android_kernel_google_msm/drivers/leds/leds-pm8xxx.c
Amy Maloche 751fecf8da leds: leds-pm8xxx: Add CABC support for backlight control
Content adaptive backlight control (CABC) support is needed to
control backlight by external PWM.  It can be enabled by setting
"cabc_en = true" in the platform data wled_cfg structure.

CRs-fixed: 379347

Signed-off-by: Amy Maloche <amaloche@codeaurora.org>
(cherry picked from commit c366d5bfc380183e1c4f9877b2c8558098bd4281)

Change-Id: Iae7940d25d8754ab539d5ce1fa3f78972b5222d1
Signed-off-by: Sudhir Sharma <sudsha@codeaurora.org>
2013-03-07 15:19:23 -08:00

1345 lines
34 KiB
C

/* Copyright (c) 2010-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/leds.h>
#include <linux/workqueue.h>
#include <linux/err.h>
#include <linux/ctype.h>
#include <linux/mfd/pm8xxx/core.h>
#include <linux/mfd/pm8xxx/pwm.h>
#include <linux/leds-pm8xxx.h>
#define SSBI_REG_ADDR_DRV_KEYPAD 0x48
#define PM8XXX_DRV_KEYPAD_BL_MASK 0xf0
#define PM8XXX_DRV_KEYPAD_BL_SHIFT 0x04
#define SSBI_REG_ADDR_FLASH_DRV0 0x49
#define PM8XXX_DRV_FLASH_MASK 0xf0
#define PM8XXX_DRV_FLASH_SHIFT 0x04
#define SSBI_REG_ADDR_FLASH_DRV1 0xFB
#define SSBI_REG_ADDR_LED_CTRL_BASE 0x131
#define SSBI_REG_ADDR_LED_CTRL(n) (SSBI_REG_ADDR_LED_CTRL_BASE + (n))
#define PM8XXX_DRV_LED_CTRL_MASK 0xf8
#define PM8XXX_DRV_LED_CTRL_SHIFT 0x03
#define SSBI_REG_ADDR_WLED_CTRL_BASE 0x25A
#define SSBI_REG_ADDR_WLED_CTRL(n) (SSBI_REG_ADDR_WLED_CTRL_BASE + (n) - 1)
/* wled control registers */
#define WLED_MOD_CTRL_REG SSBI_REG_ADDR_WLED_CTRL(1)
#define WLED_MAX_CURR_CFG_REG(n) SSBI_REG_ADDR_WLED_CTRL(n + 2)
#define WLED_BRIGHTNESS_CNTL_REG1(n) SSBI_REG_ADDR_WLED_CTRL(n + 5)
#define WLED_BRIGHTNESS_CNTL_REG2(n) SSBI_REG_ADDR_WLED_CTRL(n + 6)
#define WLED_SYNC_REG SSBI_REG_ADDR_WLED_CTRL(11)
#define WLED_OVP_CFG_REG SSBI_REG_ADDR_WLED_CTRL(13)
#define WLED_BOOST_CFG_REG SSBI_REG_ADDR_WLED_CTRL(14)
#define WLED_HIGH_POLE_CAP_REG SSBI_REG_ADDR_WLED_CTRL(16)
#define WLED_STRINGS 0x03
#define WLED_OVP_VAL_MASK 0x30
#define WLED_OVP_VAL_BIT_SHFT 0x04
#define WLED_BOOST_LIMIT_MASK 0xE0
#define WLED_BOOST_LIMIT_BIT_SHFT 0x05
#define WLED_BOOST_OFF 0x00
#define WLED_EN_MASK 0x01
#define WLED_CP_SELECT_MAX 0x03
#define WLED_CP_SELECT_MASK 0x03
#define WLED_DIG_MOD_GEN_MASK 0x70
#define WLED_CS_OUT_MASK 0x0E
#define WLED_CTL_DLY_STEP 200
#define WLED_CTL_DLY_MAX 1400
#define WLED_CTL_DLY_MASK 0xE0
#define WLED_CTL_DLY_BIT_SHFT 0x05
#define WLED_MAX_CURR 25
#define WLED_MAX_CURR_MASK 0x1F
#define WLED_OP_FDBCK_MASK 0x1C
#define WLED_OP_FDBCK_BIT_SHFT 0x02
#define WLED_MAX_LEVEL 255
#define WLED_8_BIT_MASK 0xFF
#define WLED_8_BIT_SHFT 0x08
#define WLED_MAX_DUTY_CYCLE 0xFFF
#define WLED_SYNC_VAL 0x07
#define WLED_SYNC_RESET_VAL 0x00
#define WLED_SYNC_MASK 0xF8
#define ONE_WLED_STRING 1
#define TWO_WLED_STRINGS 2
#define THREE_WLED_STRINGS 3
#define WLED_CABC_ONE_STRING 0x01
#define WLED_CABC_TWO_STRING 0x03
#define WLED_CABC_THREE_STRING 0x07
#define WLED_CABC_SHIFT 3
#define SSBI_REG_ADDR_RGB_CNTL1 0x12D
#define SSBI_REG_ADDR_RGB_CNTL2 0x12E
#define PM8XXX_DRV_RGB_RED_LED BIT(2)
#define PM8XXX_DRV_RGB_GREEN_LED BIT(1)
#define PM8XXX_DRV_RGB_BLUE_LED BIT(0)
#define MAX_FLASH_LED_CURRENT 300
#define MAX_LC_LED_CURRENT 40
#define MAX_KP_BL_LED_CURRENT 300
#define PM8XXX_ID_LED_CURRENT_FACTOR 2 /* Iout = x * 2mA */
#define PM8XXX_ID_FLASH_CURRENT_FACTOR 20 /* Iout = x * 20mA */
#define PM8XXX_FLASH_MODE_DBUS1 1
#define PM8XXX_FLASH_MODE_DBUS2 2
#define PM8XXX_FLASH_MODE_PWM 3
#define MAX_LC_LED_BRIGHTNESS 20
#define MAX_FLASH_BRIGHTNESS 15
#define MAX_KB_LED_BRIGHTNESS 15
#define PM8XXX_LED_OFFSET(id) ((id) - PM8XXX_ID_LED_0)
#define PM8XXX_LED_PWM_FLAGS (PM_PWM_LUT_LOOP | PM_PWM_LUT_RAMP_UP | \
PM_PWM_LUT_PAUSE_LO_EN | PM_PWM_LUT_PAUSE_HI_EN)
#define PM8XXX_LED_PWM_GRPFREQ_MAX 255
#define PM8XXX_LED_PWM_GRPPWM_MAX 255
#define LED_MAP(_version, _kb, _led0, _led1, _led2, _flash_led0, _flash_led1, \
_wled, _rgb_led_red, _rgb_led_green, _rgb_led_blue)\
{\
.version = _version,\
.supported = _kb << PM8XXX_ID_LED_KB_LIGHT | \
_led0 << PM8XXX_ID_LED_0 | _led1 << PM8XXX_ID_LED_1 | \
