mirror of
https://github.com/followmsi/android_kernel_google_msm.git
synced 2024-11-06 23:17:41 +00:00
aad2732ba0
Allow speed to drop to flooor frequency but not below, don't pin to speed at last boost. Change-Id: I0147c2b7a2e61ba16820605af6baaf09570be787 Signed-off-by: Todd Poynor <toddpoynor@google.com>
971 lines
24 KiB
C
971 lines
24 KiB
C
/*
|
|
* drivers/cpufreq/cpufreq_interactive.c
|
|
*
|
|
* Copyright (C) 2010 Google, Inc.
|
|
*
|
|
* This software is licensed under the terms of the GNU General Public
|
|
* License version 2, as published by the Free Software Foundation, and
|
|
* may be copied, distributed, and modified under those terms.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* Author: Mike Chan (mike@android.com)
|
|
*
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/time.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/input.h>
|
|
#include <asm/cputime.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/cpufreq_interactive.h>
|
|
|
|
static atomic_t active_count = ATOMIC_INIT(0);
|
|
|
|
struct cpufreq_interactive_cpuinfo {
|
|
struct timer_list cpu_timer;
|
|
int timer_idlecancel;
|
|
u64 time_in_idle;
|
|
u64 idle_exit_time;
|
|
u64 timer_run_time;
|
|
int idling;
|
|
u64 target_set_time;
|
|
u64 target_set_time_in_idle;
|
|
struct cpufreq_policy *policy;
|
|
struct cpufreq_frequency_table *freq_table;
|
|
unsigned int target_freq;
|
|
unsigned int floor_freq;
|
|
u64 floor_validate_time;
|
|
int governor_enabled;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct cpufreq_interactive_cpuinfo, cpuinfo);
|
|
|
|
/* Workqueues handle frequency scaling */
|
|
static struct task_struct *up_task;
|
|
static struct workqueue_struct *down_wq;
|
|
static struct work_struct freq_scale_down_work;
|
|
static cpumask_t up_cpumask;
|
|
static spinlock_t up_cpumask_lock;
|
|
static cpumask_t down_cpumask;
|
|
static spinlock_t down_cpumask_lock;
|
|
static struct mutex set_speed_lock;
|
|
|
|
/* Hi speed to bump to from lo speed when load burst (default max) */
|
|
static u64 hispeed_freq;
|
|
|
|
/* Go to hi speed when CPU load at or above this value. */
|
|
#define DEFAULT_GO_HISPEED_LOAD 85
|
|
static unsigned long go_hispeed_load;
|
|
|
|
/*
|
|
* The minimum amount of time to spend at a frequency before we can ramp down.
|
|
*/
|
|
#define DEFAULT_MIN_SAMPLE_TIME (80 * USEC_PER_MSEC)
|
|
static unsigned long min_sample_time;
|
|
|
|
/*
|
|
* The sample rate of the timer used to increase frequency
|
|
*/
|
|
#define DEFAULT_TIMER_RATE (20 * USEC_PER_MSEC)
|
|
static unsigned long timer_rate;
|
|
|
|
/*
|
|
* Wait this long before raising speed above hispeed, by default a single
|
|
* timer interval.
|
|
*/
|
|
#define DEFAULT_ABOVE_HISPEED_DELAY DEFAULT_TIMER_RATE
|
|
static unsigned long above_hispeed_delay_val;
|
|
|
|
/*
|
|
* Boost pulse to hispeed on touchscreen input.
|
|
*/
|
|
|
|
static int input_boost_val;
|
|
|
|
struct cpufreq_interactive_inputopen {
|
|
struct input_handle *handle;
|
|
struct work_struct inputopen_work;
|
|
};
|
|
|
|
static struct cpufreq_interactive_inputopen inputopen;
|
|
|
|
/*
|
|
* Non-zero means longer-term speed boost active.
