restore_pxo(void);
static bool msm_rpmrs_l2_cache_beyond_limits(struct msm_rpmrs_limits *limits);
static void msm_rpmrs_aggregate_l2_cache(struct msm_rpmrs_limits *limits);
static void msm_rpmrs_restore_l2_cache(void);
static bool msm_rpmrs_vdd_mem_beyond_limits(struct msm_rpmrs_limits *limits);
static void msm_rpmrs_aggregate_vdd_mem(struct msm_rpmrs_limits *limits);
static void msm_rpmrs_restore_vdd_mem(void);
static bool msm_rpmrs_vdd_dig_beyond_limits(struct msm_rpmrs_limits *limits);
static void msm_rpmrs_aggregate_vdd_dig(struct msm_rpmrs_limits *limits);
static void msm_rpmrs_restore_vdd_dig(void);
static ssize_t msm_rpmrs_resource_attr_show(
struct kobject *kobj, struct kobj_attribute *attr, char *buf);
static ssize_t msm_rpmrs_resource_attr_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count);
static int vdd_dig_vlevels[MSM_RPMRS_VDD_DIG_LAST];
static int vdd_mem_vlevels[MSM_RPMRS_VDD_MEM_LAST];
static int vdd_mask;
#define MSM_RPMRS_MAX_RS_REGISTER_COUNT 2
#define RPMRS_ATTR(_name) \
__ATTR(_name, S_IRUGO|S_IWUSR, \
msm_rpmrs_resource_attr_show, msm_rpmrs_resource_attr_store)
struct msm_rpmrs_resource {
struct msm_rpm_iv_pair rs[MSM_RPMRS_MAX_RS_REGISTER_COUNT];
uint32_t size;
char *name;
uint32_t enable_low_power;
bool (*beyond_limits)(struct msm_rpmrs_limits *limits);
void (*aggregate)(struct msm_rpmrs_limits *limits);
void (*restore)(void);
struct kobj_attribute ko_attr;
};
static struct msm_rpmrs_resource msm_rpmrs_pxo = {
.size = 1,
.name = "pxo",
.beyond_limits = msm_rpmrs_pxo_beyond_limits,
.aggregate = msm_rpmrs_aggregate_pxo,
.restore = msm_rpmrs_restore_pxo,
.ko_attr = RPMRS_ATTR(pxo),
};
static struct msm_rpmrs_resource msm_rpmrs_l2_cache = {
.size = 1,
.name = "L2_cache",
.beyond_limits = msm_rpmrs_l2_cache_beyond_limits,
.aggregate = msm_rpmrs_aggregate_l2_cache,
.restore = msm_rpmrs_restore_l2_cache,
.ko_attr = RPMRS_ATTR(L2_cache),
};
static struct msm_rpmrs_resource msm_rpmrs_vdd_mem = {
.size = 2,
.name = "vdd_mem",
.beyond_limits = msm_rpmrs_vdd_mem_beyond_limits,
.aggregate = msm_rpmrs_aggregate_vdd_mem,
.restore = msm_rpmrs_restore_vdd_mem,
.ko_attr = RPMRS_ATTR(vdd_mem),
};
static struct msm_rpmrs_resource msm_rpmrs_vdd_dig = {
.size = 2,
.name = "vdd_dig",
.beyond_limits = msm_rpmrs_vdd_dig_beyond_limits,
.aggregate = msm_rpmrs_aggregate_vdd_dig,
.restore = msm_rpmrs_restore_vdd_dig,
.ko_attr = RPMRS_ATTR(vdd_dig),
};
static struct msm_rpmrs_resource msm_rpmrs_rpm_ctl = {
.size = 1,
.name = "rpm_ctl",
.beyond_limits = NULL,
.aggregate = NULL,
.restore = NULL,
.ko_attr = RPMRS_ATTR(rpm_ctl),
};
static struct msm_rpmrs_resource *msm_rpmrs_resources[] = {
&msm_rpmrs_pxo,
&msm_rpmrs_l2_cache,
&msm_rpmrs_vdd_mem,
&msm_rpmrs_vdd_dig,
&msm_rpmrs_rpm_ctl,
};
static uint32_t msm_rpmrs_buffer[MSM_RPM_ID_LAST];
static DECLARE_BITMAP(msm_rpmrs_buffered, MSM_RPM_ID_LAST);
static DECLARE_BITMAP(msm_rpmrs_listed, MSM_RPM_ID_LAST);
static DEFINE_SPINLOCK(msm_rpmrs_lock);
#define MSM_RPMRS_VDD(v) ((v) & (vdd_mask))
/******************************************************************************
* Attribute Definitions
*****************************************************************************/
static struct attribute *msm_rpmrs_attributes[] = {
&msm_rpmrs_pxo.ko_attr.attr,
&msm_rpmrs_l2_cache.ko_attr.attr,
&msm_rpmrs_vdd_mem.ko_attr.attr,
&msm_rpmrs_vdd_dig.ko_attr.attr,
NULL,
};
static struct attribute *msm_rpmrs_mode_attributes[] = {
&msm_rpmrs_rpm_ctl.ko_attr.attr,
NULL,
};