_led2 << PM8XXX_ID_LED_2 | \
_flash_led0 << PM8XXX_ID_FLASH_LED_0 | \
_flash_led1 << PM8XXX_ID_FLASH_LED_1 | \
_wled << PM8XXX_ID_WLED | \
_rgb_led_red << PM8XXX_ID_RGB_LED_RED | \
_rgb_led_green << PM8XXX_ID_RGB_LED_GREEN | \
_rgb_led_blue << PM8XXX_ID_RGB_LED_BLUE, \
}
/**
* supported_leds - leds supported for each PMIC version
* @version - version of PMIC
* @supported - which leds are supported on version
*/
struct supported_leds {
enum pm8xxx_version version;
u32 supported;
};
static const struct supported_leds led_map[] = {
LED_MAP(PM8XXX_VERSION_8058, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0),
LED_MAP(PM8XXX_VERSION_8921, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0),
LED_MAP(PM8XXX_VERSION_8018, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
LED_MAP(PM8XXX_VERSION_8922, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1),
LED_MAP(PM8XXX_VERSION_8038, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1),
};
/**
* struct pm8xxx_led_data - internal led data structure
* @led_classdev - led class device
* @id - led index
* @work - workqueue for led
* @lock - to protect the transactions
* @reg - cached value of led register
* @pwm_dev - pointer to PWM device if LED is driven using PWM
* @pwm_channel - PWM channel ID
* @pwm_period_us - PWM period in micro seconds
* @pwm_duty_cycles - struct that describes PWM duty cycles info
* @use_pwm - controlled by userspace
*/
struct pm8xxx_led_data {
struct led_classdev cdev;
int id;
u8 reg;
u8 wled_mod_ctrl_val;
u8 lock_update;
u8 blink;
struct device *dev;
struct work_struct work;
struct mutex lock;
struct pwm_device *pwm_dev;
int pwm_channel;
u32 pwm_period_us;
struct pm8xxx_pwm_duty_cycles *pwm_duty_cycles;
struct wled_config_data *wled_cfg;
int max_current;
int use_pwm;
int adjust_brightness;
u16 pwm_grppwm;
u16 pwm_grpfreq;
u16 pwm_pause_hi;
u16 pwm_pause_lo;
};
static void led_kp_set(struct pm8xxx_led_data *led, enum led_brightness value)
{
int rc;
u8 level;
level = (value << PM8XXX_DRV_KEYPAD_BL_SHIFT) &
PM8XXX_DRV_KEYPAD_BL_MASK;
led->reg &= ~PM8XXX_DRV_KEYPAD_BL_MASK;
led->reg |= level;
rc = pm8xxx_writeb(led->dev->parent, SSBI_REG_ADDR_DRV_KEYPAD,
led->reg);
if (rc < 0)
dev_err(led->cdev.dev,
"can't set keypad backlight level rc=%d\n", rc);
}
static void led_lc_set(struct pm8xxx_led_data *led, enum led_brightness value)
{
int rc, offset;
u8 level;
level = (value << PM8XXX_DRV_LED_CTRL_SHIFT) &
PM8XXX_DRV_LED_CTRL_MASK;
offset = PM8XXX_LED_OFFSET(led->id);
led->reg &= ~PM8XXX_DRV_LED_CTRL_MASK;
led->reg |= level;
rc = pm8xxx_writeb(led->dev->parent, SSBI_REG_ADDR_LED_CTRL(offset),
led->reg);
if (rc)
dev_err(led->cdev.dev, "can't set (%d) led value rc=%d\n",
led->id, rc);
}
static void
led_flash_set(struct pm8xxx_led_data *led, enum led_brightness value)
{
int rc;
u8 level;
u16 reg_addr;
level = (value << PM8XXX_DRV_FLASH_SHIFT) &
PM8XXX_DRV_FLASH_MASK;
led->reg &= ~PM8XXX_DRV_FLASH_MASK;
led->reg |= level;
if (led->id == PM8XXX_ID_FLASH_LED_0)
reg_addr = SSBI_REG_ADDR_FLASH_DRV0;
else
reg_addr = SSBI_REG_ADDR_FLASH_DRV1;
rc = pm8xxx_writeb(led->dev->parent, reg_addr, led->reg);
if (rc < 0)
dev_err(led->cdev.dev, "can't set flash led%d level rc=%d\n",
led->id, rc);
}
static int
led_wled_set(struct pm8xxx_led_data *led, enum led_brightness value)
{
int rc, duty;
u8 val, i, num_wled_strings;
if (value > WLED_MAX_LEVEL)
value = WLED_MAX_LEVEL;
if (value == 0) {
rc = pm8xxx_writeb(led->dev->parent, WLED_MOD_CTRL_REG,
WLED_BOOST_OFF);
if (rc) {
dev_err(led->dev->parent, "can't write wled ctrl config"
" register rc=%d\n", rc);
return rc;
}
} else {
rc = pm8xxx_writeb(led->dev->parent, WLED_MOD_CTRL_REG,
led->wled_mod_ctrl_val);
if (rc) {
dev_err(led->dev->parent, "can't write wled ctrl config"
" register rc=%d\n", rc);
return rc;
}
}
duty = (WLED_MAX_DUTY_CYCLE * value) / WLED_MAX_LEVEL;
num_wled_strings = led->wled_cfg->num_strings;
/* program brightness control registers */
for (i = 0; i < num_wled_strings; i++) {
rc = pm8xxx_readb(led->dev->parent,
WLED_BRIGHTNESS_CNTL_REG1(i), &val);
if (rc) {
