android_kernel_google_msm/drivers/hwmon/epm_adc.c
Stephen Boyd aaf081b365 hwmon: Add MSM's epm ADC driver
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
2013-02-25 11:29:52 -08:00

917 lines
23 KiB
C

/* Copyright (c) 2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/gpio.h>
#include <linux/hwmon.h>
#include <linux/delay.h>
#include <linux/epm_adc.h>
#include <linux/uaccess.h>
#include <linux/spi/spi.h>
#include <linux/hwmon-sysfs.h>
#include <linux/miscdevice.h>
#include <linux/platform_device.h>
#define EPM_ADC_DRIVER_NAME "epm_adc"
#define EPM_ADC_MAX_FNAME 20
#define EPM_ADC_CONVERSION_DELAY 100 /* milliseconds */
/* Command Bits */
#define EPM_ADC_ADS_SPI_BITS_PER_WORD 8
#define EPM_ADC_ADS_DATA_READ_CMD (0x1 << 5)
#define EPM_ADC_ADS_REG_READ_CMD (0x2 << 5)
#define EPM_ADC_ADS_REG_WRITE_CMD (0x3 << 5)
#define EPM_ADC_ADS_PULSE_CONVERT_CMD (0x4 << 5)
#define EPM_ADC_ADS_MULTIPLE_REG_ACCESS (0x1 << 4)
/* Register map */
#define EPM_ADC_ADS_CONFIG0_REG_ADDR 0x0
#define EPM_ADC_ADS_CONFIG1_REG_ADDR 0x1
#define EPM_ADC_ADS_MUXSG0_REG_ADDR 0x4
#define EPM_ADC_ADS_MUXSG1_REG_ADDR 0x5
/* Register map default data */
#define EPM_ADC_ADS_REG0_DEFAULT 0x2
#define EPM_ADC_ADS_REG1_DEFAULT 0x52
#define EPM_ADC_ADS_CHANNEL_DATA_CHID 0x1f
/* Channel ID */
#define EPM_ADC_ADS_CHANNEL_OFFSET 0x18
#define EPM_ADC_ADS_CHANNEL_VCC 0x1a
#define EPM_ADC_ADS_CHANNEL_TEMP 0x1b
#define EPM_ADC_ADS_CHANNEL_GAIN 0x1c
#define EPM_ADC_ADS_CHANNEL_REF 0x1d
/* Scaling data co-efficients */
#define EPM_ADC_SCALE_MILLI 1000
#define EPM_ADC_SCALE_CODE_VOLTS 3072
#define EPM_ADC_SCALE_CODE_GAIN 30720
#define EPM_ADC_TEMP_SENSOR_COEFF 394
#define EPM_ADC_TEMP_TO_DEGC_COEFF 168000
#define EPM_ADC_CHANNEL_AIN_OFFSET 8
#define EPM_ADC_MAX_NEGATIVE_SCALE_CODE 0x8000
#define EPM_ADC_NEG_LSB_CODE 0xffff
#define EPM_ADC_VREF_CODE 0x7800
#define EPM_ADC_MILLI_VOLTS_SOURCE 4750
#define EPM_ADC_SCALE_FACTOR 64
#define GPIO_EPM_GLOBAL_ENABLE 86
#define EPM_ADC_CONVERSION_TIME_MIN 50000
#define EPM_ADC_CONVERSION_TIME_MAX 51000
struct epm_adc_drv {
struct platform_device *pdev;
struct device *hwmon;
struct sensor_device_attribute *sens_attr;
char **fnames;
struct spi_device *epm_spi_client;
struct mutex conv_lock;
uint32_t bus_id;
struct miscdevice misc;
};
static struct epm_adc_drv *epm_adc_drv;
static struct i2c_board_info *epm_i2c_info;
static bool epm_adc_first_request;
static int epm_gpio_expander_base_addr;
static bool epm_adc_expander_register;
#define GPIO_EPM_EXPANDER_IO0 epm_gpio_expander_base_addr
