android_kernel_google_msm/drivers/char/mem.c
Arjan van de Ven b781ecb6a3 make /dev/kmem a config option
Make /dev/kmem a config option; /dev/kmem is VERY rarely used, and when
used, it's generally for no good (rootkits tend to be the most common
users).  With this config option, users have the choice to disable
/dev/kmem, saving some size as well.

A patch to disable /dev/kmem has been in the Fedora and RHEL kernels for
4+ years now without any known problems or legit users of /dev/kmem.

[akpm@linux-foundation.org: make CONFIG_DEVKMEM default to y]
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29 08:05:59 -07:00

993 lines
21 KiB
C

/*
* linux/drivers/char/mem.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Added devfs support.
* Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
* Shared /dev/zero mmaping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
*/
#include <linux/mm.h>
#include <linux/miscdevice.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mman.h>
#include <linux/random.h>
#include <linux/init.h>
#include <linux/raw.h>
#include <linux/tty.h>
#include <linux/capability.h>
#include <linux/ptrace.h>
#include <linux/device.h>
#include <linux/highmem.h>
#include <linux/crash_dump.h>
#include <linux/backing-dev.h>
#include <linux/bootmem.h>
#include <linux/splice.h>
#include <linux/pfn.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#ifdef CONFIG_IA64
# include <linux/efi.h>
#endif
/*
* Architectures vary in how they handle caching for addresses
* outside of main memory.
*
*/
static inline int uncached_access(struct file *file, unsigned long addr)
{
#if defined(CONFIG_IA64)
/*
* On ia64, we ignore O_SYNC because we cannot tolerate memory attribute aliases.
*/
return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
#elif defined(CONFIG_MIPS)
{
extern int __uncached_access(struct file *file,
unsigned long addr);
return __uncached_access(file, addr);
}
#else
/*
* Accessing memory above the top the kernel knows about or through a file pointer
* that was marked O_SYNC will be done non-cached.
*/
if (file->f_flags & O_SYNC)
return 1;
return addr >= __pa(high_memory);
#endif
}
#ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
static inline int valid_phys_addr_range(unsigned long addr, size_t count)
{
if (addr + count > __pa(high_memory))
return 0;
return 1;
}
static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
{
return 1;
}
#endif
#ifdef CONFIG_NONPROMISC_DEVMEM
static inline int range_is_allowed(unsigned long pfn, unsigned long size)
{
u64 from = ((u64)pfn) << PAGE_SHIFT;
u64 to = from + size;
u64 cursor = from;
while (cursor < to) {
if (!devmem_is_allowed(pfn)) {
printk(KERN_INFO
"Program %s tried to access /dev/mem between %Lx->%Lx.\n",
current->comm, from, to);
return 0;
}
cursor += PAGE_SIZE;
pfn++;
}
return 1;
}
#else
static inline int range_is_allowed(unsigned long pfn, unsigned long size)
{
return 1;
}
#endif
void __attribute__((weak)) unxlate_dev_mem_ptr(unsigned long phys, void *addr)
{
}
/*
* This funcion reads the *physical* memory. The f_pos points directly to the
* memory location.
*/
static ssize_t read_mem(struct file * file, char __user * buf,
size_t count, loff_t *ppos)
{
unsigned long p = *ppos;
ssize_t read, sz;
char *ptr;
if (!valid_phys_addr_range(p, count))
return -EFAULT;
read = 0;
#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
/* we don't have page 0 mapped on sparc and m68k.. */
if (p < PAGE_SIZE) {
sz = PAGE_SIZE - p;
if (sz > count)
sz = count;
if (sz > 0) {
if (clear_user(buf, sz))
return -EFAULT;
buf += sz;
p += sz;
count -= sz;
read += sz;
}
}
#endif
while (count > 0) {
/*
* Handle first page in case it's not aligned
*/
if (-p & (PAGE_SIZE - 1))
sz = -p & (PAGE_SIZE - 1);
else
sz = PAGE_SIZE;
sz = min_t(unsigned long, sz, count);
if (!range_is_allowed(p >> PAGE_SHIFT, count))
return -EPERM;
/*
* On ia64 if a page has been mapped somewhere as
* uncached, then it must also be accessed uncached
* by the kernel or data corruption may occur
*/
ptr = xlate_dev_mem_ptr(p);
if (!ptr)
return -EFAULT;
if (copy_to_user(buf, ptr, sz)) {
unxlate_dev_mem_ptr(p, ptr);