static struct attribute_group msm_rpmrs_attribute_group = {
.attrs = msm_rpmrs_attributes,
};
static struct attribute_group msm_rpmrs_mode_attribute_group = {
.attrs = msm_rpmrs_mode_attributes,
};
#define GET_RS_FROM_ATTR(attr) \
(container_of(attr, struct msm_rpmrs_resource, ko_attr))
/******************************************************************************
* Resource Specific Functions
*****************************************************************************/
static void msm_rpmrs_aggregate_sclk(uint32_t sclk_count)
{
msm_rpmrs_buffer[MSM_RPM_ID_TRIGGER_TIMED_TO] = 0;
set_bit(MSM_RPM_ID_TRIGGER_TIMED_TO, msm_rpmrs_buffered);
msm_rpmrs_buffer[MSM_RPM_ID_TRIGGER_TIMED_SCLK_COUNT] = sclk_count;
set_bit(MSM_RPM_ID_TRIGGER_TIMED_SCLK_COUNT, msm_rpmrs_buffered);
}
static void msm_rpmrs_restore_sclk(void)
{
clear_bit(MSM_RPM_ID_TRIGGER_TIMED_SCLK_COUNT, msm_rpmrs_buffered);
msm_rpmrs_buffer[MSM_RPM_ID_TRIGGER_TIMED_SCLK_COUNT] = 0;
clear_bit(MSM_RPM_ID_TRIGGER_TIMED_TO, msm_rpmrs_buffered);
msm_rpmrs_buffer[MSM_RPM_ID_TRIGGER_TIMED_TO] = 0;
}
static bool msm_rpmrs_pxo_beyond_limits(struct msm_rpmrs_limits *limits)
{
struct msm_rpmrs_resource *rs = &msm_rpmrs_pxo;
uint32_t pxo;
if (rs->enable_low_power && test_bit(rs->rs[0].id, msm_rpmrs_buffered))
pxo = msm_rpmrs_buffer[rs->rs[0].id];
else
pxo = MSM_RPMRS_PXO_ON;
return pxo > limits->pxo;
}
static void msm_rpmrs_aggregate_pxo(struct msm_rpmrs_limits *limits)
{
struct msm_rpmrs_resource *rs = &msm_rpmrs_pxo;
uint32_t *buf = &msm_rpmrs_buffer[rs->rs[0].id];
if (test_bit(rs->rs[0].id, msm_rpmrs_buffered)) {
rs->rs[0].value = *buf;
if (limits->pxo > *buf)
*buf = limits->pxo;
if (MSM_RPMRS_DEBUG_OUTPUT & msm_rpmrs_debug_mask)
pr_info("%s: %d (0x%x)\n", __func__, *buf, *buf);
}
}
static void msm_rpmrs_restore_pxo(void)
{
struct msm_rpmrs_resource *rs = &msm_rpmrs_pxo;
if (test_bit(rs->rs[0].id, msm_rpmrs_buffered))
msm_rpmrs_buffer[rs->rs[0].id] = rs->rs[0].value;
}
static bool msm_rpmrs_l2_cache_beyond_limits(struct msm_rpmrs_limits *limits)
{
struct msm_rpmrs_resource *rs = &msm_rpmrs_l2_cache;
uint32_t l2_cache;
if (rs->enable_low_power && test_bit(rs->rs[0].id, msm_rpmrs_buffered))
l2_cache = msm_rpmrs_buffer[rs->rs[0].id];
else
l2_cache = MSM_RPMRS_L2_CACHE_ACTIVE;
return l2_cache > limits->l2_cache;
}
static void msm_rpmrs_aggregate_l2_cache(struct msm_rpmrs_limits *limits)
{
struct msm_rpmrs_resource *rs = &msm_rpmrs_l2_cache;
uint32_t *buf = &msm_rpmrs_buffer[rs->rs[0].id];
if (test_bit(rs->rs[0].id, msm_rpmrs_buffered)) {
rs->rs[0].value = *buf;
if (limits->l2_cache > *buf)
*buf = limits->l2_cache;
if (MSM_RPMRS_DEBUG_OUTPUT & msm_rpmrs_debug_mask)
pr_info("%s: %d (0x%x)\n", __func__, *buf, *buf);
}
}
static bool msm_spm_l2_cache_beyond_limits(struct msm_rpmrs_limits *limits)
{
struct msm_rpmrs_resource *rs = &msm_rpmrs_l2_cache;
uint32_t l2_cache = rs->rs[0].value;
if (!rs->enable_low_power)
l2_cache = MSM_RPMRS_L2_CACHE_ACTIVE;
return l2_cache > limits->l2_cache;
}
static void msm_rpmrs_restore_l2_cache(void)
{
struct msm_rpmrs_resource *rs = &msm_rpmrs_l2_cache;
if (test_bit(rs->rs[0].id, msm_rpmrs_buffered))
msm_rpmrs_buffer[rs->rs[0].id] = rs->rs[0].value;
}
static bool msm_rpmrs_vdd_mem_beyond_limits(struct msm_rpmrs_limits *limits)
{
struct msm_rpmrs_resource *rs = &msm_rpmrs_vdd_mem;
uint32_t vdd_mem;
if (test_bit(rs->rs[0].id, msm_rpmrs_buffered)) {
uint32_t buffered_value = msm_rpmrs_buffer[rs->rs[0].id];
if (rs->enable_low_power == 0)