dev_err(led->dev->parent, "can't read wled brightnes ctrl"
" register1 rc=%d\n", rc);
return rc;
}
val = (val & ~WLED_MAX_CURR_MASK) | (duty >> WLED_8_BIT_SHFT);
rc = pm8xxx_writeb(led->dev->parent,
WLED_BRIGHTNESS_CNTL_REG1(i), val);
if (rc) {
dev_err(led->dev->parent, "can't write wled brightness ctrl"
" register1 rc=%d\n", rc);
return rc;
}
val = duty & WLED_8_BIT_MASK;
rc = pm8xxx_writeb(led->dev->parent,
WLED_BRIGHTNESS_CNTL_REG2(i), val);
if (rc) {
dev_err(led->dev->parent, "can't write wled brightness ctrl"
" register2 rc=%d\n", rc);
return rc;
}
}
rc = pm8xxx_readb(led->dev->parent, WLED_SYNC_REG, &val);
if (rc) {
dev_err(led->dev->parent,
"can't read wled sync register rc=%d\n", rc);
return rc;
}
/* sync */
val &= WLED_SYNC_MASK;
val |= WLED_SYNC_VAL;
rc = pm8xxx_writeb(led->dev->parent, WLED_SYNC_REG, val);
if (rc) {
dev_err(led->dev->parent,
"can't read wled sync register rc=%d\n", rc);
return rc;
}
val &= WLED_SYNC_MASK;
val |= WLED_SYNC_RESET_VAL;
rc = pm8xxx_writeb(led->dev->parent, WLED_SYNC_REG, val);
if (rc) {
dev_err(led->dev->parent,
"can't read wled sync register rc=%d\n", rc);
return rc;
}
return 0;
}
static void wled_dump_regs(struct pm8xxx_led_data *led)
{
int i;
u8 val;
for (i = 1; i < 17; i++) {
pm8xxx_readb(led->dev->parent,
SSBI_REG_ADDR_WLED_CTRL(i), &val);
pr_debug("WLED_CTRL_%d = 0x%x\n", i, val);
}
}
static void
led_rgb_write(struct pm8xxx_led_data *led, u16 addr, enum led_brightness value)
{
int rc;
u8 val, mask;
if (led->id != PM8XXX_ID_RGB_LED_BLUE &&
led->id != PM8XXX_ID_RGB_LED_RED &&
led->id != PM8XXX_ID_RGB_LED_GREEN)
return;
rc = pm8xxx_readb(led->dev->parent, addr, &val);
if (rc) {
dev_err(led->cdev.dev, "can't read rgb ctrl register rc=%d\n",
rc);
return;
}
switch (led->id) {
case PM8XXX_ID_RGB_LED_RED:
mask = PM8XXX_DRV_RGB_RED_LED;
break;
case PM8XXX_ID_RGB_LED_GREEN:
mask = PM8XXX_DRV_RGB_GREEN_LED;
break;
case PM8XXX_ID_RGB_LED_BLUE:
mask = PM8XXX_DRV_RGB_BLUE_LED;
break;
default:
return;
}
if (value)
val |= mask;
else
val &= ~mask;
rc = pm8xxx_writeb(led->dev->parent, addr, val);
if (rc < 0)
dev_err(led->cdev.dev, "can't set rgb led %d level rc=%d\n",
led->id, rc);
}
static void
led_rgb_set(struct pm8xxx_led_data *led, enum led_brightness value)
{
if (value) {
led_rgb_write(led, SSBI_REG_ADDR_RGB_CNTL1, value);
led_rgb_write(led, SSBI_REG_ADDR_RGB_CNTL2, value);
} else {
led_rgb_write(led, SSBI_REG_ADDR_RGB_CNTL2, value);
led_rgb_write(led, SSBI_REG_ADDR_RGB_CNTL1, value);
}
}
static int pm8xxx_adjust_brightness(struct led_classdev *led_cdev,
enum led_brightness value)
{
int level = 0;
struct pm8xxx_led_data *led;
led = container_of(led_cdev, struct pm8xxx_led_data, cdev);
if (!led->adjust_brightness)
return value;
if (led->adjust_brightness == led->cdev.max_brightness)
return value;
level = (2 * value * led->adjust_brightness
+ led->cdev.max_brightness)
/ (2 * led->cdev.max_brightness);
if (!level && value)
level = 1;
return level;
}
static int pm8xxx_led_pwm_pattern_update(struct pm8xxx_led_data * led)
{
int start_idx, idx_len;
int *pcts = NULL;
int i, rc = 0;
int temp = 0;
int pwm_max = 0;
int total_ms, on_ms;
if (!led->pwm_duty_cycles || !led->pwm_duty_cycles->duty_pcts) {
dev_err(led->cdev.dev, "duty_cycles and duty_pcts is not exist\n");
return -EINVAL;
}
if (led->pwm_grppwm > 0 && led->pwm_grpfreq > 0) {
total_ms = led->pwm_grpfreq * 50;
on_ms = (led->pwm_grppwm * total_ms) >> 8;
if (PM8XXX_LED_PWM_FLAGS & PM_PWM_LUT_REVERSE) {
led->pwm_duty_cycles->duty_ms = on_ms /
(led->pwm_duty_cycles->num_duty_pcts << 1);
led->pwm_pause_lo = on_ms %
(led->pwm_duty_cycles->num_duty_pcts << 1);
} else {
led->pwm_duty_cycles->duty_ms = on_ms /
(led->pwm_duty_cycles->num_duty_pcts);
led->pwm_pause_lo = on_ms %
(led->pwm_duty_cycles->num_duty_pcts);
}
led->pwm_pause_hi = total_ms - on_ms;
dev_dbg(led->cdev.dev, "duty_ms %d, pause_hi %d, pause_lo %d, total_ms %d, on_ms %d\n",
led->pwm_duty_cycles->duty_ms, led->pwm_pause_hi, led->pwm_pause_lo,
total_ms, on_ms);
}
pwm_max = pm8xxx_adjust_brightness(&led->cdev, led->cdev.brightness);
start_idx = led->pwm_duty_cycles->start_idx;