|
|
*/
|
|
|
|
static int boost_val;
|
|
|
|
static int cpufreq_governor_interactive(struct cpufreq_policy *policy,
|
|
unsigned int event);
|
|
|
|
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
|
|
static
|
|
#endif
|
|
struct cpufreq_governor cpufreq_gov_interactive = {
|
|
.name = "interactive",
|
|
.governor = cpufreq_governor_interactive,
|
|
.max_transition_latency = 10000000,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static void cpufreq_interactive_timer(unsigned long data)
|
|
{
|
|
unsigned int delta_idle;
|
|
unsigned int delta_time;
|
|
int cpu_load;
|
|
int load_since_change;
|
|
u64 time_in_idle;
|
|
u64 idle_exit_time;
|
|
struct cpufreq_interactive_cpuinfo *pcpu =
|
|
&per_cpu(cpuinfo, data);
|
|
u64 now_idle;
|
|
unsigned int new_freq;
|
|
unsigned int index;
|
|
unsigned long flags;
|
|
|
|
smp_rmb();
|
|
|
|
if (!pcpu->governor_enabled)
|
|
goto exit;
|
|
|
|
/*
|
|
* Once pcpu->timer_run_time is updated to >= pcpu->idle_exit_time,
|
|
* this lets idle exit know the current idle time sample has
|
|
* been processed, and idle exit can generate a new sample and
|
|
* re-arm the timer. This prevents a concurrent idle
|
|
* exit on that CPU from writing a new set of info at the same time
|
|
* the timer function runs (the timer function can't use that info
|
|
* until more time passes).
|
|
*/
|
|
time_in_idle = pcpu->time_in_idle;
|
|
idle_exit_time = pcpu->idle_exit_time;
|
|
now_idle = get_cpu_idle_time_us(data, &pcpu->timer_run_time);
|
|
smp_wmb();
|
|
|
|
/* If we raced with cancelling a timer, skip. */
|
|
if (!idle_exit_time)
|
|
goto exit;
|
|
|
|
delta_idle = (unsigned int)(now_idle - time_in_idle);
|
|
delta_time = (unsigned int)(pcpu->timer_run_time - idle_exit_time);
|
|
|
|
/*
|
|
* If timer ran less than 1ms after short-term sample started, retry.
|
|
*/
|
|
if (delta_time < 1000)
|
|
goto rearm;
|
|
|
|
if (delta_idle > delta_time)
|
|
cpu_load = 0;
|
|
else
|
|
cpu_load = 100 * (delta_time - delta_idle) / delta_time;
|
|
|
|
delta_idle = (unsigned int)(now_idle - pcpu->target_set_time_in_idle);
|
|
delta_time = (unsigned int)(pcpu->timer_run_time -
|
|
pcpu->target_set_time);
|
|
|
|
if ((delta_time == 0) || (delta_idle > delta_time))
|
|
load_since_change = 0;
|
|
else
|
|
load_since_change =
|
|
100 * (delta_time - delta_idle) / delta_time;
|
|
|
|
/*
|
|
* Choose greater of short-term load (since last idle timer
|
|
* started or timer function re-armed itself) or long-term load
|
|
* (since last frequency change).
|
|
*/
|
|
if (load_since_change > cpu_load)
|
|
cpu_load = load_since_change;
|
|
|
|
if (cpu_load >= go_hispeed_load || boost_val) {
|
|
if (pcpu->target_freq <= pcpu->policy->min) {
|
|
new_freq = hispeed_freq;
|
|
} else {
|
|
new_freq = pcpu->policy->max * cpu_load / 100;
|
|
|
|
if (new_freq < hispeed_freq)
|
|
new_freq = hispeed_freq;
|
|
|
|
if (pcpu->target_freq == hispeed_freq &&
|
|
new_freq > hispeed_freq &&
|
|
pcpu->timer_run_time - pcpu->target_set_time
|
|
< above_hispeed_delay_val) {
|
|
trace_cpufreq_interactive_notyet(data, cpu_load,
|
|
pcpu->target_freq,
|
|
new_freq);
|
|
goto rearm;
|
|
}
|
|
}
|
|
} else {
|
|
new_freq = pcpu->policy->max * cpu_load / 100;
|
|
}
|
|
|
|
if (cpufreq_frequency_table_target(pcpu->policy, pcpu->freq_table,
|
|
new_freq, CPUFREQ_RELATION_H,
|
|
&index)) {
|
|
pr_warn_once("timer %d: cpufreq_frequency_table_target error\n",
|
|
(int) data);
|
|
goto rearm;
|
|
}
|
|
|
|
new_freq = pcpu->freq_table[index].frequency;
|
|
|
|
/*
|
|
* Do not scale below floor_freq unless we have been at or above the
|
|
* floor frequency for the minimum sample time since last validated.