#define GPIO_PWR_MON_ENABLE (GPIO_EPM_EXPANDER_IO0 + 1)
#define GPIO_ADC1_PWDN_N (GPIO_PWR_MON_ENABLE + 1)
#define GPIO_PWR_MON_RESET_N (GPIO_ADC1_PWDN_N + 1)
#define GPIO_EPM_SPI_ADC1_CS_N (GPIO_PWR_MON_RESET_N + 1)
#define GPIO_PWR_MON_START (GPIO_EPM_SPI_ADC1_CS_N + 1)
#define GPIO_ADC1_DRDY_N (GPIO_PWR_MON_START + 1)
#define GPIO_ADC2_PWDN_N (GPIO_ADC1_DRDY_N + 1)
#define GPIO_EPM_SPI_ADC2_CS_N (GPIO_ADC2_PWDN_N + 1)
#define GPIO_ADC2_DRDY_N (GPIO_EPM_SPI_ADC2_CS_N + 1)
static int epm_adc_i2c_expander_register(void)
{
int rc = 0;
static struct i2c_adapter *i2c_adap;
static struct i2c_client *epm_i2c_client;
rc = gpio_request(GPIO_EPM_GLOBAL_ENABLE, "EPM_GLOBAL_EN");
if (!rc) {
gpio_direction_output(GPIO_EPM_GLOBAL_ENABLE, 1);
} else {
pr_err("%s: Configure EPM_GLOBAL_EN Failed\n", __func__);
return rc;
}
usleep_range(EPM_ADC_CONVERSION_TIME_MIN,
EPM_ADC_CONVERSION_TIME_MAX);
i2c_adap = i2c_get_adapter(epm_adc_drv->bus_id);
if (i2c_adap == NULL) {
pr_err("%s: i2c_get_adapter() failed\n", __func__);
return -EINVAL;
}
usleep_range(EPM_ADC_CONVERSION_TIME_MIN,
EPM_ADC_CONVERSION_TIME_MAX);
epm_i2c_client = i2c_new_device(i2c_adap, epm_i2c_info);
if (IS_ERR(epm_i2c_client)) {
pr_err("Error with i2c epm device register\n");
return -ENODEV;
}
epm_adc_first_request = false;
return 0;
}
static int epm_adc_gpio_configure_expander_enable(void)
{
int rc = 0;
if (epm_adc_first_request) {
rc = gpio_request(GPIO_EPM_GLOBAL_ENABLE, "EPM_GLOBAL_EN");
if (!rc) {
gpio_direction_output(GPIO_EPM_GLOBAL_ENABLE, 1);
} else {
pr_err("%s: Configure EPM_GLOBAL_EN Failed\n",
__func__);
return rc;
}
} else {
epm_adc_first_request = true;
}
usleep_range(EPM_ADC_CONVERSION_TIME_MIN,
EPM_ADC_CONVERSION_TIME_MAX);
rc = gpio_request(GPIO_PWR_MON_ENABLE, "GPIO_PWR_MON_ENABLE");
if (!rc) {
rc = gpio_direction_output(GPIO_PWR_MON_ENABLE, 1);
if (rc) {
pr_err("%s: Set GPIO_PWR_MON_ENABLE failed\n",
__func__);
return rc;
}
} else {
pr_err("%s: gpio_request GPIO_PWR_MON_ENABLE failed\n",
__func__);
return rc;
}
rc = gpio_request(GPIO_ADC1_PWDN_N, "GPIO_ADC1_PWDN_N");
if (!rc) {
rc = gpio_direction_output(GPIO_ADC1_PWDN_N, 1);
if (rc) {
pr_err("%s: Set GPIO_ADC1_PWDN_N failed\n", __func__);
return rc;
}
} else {
pr_err("%s: gpio_request GPIO_ADC1_PWDN_N failed\n", __func__);
return rc;
}
rc = gpio_request(GPIO_ADC2_PWDN_N, "GPIO_ADC2_PWDN_N");
if (!rc) {
rc = gpio_direction_output(GPIO_ADC2_PWDN_N, 1);
if (rc) {
pr_err("%s: Set GPIO_ADC2_PWDN_N failed\n",
__func__);
return rc;