idx_len = led->pwm_duty_cycles->num_duty_pcts;
pcts = led->pwm_duty_cycles->duty_pcts;
if (led->blink) {
int mid = (idx_len - 1) >> 1;
for (i = 0; i <= mid; i++) {
temp = ((pwm_max * i) << 1) / mid + 1;
pcts[i] = temp >> 1;
pcts[idx_len - 1 - i] = temp >> 1;
}
} else {
for (i = 0; i < idx_len; i++) {
pcts[i] = pwm_max;
}
}
if (idx_len >= PM_PWM_LUT_SIZE && start_idx) {
pr_err("Wrong LUT size or index\n");
return -EINVAL;
}
if ((start_idx + idx_len) > PM_PWM_LUT_SIZE) {
pr_err("Exceed LUT limit\n");
return -EINVAL;
}
rc = pm8xxx_pwm_lut_config(led->pwm_dev, led->pwm_period_us,
led->pwm_duty_cycles->duty_pcts,
led->pwm_duty_cycles->duty_ms,
start_idx, idx_len, led->pwm_pause_lo, led->pwm_pause_hi,
PM8XXX_LED_PWM_FLAGS);
return rc;
}
static int pm8xxx_led_pwm_work(struct pm8xxx_led_data *led)
{
int duty_us;
int rc = 0;
int level = 0;
level = pm8xxx_adjust_brightness(&led->cdev, led->cdev.brightness);
if (led->pwm_duty_cycles == NULL) {
duty_us = (led->pwm_period_us * level) / LED_FULL;
rc = pwm_config(led->pwm_dev, duty_us, led->pwm_period_us);
if (led->cdev.brightness) {
led_rgb_write(led, SSBI_REG_ADDR_RGB_CNTL1,
led->cdev.brightness);
rc = pwm_enable(led->pwm_dev);
} else {
pwm_disable(led->pwm_dev);
led_rgb_write(led, SSBI_REG_ADDR_RGB_CNTL1,
led->cdev.brightness);
}
} else {
if (level) {
pm8xxx_led_pwm_pattern_update(led);
led_rgb_write(led, SSBI_REG_ADDR_RGB_CNTL1, level);
}
rc = pm8xxx_pwm_lut_enable(led->pwm_dev, level);
if (!level)
led_rgb_write(led, SSBI_REG_ADDR_RGB_CNTL1, level);
}
return rc;
}
static void __pm8xxx_led_work(struct pm8xxx_led_data *led,
enum led_brightness value)
{
int rc;
int level = 0;
mutex_lock(&led->lock);
level = pm8xxx_adjust_brightness(&led->cdev, value);
switch (led->id) {
case PM8XXX_ID_LED_KB_LIGHT:
led_kp_set(led, level);
break;
case PM8XXX_ID_LED_0:
case PM8XXX_ID_LED_1:
case PM8XXX_ID_LED_2:
led_lc_set(led, level);
break;
case PM8XXX_ID_FLASH_LED_0:
case PM8XXX_ID_FLASH_LED_1:
led_flash_set(led, level);
break;
case PM8XXX_ID_WLED:
rc = led_wled_set(led, level);
if (rc < 0)
pr_err("wled brightness set failed %d\n", rc);
break;
case PM8XXX_ID_RGB_LED_RED:
case PM8XXX_ID_RGB_LED_GREEN:
case PM8XXX_ID_RGB_LED_BLUE:
led_rgb_set(led, level);
break;
default:
dev_err(led->cdev.dev, "unknown led id %d", led->id);
break;
}
mutex_unlock(&led->lock);
}
static void pm8xxx_led_work(struct work_struct *work)
{
int rc;
struct pm8xxx_led_data *led = container_of(work,
struct pm8xxx_led_data, work);
dev_dbg(led->cdev.dev, "led %s set %d (%s mode)\n",
led->cdev.name, led->cdev.brightness,
(led->pwm_dev ? "pwm" : "manual"));
if (led->pwm_dev == NULL) {
__pm8xxx_led_work(led, led->cdev.brightness);
} else {
rc = pm8xxx_led_pwm_work(led);
if (rc)
pr_err("could not configure PWM mode for LED:%d\n",
led->id);
}
}
static void pm8xxx_led_set(struct led_classdev *led_cdev,
enum led_brightness value)
{
struct pm8xxx_led_data *led;
led = container_of(led_cdev, struct pm8xxx_led_data, cdev);
if (value < LED_OFF || value > led->cdev.max_brightness) {
dev_err(led->cdev.dev, "Invalid brightness value exceeds");
return;
}
if (!led->lock_update) {
schedule_work(&led->work);
} else {
dev_dbg(led->cdev.dev, "set %d pending\n",
value);
}
}
static int pm8xxx_set_led_mode_and_adjust_brightness(struct pm8xxx_led_data *led,
enum pm8xxx_led_modes led_mode, int max_current)
{
switch (led->id) {
case PM8XXX_ID_LED_0:
case PM8XXX_ID_LED_1:
case PM8XXX_ID_LED_2:
led->adjust_brightness = max_current /
PM8XXX_ID_LED_CURRENT_FACTOR;
if (led->adjust_brightness > MAX_LC_LED_BRIGHTNESS)
led->adjust_brightness = MAX_LC_LED_BRIGHTNESS;
led->reg = led_mode;
break;
case PM8XXX_ID_LED_KB_LIGHT:
case PM8XXX_ID_FLASH_LED_0:
case PM8XXX_ID_FLASH_LED_1:
led->adjust_brightness = max_current /
PM8XXX_ID_FLASH_CURRENT_FACTOR;
if (led->adjust_brightness > MAX_FLASH_BRIGHTNESS)
led->adjust_brightness = MAX_FLASH_BRIGHTNESS;
switch (led_mode) {
case PM8XXX_LED_MODE_PWM1:
case PM8XXX_LED_MODE_PWM2:
case PM8XXX_LED_MODE_PWM3:
led->reg = PM8XXX_FLASH_MODE_PWM;
break;
case PM8XXX_LED_MODE_DTEST1:
led->reg = PM8XXX_FLASH_MODE_DBUS1;