|
|
*/
|
|
if (new_freq < pcpu->floor_freq) {
|
|
if (pcpu->timer_run_time - pcpu->target_validate_time
|
|
< min_sample_time) {
|
|
trace_cpufreq_interactive_notyet(data, cpu_load,
|
|
pcpu->target_freq, new_freq);
|
|
goto rearm;
|
|
}
|
|
}
|
|
|
|
pcpu->floor_freq = new_freq;
|
|
pcpu->floor_validate_time = pcpu->timer_run_time;
|
|
|
|
if (pcpu->target_freq == new_freq) {
|
|
trace_cpufreq_interactive_already(data, cpu_load,
|
|
pcpu->target_freq, new_freq);
|
|
goto rearm_if_notmax;
|
|
}
|
|
|
|
trace_cpufreq_interactive_target(data, cpu_load, pcpu->target_freq,
|
|
new_freq);
|
|
pcpu->target_set_time_in_idle = now_idle;
|
|
pcpu->target_set_time = pcpu->timer_run_time;
|
|
|
|
if (new_freq < pcpu->target_freq) {
|
|
pcpu->target_freq = new_freq;
|
|
spin_lock_irqsave(&down_cpumask_lock, flags);
|
|
cpumask_set_cpu(data, &down_cpumask);
|
|
spin_unlock_irqrestore(&down_cpumask_lock, flags);
|
|
queue_work(down_wq, &freq_scale_down_work);
|
|
} else {
|
|
pcpu->target_freq = new_freq;
|
|
spin_lock_irqsave(&up_cpumask_lock, flags);
|
|
cpumask_set_cpu(data, &up_cpumask);
|
|
spin_unlock_irqrestore(&up_cpumask_lock, flags);
|
|
wake_up_process(up_task);
|
|
}
|
|
|
|
rearm_if_notmax:
|
|
/*
|
|
* Already set max speed and don't see a need to change that,
|
|
* wait until next idle to re-evaluate, don't need timer.
|
|
*/
|
|
if (pcpu->target_freq == pcpu->policy->max)
|
|
goto exit;
|
|
|
|
rearm:
|
|
if (!timer_pending(&pcpu->cpu_timer)) {
|
|
/*
|
|
* If already at min: if that CPU is idle, don't set timer.
|
|
* Else cancel the timer if that CPU goes idle. We don't
|
|
* need to re-evaluate speed until the next idle exit.
|
|
*/
|
|
if (pcpu->target_freq == pcpu->policy->min) {
|
|
smp_rmb();
|
|
|
|
if (pcpu->idling)
|
|
goto exit;
|
|
|
|
pcpu->timer_idlecancel = 1;
|
|
}
|
|
|
|
pcpu->time_in_idle = get_cpu_idle_time_us(
|
|
data, &pcpu->idle_exit_time);
|
|
mod_timer(&pcpu->cpu_timer,
|
|
jiffies + usecs_to_jiffies(timer_rate));
|
|
}
|
|
|
|
exit:
|
|
return;
|
|
}
|
|
|
|
static void cpufreq_interactive_idle_start(void)
|
|
{
|
|
struct cpufreq_interactive_cpuinfo *pcpu =
|
|
&per_cpu(cpuinfo, smp_processor_id());
|
|
int pending;
|
|
|
|
if (!pcpu->governor_enabled)
|
|
return;
|
|
|
|
pcpu->idling = 1;
|
|
smp_wmb();
|
|
pending = timer_pending(&pcpu->cpu_timer);
|
|
|
|
if (pcpu->target_freq != pcpu->policy->min) {
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Entering idle while not at lowest speed. On some
|
|
* platforms this can hold the other CPU(s) at that speed
|
|
* even though the CPU is idle. Set a timer to re-evaluate
|
|
* speed so this idle CPU doesn't hold the other CPUs above
|
|
* min indefinitely. This should probably be a quirk of
|
|
* the CPUFreq driver.
|
|
*/
|
|
if (!pending) {
|
|
pcpu->time_in_idle = get_cpu_idle_time_us(
|
|
smp_processor_id(), &pcpu->idle_exit_time);
|
|
pcpu->timer_idlecancel = 0;
|
|
mod_timer(&pcpu->cpu_timer,
|
|
jiffies + usecs_to_jiffies(timer_rate));
|
|
}
|
|
#endif
|
|
} else {
|
|
/*
|
|
* If at min speed and entering idle after load has
|
|
* already been evaluated, and a timer has been set just in
|
|
* case the CPU suddenly goes busy, cancel that timer. The
|
|
* CPU didn't go busy; we'll recheck things upon idle exit.