return -EFAULT;
}
unxlate_dev_mem_ptr(p, ptr);
buf += sz;
p += sz;
count -= sz;
read += sz;
}
*ppos += read;
return read;
}
static ssize_t write_mem(struct file * file, const char __user * buf,
size_t count, loff_t *ppos)
{
unsigned long p = *ppos;
ssize_t written, sz;
unsigned long copied;
void *ptr;
if (!valid_phys_addr_range(p, count))
return -EFAULT;
written = 0;
#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
/* we don't have page 0 mapped on sparc and m68k.. */
if (p < PAGE_SIZE) {
unsigned long sz = PAGE_SIZE - p;
if (sz > count)
sz = count;
/* Hmm. Do something? */
buf += sz;
p += sz;
count -= sz;
written += sz;
}
#endif
while (count > 0) {
/*
* Handle first page in case it's not aligned
*/
if (-p & (PAGE_SIZE - 1))
sz = -p & (PAGE_SIZE - 1);
else
sz = PAGE_SIZE;
sz = min_t(unsigned long, sz, count);
if (!range_is_allowed(p >> PAGE_SHIFT, sz))
return -EPERM;
/*
* On ia64 if a page has been mapped somewhere as
* uncached, then it must also be accessed uncached
* by the kernel or data corruption may occur
*/
ptr = xlate_dev_mem_ptr(p);
if (!ptr) {
if (written)
break;
return -EFAULT;
}
copied = copy_from_user(ptr, buf, sz);
if (copied) {
written += sz - copied;
unxlate_dev_mem_ptr(p, ptr);
if (written)
break;
return -EFAULT;
}
unxlate_dev_mem_ptr(p, ptr);
buf += sz;
p += sz;
count -= sz;
written += sz;
}
*ppos += written;
return written;
}
int __attribute__((weak)) phys_mem_access_prot_allowed(struct file *file,
unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
{
return 1;
}
#ifndef __HAVE_PHYS_MEM_ACCESS_PROT
static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t vma_prot)
{
#ifdef pgprot_noncached
unsigned long offset = pfn << PAGE_SHIFT;
if (uncached_access(file, offset))
return pgprot_noncached(vma_prot);
#endif
return vma_prot;
}
#endif
#ifndef CONFIG_MMU
static unsigned long get_unmapped_area_mem(struct file *file,
unsigned long addr,
unsigned long len,
unsigned long pgoff,
unsigned long flags)
{
if (!valid_mmap_phys_addr_range(pgoff, len))
return (unsigned long) -EINVAL;
return pgoff << PAGE_SHIFT;
}
/* can't do an in-place private mapping if there's no MMU */
static inline int private_mapping_ok(struct vm_area_struct *vma)
{
return vma->vm_flags & VM_MAYSHARE;
}
#else
#define get_unmapped_area_mem NULL
static inline int private_mapping_ok(struct vm_area_struct *vma)
{
return 1;
}
#endif
void __attribute__((weak))
map_devmem(unsigned long pfn, unsigned long len, pgprot_t prot)
{
/* nothing. architectures can override. */
}
void __attribute__((weak))
unmap_devmem(unsigned long pfn, unsigned long len, pgprot_t prot)
{
/* nothing. architectures can override. */
}
static void mmap_mem_open(struct vm_area_struct *vma)
{
map_devmem(vma->vm_pgoff, vma->vm_end - vma->vm_start,
vma->vm_page_prot);
}
static void mmap_mem_close(struct vm_area_struct *vma)
{
unmap_devmem(vma->vm_pgoff, vma->vm_end - vma->vm_start,
vma->vm_page_prot);
}
static struct vm_operations_struct mmap_mem_ops = {
.open = mmap_mem_open,
.close = mmap_mem_close
};
static int mmap_mem(struct file * file, struct vm_area_struct * vma)
{
size_t size = vma->vm_end - vma->vm_start;
if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
return -EINVAL;
if (!private_mapping_ok(vma))
return -ENOSYS;
if (!range_is_allowed(vma->vm_pgoff, size))
return -EPERM;
if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
&vma->vm_page_prot))
return -EINVAL;
vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
size,
vma->vm_page_prot);
vma->vm_ops = &mmap_mem_ops;
/* Remap-pfn-range will mark the range VM_IO and VM_RESERVED */
if (remap_pfn_range(vma,
vma->vm_start,
vma->vm_pgoff,
size,
vma->vm_page_prot)) {
unmap_devmem(vma->vm_pgoff, size, vma->vm_page_prot);
return -EAGAIN;
}
return 0;
}
#ifdef CONFIG_DEVKMEM
static int mmap_kmem(struct file * file, struct vm_area_struct * vma)
{
unsigned long pfn;
/* Turn a kernel-virtual address into a physical page frame */
pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
/*
* RED-PEN: on some architectures there is more mapped memory
* than available in mem_map which pfn_valid checks
* for. Perhaps should add a new macro here.