break;
case PM8XXX_LED_MODE_DTEST2:
led->reg = PM8XXX_FLASH_MODE_DBUS2;
break;
default:
led->reg = PM8XXX_LED_MODE_MANUAL;
break;
}
break;
case PM8XXX_ID_WLED:
led->adjust_brightness = WLED_MAX_LEVEL;
break;
case PM8XXX_ID_RGB_LED_RED:
case PM8XXX_ID_RGB_LED_GREEN:
case PM8XXX_ID_RGB_LED_BLUE:
break;
default:
dev_err(led->cdev.dev, "LED Id is invalid");
return -EINVAL;
}
return 0;
}
static enum led_brightness pm8xxx_led_get(struct led_classdev *led_cdev)
{
struct pm8xxx_led_data *led;
led = container_of(led_cdev, struct pm8xxx_led_data, cdev);
return led->cdev.brightness;
}
static int __devinit init_wled(struct pm8xxx_led_data *led)
{
int rc, i;
u8 val, num_wled_strings;
num_wled_strings = led->wled_cfg->num_strings;
/* program over voltage protection threshold */
if (led->wled_cfg->ovp_val > WLED_OVP_37V) {
dev_err(led->dev->parent, "Invalid ovp value");
return -EINVAL;
}
rc = pm8xxx_readb(led->dev->parent, WLED_OVP_CFG_REG, &val);
if (rc) {
dev_err(led->dev->parent, "can't read wled ovp config"
" register rc=%d\n", rc);
return rc;
}
val = (val & ~WLED_OVP_VAL_MASK) |
(led->wled_cfg->ovp_val << WLED_OVP_VAL_BIT_SHFT);
rc = pm8xxx_writeb(led->dev->parent, WLED_OVP_CFG_REG, val);
if (rc) {
dev_err(led->dev->parent, "can't write wled ovp config"
" register rc=%d\n", rc);
return rc;
}
/* program current boost limit and output feedback*/
if (led->wled_cfg->boost_curr_lim > WLED_CURR_LIMIT_1680mA) {
dev_err(led->dev->parent, "Invalid boost current limit");
return -EINVAL;
}
rc = pm8xxx_readb(led->dev->parent, WLED_BOOST_CFG_REG, &val);
if (rc) {
dev_err(led->dev->parent, "can't read wled boost config"
" register rc=%d\n", rc);
return rc;
}
val = (val & ~WLED_BOOST_LIMIT_MASK) |
(led->wled_cfg->boost_curr_lim << WLED_BOOST_LIMIT_BIT_SHFT);
val = (val & ~WLED_OP_FDBCK_MASK) |
(led->wled_cfg->op_fdbck << WLED_OP_FDBCK_BIT_SHFT);
rc = pm8xxx_writeb(led->dev->parent, WLED_BOOST_CFG_REG, val);
if (rc) {
dev_err(led->dev->parent, "can't write wled boost config"
" register rc=%d\n", rc);
return rc;
}
/* program high pole capacitance */
if (led->wled_cfg->cp_select > WLED_CP_SELECT_MAX) {
dev_err(led->dev->parent, "Invalid pole capacitance");
return -EINVAL;
}
rc = pm8xxx_readb(led->dev->parent, WLED_HIGH_POLE_CAP_REG, &val);
if (rc) {
dev_err(led->dev->parent, "can't read wled high pole"
" capacitance register rc=%d\n", rc);
return rc;
}
val = (val & ~WLED_CP_SELECT_MASK) | led->wled_cfg->cp_select;
rc = pm8xxx_writeb(led->dev->parent, WLED_HIGH_POLE_CAP_REG, val);
if (rc) {
dev_err(led->dev->parent, "can't write wled high pole"
" capacitance register rc=%d\n", rc);
return rc;
}
/* program activation delay and maximum current */
for (i = 0; i < num_wled_strings; i++) {
rc = pm8xxx_readb(led->dev->parent,
WLED_MAX_CURR_CFG_REG(i + 2), &val);
if (rc) {
dev_err(led->dev->parent, "can't read wled max current"
" config register rc=%d\n", rc);
return rc;
}
if ((led->wled_cfg->ctrl_delay_us % WLED_CTL_DLY_STEP) ||
(led->wled_cfg->ctrl_delay_us > WLED_CTL_DLY_MAX)) {
dev_err(led->dev->parent, "Invalid control delay\n");
return rc;
}
val = val / WLED_CTL_DLY_STEP;
val = (val & ~WLED_CTL_DLY_MASK) |
(led->wled_cfg->ctrl_delay_us << WLED_CTL_DLY_BIT_SHFT);
if ((led->max_current > WLED_MAX_CURR)) {
dev_err(led->dev->parent, "Invalid max current\n");
return -EINVAL;
}
val = (val & ~WLED_MAX_CURR_MASK) | led->max_current;
rc = pm8xxx_writeb(led->dev->parent,
WLED_MAX_CURR_CFG_REG(i + 2), val);
if (rc) {
dev_err(led->dev->parent, "can't write wled max current"
" config register rc=%d\n", rc);
return rc;
}
}
if (led->wled_cfg->cabc_en) {
rc = pm8xxx_readb(led->dev->parent, WLED_SYNC_REG, &val);
if (rc) {
dev_err(led->dev->parent,
"can't read cabc register rc=%d\n", rc);
return rc;
}
switch (num_wled_strings) {
case ONE_WLED_STRING:
val |= (WLED_CABC_ONE_STRING << WLED_CABC_SHIFT);
break;
case TWO_WLED_STRINGS:
val |= (WLED_CABC_TWO_STRING << WLED_CABC_SHIFT);
break;
case THREE_WLED_STRINGS:
val |= (WLED_CABC_THREE_STRING << WLED_CABC_SHIFT);
break;
default:
break;
}
rc = pm8xxx_writeb(led->dev->parent, WLED_SYNC_REG, val);