vdd_mem = vdd_mem_vlevels[MSM_RPMRS_VDD_MEM_ACTIVE];
else if (rs->enable_low_power == 1)
vdd_mem = vdd_mem_vlevels[MSM_RPMRS_VDD_MEM_RET_HIGH];
else
vdd_mem = vdd_mem_vlevels[MSM_RPMRS_VDD_MEM_RET_LOW];
if (MSM_RPMRS_VDD(buffered_value) > MSM_RPMRS_VDD(vdd_mem))
vdd_mem = MSM_RPMRS_VDD(buffered_value);
} else {
vdd_mem = vdd_mem_vlevels[MSM_RPMRS_VDD_MEM_ACTIVE];
}
return vdd_mem > vdd_mem_vlevels[limits->vdd_mem_upper_bound];
}
static void msm_rpmrs_aggregate_vdd_mem(struct msm_rpmrs_limits *limits)
{
struct msm_rpmrs_resource *rs = &msm_rpmrs_vdd_mem;
uint32_t *buf = &msm_rpmrs_buffer[rs->rs[0].id];
if (test_bit(rs->rs[0].id, msm_rpmrs_buffered)) {
rs->rs[0].value = *buf;
if (vdd_mem_vlevels[limits->vdd_mem] > MSM_RPMRS_VDD(*buf)) {
*buf &= ~vdd_mask;
*buf |= vdd_mem_vlevels[limits->vdd_mem];
}
if (MSM_RPMRS_DEBUG_OUTPUT & msm_rpmrs_debug_mask)
pr_info("%s: vdd %d (0x%x)\n", __func__,
MSM_RPMRS_VDD(*buf), MSM_RPMRS_VDD(*buf));
}
}
static void msm_rpmrs_restore_vdd_mem(void)
{
struct msm_rpmrs_resource *rs = &msm_rpmrs_vdd_mem;
if (test_bit(rs->rs[0].id, msm_rpmrs_buffered))
msm_rpmrs_buffer[rs->rs[0].id] = rs->rs[0].value;
}
static bool msm_rpmrs_vdd_dig_beyond_limits(struct msm_rpmrs_limits *limits)
{
struct msm_rpmrs_resource *rs = &msm_rpmrs_vdd_dig;
uint32_t vdd_dig;
if (test_bit(rs->rs[0].id, msm_rpmrs_buffered)) {
uint32_t buffered_value = msm_rpmrs_buffer[rs->rs[0].id];
if (rs->enable_low_power == 0)
vdd_dig = vdd_dig_vlevels[MSM_RPMRS_VDD_DIG_ACTIVE];
else if (rs->enable_low_power == 1)
vdd_dig = vdd_dig_vlevels[MSM_RPMRS_VDD_DIG_RET_HIGH];
else
vdd_dig = vdd_dig_vlevels[MSM_RPMRS_VDD_DIG_RET_LOW];
if (MSM_RPMRS_VDD(buffered_value) > MSM_RPMRS_VDD(vdd_dig))
vdd_dig = MSM_RPMRS_VDD(buffered_value);
} else {
vdd_dig = vdd_dig_vlevels[MSM_RPMRS_VDD_DIG_ACTIVE];
}
return vdd_dig > vdd_dig_vlevels[limits->vdd_dig_upper_bound];
}
static void msm_rpmrs_aggregate_vdd_dig(struct msm_rpmrs_limits *limits)
{
struct msm_rpmrs_resource *rs = &msm_rpmrs_vdd_dig;
uint32_t *buf = &msm_rpmrs_buffer[rs->rs[0].id];
if (test_bit(rs->rs[0].id, msm_rpmrs_buffered)) {
rs->rs[0].value = *buf;
if (vdd_dig_vlevels[limits->vdd_dig] > MSM_RPMRS_VDD(*buf)) {
*buf &= ~vdd_mask;
*buf |= vdd_dig_vlevels[limits->vdd_dig];
}
if (MSM_RPMRS_DEBUG_OUTPUT & msm_rpmrs_debug_mask)
pr_info("%s: vdd %d (0x%x)\n", __func__,
MSM_RPMRS_VDD(*buf), MSM_RPMRS_VDD(*buf));
}
}
static void msm_rpmrs_restore_vdd_dig(void)
{
struct msm_rpmrs_resource *rs = &msm_rpmrs_vdd_dig;
if (test_bit(rs->rs[0].id, msm_rpmrs_buffered))
msm_rpmrs_buffer[rs->rs[0].id] = rs->rs[0].value;
}
/******************************************************************************
* Buffering Functions
*****************************************************************************/
static bool msm_rpmrs_irqs_detectable(struct msm_rpmrs_limits *limits,
bool irqs_detect, bool gpio_detect)
{
if (vdd_dig_vlevels[limits->vdd_dig_upper_bound] <=
vdd_dig_vlevels[MSM_RPMRS_VDD_DIG_RET_HIGH])
return irqs_detect;
if (limits->pxo == MSM_RPMRS_PXO_OFF)
return gpio_detect;
return true;
}
static bool msm_rpmrs_use_mpm(struct msm_rpmrs_limits *limits)
{
return (limits->pxo == MSM_RPMRS_PXO_OFF) ||
(vdd_dig_vlevels[limits->vdd_dig] <=
vdd_dig_vlevels[MSM_RPMRS_VDD_DIG_RET_HIGH]);
}
static void msm_rpmrs_update_levels(void)
{
int i, k;
for (i = 0; i < msm_rpmrs_level_count; i++) {
struct msm_rpmrs_level *level = &msm_rpmrs_levels[i];
if (level->sleep_mode != MSM_PM_SLEEP_MODE_POWER_COLLAPSE)
