android_kernel_google_msm/include/math-emu/op-common.h
Adam Buchbinder c41b20e721 Fix misspellings of "truly" in comments.
Some comments misspell "truly"; this fixes them. No code changes.

Signed-off-by: Adam Buchbinder <adam.buchbinder@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2010-02-04 11:55:45 +01:00

871 lines
26 KiB
C

/* Software floating-point emulation. Common operations.
Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Richard Henderson (rth@cygnus.com),
Jakub Jelinek (jj@ultra.linux.cz),
David S. Miller (davem@redhat.com) and
Peter Maydell (pmaydell@chiark.greenend.org.uk).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#ifndef __MATH_EMU_OP_COMMON_H__
#define __MATH_EMU_OP_COMMON_H__
#define _FP_DECL(wc, X) \
_FP_I_TYPE X##_c=0, X##_s=0, X##_e=0; \
_FP_FRAC_DECL_##wc(X)
/*
* Finish truly unpacking a native fp value by classifying the kind
* of fp value and normalizing both the exponent and the fraction.
*/
#define _FP_UNPACK_CANONICAL(fs, wc, X) \
do { \
switch (X##_e) \
{ \
default: \
_FP_FRAC_HIGH_RAW_##fs(X) |= _FP_IMPLBIT_##fs; \
_FP_FRAC_SLL_##wc(X, _FP_WORKBITS); \
X##_e -= _FP_EXPBIAS_##fs; \
X##_c = FP_CLS_NORMAL; \
break; \
\
case 0: \
if (_FP_FRAC_ZEROP_##wc(X)) \
X##_c = FP_CLS_ZERO; \
else \
{ \
/* a denormalized number */ \
_FP_I_TYPE _shift; \
_FP_FRAC_CLZ_##wc(_shift, X); \
_shift -= _FP_FRACXBITS_##fs; \
_FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS)); \
X##_e -= _FP_EXPBIAS_##fs - 1 + _shift; \
X##_c = FP_CLS_NORMAL; \
FP_SET_EXCEPTION(FP_EX_DENORM); \
if (FP_DENORM_ZERO) \
{ \
FP_SET_EXCEPTION(FP_EX_INEXACT); \
X##_c = FP_CLS_ZERO; \
} \
} \
break; \
\
case _FP_EXPMAX_##fs: \
if (_FP_FRAC_ZEROP_##wc(X)) \
X##_c = FP_CLS_INF; \
else \
{ \
X##_c = FP_CLS_NAN; \
/* Check for signaling NaN */ \
if (!(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \
FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_SNAN); \
} \
break; \
} \
} while (0)
/*
* Before packing the bits back into the native fp result, take care
* of such mundane things as rounding and overflow. Also, for some
* kinds of fp values, the original parts may not have been fully
* extracted -- but that is ok, we can regenerate them now.
*/
#define _FP_PACK_CANONICAL(fs, wc, X) \
do { \
switch (X##_c) \
{ \
case FP_CLS_NORMAL: \
X##_e += _FP_EXPBIAS_##fs; \
if (X##_e > 0) \
{ \
_FP_ROUND(wc, X); \
if (_FP_FRAC_OVERP_##wc(fs, X)) \
{ \
_FP_FRAC_CLEAR_OVERP_##wc(fs, X); \
X##_e++; \
} \
_FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
if (X##_e >= _FP_EXPMAX_##fs) \
{ \
/* overflow */ \
switch (FP_ROUNDMODE) \
{ \
case FP_RND_NEAREST: \
X##_c = FP_CLS_INF; \
break; \
case FP_RND_PINF: \
if (!X##_s) X##_c = FP_CLS_INF; \
break; \
case FP_RND_MINF: \
if (X##_s) X##_c = FP_CLS_INF; \
break; \
} \
if (X##_c == FP_CLS_INF) \
{ \
/* Overflow to infinity */ \
X##_e = _FP_EXPMAX_##fs; \
_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
} \
else \
{ \
/* Overflow to maximum normal */ \
X##_e = _FP_EXPMAX_##fs - 1; \
_FP_FRAC_SET_##wc(X, _FP_MAXFRAC_##wc); \
} \
FP_SET_EXCEPTION(FP_EX_OVERFLOW); \
FP_SET_EXCEPTION(FP_EX_INEXACT); \
} \
} \
else \
{ \
/* we've got a denormalized number */ \
X##_e = -X##_e + 1; \
if (X##_e <= _FP_WFRACBITS_##fs) \
{ \
_FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs); \
if (_FP_FRAC_HIGH_##fs(X) \
& (_FP_OVERFLOW_##fs >> 1)) \
{ \
X##_e = 1; \
_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
} \
else \
{ \
_FP_ROUND(wc, X); \
if (_FP_FRAC_HIGH_##fs(X) \
& (_FP_OVERFLOW_##fs >> 1)) \
{ \
X##_e = 1; \
_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
FP_SET_EXCEPTION(FP_EX_INEXACT); \
} \
else \
{ \
X##_e = 0; \
_FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
} \
} \
if ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT) || \
(FP_TRAPPING_EXCEPTIONS & FP_EX_UNDERFLOW)) \
FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \
} \
else \
{ \
/* underflow to zero */ \
X##_e = 0; \
if (!_FP_FRAC_ZEROP_##wc(X)) \
{ \
_FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
_FP_ROUND(wc, X); \