}
} else {
pr_err("%s: gpio_request GPIO_ADC2_PWDN_N failed\n",
__func__);
return rc;
}
rc = gpio_request(GPIO_EPM_SPI_ADC1_CS_N, "GPIO_EPM_SPI_ADC1_CS_N");
if (!rc) {
rc = gpio_direction_output(GPIO_EPM_SPI_ADC1_CS_N, 1);
if (rc) {
pr_err("%s:Set GPIO_EPM_SPI_ADC1_CS_N failed\n",
__func__);
return rc;
}
} else {
pr_err("%s: gpio_request GPIO_EPM_SPI_ADC1_CS_N failed\n",
__func__);
return rc;
}
rc = gpio_request(GPIO_EPM_SPI_ADC2_CS_N,
"GPIO_EPM_SPI_ADC2_CS_N");
if (!rc) {
rc = gpio_direction_output(GPIO_EPM_SPI_ADC2_CS_N, 1);
if (rc) {
pr_err("%s: Set GPIO_EPM_SPI_ADC2_CS_N "
"failed\n", __func__);
return rc;
}
} else {
pr_err("%s: gpio_request GPIO_EPM_SPI_ADC2_CS_N "
"failed\n", __func__);
return rc;
}
rc = gpio_direction_output(GPIO_EPM_SPI_ADC1_CS_N, 0);
if (rc) {
pr_err("%s:Reset GPIO_EPM_SPI_ADC1_CS_N failed\n", __func__);
return rc;
}
rc = gpio_direction_output(GPIO_EPM_SPI_ADC1_CS_N, 1);
if (rc) {
pr_err("%s: Set GPIO_EPM_SPI_ADC1_CS_N failed\n", __func__);
return rc;
}
rc = gpio_request(GPIO_PWR_MON_START, "GPIO_PWR_MON_START");
if (!rc) {
rc = gpio_direction_output(GPIO_PWR_MON_START, 0);
if (rc) {
pr_err("%s: Reset GPIO_PWR_MON_START failed\n",
__func__);
return rc;
}
} else {
pr_err("%s: gpio_request GPIO_PWR_MON_START failed\n",
__func__);
return rc;
}
rc = gpio_request(GPIO_PWR_MON_RESET_N, "GPIO_PWR_MON_RESET_N");
if (!rc) {
rc = gpio_direction_output(GPIO_PWR_MON_RESET_N, 0);
if (rc) {
pr_err("%s: Reset GPIO_PWR_MON_RESET_N failed\n",
__func__);
return rc;
}
} else {
pr_err("%s: gpio_request GPIO_PWR_MON_RESET_N failed\n",
__func__);
return rc;
}
rc = gpio_direction_output(GPIO_PWR_MON_RESET_N, 1);
if (rc) {
pr_err("%s: Set GPIO_PWR_MON_RESET_N failed\n", __func__);
return rc;
}
rc = gpio_direction_output(GPIO_EPM_SPI_ADC1_CS_N, 0);
if (rc) {
pr_err("%s:Reset GPIO_EPM_SPI_ADC1_CS_N failed\n", __func__);
return rc;
}
return rc;
}
static int epm_adc_gpio_configure_expander_disable(void)
{
int rc = 0;
gpio_free(GPIO_PWR_MON_ENABLE);
gpio_free(GPIO_ADC1_PWDN_N);
gpio_free(GPIO_ADC2_PWDN_N);
gpio_free(GPIO_EPM_SPI_ADC1_CS_N);
gpio_free(GPIO_EPM_SPI_ADC2_CS_N);
gpio_free(GPIO_PWR_MON_START);
gpio_free(GPIO_PWR_MON_RESET_N);
rc = gpio_direction_output(GPIO_EPM_GLOBAL_ENABLE, 0);
if (rc)
pr_debug("%s: Disable EPM_GLOBAL_EN Failed\n", __func__);
gpio_free(GPIO_EPM_GLOBAL_ENABLE);
return rc;
}
static int epm_adc_spi_chip_select(int32_t id)
{
int rc = 0;
if (id == 0) {
rc = gpio_direction_output(GPIO_EPM_SPI_ADC2_CS_N, 1);
if (rc) {