continue;
level->available = true;
for (k = 0; k < ARRAY_SIZE(msm_rpmrs_resources); k++) {
struct msm_rpmrs_resource *rs = msm_rpmrs_resources[k];
if (rs->beyond_limits &&
rs->beyond_limits(&level->rs_limits)) {
level->available = false;
break;
}
}
}
}
/*
* Return value:
* 0: no entries in <req> is on our resource list
* 1: one or more entries in <req> is on our resource list
* -EINVAL: invalid id in <req> array
*/
static int msm_rpmrs_buffer_request(struct msm_rpm_iv_pair *req, int count)
{
bool listed;
int i;
for (i = 0; i < count; i++)
if (req[i].id >= MSM_RPM_ID_LAST)
return -EINVAL;
for (i = 0, listed = false; i < count; i++) {
msm_rpmrs_buffer[req[i].id] = req[i].value;
set_bit(req[i].id, msm_rpmrs_buffered);
if (MSM_RPMRS_DEBUG_BUFFER & msm_rpmrs_debug_mask)
pr_info("%s: reg %d: 0x%x\n",
__func__, req[i].id, req[i].value);
if (listed)
continue;
if (test_bit(req[i].id, msm_rpmrs_listed))
listed = true;
}
return listed ? 1 : 0;
}
/*
* Return value:
* 0: no entries in <req> is on our resource list
* 1: one or more entries in <req> is on our resource list
* -EINVAL: invalid id in <req> array
*/
static int msm_rpmrs_clear_buffer(struct msm_rpm_iv_pair *req, int count)
{
bool listed;
int i;
for (i = 0; i < count; i++)
if (req[i].id >= MSM_RPM_ID_LAST)
return -EINVAL;
for (i = 0, listed = false; i < count; i++) {
msm_rpmrs_buffer[req[i].id] = 0;
clear_bit(req[i].id, msm_rpmrs_buffered);
if (MSM_RPMRS_DEBUG_BUFFER & msm_rpmrs_debug_mask)
pr_info("%s: reg %d\n", __func__, req[i].id);
if (listed)
continue;
if (test_bit(req[i].id, msm_rpmrs_listed))
listed = true;
}
return listed ? 1 : 0;
}
#ifdef CONFIG_MSM_L2_SPM
static int msm_rpmrs_flush_L2(struct msm_rpmrs_limits *limits, int notify_rpm)
{
int rc = 0;
int lpm;
switch (limits->l2_cache) {
case MSM_RPMRS_L2_CACHE_HSFS_OPEN:
lpm = MSM_SPM_L2_MODE_POWER_COLLAPSE;
msm_pm_set_l2_flush_flag(1);
break;
case MSM_RPMRS_L2_CACHE_GDHS:
lpm = MSM_SPM_L2_MODE_GDHS;
break;
case MSM_RPMRS_L2_CACHE_RETENTION:
lpm = MSM_SPM_L2_MODE_RETENTION;
break;
default:
case MSM_RPMRS_L2_CACHE_ACTIVE:
lpm = MSM_SPM_L2_MODE_DISABLED;
break;
}
rc = msm_spm_l2_set_low_power_mode(lpm, notify_rpm);
if (MSM_RPMRS_DEBUG_BUFFER & msm_rpmrs_debug_mask)
pr_info("%s: Requesting low power mode %d returned %d\n",
__func__, lpm, rc);
return rc;
}
static void msm_rpmrs_L2_restore(struct msm_rpmrs_limits *limits,
bool notify_rpm, bool collapsed)
{
msm_spm_l2_set_low_power_mode(MSM_SPM_MODE_DISABLED, notify_rpm);
msm_pm_set_l2_flush_flag(0);
}
#else
static int msm_rpmrs_flush_L2(struct msm_rpmrs_limits *limits, int notify_rpm)
{
return 0;
}
static void msm_rpmrs_L2_restore(struct msm_rpmrs_limits *limits,
bool notify_rpm, bool collapsed)
{
}
#endif
static int msm_rpmrs_flush_buffer(
uint32_t sclk_count, struct msm_rpmrs_limits *limits, int from_idle)
{
struct msm_rpm_iv_pair *req;
int count;
int rc;
int i;
msm_rpmrs_aggregate_sclk(sclk_count);
for (i = 0; i < ARRAY_SIZE(msm_rpmrs_resources); i++) {
if (msm_rpmrs_resources[i]->aggregate)
msm_rpmrs_resources[i]->aggregate(limits);
}
count = bitmap_weight(msm_rpmrs_buffered, MSM_RPM_ID_LAST);
req = kmalloc(sizeof(*req) * count, GFP_ATOMIC);
if (!req) {
rc = -ENOMEM;
goto flush_buffer_restore;
}
count = 0;
i = find_first_bit(msm_rpmrs_buffered, MSM_RPM_ID_LAST);
while (i < MSM_RPM_ID_LAST) {
if (MSM_RPMRS_DEBUG_OUTPUT & msm_rpmrs_debug_mask)
pr_info("%s: reg %d: 0x%x\n",
__func__, i, msm_rpmrs_buffer[i]);
req[count].id = i;
req[count].value = msm_rpmrs_buffer[i];