*
* RED-PEN: vmalloc is not supported right now.
*/
if (!pfn_valid(pfn))
return -EIO;
vma->vm_pgoff = pfn;
return mmap_mem(file, vma);
}
#endif
#ifdef CONFIG_CRASH_DUMP
/*
* Read memory corresponding to the old kernel.
*/
static ssize_t read_oldmem(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
unsigned long pfn, offset;
size_t read = 0, csize;
int rc = 0;
while (count) {
pfn = *ppos / PAGE_SIZE;
if (pfn > saved_max_pfn)
return read;
offset = (unsigned long)(*ppos % PAGE_SIZE);
if (count > PAGE_SIZE - offset)
csize = PAGE_SIZE - offset;
else
csize = count;
rc = copy_oldmem_page(pfn, buf, csize, offset, 1);
if (rc < 0)
return rc;
buf += csize;
*ppos += csize;
read += csize;
count -= csize;
}
return read;
}
#endif
extern long vread(char *buf, char *addr, unsigned long count);
extern long vwrite(char *buf, char *addr, unsigned long count);
#ifdef CONFIG_DEVKMEM
/*
* This function reads the *virtual* memory as seen by the kernel.
*/
static ssize_t read_kmem(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
unsigned long p = *ppos;
ssize_t low_count, read, sz;
char * kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
read = 0;
if (p < (unsigned long) high_memory) {
low_count = count;
if (count > (unsigned long) high_memory - p)
low_count = (unsigned long) high_memory - p;
#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
/* we don't have page 0 mapped on sparc and m68k.. */
if (p < PAGE_SIZE && low_count > 0) {
size_t tmp = PAGE_SIZE - p;
if (tmp > low_count) tmp = low_count;
if (clear_user(buf, tmp))
return -EFAULT;
buf += tmp;
p += tmp;
read += tmp;
low_count -= tmp;
count -= tmp;
}
#endif
while (low_count > 0) {
/*
* Handle first page in case it's not aligned
*/
if (-p & (PAGE_SIZE - 1))
sz = -p & (PAGE_SIZE - 1);
else
sz = PAGE_SIZE;
sz = min_t(unsigned long, sz, low_count);
/*
* On ia64 if a page has been mapped somewhere as
* uncached, then it must also be accessed uncached
* by the kernel or data corruption may occur
*/
kbuf = xlate_dev_kmem_ptr((char *)p);
if (copy_to_user(buf, kbuf, sz))
return -EFAULT;
buf += sz;
p += sz;
read += sz;
low_count -= sz;
count -= sz;
}
}
if (count > 0) {
kbuf = (char *)__get_free_page(GFP_KERNEL);
if (!kbuf)
return -ENOMEM;
while (count > 0) {
int len = count;
if (len > PAGE_SIZE)
len = PAGE_SIZE;
len = vread(kbuf, (char *)p, len);
if (!len)
break;
if (copy_to_user(buf, kbuf, len)) {
free_page((unsigned long)kbuf);
return -EFAULT;
}
count -= len;
buf += len;
read += len;
p += len;
}
free_page((unsigned long)kbuf);
}
*ppos = p;
return read;
}
static inline ssize_t
do_write_kmem(void *p, unsigned long realp, const char __user * buf,
size_t count, loff_t *ppos)
{
ssize_t written, sz;
unsigned long copied;
written = 0;
#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
/* we don't have page 0 mapped on sparc and m68k.. */
if (realp < PAGE_SIZE) {
unsigned long sz = PAGE_SIZE - realp;
if (sz > count)
sz = count;
/* Hmm. Do something? */
buf += sz;
p += sz;
realp += sz;
count -= sz;
written += sz;
}
#endif
while (count > 0) {
char *ptr;
/*
* Handle first page in case it's not aligned
*/
if (-realp & (PAGE_SIZE - 1))
sz = -realp & (PAGE_SIZE - 1);
else
sz = PAGE_SIZE;
sz = min_t(unsigned long, sz, count);
/*
* On ia64 if a page has been mapped somewhere as
* uncached, then it must also be accessed uncached
* by the kernel or data corruption may occur
*/
ptr = xlate_dev_kmem_ptr(p);
copied = copy_from_user(ptr, buf, sz);
if (copied) {
written += sz - copied;
if (written)
break;
return -EFAULT;
}
buf += sz;
p += sz;
realp += sz;
count -= sz;
written += sz;
}
*ppos += written;
return written;
}
/*
* This function writes to the *virtual* memory as seen by the kernel.