pr_err("%s:Disable SPI_ADC2_CS failed",
__func__);
return rc;
}
rc = gpio_direction_output(GPIO_EPM_SPI_ADC1_CS_N, 0);
if (rc) {
pr_err("%s:Enable SPI_ADC1_CS failed", __func__);
return rc;
}
} else if (id == 1) {
rc = gpio_direction_output(GPIO_EPM_SPI_ADC1_CS_N, 1);
if (rc) {
pr_err("%s:Disable SPI_ADC1_CS failed", __func__);
return rc;
}
rc = gpio_direction_output(GPIO_EPM_SPI_ADC2_CS_N, 0);
if (rc) {
pr_err("%s:Enable SPI_ADC2_CS failed", __func__);
return rc;
}
} else {
rc = -EFAULT;
}
return rc;
}
static int epm_adc_ads_spi_write(struct epm_adc_drv *epm_adc,
uint8_t addr, uint8_t val)
{
struct spi_message m;
struct spi_transfer t;
char tx_buf[2];
int rc = 0;
spi_setup(epm_adc->epm_spi_client);
memset(&t, 0, sizeof t);
memset(tx_buf, 0, sizeof tx_buf);
t.tx_buf = tx_buf;
spi_message_init(&m);
spi_message_add_tail(&t, &m);
tx_buf[0] = EPM_ADC_ADS_REG_WRITE_CMD | addr;
tx_buf[1] = val;
t.len = sizeof(tx_buf);
t.bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD;
rc = spi_sync(epm_adc->epm_spi_client, &m);
return rc;
}
static int epm_adc_init_ads(struct epm_adc_drv *epm_adc)
{
int rc = 0;
rc = epm_adc_ads_spi_write(epm_adc, EPM_ADC_ADS_CONFIG0_REG_ADDR,
EPM_ADC_ADS_REG0_DEFAULT);
if (rc)
return rc;
rc = epm_adc_ads_spi_write(epm_adc, EPM_ADC_ADS_CONFIG1_REG_ADDR,
EPM_ADC_ADS_REG1_DEFAULT);
if (rc)
return rc;
return rc;
}
static int epm_adc_ads_pulse_convert(struct epm_adc_drv *epm_adc)
{
struct spi_message m;
struct spi_transfer t;
char tx_buf[1];
int rc = 0;
spi_setup(epm_adc->epm_spi_client);
memset(&t, 0, sizeof t);
memset(tx_buf, 0, sizeof tx_buf);
t.tx_buf = tx_buf;
spi_message_init(&m);
spi_message_add_tail(&t, &m);
tx_buf[0] = EPM_ADC_ADS_PULSE_CONVERT_CMD;
t.len = sizeof(tx_buf);
t.bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD;
rc = spi_sync(epm_adc->epm_spi_client, &m);
return rc;
}
static int epm_adc_ads_read_data(struct epm_adc_drv *epm_adc, char *adc_data)
{
struct spi_message m;
struct spi_transfer t;
char tx_buf[4], rx_buf[4];
int rc = 0;
spi_setup(epm_adc->epm_spi_client);
memset(&t, 0, sizeof t);
memset(tx_buf, 0, sizeof tx_buf);
memset(rx_buf, 0, sizeof tx_buf);
t.tx_buf = tx_buf;
t.rx_buf = rx_buf;
spi_message_init(&m);
spi_message_add_tail(&t, &m);
tx_buf[0] = EPM_ADC_ADS_DATA_READ_CMD |
EPM_ADC_ADS_MULTIPLE_REG_ACCESS;
t.len = sizeof(tx_buf);
t.bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD;
rc = spi_sync(epm_adc->epm_spi_client, &m);
if (rc)
return rc;
rc = spi_sync(epm_adc->epm_spi_client, &m);
if (rc)
return rc;