count++;
i = find_next_bit(msm_rpmrs_buffered, MSM_RPM_ID_LAST, i + 1);
}
rc = msm_rpm_set_noirq(MSM_RPM_CTX_SET_SLEEP, req, count);
kfree(req);
if (rc)
goto flush_buffer_restore;
bitmap_and(msm_rpmrs_buffered,
msm_rpmrs_buffered, msm_rpmrs_listed, MSM_RPM_ID_LAST);
flush_buffer_restore:
for (i = 0; i < ARRAY_SIZE(msm_rpmrs_resources); i++) {
if (msm_rpmrs_resources[i]->restore)
msm_rpmrs_resources[i]->restore();
}
msm_rpmrs_restore_sclk();
if (rc)
pr_err("%s: failed: %d\n", __func__, rc);
return rc;
}
static int msm_rpmrs_set_common(
int ctx, struct msm_rpm_iv_pair *req, int count, bool noirq)
{
if (ctx == MSM_RPM_CTX_SET_SLEEP) {
unsigned long flags;
int rc;
spin_lock_irqsave(&msm_rpmrs_lock, flags);
rc = msm_rpmrs_buffer_request(req, count);
if (rc > 0) {
msm_rpmrs_update_levels();
rc = 0;
}
spin_unlock_irqrestore(&msm_rpmrs_lock, flags);
return rc;
}
if (noirq)
return msm_rpm_set_noirq(ctx, req, count);
else
return msm_rpm_set(ctx, req, count);
}
static int msm_rpmrs_clear_common(
int ctx, struct msm_rpm_iv_pair *req, int count, bool noirq)
{
if (ctx == MSM_RPM_CTX_SET_SLEEP) {
unsigned long flags;
int rc;
spin_lock_irqsave(&msm_rpmrs_lock, flags);
rc = msm_rpmrs_clear_buffer(req, count);
if (rc > 0) {
msm_rpmrs_update_levels();
rc = 0;
}
spin_unlock_irqrestore(&msm_rpmrs_lock, flags);
if (rc < 0)
return rc;
}
if (noirq)
return msm_rpm_clear_noirq(ctx, req, count);
else
return msm_rpm_clear(ctx, req, count);
}
/******************************************************************************
* Attribute Functions
*****************************************************************************/
static ssize_t msm_rpmrs_resource_attr_show(
struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct kernel_param kp;
unsigned long flags;
unsigned int temp;
int rc;
spin_lock_irqsave(&msm_rpmrs_lock, flags);
/* special case active-set signal for MSM_RPMRS_ID_RPM_CTL */
if (GET_RS_FROM_ATTR(attr)->rs[0].id ==
msm_rpmrs_rpm_ctl.rs[0].id)
temp = GET_RS_FROM_ATTR(attr)->rs[0].value;
else
temp = GET_RS_FROM_ATTR(attr)->enable_low_power;
spin_unlock_irqrestore(&msm_rpmrs_lock, flags);
kp.arg = &temp;
rc = param_get_uint(buf, &kp);
if (rc > 0) {
strlcat(buf, "\n", PAGE_SIZE);
rc++;
}
return rc;
}
static ssize_t msm_rpmrs_resource_attr_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
struct kernel_param kp;
unsigned long flags;
unsigned int temp;
int rc;
kp.arg = &temp;
rc = param_set_uint(buf, &kp);
if (rc)
return rc;
spin_lock_irqsave(&msm_rpmrs_lock, flags);
GET_RS_FROM_ATTR(attr)->enable_low_power = temp;
/* special case active-set signal for MSM_RPMRS_ID_RPM_CTL */
if (GET_RS_FROM_ATTR(attr)->rs[0].id ==
msm_rpmrs_rpm_ctl.rs[0].id) {
struct msm_rpm_iv_pair req;
req.id = msm_rpmrs_rpm_ctl.rs[0].id;
req.value = GET_RS_FROM_ATTR(attr)->enable_low_power;
GET_RS_FROM_ATTR(attr)->rs[0].value = req.value;
rc = msm_rpm_set_noirq(MSM_RPM_CTX_SET_0, &req, 1);
if (rc) {
pr_err("%s: failed to request RPM_CTL to %d: %d\n",
__func__, req.value, rc);
}
}
msm_rpmrs_update_levels();
spin_unlock_irqrestore(&msm_rpmrs_lock, flags);
return count;
}
static int __init msm_rpmrs_resource_sysfs_add(void)
{
struct kobject *module_kobj = NULL;
struct kobject *low_power_kobj = NULL;
struct kobject *mode_kobj = NULL;
int rc = 0;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("%s: cannot find kobject for module %s\n",
__func__, KBUILD_MODNAME);
rc = -ENOENT;
goto resource_sysfs_add_exit;
}
low_power_kobj = kobject_create_and_add(