_FP_FRAC_LOW_##wc(X) >>= (_FP_WORKBITS); \
} \
FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \
} \
} \
break; \
\
case FP_CLS_ZERO: \
X##_e = 0; \
_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
break; \
\
case FP_CLS_INF: \
X##_e = _FP_EXPMAX_##fs; \
_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
break; \
\
case FP_CLS_NAN: \
X##_e = _FP_EXPMAX_##fs; \
if (!_FP_KEEPNANFRACP) \
{ \
_FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs); \
X##_s = _FP_NANSIGN_##fs; \
} \
else \
_FP_FRAC_HIGH_RAW_##fs(X) |= _FP_QNANBIT_##fs; \
break; \
} \
} while (0)
/* This one accepts raw argument and not cooked, returns
* 1 if X is a signaling NaN.
*/
#define _FP_ISSIGNAN(fs, wc, X) \
({ \
int __ret = 0; \
if (X##_e == _FP_EXPMAX_##fs) \
{ \
if (!_FP_FRAC_ZEROP_##wc(X) \
&& !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \
__ret = 1; \
} \
__ret; \
})
/*
* Main addition routine. The input values should be cooked.
*/
#define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP) \
do { \
switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
{ \
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
{ \
/* shift the smaller number so that its exponent matches the larger */ \
_FP_I_TYPE diff = X##_e - Y##_e; \
\
if (diff < 0) \
{ \
diff = -diff; \
if (diff <= _FP_WFRACBITS_##fs) \
_FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs); \
else if (!_FP_FRAC_ZEROP_##wc(X)) \
_FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
R##_e = Y##_e; \
} \
else \
{ \
if (diff > 0) \
{ \
if (diff <= _FP_WFRACBITS_##fs) \
_FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs); \
else if (!_FP_FRAC_ZEROP_##wc(Y)) \
_FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc); \
} \
R##_e = X##_e; \
} \
\
R##_c = FP_CLS_NORMAL; \
\
if (X##_s == Y##_s) \
{ \
R##_s = X##_s; \
_FP_FRAC_ADD_##wc(R, X, Y); \
if (_FP_FRAC_OVERP_##wc(fs, R)) \
{ \
_FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \
R##_e++; \
} \
} \
else \
{ \
R##_s = X##_s; \
_FP_FRAC_SUB_##wc(R, X, Y); \
if (_FP_FRAC_ZEROP_##wc(R)) \
{ \
/* return an exact zero */ \
if (FP_ROUNDMODE == FP_RND_MINF) \
R##_s |= Y##_s; \
else \
R##_s &= Y##_s; \
R##_c = FP_CLS_ZERO; \
} \
else \
{ \
if (_FP_FRAC_NEGP_##wc(R)) \
{ \
_FP_FRAC_SUB_##wc(R, Y, X); \
R##_s = Y##_s; \
} \
\
/* renormalize after subtraction */ \
_FP_FRAC_CLZ_##wc(diff, R); \
diff -= _FP_WFRACXBITS_##fs; \
if (diff) \
{ \
R##_e -= diff; \
_FP_FRAC_SLL_##wc(R, diff); \
} \
} \
} \
break; \
} \
\
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
_FP_CHOOSENAN(fs, wc, R, X, Y, OP); \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
R##_e = X##_e; \
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
_FP_FRAC_COPY_##wc(R, X); \
R##_s = X##_s; \
R##_c = X##_c; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
R##_e = Y##_e; \
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
_FP_FRAC_COPY_##wc(R, Y); \
R##_s = Y##_s; \
R##_c = Y##_c; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
if (X##_s != Y##_s) \
{ \
/* +INF + -INF => NAN */ \
_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
R##_s = _FP_NANSIGN_##fs; \
R##_c = FP_CLS_NAN; \
FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ISI); \
break; \
} \
/* FALLTHRU */ \
\
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
R##_s = X##_s; \
R##_c = FP_CLS_INF; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
R##_s = Y##_s; \
R##_c = FP_CLS_INF; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
/* make sure the sign is correct */ \
if (FP_ROUNDMODE == FP_RND_MINF) \
R##_s = X##_s | Y##_s; \
else \
R##_s = X##_s & Y##_s; \
R##_c = FP_CLS_ZERO; \
break; \
\
default: \
abort(); \
} \
} while (0)
#define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTERNAL(fs, wc, R, X, Y, '+')
#define _FP_SUB(fs, wc, R, X, Y) \
do { \
if (Y##_c != FP_CLS_NAN) Y##_s ^= 1; \
_FP_ADD_INTERNAL(fs, wc, R, X, Y, '-'); \
} while (0)
/*
* Main negation routine. FIXME -- when we care about setting exception
* bits reliably, this will not do. We should examine all of the fp classes.