rc = spi_sync(epm_adc->epm_spi_client, &m);
if (rc)
return rc;
adc_data[0] = rx_buf[1];
adc_data[1] = rx_buf[2];
adc_data[2] = rx_buf[3];
return rc;
}
static int epm_adc_hw_init(struct epm_adc_drv *epm_adc)
{
int rc = 0;
mutex_lock(&epm_adc->conv_lock);
rc = epm_adc_gpio_configure_expander_enable();
if (rc != 0) {
pr_err("epm gpio configure expander failed, rc = %d\n", rc);
goto epm_adc_hw_init_err;
}
rc = epm_adc_init_ads(epm_adc);
if (rc) {
pr_err("epm_adc_init_ads failed, rc=%d\n", rc);
goto epm_adc_hw_init_err;
}
epm_adc_hw_init_err:
mutex_unlock(&epm_adc->conv_lock);
return rc;
}
static int epm_adc_hw_deinit(struct epm_adc_drv *epm_adc)
{
int rc = 0;
mutex_lock(&epm_adc->conv_lock);
rc = epm_adc_gpio_configure_expander_disable();
if (rc != 0) {
pr_err("epm gpio configure expander disable failed,"
" rc = %d\n", rc);
goto epm_adc_hw_deinit_err;
}
epm_adc_hw_deinit_err:
mutex_unlock(&epm_adc->conv_lock);
return rc;
}
static int epm_adc_ads_scale_result(struct epm_adc_drv *epm_adc,
uint8_t *adc_raw_data, struct epm_chan_request *conv)
{
uint32_t channel_num;
int16_t sign_bit;
struct epm_adc_platform_data *pdata = epm_adc->pdev->dev.platform_data;
uint32_t chan_idx = (conv->device_idx * pdata->chan_per_adc) +
conv->channel_idx;
int32_t *adc_scaled_data = &conv->physical;
/* Get the channel number */
channel_num = (adc_raw_data[0] & EPM_ADC_ADS_CHANNEL_DATA_CHID);
sign_bit = 1;
/* This is the 16-bit raw data */
*adc_scaled_data = ((adc_raw_data[1] << 8) | adc_raw_data[2]);
/* Obtain the internal system reading */
if (channel_num == EPM_ADC_ADS_CHANNEL_VCC) {
*adc_scaled_data *= EPM_ADC_SCALE_MILLI;
*adc_scaled_data /= EPM_ADC_SCALE_CODE_VOLTS;
} else if (channel_num == EPM_ADC_ADS_CHANNEL_GAIN) {
*adc_scaled_data /= EPM_ADC_SCALE_CODE_GAIN;
} else if (channel_num == EPM_ADC_ADS_CHANNEL_REF) {
*adc_scaled_data *= EPM_ADC_SCALE_MILLI;
*adc_scaled_data /= EPM_ADC_SCALE_CODE_VOLTS;
} else if (channel_num == EPM_ADC_ADS_CHANNEL_TEMP) {
/* Convert Code to micro-volts */
/* Use this formula to get the temperature reading */
*adc_scaled_data -= EPM_ADC_TEMP_TO_DEGC_COEFF;
*adc_scaled_data /= EPM_ADC_TEMP_SENSOR_COEFF;
} else if (channel_num == EPM_ADC_ADS_CHANNEL_OFFSET) {
/* The offset should be zero */
pr_debug("%s: ADC Channel Offset\n", __func__);
return -EFAULT;
} else {
channel_num -= EPM_ADC_CHANNEL_AIN_OFFSET;
/*
* Conversion for the adc channels.
* mvVRef is in milli-volts and resistorValue is in micro-ohms.
* Hence, I = V/R gives us current in kilo-amps.