|
|
*/
|
|
if (pending && pcpu->timer_idlecancel) {
|
|
del_timer(&pcpu->cpu_timer);
|
|
/*
|
|
* Ensure last timer run time is after current idle
|
|
* sample start time, so next idle exit will always
|
|
* start a new idle sampling period.
|
|
*/
|
|
pcpu->idle_exit_time = 0;
|
|
pcpu->timer_idlecancel = 0;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static void cpufreq_interactive_idle_end(void)
|
|
{
|
|
struct cpufreq_interactive_cpuinfo *pcpu =
|
|
&per_cpu(cpuinfo, smp_processor_id());
|
|
|
|
pcpu->idling = 0;
|
|
smp_wmb();
|
|
|
|
/*
|
|
* Arm the timer for 1-2 ticks later if not already, and if the timer
|
|
* function has already processed the previous load sampling
|
|
* interval. (If the timer is not pending but has not processed
|
|
* the previous interval, it is probably racing with us on another
|
|
* CPU. Let it compute load based on the previous sample and then
|
|
* re-arm the timer for another interval when it's done, rather
|
|
* than updating the interval start time to be "now", which doesn't
|
|
* give the timer function enough time to make a decision on this
|
|
* run.)
|
|
*/
|
|
if (timer_pending(&pcpu->cpu_timer) == 0 &&
|
|
pcpu->timer_run_time >= pcpu->idle_exit_time &&
|
|
pcpu->governor_enabled) {
|
|
pcpu->time_in_idle =
|
|
get_cpu_idle_time_us(smp_processor_id(),
|
|
&pcpu->idle_exit_time);
|
|
pcpu->timer_idlecancel = 0;
|
|
mod_timer(&pcpu->cpu_timer,
|
|
jiffies + usecs_to_jiffies(timer_rate));
|
|
}
|
|
|
|
}
|
|
|
|
static int cpufreq_interactive_up_task(void *data)
|
|
{
|
|
unsigned int cpu;
|
|
cpumask_t tmp_mask;
|
|
unsigned long flags;
|
|
struct cpufreq_interactive_cpuinfo *pcpu;
|
|
|
|
while (1) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
spin_lock_irqsave(&up_cpumask_lock, flags);
|
|
|
|
if (cpumask_empty(&up_cpumask)) {
|
|
spin_unlock_irqrestore(&up_cpumask_lock, flags);
|
|
schedule();
|
|
|
|
if (kthread_should_stop())
|
|
break;
|
|
|
|
spin_lock_irqsave(&up_cpumask_lock, flags);
|
|
}
|
|
|
|
set_current_state(TASK_RUNNING);
|
|
tmp_mask = up_cpumask;
|
|
cpumask_clear(&up_cpumask);
|
|
spin_unlock_irqrestore(&up_cpumask_lock, flags);
|
|
|
|
for_each_cpu(cpu, &tmp_mask) {
|
|
unsigned int j;
|
|
unsigned int max_freq = 0;
|
|
|
|
pcpu = &per_cpu(cpuinfo, cpu);
|
|
smp_rmb();
|
|
|
|
if (!pcpu->governor_enabled)
|
|
continue;
|
|
|
|
mutex_lock(&set_speed_lock);
|
|
|
|
for_each_cpu(j, pcpu->policy->cpus) {
|
|
struct cpufreq_interactive_cpuinfo *pjcpu =
|
|
&per_cpu(cpuinfo, j);
|
|
|
|
if (pjcpu->target_freq > max_freq)
|
|
max_freq = pjcpu->target_freq;
|
|
}
|
|
|
|
if (max_freq != pcpu->policy->cur)
|
|
__cpufreq_driver_target(pcpu->policy,
|
|
max_freq,
|
|
CPUFREQ_RELATION_H);
|
|
mutex_unlock(&set_speed_lock);
|
|
trace_cpufreq_interactive_up(cpu, pcpu->target_freq,
|
|
pcpu->policy->cur);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cpufreq_interactive_freq_down(struct work_struct *work)
|
|
{
|
|
unsigned int cpu;
|
|
cpumask_t tmp_mask;
|
|
unsigned long flags;
|
|
struct cpufreq_interactive_cpuinfo *pcpu;
|
|
|
|
spin_lock_irqsave(&down_cpumask_lock, flags);
|
|
tmp_mask = down_cpumask;
|
|
cpumask_clear(&down_cpumask);
|
|
spin_unlock_irqrestore(&down_cpumask_lock, flags);
|
|
|
|
for_each_cpu(cpu, &tmp_mask) {
|
|
unsigned int j;
|
|
unsigned int max_freq = 0;