*/
#define _FP_NEG(fs, wc, R, X) \
do { \
_FP_FRAC_COPY_##wc(R, X); \
R##_c = X##_c; \
R##_e = X##_e; \
R##_s = 1 ^ X##_s; \
} while (0)
/*
* Main multiplication routine. The input values should be cooked.
*/
#define _FP_MUL(fs, wc, R, X, Y) \
do { \
R##_s = X##_s ^ Y##_s; \
switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
{ \
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
R##_c = FP_CLS_NORMAL; \
R##_e = X##_e + Y##_e + 1; \
\
_FP_MUL_MEAT_##fs(R,X,Y); \
\
if (_FP_FRAC_OVERP_##wc(fs, R)) \
_FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \
else \
R##_e--; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
_FP_CHOOSENAN(fs, wc, R, X, Y, '*'); \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
R##_s = X##_s; \
\
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
_FP_FRAC_COPY_##wc(R, X); \
R##_c = X##_c; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
R##_s = Y##_s; \
\
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
_FP_FRAC_COPY_##wc(R, Y); \
R##_c = Y##_c; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
R##_s = _FP_NANSIGN_##fs; \
R##_c = FP_CLS_NAN; \
_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IMZ);\
break; \
\
default: \
abort(); \
} \
} while (0)
/*
* Main division routine. The input values should be cooked.
*/
#define _FP_DIV(fs, wc, R, X, Y) \
do { \
R##_s = X##_s ^ Y##_s; \
switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
{ \
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
R##_c = FP_CLS_NORMAL; \
R##_e = X##_e - Y##_e; \
\
_FP_DIV_MEAT_##fs(R,X,Y); \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
_FP_CHOOSENAN(fs, wc, R, X, Y, '/'); \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
R##_s = X##_s; \
_FP_FRAC_COPY_##wc(R, X); \
R##_c = X##_c; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
R##_s = Y##_s; \
_FP_FRAC_COPY_##wc(R, Y); \
R##_c = Y##_c; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
R##_c = FP_CLS_ZERO; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
FP_SET_EXCEPTION(FP_EX_DIVZERO); \
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
R##_c = FP_CLS_INF; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
R##_s = _FP_NANSIGN_##fs; \
R##_c = FP_CLS_NAN; \
_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IDI);\
break; \
\
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
R##_s = _FP_NANSIGN_##fs; \
R##_c = FP_CLS_NAN; \
_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ZDZ);\
break; \
\
default: \
abort(); \
} \
} while (0)
/*
* Main differential comparison routine. The inputs should be raw not
* cooked. The return is -1,0,1 for normal values, 2 otherwise.
*/
#define _FP_CMP(fs, wc, ret, X, Y, un) \
do { \
/* NANs are unordered */ \
if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \
|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \
{ \
ret = un; \
} \
else \
{ \
int __is_zero_x; \
int __is_zero_y; \
\
__is_zero_x = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0; \
__is_zero_y = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0; \
\
if (__is_zero_x && __is_zero_y) \
ret = 0; \
else if (__is_zero_x) \
ret = Y##_s ? 1 : -1; \
else if (__is_zero_y) \
ret = X##_s ? -1 : 1; \
else if (X##_s != Y##_s) \
ret = X##_s ? -1 : 1; \
else if (X##_e > Y##_e) \
ret = X##_s ? -1 : 1; \
else if (X##_e < Y##_e) \
ret = X##_s ? 1 : -1; \
else if (_FP_FRAC_GT_##wc(X, Y)) \
ret = X##_s ? -1 : 1; \
else if (_FP_FRAC_GT_##wc(Y, X)) \
ret = X##_s ? 1 : -1; \
else \
ret = 0; \
} \
} while (0)
/* Simplification for strict equality. */
#define _FP_CMP_EQ(fs, wc, ret, X, Y) \
do { \
/* NANs are unordered */ \
if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \
|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \
{ \
ret = 1; \
} \
else \
{ \
ret = !(X##_e == Y##_e \
&& _FP_FRAC_EQ_##wc(X, Y) \
&& (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \
} \
} while (0)
/*
* Main square root routine. The input value should be cooked.