*/
if (*adc_scaled_data & EPM_ADC_MAX_NEGATIVE_SCALE_CODE) {
sign_bit = -1;
*adc_scaled_data = (~*adc_scaled_data
& EPM_ADC_NEG_LSB_CODE);
}
if (*adc_scaled_data != 0) {
*adc_scaled_data *= EPM_ADC_SCALE_FACTOR;
/* Device is calibrated for 1LSB = VREF/7800h.*/
*adc_scaled_data *= EPM_ADC_MILLI_VOLTS_SOURCE;
*adc_scaled_data /= EPM_ADC_VREF_CODE;
/* Data will now be in micro-volts.*/
*adc_scaled_data *= EPM_ADC_SCALE_MILLI;
/* Divide by amplifier gain value.*/
*adc_scaled_data /= pdata->channel[chan_idx].gain;
/* Data will now be in nano-volts.*/
*adc_scaled_data /= EPM_ADC_SCALE_FACTOR;
*adc_scaled_data *= EPM_ADC_SCALE_MILLI;
/* Data is now in micro-amps.*/
*adc_scaled_data /=
pdata->channel[chan_idx].resistorValue;
/* Set the sign bit for lekage current. */
*adc_scaled_data *= sign_bit;
}
}
return 0;
}
static int epm_adc_blocking_conversion(struct epm_adc_drv *epm_adc,
struct epm_chan_request *conv)
{
struct epm_adc_platform_data *pdata = epm_adc->pdev->dev.platform_data;
int32_t channel_num = 0, mux_chan_idx = 0;
char adc_data[3];
int rc = 0;
mutex_lock(&epm_adc->conv_lock);
rc = epm_adc_spi_chip_select(conv->device_idx);
if (rc) {
pr_err("epm_adc_chip_select failed, rc=%d\n", rc);
goto conv_err;
}
if (conv->channel_idx < pdata->chan_per_mux) {
/* Reset MUXSG1_REGISTER */
rc = epm_adc_ads_spi_write(epm_adc, EPM_ADC_ADS_MUXSG1_REG_ADDR,
0x0);
if (rc)
goto conv_err;
mux_chan_idx = 1 << conv->channel_idx;
/* Select Channel index in MUXSG0_REGISTER */
rc = epm_adc_ads_spi_write(epm_adc, EPM_ADC_ADS_MUXSG0_REG_ADDR,
mux_chan_idx);
if (rc)
goto conv_err;
} else {
/* Reset MUXSG0_REGISTER */
rc = epm_adc_ads_spi_write(epm_adc, EPM_ADC_ADS_MUXSG0_REG_ADDR,
0x0);
if (rc)
goto conv_err;
mux_chan_idx = 1 << (conv->channel_idx - pdata->chan_per_mux);
/* Select Channel index in MUXSG1_REGISTER */
rc = epm_adc_ads_spi_write(epm_adc, EPM_ADC_ADS_MUXSG1_REG_ADDR,
mux_chan_idx);
if (rc)
goto conv_err;
}
rc = epm_adc_ads_pulse_convert(epm_adc);
if (rc) {
pr_err("epm_adc_ads_pulse_convert failed, rc=%d\n", rc);
goto conv_err;
}
rc = epm_adc_ads_read_data(epm_adc, adc_data);
if (rc) {
pr_err("epm_adc_ads_read_data failed, rc=%d\n", rc);
goto conv_err;
}
channel_num = (adc_data[0] & EPM_ADC_ADS_CHANNEL_DATA_CHID);
pr_debug("ADC data Read: adc_data =%d, %d, %d\n",
adc_data[0], adc_data[1], adc_data[2]);
epm_adc_ads_scale_result(epm_adc, (uint8_t *)adc_data, conv);
pr_debug("channel_num(0x) = %x, scaled_data = %d\n",
(channel_num - EPM_ADC_ADS_SPI_BITS_PER_WORD),
conv->physical);
conv_err:
mutex_unlock(&epm_adc->conv_lock);
return rc;
}
static long epm_adc_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
struct epm_adc_drv *epm_adc = epm_adc_drv;
switch (cmd) {
case EPM_ADC_REQUEST:
{
struct epm_chan_request conv;
int rc;
if (copy_from_user(&conv, (void __user *)arg,
sizeof(struct epm_chan_request)))
return -EFAULT;
rc = epm_adc_blocking_conversion(epm_adc, &conv);
if (rc) {
pr_err("Failed EPM conversion:%d\n", rc);
return rc;
}
if (copy_to_user((void __user *)arg, &conv,
sizeof(struct epm_chan_request)))
return -EFAULT;
break;
}
case EPM_ADC_INIT:
{
uint32_t result;
if (!epm_adc_expander_register) {
result = epm_adc_i2c_expander_register();