"enable_low_power", module_kobj);
if (!low_power_kobj) {
pr_err("%s: cannot create kobject\n", __func__);
rc = -ENOMEM;
goto resource_sysfs_add_exit;
}
mode_kobj = kobject_create_and_add(
"mode", module_kobj);
if (!mode_kobj) {
pr_err("%s: cannot create kobject\n", __func__);
rc = -ENOMEM;
goto resource_sysfs_add_exit;
}
rc = sysfs_create_group(low_power_kobj, &msm_rpmrs_attribute_group);
if (rc) {
pr_err("%s: cannot create kobject attribute group\n", __func__);
goto resource_sysfs_add_exit;
}
rc = sysfs_create_group(mode_kobj, &msm_rpmrs_mode_attribute_group);
if (rc) {
pr_err("%s: cannot create kobject attribute group\n", __func__);
goto resource_sysfs_add_exit;
}
rc = 0;
resource_sysfs_add_exit:
if (rc) {
if (low_power_kobj)
sysfs_remove_group(low_power_kobj,
&msm_rpmrs_attribute_group);
kobject_del(low_power_kobj);
kobject_del(mode_kobj);
}
return rc;
}
/******************************************************************************
* Public Functions
*****************************************************************************/
int msm_rpmrs_set(int ctx, struct msm_rpm_iv_pair *req, int count)
{
return msm_rpmrs_set_common(ctx, req, count, false);
}
int msm_rpmrs_set_noirq(int ctx, struct msm_rpm_iv_pair *req, int count)
{
WARN(!irqs_disabled(), "msm_rpmrs_set_noirq can only be called "
"safely when local irqs are disabled. Consider using "
"msm_rpmrs_set or msm_rpmrs_set_nosleep instead.");
return msm_rpmrs_set_common(ctx, req, count, true);
}
/* Allow individual bits of an rpm resource be set, currently used only for
* active context resource viz. RPM_CTL. The API is generic enough to possibly
* extend it to other resources as well in the future.
*/
int msm_rpmrs_set_bits_noirq(int ctx, struct msm_rpm_iv_pair *req, int count,
int *mask)
{
unsigned long flags;
int i, j;
int rc = -1;
struct msm_rpmrs_resource *rs;
if (ctx != MSM_RPM_CTX_SET_0)
return -ENOSYS;
spin_lock_irqsave(&msm_rpmrs_lock, flags);
for (i = 0; i < ARRAY_SIZE(msm_rpmrs_resources); i++) {
rs = msm_rpmrs_resources[i];
if (rs->rs[0].id == req[0].id && rs->size == count) {
for (j = 0; j < rs->size; j++) {
rs->rs[j].value &= ~mask[j];
rs->rs[j].value |= req[j].value & mask[j];
}
break;
}
}
if (i != ARRAY_SIZE(msm_rpmrs_resources)) {
rc = msm_rpm_set_noirq(MSM_RPM_CTX_SET_0, &rs->rs[0], rs->size);
if (rc) {
for (j = 0; j < rs->size; j++) {
pr_err("%s: failed to request %d to %d: %d\n",
__func__,
rs->rs[j].id, rs->rs[j].value, rc);
}
}
}
spin_unlock_irqrestore(&msm_rpmrs_lock, flags);
return rc;
}
int msm_rpmrs_clear(int ctx, struct msm_rpm_iv_pair *req, int count)
{
return msm_rpmrs_clear_common(ctx, req, count, false);
}
int msm_rpmrs_clear_noirq(int ctx, struct msm_rpm_iv_pair *req, int count)
{
WARN(!irqs_disabled(), "msm_rpmrs_clear_noirq can only be called "
"safely when local irqs are disabled. Consider using "
"msm_rpmrs_clear or msm_rpmrs_clear_nosleep instead.");
return msm_rpmrs_clear_common(ctx, req, count, true);
}
void msm_rpmrs_show_resources(void)
{
struct msm_rpmrs_resource *rs;
unsigned long flags;
int i;
spin_lock_irqsave(&msm_rpmrs_lock, flags);
for (i = 0; i < ARRAY_SIZE(msm_rpmrs_resources); i++) {
rs = msm_rpmrs_resources[i];
if (rs->rs[0].id < MSM_RPM_ID_LAST)
pr_info("%s: resource %s: buffered %d, value 0x%x\n",
__func__, rs->name,
test_bit(rs->rs[0].id, msm_rpmrs_buffered),
msm_rpmrs_buffer[rs->rs[0].id]);
else
pr_info("%s: resource %s: value %d\n",
__func__, rs->name, rs->rs[0].value);
}