*/
#define _FP_SQRT(fs, wc, R, X) \
do { \
_FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S); \
_FP_W_TYPE q; \
switch (X##_c) \
{ \
case FP_CLS_NAN: \
_FP_FRAC_COPY_##wc(R, X); \
R##_s = X##_s; \
R##_c = FP_CLS_NAN; \
break; \
case FP_CLS_INF: \
if (X##_s) \
{ \
R##_s = _FP_NANSIGN_##fs; \
R##_c = FP_CLS_NAN; /* NAN */ \
_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
FP_SET_EXCEPTION(FP_EX_INVALID); \
} \
else \
{ \
R##_s = 0; \
R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */ \
} \
break; \
case FP_CLS_ZERO: \
R##_s = X##_s; \
R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */ \
break; \
case FP_CLS_NORMAL: \
R##_s = 0; \
if (X##_s) \
{ \
R##_c = FP_CLS_NAN; /* sNAN */ \
R##_s = _FP_NANSIGN_##fs; \
_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
FP_SET_EXCEPTION(FP_EX_INVALID); \
break; \
} \
R##_c = FP_CLS_NORMAL; \
if (X##_e & 1) \
_FP_FRAC_SLL_##wc(X, 1); \
R##_e = X##_e >> 1; \
_FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc); \
_FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc); \
q = _FP_OVERFLOW_##fs >> 1; \
_FP_SQRT_MEAT_##wc(R, S, T, X, q); \
} \
} while (0)
/*
* Convert from FP to integer
*/
/* RSIGNED can have following values:
* 0: the number is required to be 0..(2^rsize)-1, if not, NV is set plus
* the result is either 0 or (2^rsize)-1 depending on the sign in such case.
* 1: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
* set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
* on the sign in such case.
* 2: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
* set plus the result is truncated to fit into destination.
* -1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is
* set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
* on the sign in such case.
*/
#define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \
do { \
switch (X##_c) \
{ \
case FP_CLS_NORMAL: \
if (X##_e < 0) \
{ \
FP_SET_EXCEPTION(FP_EX_INEXACT); \
case FP_CLS_ZERO: \
r = 0; \
} \
else if (X##_e >= rsize - (rsigned > 0 || X##_s) \
|| (!rsigned && X##_s)) \
{ /* overflow */ \
case FP_CLS_NAN: \
case FP_CLS_INF: \
if (rsigned == 2) \
{ \
if (X##_c != FP_CLS_NORMAL \
|| X##_e >= rsize - 1 + _FP_WFRACBITS_##fs) \
r = 0; \
else \
{ \
_FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1)); \
_FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
} \
} \
else if (rsigned) \
{ \
r = 1; \
r <<= rsize - 1; \
r -= 1 - X##_s; \
} \
else \
{ \
r = 0; \
if (X##_s) \
r = ~r; \
} \
FP_SET_EXCEPTION(FP_EX_INVALID); \
} \
else \
{ \
if (_FP_W_TYPE_SIZE*wc < rsize) \
{ \
_FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
r <<= X##_e - _FP_WFRACBITS_##fs; \
} \
else \
{ \
if (X##_e >= _FP_WFRACBITS_##fs) \
_FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1)); \
else if (X##_e < _FP_WFRACBITS_##fs - 1) \
{ \
_FP_FRAC_SRS_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 2), \
_FP_WFRACBITS_##fs); \
if (_FP_FRAC_LOW_##wc(X) & 1) \
FP_SET_EXCEPTION(FP_EX_INEXACT); \
_FP_FRAC_SRL_##wc(X, 1); \
} \
_FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
} \
if (rsigned && X##_s) \
r = -r; \
} \
break; \
} \
} while (0)
#define _FP_TO_INT_ROUND(fs, wc, r, X, rsize, rsigned) \
do { \
r = 0; \