if (result) {
pr_err("Failed i2c register:%d\n",
result);
return result;
}
epm_adc_expander_register = true;
}
result = epm_adc_hw_init(epm_adc_drv);
if (copy_to_user((void __user *)arg, &result,
sizeof(uint32_t)))
return -EFAULT;
break;
}
case EPM_ADC_DEINIT:
{
uint32_t result;
result = epm_adc_hw_deinit(epm_adc_drv);
if (copy_to_user((void __user *)arg, &result,
sizeof(uint32_t)))
return -EFAULT;
break;
}
default:
return -EINVAL;
}
return 0;
}
const struct file_operations epm_adc_fops = {
.unlocked_ioctl = epm_adc_ioctl,
};
static ssize_t epm_adc_show_in(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct epm_adc_drv *epm_adc = dev_get_drvdata(dev);
struct epm_adc_platform_data *pdata = epm_adc->pdev->dev.platform_data;
struct epm_chan_request conv;
int rc = 0;
conv.device_idx = attr->index / pdata->chan_per_adc;
conv.channel_idx = attr->index % pdata->chan_per_adc;
conv.physical = 0;
pr_debug("%s: device_idx=%d channel_idx=%d", __func__, conv.device_idx,
conv.channel_idx);
if (!epm_adc_expander_register) {
rc = epm_adc_i2c_expander_register();
if (rc) {
pr_err("I2C expander register failed:%d\n", rc);
return rc;
}
epm_adc_expander_register = true;
}
rc = epm_adc_hw_init(epm_adc);
if (rc) {
pr_err("%s: epm_adc_hw_init() failed, rc = %d",
__func__, rc);
return 0;
}
rc = epm_adc_blocking_conversion(epm_adc, &conv);
if (rc) {
pr_err("%s: epm_adc_blocking_conversion() failed, rc = %d\n",
__func__, rc);
return 0;
}
rc = epm_adc_hw_deinit(epm_adc);
if (rc) {
pr_err("%s: epm_adc_hw_deinit() failed, rc = %d",
__func__, rc);
return 0;
}
return snprintf(buf, 16, "Result: %d\n", conv.physical);
}
static struct sensor_device_attribute epm_adc_in_attr =
SENSOR_ATTR(NULL, S_IRUGO, epm_adc_show_in, NULL, 0);
static int __devinit epm_adc_init_hwmon(struct platform_device *pdev,
struct epm_adc_drv *epm_adc)
{
struct epm_adc_platform_data *pdata = pdev->dev.platform_data;
int num_chans = pdata->num_channels, dev_idx = 0, chan_idx = 0;
int i = 0, rc = 0;
const char prefix[] = "ads", postfix[] = "_chan";
char tmpbuf[3];
epm_adc->fnames = devm_kzalloc(&pdev->dev,
num_chans * EPM_ADC_MAX_FNAME +
num_chans * sizeof(char *), GFP_KERNEL);
if (!epm_adc->fnames) {
dev_err(&pdev->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
epm_adc->sens_attr = devm_kzalloc(&pdev->dev, num_chans *
sizeof(struct sensor_device_attribute), GFP_KERNEL);
if (!epm_adc->sens_attr) {
dev_err(&pdev->dev, "Unable to allocate memory\n");
rc = -ENOMEM;
}
for (i = 0; i < num_chans; i++, chan_idx++) {
epm_adc->fnames[i] = (char *)epm_adc->fnames +
(i * EPM_ADC_MAX_FNAME) + (num_chans *
sizeof(char *));
if (chan_idx == pdata->chan_per_adc) {
chan_idx = 0;
dev_idx++;
}
strlcpy(epm_adc->fnames[i], prefix, EPM_ADC_MAX_FNAME);
snprintf(tmpbuf, sizeof(tmpbuf), "%d", dev_idx);
strlcat(epm_adc->fnames[i], tmpbuf, EPM_ADC_MAX_FNAME);
strlcat(epm_adc->fnames[i], postfix, EPM_ADC_MAX_FNAME);
snprintf(tmpbuf, sizeof(tmpbuf), "%d", chan_idx);
strlcat(epm_adc->fnames[i], tmpbuf, EPM_ADC_MAX_FNAME);
epm_adc_in_attr.index = i;
epm_adc_in_attr.dev_attr.attr.name = epm_adc->fnames[i];
memcpy(&epm_adc->sens_attr[i], &epm_adc_in_attr,
sizeof(epm_adc_in_attr));