|
|
|
|
pcpu = &per_cpu(cpuinfo, cpu);
|
|
smp_rmb();
|
|
|
|
if (!pcpu->governor_enabled)
|
|
continue;
|
|
|
|
mutex_lock(&set_speed_lock);
|
|
|
|
for_each_cpu(j, pcpu->policy->cpus) {
|
|
struct cpufreq_interactive_cpuinfo *pjcpu =
|
|
&per_cpu(cpuinfo, j);
|
|
|
|
if (pjcpu->target_freq > max_freq)
|
|
max_freq = pjcpu->target_freq;
|
|
}
|
|
|
|
if (max_freq != pcpu->policy->cur)
|
|
__cpufreq_driver_target(pcpu->policy, max_freq,
|
|
CPUFREQ_RELATION_H);
|
|
|
|
mutex_unlock(&set_speed_lock);
|
|
trace_cpufreq_interactive_down(cpu, pcpu->target_freq,
|
|
pcpu->policy->cur);
|
|
}
|
|
}
|
|
|
|
static void cpufreq_interactive_boost(void)
|
|
{
|
|
int i;
|
|
int anyboost = 0;
|
|
unsigned long flags;
|
|
struct cpufreq_interactive_cpuinfo *pcpu;
|
|
|
|
trace_cpufreq_interactive_boost(hispeed_freq);
|
|
spin_lock_irqsave(&up_cpumask_lock, flags);
|
|
|
|
for_each_online_cpu(i) {
|
|
pcpu = &per_cpu(cpuinfo, i);
|
|
|
|
if (pcpu->target_freq < hispeed_freq) {
|
|
pcpu->target_freq = hispeed_freq;
|
|
cpumask_set_cpu(i, &up_cpumask);
|
|
pcpu->target_set_time_in_idle =
|
|
get_cpu_idle_time_us(i, &pcpu->target_set_time);
|
|
anyboost = 1;
|
|
}
|
|
|
|
/*
|
|
* Set floor freq and (re)start timer for when last
|
|
* validated.
|
|
*/
|
|
|
|
pcpu->floor_freq = hispeed_freq;
|
|
pcpu->floor_validate_time = ktime_to_us(ktime_get());
|
|
}
|
|
|
|
spin_unlock_irqrestore(&up_cpumask_lock, flags);
|
|
|
|
if (anyboost)
|
|
wake_up_process(up_task);
|
|
}
|
|
|
|
/*
|
|
* Pulsed boost on input event raises CPUs to hispeed_freq and lets
|
|
* usual algorithm of min_sample_time decide when to allow speed
|
|
* to drop.
|
|
*/
|
|
|
|
static void cpufreq_interactive_input_event(struct input_handle *handle,
|
|
unsigned int type,
|
|
unsigned int code, int value)
|
|
{
|
|
if (input_boost_val && type == EV_SYN && code == SYN_REPORT)
|
|
cpufreq_interactive_boost();
|
|
}
|
|
|
|
static void cpufreq_interactive_input_open(struct work_struct *w)
|
|
{
|
|
struct cpufreq_interactive_inputopen *io =
|
|
container_of(w, struct cpufreq_interactive_inputopen,
|
|
inputopen_work);
|
|
int error;
|
|
|
|
error = input_open_device(io->handle);
|
|
if (error)
|
|
input_unregister_handle(io->handle);
|
|
}
|
|
|
|
static int cpufreq_interactive_input_connect(struct input_handler *handler,
|
|
struct input_dev *dev,
|
|
const struct input_device_id *id)
|
|
{
|
|
struct input_handle *handle;
|
|
int error;
|
|
|
|
pr_info("%s: connect to %s\n", __func__, dev->name);
|
|
handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
|
|
if (!handle)
|
|
return -ENOMEM;
|
|
|
|
handle->dev = dev;
|
|
handle->handler = handler;
|
|
handle->name = "cpufreq_interactive";
|
|
|
|
error = input_register_handle(handle);
|
|
if (error)
|
|
goto err;
|
|
|
|
inputopen.handle = handle;
|
|
queue_work(down_wq, &inputopen.inputopen_work);
|
|
return 0;
|
|
err:
|
|
kfree(handle);
|
|
return error;
|
|
}
|
|
|
|
static void cpufreq_interactive_input_disconnect(struct input_handle *handle)
|
|
{
|
|
input_close_device(handle);
|
|
input_unregister_handle(handle);
|
|
kfree(handle);
|
|
}
|
|
|
|
static const struct input_device_id cpufreq_interactive_ids[] = {
|
|
{
|
|
.flags = INPUT_DEVICE_ID_MATCH_EVBIT |
|
|
INPUT_DEVICE_ID_MATCH_ABSBIT,
|
|
.evbit = { BIT_MASK(EV_ABS) },
|
|