spin_unlock_irqrestore(&msm_rpmrs_lock, flags);
}
s32 msm_cpuidle_get_deep_idle_latency(void)
{
int i;
struct msm_rpmrs_level *level = msm_rpmrs_levels, *best = level;
if (!level)
return 0;
for (i = 0; i < msm_rpmrs_level_count; i++, level++) {
if (!level->available)
continue;
if (level->sleep_mode != MSM_PM_SLEEP_MODE_POWER_COLLAPSE)
continue;
/* Pick the first power collapse mode by default */
if (best->sleep_mode != MSM_PM_SLEEP_MODE_POWER_COLLAPSE)
best = level;
/* Find the lowest latency for power collapse */
if (level->latency_us < best->latency_us)
best = level;
}
return best->latency_us - 1;
}
static void *msm_rpmrs_lowest_limits(bool from_idle,
enum msm_pm_sleep_mode sleep_mode,
struct msm_pm_time_params *time_param, uint32_t *power)
{
unsigned int cpu = smp_processor_id();
struct msm_rpmrs_level *best_level = NULL;
bool irqs_detectable = false;
bool gpio_detectable = false;
int i;
uint32_t pwr;
uint32_t next_wakeup_us = time_param->sleep_us;
bool modify_event_timer;
if (sleep_mode == MSM_PM_SLEEP_MODE_POWER_COLLAPSE) {
irqs_detectable = msm_mpm_irqs_detectable(from_idle);
gpio_detectable = msm_mpm_gpio_irqs_detectable(from_idle);
}
for (i = 0; i < msm_rpmrs_level_count; i++) {
struct msm_rpmrs_level *level = &msm_rpmrs_levels[i];
modify_event_timer = false;
if (!level->available)
continue;
if (sleep_mode != level->sleep_mode)
continue;
if (time_param->latency_us < level->latency_us)
continue;
if (time_param->next_event_us &&
time_param->next_event_us < level->latency_us)
continue;
if (time_param->next_event_us) {
if ((time_param->next_event_us < time_param->sleep_us)
|| ((time_param->next_event_us - level->latency_us) <
time_param->sleep_us)) {
modify_event_timer = true;
next_wakeup_us = time_param->next_event_us -
level->latency_us;
}
}
if (next_wakeup_us <= level->time_overhead_us)
continue;
if (!msm_rpmrs_irqs_detectable(&level->rs_limits,
irqs_detectable, gpio_detectable))
continue;
if ((MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE == sleep_mode)
|| (MSM_PM_SLEEP_MODE_POWER_COLLAPSE == sleep_mode))
if (!cpu && msm_rpm_local_request_is_outstanding())
break;
if (next_wakeup_us <= 1) {
pwr = level->energy_overhead;
} else if (next_wakeup_us <= level->time_overhead_us) {
pwr = level->energy_overhead / next_wakeup_us;
} else if ((next_wakeup_us >> 10) > level->time_overhead_us) {
pwr = level->steady_state_power;
} else {
pwr = level->steady_state_power;
pwr -= (level->time_overhead_us *
level->steady_state_power)/next_wakeup_us;
pwr += level->energy_overhead / next_wakeup_us;
}
if (!best_level ||
best_level->rs_limits.power[cpu] >= pwr) {
level->rs_limits.latency_us[cpu] = level->latency_us;
level->rs_limits.power[cpu] = pwr;
best_level = level;
if (power)
*power = pwr;
if (modify_event_timer && best_level->latency_us > 1)
time_param->modified_time_us =
time_param->next_event_us -
best_level->latency_us;
else
time_param->modified_time_us = 0;
}
}
return best_level ? &best_level->rs_limits : NULL;
}
static int msm_rpmrs_enter_sleep(uint32_t sclk_count, void *limits,
bool from_idle, bool notify_rpm)
{
int rc = 0;
if (notify_rpm) {
rc = msm_rpmrs_flush_buffer(sclk_count, limits, from_idle);
if (rc)
return rc;
if (msm_rpmrs_use_mpm(limits))
msm_mpm_enter_sleep(sclk_count, from_idle);
}
rc = msm_rpmrs_flush_L2(limits, notify_rpm);
return rc;
}
static void msm_rpmrs_exit_sleep(void *limits, bool from_idle,
bool notify_rpm, bool collapsed)
{
/* Disable L2 for now, we dont want L2 to do retention by default */