rc = device_create_file(&pdev->dev,
&epm_adc->sens_attr[i].dev_attr);
if (rc) {
dev_err(&pdev->dev, "device_create_file failed\n");
return rc;
}
}
return rc;
}
static int __devinit epm_adc_spi_probe(struct spi_device *spi)
{
if (!epm_adc_drv)
return -ENODEV;
epm_adc_drv->epm_spi_client = spi;
epm_adc_drv->epm_spi_client->bits_per_word =
EPM_ADC_ADS_SPI_BITS_PER_WORD;
return 0;
}
static int __devexit epm_adc_spi_remove(struct spi_device *spi)
{
epm_adc_drv->epm_spi_client = NULL;
return 0;
}
static struct spi_driver epm_spi_driver = {
.probe = epm_adc_spi_probe,
.remove = __devexit_p(epm_adc_spi_remove),
.driver = {
.name = EPM_ADC_DRIVER_NAME,
.owner = THIS_MODULE,
},
};
static int __devinit epm_adc_probe(struct platform_device *pdev)
{
struct epm_adc_drv *epm_adc;
struct epm_adc_platform_data *pdata = pdev->dev.platform_data;
int rc = 0;
if (!pdata) {
dev_err(&pdev->dev, "no platform data?\n");
return -EINVAL;
}
epm_adc = kzalloc(sizeof(struct epm_adc_drv), GFP_KERNEL);
if (!epm_adc) {
dev_err(&pdev->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, epm_adc);
epm_adc_drv = epm_adc;
epm_adc->pdev = pdev;
epm_adc->misc.name = EPM_ADC_DRIVER_NAME;
epm_adc->misc.minor = MISC_DYNAMIC_MINOR;
epm_adc->misc.fops = &epm_adc_fops;
if (misc_register(&epm_adc->misc)) {
dev_err(&pdev->dev, "Unable to register misc device!\n");
return -EFAULT;
}
rc = epm_adc_init_hwmon(pdev, epm_adc);
if (rc) {
dev_err(&pdev->dev, "msm_adc_dev_init failed\n");
misc_deregister(&epm_adc->misc);
return rc;
}
epm_adc->hwmon = hwmon_device_register(&pdev->dev);
if (IS_ERR(epm_adc->hwmon)) {
dev_err(&pdev->dev, "hwmon_device_register failed\n");
misc_deregister(&epm_adc->misc);
rc = PTR_ERR(epm_adc->hwmon);
return rc;
}
mutex_init(&epm_adc->conv_lock);
epm_i2c_info = &pdata->epm_i2c_board_info;
epm_adc->bus_id = pdata->bus_id;
epm_gpio_expander_base_addr = pdata->gpio_expander_base_addr;
epm_adc_expander_register = false;
return rc;
}
static int __devexit epm_adc_remove(struct platform_device *pdev)
{
struct epm_adc_drv *epm_adc = platform_get_drvdata(pdev);
struct epm_adc_platform_data *pdata = pdev->dev.platform_data;
int num_chans = pdata->num_channels;
int i = 0;
if (epm_adc->sens_attr)
for (i = 0; i < num_chans; i++)
device_remove_file(&pdev->dev,
&epm_adc->sens_attr[i].dev_attr);
hwmon_device_unregister(epm_adc->hwmon);
misc_deregister(&epm_adc->misc);
epm_adc = NULL;
return 0;
}
static struct platform_driver epm_adc_driver = {
.probe = epm_adc_probe,
.remove = __devexit_p(epm_adc_remove),
.driver = {
.name = EPM_ADC_DRIVER_NAME,
.owner = THIS_MODULE,
},
};
static int __init epm_adc_init(void)
{
int ret = 0;
ret = platform_driver_register(&epm_adc_driver);
if (ret) {
pr_err("%s: driver register failed, rc=%d\n", __func__, ret);
return ret;
}
ret = spi_register_driver(&epm_spi_driver);
if (ret)
pr_err("%s: spi register failed: rc=%d\n", __func__, ret);
return ret;
}
static void __exit epm_adc_exit(void)
{
spi_unregister_driver(&epm_spi_driver);
platform_driver_unregister(&epm_adc_driver);
}
module_init(epm_adc_init);
module_exit(epm_adc_exit);
MODULE_DESCRIPTION("EPM ADC Driver");
MODULE_ALIAS("platform:epm_adc");
MODULE_LICENSE("GPL v2");