if (rc) {
dev_err(led->dev->parent,
"can't write to enable cabc rc=%d\n", rc);
return rc;
}
}
/* program digital module generator, cs out and enable the module */
rc = pm8xxx_readb(led->dev->parent, WLED_MOD_CTRL_REG, &val);
if (rc) {
dev_err(led->dev->parent, "can't read wled module ctrl"
" register rc=%d\n", rc);
return rc;
}
if (led->wled_cfg->dig_mod_gen_en)
val |= WLED_DIG_MOD_GEN_MASK;
if (led->wled_cfg->cs_out_en)
val |= WLED_CS_OUT_MASK;
val |= WLED_EN_MASK;
rc = pm8xxx_writeb(led->dev->parent, WLED_MOD_CTRL_REG, val);
if (rc) {
dev_err(led->dev->parent, "can't write wled module ctrl"
" register rc=%d\n", rc);
return rc;
}
led->wled_mod_ctrl_val = val;
/* dump wled registers */
wled_dump_regs(led);
return 0;
}
static int __devinit get_init_value(struct pm8xxx_led_data *led, u8 *val)
{
int rc, offset;
u16 addr;
switch (led->id) {
case PM8XXX_ID_LED_KB_LIGHT:
addr = SSBI_REG_ADDR_DRV_KEYPAD;
break;
case PM8XXX_ID_LED_0:
case PM8XXX_ID_LED_1:
case PM8XXX_ID_LED_2:
offset = PM8XXX_LED_OFFSET(led->id);
addr = SSBI_REG_ADDR_LED_CTRL(offset);
break;
case PM8XXX_ID_FLASH_LED_0:
addr = SSBI_REG_ADDR_FLASH_DRV0;
break;
case PM8XXX_ID_FLASH_LED_1:
addr = SSBI_REG_ADDR_FLASH_DRV1;
break;
case PM8XXX_ID_WLED:
rc = init_wled(led);
if (rc)
dev_err(led->cdev.dev, "can't initialize wled rc=%d\n",
rc);
return rc;
case PM8XXX_ID_RGB_LED_RED:
case PM8XXX_ID_RGB_LED_GREEN:
case PM8XXX_ID_RGB_LED_BLUE:
addr = SSBI_REG_ADDR_RGB_CNTL1;
break;
default:
dev_err(led->cdev.dev, "unknown led id %d", led->id);
return -EINVAL;
}
rc = pm8xxx_readb(led->dev->parent, addr, val);
if (rc)
dev_err(led->cdev.dev, "can't get led(%d) level rc=%d\n",
led->id, rc);
return rc;
}
static int pm8xxx_led_pwm_configure(struct pm8xxx_led_data *led)
{
int duty_us, rc;
led->pwm_dev = pwm_request(led->pwm_channel,
led->cdev.name);
if (IS_ERR_OR_NULL(led->pwm_dev)) {
pr_err("could not acquire PWM Channel %d, "
"error %ld\n", led->pwm_channel,
PTR_ERR(led->pwm_dev));
led->pwm_dev = NULL;
return -ENODEV;
}
if (led->pwm_duty_cycles != NULL) {
rc = pm8xxx_led_pwm_pattern_update(led);
} else {
duty_us = led->pwm_period_us;
rc = pwm_config(led->pwm_dev, duty_us, led->pwm_period_us);
}
return rc;
}
static ssize_t pm8xxx_led_lock_update_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
const struct pm8xxx_led_platform_data *pdata = dev->platform_data;
struct pm8xxx_led_data *leds = (struct pm8xxx_led_data *)dev_get_drvdata(dev);
int i, n = 0;
for (i = 0; i < pdata->num_configs; i++)
{
n += sprintf(&buf[n], "%s is %s\n",
leds[i].cdev.name,
(leds[i].lock_update ? "non-updatable" : "updatable"));
}
return n;
}
static ssize_t pm8xxx_led_lock_update_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct pm8xxx_led_platform_data *pdata = dev->platform_data;
struct pm8xxx_led_data *leds = (struct pm8xxx_led_data *)dev_get_drvdata(dev);
ssize_t rc = -EINVAL;
char *after;
unsigned long state = simple_strtoul(buf, &after, 10);
size_t count = after - buf;
int i;
if (isspace(*after))
count++;
if (count == size) {
rc = count;
for (i = 0; i < pdata->num_configs; i++)
{
leds[i].lock_update = state;
if (!state) {
dev_info(dev, "resume %s set %d\n",
leds[i].cdev.name, leds[i].cdev.brightness);
schedule_work(&leds[i].work);
}
}
}
return rc;
}
static DEVICE_ATTR(lock, 0644, pm8xxx_led_lock_update_show, pm8xxx_led_lock_update_store);
static ssize_t pm8xxx_led_grppwm_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
const struct pm8xxx_led_platform_data *pdata = dev->platform_data;
struct pm8xxx_led_data *leds = (struct pm8xxx_led_data *)dev_get_drvdata(dev);
int i, n = 0;
for (i = 0; i < pdata->num_configs; i++)
{
n += sprintf(&buf[n], "%s period_us is %d\n", leds[i].cdev.name, leds[i].pwm_grppwm);
}
return n;
}
static ssize_t pm8xxx_led_grppwm_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
const struct pm8xxx_led_platform_data *pdata = dev->platform_data;
struct pm8xxx_led_data *leds = (struct pm8xxx_led_data *)dev_get_drvdata(dev);
ssize_t rc = -EINVAL;
char *after;
unsigned long state = simple_strtoul(buf, &after, 10);
size_t count = after - buf;
int i;