.absbit = { [BIT_WORD(ABS_MT_POSITION_X)] =
|
|
BIT_MASK(ABS_MT_POSITION_X) |
|
|
BIT_MASK(ABS_MT_POSITION_Y) },
|
|
}, /* multi-touch touchscreen */
|
|
{
|
|
.flags = INPUT_DEVICE_ID_MATCH_KEYBIT |
|
|
INPUT_DEVICE_ID_MATCH_ABSBIT,
|
|
.keybit = { [BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH) },
|
|
.absbit = { [BIT_WORD(ABS_X)] =
|
|
BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) },
|
|
}, /* touchpad */
|
|
{ },
|
|
};
|
|
|
|
static struct input_handler cpufreq_interactive_input_handler = {
|
|
.event = cpufreq_interactive_input_event,
|
|
.connect = cpufreq_interactive_input_connect,
|
|
.disconnect = cpufreq_interactive_input_disconnect,
|
|
.name = "cpufreq_interactive",
|
|
.id_table = cpufreq_interactive_ids,
|
|
};
|
|
|
|
static ssize_t show_hispeed_freq(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%llu\n", hispeed_freq);
|
|
}
|
|
|
|
static ssize_t store_hispeed_freq(struct kobject *kobj,
|
|
struct attribute *attr, const char *buf,
|
|
size_t count)
|
|
{
|
|
int ret;
|
|
u64 val;
|
|
|
|
ret = strict_strtoull(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
hispeed_freq = val;
|
|
return count;
|
|
}
|
|
|
|
static struct global_attr hispeed_freq_attr = __ATTR(hispeed_freq, 0644,
|
|
show_hispeed_freq, store_hispeed_freq);
|
|
|
|
|
|
static ssize_t show_go_hispeed_load(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%lu\n", go_hispeed_load);
|
|
}
|
|
|
|
static ssize_t store_go_hispeed_load(struct kobject *kobj,
|
|
struct attribute *attr, const char *buf, size_t count)
|
|
{
|
|
int ret;
|
|
unsigned long val;
|
|
|
|
ret = strict_strtoul(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
go_hispeed_load = val;
|
|
return count;
|
|
}
|
|
|
|
static struct global_attr go_hispeed_load_attr = __ATTR(go_hispeed_load, 0644,
|
|
show_go_hispeed_load, store_go_hispeed_load);
|
|
|
|
static ssize_t show_min_sample_time(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%lu\n", min_sample_time);
|
|
}
|
|
|
|
static ssize_t store_min_sample_time(struct kobject *kobj,
|
|
struct attribute *attr, const char *buf, size_t count)
|
|
{
|
|
int ret;
|
|
unsigned long val;
|
|
|
|
ret = strict_strtoul(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
min_sample_time = val;
|
|
return count;
|
|
}
|
|
|
|
static struct global_attr min_sample_time_attr = __ATTR(min_sample_time, 0644,
|
|
show_min_sample_time, store_min_sample_time);
|
|
|
|
static ssize_t show_above_hispeed_delay(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%lu\n", above_hispeed_delay_val);
|
|
}
|
|
|
|
static ssize_t store_above_hispeed_delay(struct kobject *kobj,
|
|
struct attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int ret;
|
|
unsigned long val;
|
|
|
|
ret = strict_strtoul(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
above_hispeed_delay_val = val;
|
|
return count;
|
|
}
|
|
|
|
define_one_global_rw(above_hispeed_delay);
|
|
|
|
static ssize_t show_timer_rate(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%lu\n", timer_rate);
|
|
}
|
|
|
|
static ssize_t store_timer_rate(struct kobject *kobj,
|
|
struct attribute *attr, const char *buf, size_t count)
|
|
{
|
|
int ret;
|
|
unsigned long val;
|
|
|
|
ret = strict_strtoul(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
timer_rate = val;