switch (X##_c) \
{ \
case FP_CLS_NORMAL: \
if (X##_e >= _FP_FRACBITS_##fs - 1) \
{ \
if (X##_e < rsize - 1 + _FP_WFRACBITS_##fs) \
{ \
if (X##_e >= _FP_WFRACBITS_##fs - 1) \
{ \
_FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
r <<= X##_e - _FP_WFRACBITS_##fs + 1; \
} \
else \
{ \
_FP_FRAC_SRL_##wc(X, _FP_WORKBITS - X##_e \
+ _FP_FRACBITS_##fs - 1); \
_FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
} \
} \
} \
else \
{ \
if (X##_e <= -_FP_WORKBITS - 1) \
_FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
else \
_FP_FRAC_SRS_##wc(X, _FP_FRACBITS_##fs - 1 - X##_e, \
_FP_WFRACBITS_##fs); \
_FP_ROUND(wc, X); \
_FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
_FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
} \
if (rsigned && X##_s) \
r = -r; \
if (X##_e >= rsize - (rsigned > 0 || X##_s) \
|| (!rsigned && X##_s)) \
{ /* overflow */ \
case FP_CLS_NAN: \
case FP_CLS_INF: \
if (!rsigned) \
{ \
r = 0; \
if (X##_s) \
r = ~r; \
} \
else if (rsigned != 2) \
{ \
r = 1; \
r <<= rsize - 1; \
r -= 1 - X##_s; \
} \
FP_SET_EXCEPTION(FP_EX_INVALID); \
} \
break; \
case FP_CLS_ZERO: \
break; \
} \
} while (0)
#define _FP_FROM_INT(fs, wc, X, r, rsize, rtype) \
do { \
if (r) \
{ \
unsigned rtype ur_; \
X##_c = FP_CLS_NORMAL; \
\
if ((X##_s = (r < 0))) \
ur_ = (unsigned rtype) -r; \
else \
ur_ = (unsigned rtype) r; \
if (rsize <= _FP_W_TYPE_SIZE) \
__FP_CLZ(X##_e, ur_); \
else \
__FP_CLZ_2(X##_e, (_FP_W_TYPE)(ur_ >> _FP_W_TYPE_SIZE), \
(_FP_W_TYPE)ur_); \
if (rsize < _FP_W_TYPE_SIZE) \
X##_e -= (_FP_W_TYPE_SIZE - rsize); \
X##_e = rsize - X##_e - 1; \
\
if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs < X##_e) \
__FP_FRAC_SRS_1(ur_, (X##_e - _FP_WFRACBITS_##fs + 1), rsize);\
_FP_FRAC_DISASSEMBLE_##wc(X, ur_, rsize); \
if ((_FP_WFRACBITS_##fs - X##_e - 1) > 0) \
_FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1)); \
} \
else \
{ \
X##_c = FP_CLS_ZERO, X##_s = 0; \
} \
} while (0)
#define FP_CONV(dfs,sfs,dwc,swc,D,S) \
do { \
_FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S); \
D##_e = S##_e; \
D##_c = S##_c; \
D##_s = S##_s; \
} while (0)
/*
* Helper primitives.
*/
/* Count leading zeros in a word. */
#ifndef __FP_CLZ
#if _FP_W_TYPE_SIZE < 64
/* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */
#define __FP_CLZ(r, x) \
do { \
_FP_W_TYPE _t = (x); \
r = _FP_W_TYPE_SIZE - 1; \
if (_t > 0xffff) r -= 16; \
if (_t > 0xffff) _t >>= 16; \
if (_t > 0xff) r -= 8; \
if (_t > 0xff) _t >>= 8; \
if (_t & 0xf0) r -= 4; \
if (_t & 0xf0) _t >>= 4; \
if (_t & 0xc) r -= 2; \
if (_t & 0xc) _t >>= 2; \
if (_t & 0x2) r -= 1; \
} while (0)
#else /* not _FP_W_TYPE_SIZE < 64 */
#define __FP_CLZ(r, x) \
do { \
_FP_W_TYPE _t = (x); \
r = _FP_W_TYPE_SIZE - 1; \
if (_t > 0xffffffff) r -= 32; \
if (_t > 0xffffffff) _t >>= 32; \
if (_t > 0xffff) r -= 16; \
if (_t > 0xffff) _t >>= 16; \
if (_t > 0xff) r -= 8; \
if (_t > 0xff) _t >>= 8; \
if (_t & 0xf0) r -= 4; \
if (_t & 0xf0) _t >>= 4; \
if (_t & 0xc) r -= 2; \
if (_t & 0xc) _t >>= 2; \
if (_t & 0x2) r -= 1; \
} while (0)
#endif /* not _FP_W_TYPE_SIZE < 64 */
#endif /* ndef __FP_CLZ */
#define _FP_DIV_HELP_imm(q, r, n, d) \
do { \
q = n / d, r = n % d; \
} while (0)
#endif /* __MATH_EMU_OP_COMMON_H__ */