if (isspace(*after))
count++;
if (count == size) {
rc = count;
if (state < 0)
state = 0;
if (state > PM8XXX_LED_PWM_GRPPWM_MAX)
state = PM8XXX_LED_PWM_GRPPWM_MAX;
for (i = 0; i < pdata->num_configs; i++)
{
leds[i].pwm_grppwm = state;
dev_dbg(leds[i].cdev.dev, "set grppwm %lu\n", state);
}
}
return rc;
}
static DEVICE_ATTR(grppwm, 0644, pm8xxx_led_grppwm_show, pm8xxx_led_grppwm_store);
static ssize_t pm8xxx_led_grpfreq_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
const struct pm8xxx_led_platform_data *pdata = dev->platform_data;
struct pm8xxx_led_data *leds = (struct pm8xxx_led_data *)dev_get_drvdata(dev);
int i, n = 0;
for (i = 0; i < pdata->num_configs; i++)
{
n += sprintf(&buf[n], "%s freq %d\n", leds[i].cdev.name, leds[i].pwm_grpfreq);
}
return n;
}
static ssize_t pm8xxx_led_grpfreq_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
const struct pm8xxx_led_platform_data *pdata = dev->platform_data;
struct pm8xxx_led_data *leds = (struct pm8xxx_led_data *)dev_get_drvdata(dev);
ssize_t rc = -EINVAL;
char *after;
unsigned long state = simple_strtoul(buf, &after, 10);
size_t count = after - buf;
int i;
if (isspace(*after))
count++;
if (count == size) {
rc = count;
if(state < 0)
state = 0;
if(state > PM8XXX_LED_PWM_GRPFREQ_MAX)
state = PM8XXX_LED_PWM_GRPFREQ_MAX;
for (i = 0; i < pdata->num_configs; i++)
{
leds[i].pwm_grpfreq = state;
dev_dbg(leds[i].cdev.dev, "set grpfreq %lu\n", state);
}
}
return rc;
}
static DEVICE_ATTR(grpfreq, 0644, pm8xxx_led_grpfreq_show, pm8xxx_led_grpfreq_store);
static ssize_t pm8xxx_led_blink_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
const struct pm8xxx_led_platform_data *pdata = dev->platform_data;
struct pm8xxx_led_data *leds = (struct pm8xxx_led_data *)dev_get_drvdata(dev);
int i, blink = 0;
for (i = 0; i < pdata->num_configs; i++)
{
if (leds[i].blink)
blink |= 1 << i;
}
return sprintf(buf, "%d", blink);
}
static ssize_t pm8xxx_led_blink_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
const struct pm8xxx_led_platform_data *pdata = dev->platform_data;
struct pm8xxx_led_data *leds = (struct pm8xxx_led_data *)dev_get_drvdata(dev);
ssize_t rc = -EINVAL;
char *after;
unsigned long state = simple_strtoul(buf, &after, 10);
size_t count = after - buf;
int i;
if (isspace(*after))
count++;
if (count == size) {
rc = count;
for (i = 0; i < pdata->num_configs; i++)
{
if (leds[i].blink != state) {
leds[i].blink = state;
if(!leds[i].lock_update)
rc = pm8xxx_led_pwm_pattern_update(&leds[i]);
}
}
}
return rc;
}
static DEVICE_ATTR(blink, 0644, pm8xxx_led_blink_show, pm8xxx_led_blink_store);
static int __devinit pm8xxx_led_probe(struct platform_device *pdev)
{
const struct pm8xxx_led_platform_data *pdata = pdev->dev.platform_data;
const struct led_platform_data *pcore_data;
struct led_info *curr_led;
struct pm8xxx_led_data *led, *led_dat;
struct pm8xxx_led_config *led_cfg;
enum pm8xxx_version version;
bool found = false;
int rc, i, j;
if (pdata == NULL) {
dev_err(&pdev->dev, "platform data not supplied\n");
return -EINVAL;
}
pcore_data = pdata->led_core;
if (pcore_data->num_leds != pdata->num_configs) {
dev_err(&pdev->dev, "#no. of led configs and #no. of led"
"entries are not equal\n");
return -EINVAL;
}
led = kcalloc(pcore_data->num_leds, sizeof(*led), GFP_KERNEL);
if (led == NULL) {
dev_err(&pdev->dev, "failed to alloc memory\n");
return -ENOMEM;
}
for (i = 0; i < pcore_data->num_leds; i++) {
curr_led = &pcore_data->leds[i];
led_dat = &led[i];
led_cfg = &pdata->configs[i];
led_dat->id = led_cfg->id;
led_dat->pwm_channel = led_cfg->pwm_channel;
led_dat->pwm_period_us = led_cfg->pwm_period_us;
led_dat->pwm_duty_cycles = led_cfg->pwm_duty_cycles;
led_dat->wled_cfg = led_cfg->wled_cfg;
led_dat->max_current = led_cfg->max_current;
led_dat->lock_update = 0;
led_dat->blink = 0;
if (!((led_dat->id >= PM8XXX_ID_LED_KB_LIGHT) &&
(led_dat->id < PM8XXX_ID_MAX))) {
dev_err(&pdev->dev, "invalid LED ID(%d) specified\n",
led_dat->id);
rc = -EINVAL;
goto fail_id_check;
}
found = false;
version = pm8xxx_get_version(pdev->dev.parent);
for (j = 0; j < ARRAY_SIZE(led_map); j++) {