msm_rpmrs_L2_restore(limits, notify_rpm, collapsed);
if (msm_rpmrs_use_mpm(limits))
msm_mpm_exit_sleep(from_idle);
}
static int rpmrs_cpu_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
switch (action) {
case CPU_ONLINE_FROZEN:
case CPU_ONLINE:
if (num_online_cpus() > 1)
msm_rpmrs_l2_cache.rs[0].value =
MSM_RPMRS_L2_CACHE_ACTIVE;
break;
case CPU_DEAD_FROZEN:
case CPU_DEAD:
if (num_online_cpus() == 1)
msm_rpmrs_l2_cache.rs[0].value =
MSM_RPMRS_L2_CACHE_HSFS_OPEN;
break;
}
msm_rpmrs_update_levels();
return NOTIFY_OK;
}
static struct notifier_block __refdata rpmrs_cpu_notifier = {
.notifier_call = rpmrs_cpu_callback,
};
int __init msm_rpmrs_levels_init(struct msm_rpmrs_platform_data *data)
{
int i, k;
struct msm_rpmrs_level *levels = data->levels;
msm_rpmrs_level_count = data->num_levels;
msm_rpmrs_levels = kzalloc(sizeof(struct msm_rpmrs_level) *
msm_rpmrs_level_count, GFP_KERNEL);
if (!msm_rpmrs_levels)
return -ENOMEM;
memcpy(msm_rpmrs_levels, levels,
msm_rpmrs_level_count * sizeof(struct msm_rpmrs_level));
memcpy(vdd_dig_vlevels, data->vdd_dig_levels,
(MSM_RPMRS_VDD_DIG_MAX + 1) * sizeof(vdd_dig_vlevels[0]));
memcpy(vdd_mem_vlevels, data->vdd_mem_levels,
(MSM_RPMRS_VDD_MEM_MAX + 1) * sizeof(vdd_mem_vlevels[0]));
vdd_mask = data->vdd_mask;
msm_rpmrs_pxo.rs[0].id = data->rpmrs_target_id[MSM_RPMRS_ID_PXO_CLK];
msm_rpmrs_l2_cache.rs[0].id =
data->rpmrs_target_id[MSM_RPMRS_ID_L2_CACHE_CTL];
msm_rpmrs_vdd_mem.rs[0].id =
data->rpmrs_target_id[MSM_RPMRS_ID_VDD_MEM_0];
msm_rpmrs_vdd_mem.rs[1].id =
data->rpmrs_target_id[MSM_RPMRS_ID_VDD_MEM_1];
msm_rpmrs_vdd_dig.rs[0].id =
data->rpmrs_target_id[MSM_RPMRS_ID_VDD_DIG_0];
msm_rpmrs_vdd_dig.rs[1].id =
data->rpmrs_target_id[MSM_RPMRS_ID_VDD_DIG_1];
msm_rpmrs_rpm_ctl.rs[0].id =
data->rpmrs_target_id[MSM_RPMRS_ID_RPM_CTL];
/* Initialize listed bitmap for valid resource IDs */
for (i = 0; i < ARRAY_SIZE(msm_rpmrs_resources); i++) {
for (k = 0; k < msm_rpmrs_resources[i]->size; k++) {
if (msm_rpmrs_resources[i]->rs[k].id >=
MSM_RPM_ID_LAST)
continue;
set_bit(msm_rpmrs_resources[i]->rs[k].id,
msm_rpmrs_listed);
}
}
return 0;
}
static int __init msm_rpmrs_init(void)
{
struct msm_rpm_iv_pair req;
int rc;
BUG_ON(!msm_rpmrs_levels);
if (cpu_is_msm8x60()) {
req.id = msm_rpmrs_l2_cache.rs[0].id;
req.value = 1;
rc = msm_rpm_set(MSM_RPM_CTX_SET_0, &req, 1);
if (rc) {
pr_err("%s: failed to request L2 cache: %d\n",
__func__, rc);
goto init_exit;
}
req.id = msm_rpmrs_l2_cache.rs[0].id;
req.value = 0;
rc = msm_rpmrs_set(MSM_RPM_CTX_SET_SLEEP, &req, 1);
if (rc) {
pr_err("%s: failed to initialize L2 cache for sleep: "
"%d\n", __func__, rc);
goto init_exit;
}
}
rc = msm_rpmrs_resource_sysfs_add();
init_exit:
return rc;
}
device_initcall(msm_rpmrs_init);
static struct msm_pm_sleep_ops msm_rpmrs_ops = {
.lowest_limits = msm_rpmrs_lowest_limits,
.enter_sleep = msm_rpmrs_enter_sleep,
.exit_sleep = msm_rpmrs_exit_sleep,
};
static int __init msm_rpmrs_l2_init(void)
{
if (soc_class_is_msm8960() || soc_class_is_msm8930() ||
soc_class_is_apq8064()) {
msm_pm_set_l2_flush_flag(0);
msm_rpmrs_l2_cache.beyond_limits =
msm_spm_l2_cache_beyond_limits;
msm_rpmrs_l2_cache.aggregate = NULL;
msm_rpmrs_l2_cache.restore = NULL;
register_hotcpu_notifier(&rpmrs_cpu_notifier);
} else if (cpu_is_msm9615()) {
msm_rpmrs_l2_cache.beyond_limits = NULL;
msm_rpmrs_l2_cache.aggregate = NULL;
msm_rpmrs_l2_cache.restore = NULL;
}
msm_pm_set_sleep_ops(&msm_rpmrs_ops);
return 0;
}
early_initcall(msm_rpmrs_l2_init);