|
|
return count;
|
|
}
|
|
|
|
static struct global_attr timer_rate_attr = __ATTR(timer_rate, 0644,
|
|
show_timer_rate, store_timer_rate);
|
|
|
|
static ssize_t show_input_boost(struct kobject *kobj, struct attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", input_boost_val);
|
|
}
|
|
|
|
static ssize_t store_input_boost(struct kobject *kobj, struct attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int ret;
|
|
unsigned long val;
|
|
|
|
ret = strict_strtoul(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
input_boost_val = val;
|
|
return count;
|
|
}
|
|
|
|
define_one_global_rw(input_boost);
|
|
|
|
static ssize_t show_boost(struct kobject *kobj, struct attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", boost_val);
|
|
}
|
|
|
|
static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int ret;
|
|
unsigned long val;
|
|
|
|
ret = kstrtoul(buf, 0, &val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
boost_val = val;
|
|
|
|
if (boost_val)
|
|
cpufreq_interactive_boost();
|
|
else
|
|
trace_cpufreq_interactive_unboost(hispeed_freq);
|
|
|
|
return count;
|
|
}
|
|
|
|
define_one_global_rw(boost);
|
|
|
|
static struct attribute *interactive_attributes[] = {
|
|
&hispeed_freq_attr.attr,
|
|
&go_hispeed_load_attr.attr,
|
|
&above_hispeed_delay.attr,
|
|
&min_sample_time_attr.attr,
|
|
&timer_rate_attr.attr,
|
|
&input_boost.attr,
|
|
&boost.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group interactive_attr_group = {
|
|
.attrs = interactive_attributes,
|
|
.name = "interactive",
|
|
};
|
|
|
|
static int cpufreq_governor_interactive(struct cpufreq_policy *policy,
|
|
unsigned int event)
|
|
{
|
|
int rc;
|
|
unsigned int j;
|
|
struct cpufreq_interactive_cpuinfo *pcpu;
|
|
struct cpufreq_frequency_table *freq_table;
|
|
|
|
switch (event) {
|
|
case CPUFREQ_GOV_START:
|
|
if (!cpu_online(policy->cpu))
|
|
return -EINVAL;
|
|
|
|
freq_table =
|
|
cpufreq_frequency_get_table(policy->cpu);
|
|
|
|
for_each_cpu(j, policy->cpus) {
|
|
pcpu = &per_cpu(cpuinfo, j);
|
|
pcpu->policy = policy;
|
|
pcpu->target_freq = policy->cur;
|
|
pcpu->freq_table = freq_table;
|
|
pcpu->target_set_time_in_idle =
|
|
get_cpu_idle_time_us(j,
|
|
&pcpu->target_set_time);
|
|
pcpu->floor_freq = pcpu->target_freq;
|
|
pcpu->floor_validate_time =
|
|
pcpu->target_set_time;
|
|
pcpu->governor_enabled = 1;
|
|
smp_wmb();
|
|
}
|
|
|
|
if (!hispeed_freq)
|
|
hispeed_freq = policy->max;
|
|
|
|
/*
|
|
* Do not register the idle hook and create sysfs
|
|
* entries if we have already done so.
|
|
*/
|
|
if (atomic_inc_return(&active_count) > 1)
|
|
return 0;
|
|
|
|
rc = sysfs_create_group(cpufreq_global_kobject,
|
|
&interactive_attr_group);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = input_register_handler(&cpufreq_interactive_input_handler);
|
|
if (rc)
|
|
pr_warn("%s: failed to register input handler\n",
|
|
__func__);
|
|
|
|
break;
|
|
|
|
case CPUFREQ_GOV_STOP:
|
|
for_each_cpu(j, policy->cpus) {
|
|
pcpu = &per_cpu(cpuinfo, j);
|
|
pcpu->governor_enabled = 0;
|
|
smp_wmb();
|
|
del_timer_sync(&pcpu->cpu_timer);
|
|
|
|
/*
|
|
* Reset idle exit time since we may cancel the timer
|
|
* before it can run after the last idle exit time,
|
|
* to avoid tripping the check in idle exit for a timer
|
|
* that is trying to run.