if (version == led_map[j].version
&& (led_map[j].supported & (1 << led_dat->id))) {
found = true;
break;
}
}
if (!found) {
dev_err(&pdev->dev, "invalid LED ID(%d) specified\n",
led_dat->id);
rc = -EINVAL;
goto fail_id_check;
}
led_dat->cdev.name = curr_led->name;
led_dat->cdev.default_trigger = curr_led->default_trigger;
led_dat->cdev.brightness_set = pm8xxx_led_set;
led_dat->cdev.brightness_get = pm8xxx_led_get;
led_dat->cdev.max_brightness = LED_FULL;
led_dat->cdev.brightness = LED_OFF;
led_dat->cdev.flags = curr_led->flags;
led_dat->dev = &pdev->dev;
rc = get_init_value(led_dat, &led_dat->reg);
if (rc < 0)
goto fail_id_check;
rc = pm8xxx_set_led_mode_and_adjust_brightness(led_dat,
led_cfg->mode, led_cfg->max_current);
if (rc < 0)
goto fail_id_check;
mutex_init(&led_dat->lock);
INIT_WORK(&led_dat->work, pm8xxx_led_work);
rc = led_classdev_register(&pdev->dev, &led_dat->cdev);
if (rc) {
dev_err(&pdev->dev, "unable to register led %d,rc=%d\n",
led_dat->id, rc);
goto fail_id_check;
}
/* configure default state */
if (led_cfg->default_state)
led_dat->cdev.brightness = led_dat->cdev.max_brightness;
else
led_dat->cdev.brightness = LED_OFF;
if (led_cfg->mode != PM8XXX_LED_MODE_MANUAL) {
if (led_dat->id == PM8XXX_ID_RGB_LED_RED ||
led_dat->id == PM8XXX_ID_RGB_LED_GREEN ||
led_dat->id == PM8XXX_ID_RGB_LED_BLUE)
__pm8xxx_led_work(led_dat, 0);
else
__pm8xxx_led_work(led_dat,
led_dat->cdev.max_brightness);
if (led_dat->pwm_channel != -1) {
if (led_cfg->pwm_adjust_brightness) {
led_dat->adjust_brightness = led_cfg->pwm_adjust_brightness;
} else {
led_dat->adjust_brightness = 100;
}
rc = pm8xxx_led_pwm_configure(led_dat);
if (rc) {
dev_err(&pdev->dev, "failed to "
"configure LED, error: %d\n", rc);
goto fail_id_check;
}
schedule_work(&led->work);
}
} else {
__pm8xxx_led_work(led_dat, led_dat->cdev.brightness);
}
}
led->use_pwm = pdata->use_pwm;
platform_set_drvdata(pdev, led);
rc = device_create_file(&pdev->dev, &dev_attr_lock);
if (rc) {
device_remove_file(&pdev->dev, &dev_attr_lock);
dev_err(&pdev->dev, "failed device_create_file(lock)\n");
}
if (led->use_pwm) {
rc = device_create_file(&pdev->dev, &dev_attr_blink);
if (rc) {
device_remove_file(&pdev->dev, &dev_attr_blink);
dev_err(&pdev->dev, "failed device_create_file(blink)\n");
}
rc = device_create_file(&pdev->dev, &dev_attr_grppwm);
if (rc) {
device_remove_file(&pdev->dev, &dev_attr_grppwm);
dev_err(&pdev->dev, "failed device_create_fiaild(grppwm)\n");
}
rc = device_create_file(&pdev->dev, &dev_attr_grpfreq);
if (rc) {
device_remove_file(&pdev->dev, &dev_attr_grpfreq);
dev_err(&pdev->dev, "failed device_create_file(grpfreq)\n");
}
}
return 0;
fail_id_check:
if (i > 0) {
for (i = i - 1; i >= 0; i--) {
mutex_destroy(&led[i].lock);
led_classdev_unregister(&led[i].cdev);
if (led[i].pwm_dev != NULL)
pwm_free(led[i].pwm_dev);
}
}
kfree(led);
return rc;
}
static int __devexit pm8xxx_led_remove(struct platform_device *pdev)
{
int i;
const struct led_platform_data *pdata =
pdev->dev.platform_data;
struct pm8xxx_led_data *led = platform_get_drvdata(pdev);
for (i = 0; i < pdata->num_leds; i++) {
cancel_work_sync(&led[i].work);
mutex_destroy(&led[i].lock);
led_classdev_unregister(&led[i].cdev);
if (led[i].pwm_dev != NULL) {
pwm_free(led[i].pwm_dev);
}
}
device_remove_file(&pdev->dev, &dev_attr_lock);
if (led->use_pwm) {
device_remove_file(&pdev->dev, &dev_attr_blink);
device_remove_file(&pdev->dev, &dev_attr_grppwm);
device_remove_file(&pdev->dev, &dev_attr_grpfreq);
}
kfree(led);
return 0;
}
static struct platform_driver pm8xxx_led_driver = {
.probe = pm8xxx_led_probe,
.remove = __devexit_p(pm8xxx_led_remove),
.driver = {
.name = PM8XXX_LEDS_DEV_NAME,
.owner = THIS_MODULE,
},
};
static int __init pm8xxx_led_init(void)
{
return platform_driver_register(&pm8xxx_led_driver);
}
subsys_initcall(pm8xxx_led_init);
static void __exit pm8xxx_led_exit(void)
{
platform_driver_unregister(&pm8xxx_led_driver);
}
module_exit(pm8xxx_led_exit);
MODULE_DESCRIPTION("PM8XXX LEDs driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION("1.0");
MODULE_ALIAS("platform:pm8xxx-led");