|
|
*/
|
|
pcpu->idle_exit_time = 0;
|
|
}
|
|
|
|
flush_work(&freq_scale_down_work);
|
|
if (atomic_dec_return(&active_count) > 0)
|
|
return 0;
|
|
|
|
input_unregister_handler(&cpufreq_interactive_input_handler);
|
|
sysfs_remove_group(cpufreq_global_kobject,
|
|
&interactive_attr_group);
|
|
|
|
break;
|
|
|
|
case CPUFREQ_GOV_LIMITS:
|
|
if (policy->max < policy->cur)
|
|
__cpufreq_driver_target(policy,
|
|
policy->max, CPUFREQ_RELATION_H);
|
|
else if (policy->min > policy->cur)
|
|
__cpufreq_driver_target(policy,
|
|
policy->min, CPUFREQ_RELATION_L);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int cpufreq_interactive_idle_notifier(struct notifier_block *nb,
|
|
unsigned long val,
|
|
void *data)
|
|
{
|
|
switch (val) {
|
|
case IDLE_START:
|
|
cpufreq_interactive_idle_start();
|
|
break;
|
|
case IDLE_END:
|
|
cpufreq_interactive_idle_end();
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block cpufreq_interactive_idle_nb = {
|
|
.notifier_call = cpufreq_interactive_idle_notifier,
|
|
};
|
|
|
|
static int __init cpufreq_interactive_init(void)
|
|
{
|
|
unsigned int i;
|
|
struct cpufreq_interactive_cpuinfo *pcpu;
|
|
struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
|
|
|
|
go_hispeed_load = DEFAULT_GO_HISPEED_LOAD;
|
|
min_sample_time = DEFAULT_MIN_SAMPLE_TIME;
|
|
above_hispeed_delay_val = DEFAULT_ABOVE_HISPEED_DELAY;
|
|
timer_rate = DEFAULT_TIMER_RATE;
|
|
|
|
/* Initalize per-cpu timers */
|
|
for_each_possible_cpu(i) {
|
|
pcpu = &per_cpu(cpuinfo, i);
|
|
init_timer(&pcpu->cpu_timer);
|
|
pcpu->cpu_timer.function = cpufreq_interactive_timer;
|
|
pcpu->cpu_timer.data = i;
|
|
}
|
|
|
|
up_task = kthread_create(cpufreq_interactive_up_task, NULL,
|
|
"kinteractiveup");
|
|
if (IS_ERR(up_task))
|
|
return PTR_ERR(up_task);
|
|
|
|
sched_setscheduler_nocheck(up_task, SCHED_FIFO, ¶m);
|
|
get_task_struct(up_task);
|
|
|
|
/* No rescuer thread, bind to CPU queuing the work for possibly
|
|
warm cache (probably doesn't matter much). */
|
|
down_wq = alloc_workqueue("knteractive_down", 0, 1);
|
|
|
|
if (!down_wq)
|
|
goto err_freeuptask;
|
|
|
|
INIT_WORK(&freq_scale_down_work,
|
|
cpufreq_interactive_freq_down);
|
|
|
|
spin_lock_init(&up_cpumask_lock);
|
|
spin_lock_init(&down_cpumask_lock);
|
|
mutex_init(&set_speed_lock);
|
|
|
|
idle_notifier_register(&cpufreq_interactive_idle_nb);
|
|
INIT_WORK(&inputopen.inputopen_work, cpufreq_interactive_input_open);
|
|
return cpufreq_register_governor(&cpufreq_gov_interactive);
|
|
|
|
err_freeuptask:
|
|
put_task_struct(up_task);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
|
|
fs_initcall(cpufreq_interactive_init);
|
|
#else
|
|
module_init(cpufreq_interactive_init);
|
|
#endif
|
|
|
|
static void __exit cpufreq_interactive_exit(void)
|
|
{
|
|
cpufreq_unregister_governor(&cpufreq_gov_interactive);
|
|
kthread_stop(up_task);
|
|
put_task_struct(up_task);
|
|
destroy_workqueue(down_wq);
|
|
}
|
|
|
|
module_exit(cpufreq_interactive_exit);
|
|
|
|
MODULE_AUTHOR("Mike Chan <mike@android.com>");
|
|
MODULE_DESCRIPTION("'cpufreq_interactive' - A cpufreq governor for "
|
|
"Latency sensitive workloads");
|
|
MODULE_LICENSE("GPL");
|