*/
static ssize_t write_kmem(struct file * file, const char __user * buf,
size_t count, loff_t *ppos)
{
unsigned long p = *ppos;
ssize_t wrote = 0;
ssize_t virtr = 0;
ssize_t written;
char * kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
if (p < (unsigned long) high_memory) {
wrote = count;
if (count > (unsigned long) high_memory - p)
wrote = (unsigned long) high_memory - p;
written = do_write_kmem((void*)p, p, buf, wrote, ppos);
if (written != wrote)
return written;
wrote = written;
p += wrote;
buf += wrote;
count -= wrote;
}
if (count > 0) {
kbuf = (char *)__get_free_page(GFP_KERNEL);
if (!kbuf)
return wrote ? wrote : -ENOMEM;
while (count > 0) {
int len = count;
if (len > PAGE_SIZE)
len = PAGE_SIZE;
if (len) {
written = copy_from_user(kbuf, buf, len);
if (written) {
if (wrote + virtr)
break;
free_page((unsigned long)kbuf);
return -EFAULT;
}
}
len = vwrite(kbuf, (char *)p, len);
count -= len;
buf += len;
virtr += len;
p += len;
}
free_page((unsigned long)kbuf);
}
*ppos = p;
return virtr + wrote;
}
#endif
#ifdef CONFIG_DEVPORT
static ssize_t read_port(struct file * file, char __user * buf,
size_t count, loff_t *ppos)
{
unsigned long i = *ppos;
char __user *tmp = buf;
if (!access_ok(VERIFY_WRITE, buf, count))
return -EFAULT;
while (count-- > 0 && i < 65536) {
if (__put_user(inb(i),tmp) < 0)
return -EFAULT;
i++;
tmp++;
}
*ppos = i;
return tmp-buf;
}
static ssize_t write_port(struct file * file, const char __user * buf,
size_t count, loff_t *ppos)
{
unsigned long i = *ppos;
const char __user * tmp = buf;
if (!access_ok(VERIFY_READ,buf,count))
return -EFAULT;
while (count-- > 0 && i < 65536) {
char c;
if (__get_user(c, tmp)) {
if (tmp > buf)
break;
return -EFAULT;
}
outb(c,i);
i++;
tmp++;
}
*ppos = i;
return tmp-buf;
}
#endif
static ssize_t read_null(struct file * file, char __user * buf,
size_t count, loff_t *ppos)
{
return 0;
}
static ssize_t write_null(struct file * file, const char __user * buf,
size_t count, loff_t *ppos)
{
return count;
}
static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
struct splice_desc *sd)
{
return sd->len;
}
static ssize_t splice_write_null(struct pipe_inode_info *pipe,struct file *out,
loff_t *ppos, size_t len, unsigned int flags)
{
return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
}
static ssize_t read_zero(struct file * file, char __user * buf,
size_t count, loff_t *ppos)
{
size_t written;
if (!count)
return 0;
if (!access_ok(VERIFY_WRITE, buf, count))
return -EFAULT;
written = 0;
while (count) {
unsigned long unwritten;
size_t chunk = count;
if (chunk > PAGE_SIZE)
chunk = PAGE_SIZE; /* Just for latency reasons */
unwritten = clear_user(buf, chunk);
written += chunk - unwritten;
if (unwritten)
break;
buf += chunk;
count -= chunk;
cond_resched();
}
return written ? written : -EFAULT;
}
static int mmap_zero(struct file * file, struct vm_area_struct * vma)
{
#ifndef CONFIG_MMU
return -ENOSYS;
#endif
if (vma->vm_flags & VM_SHARED)
return shmem_zero_setup(vma);
return 0;
}
static ssize_t write_full(struct file * file, const char __user * buf,
size_t count, loff_t *ppos)
{
return -ENOSPC;
}
/*
* Special lseek() function for /dev/null and /dev/zero. Most notably, you
* can fopen() both devices with "a" now. This was previously impossible.
* -- SRB.
*/
static loff_t null_lseek(struct file * file, loff_t offset, int orig)
{
return file->f_pos = 0;
}
/*
* The memory devices use the full 32/64 bits of the offset, and so we cannot
* check against negative addresses: they are ok. The return value is weird,
* though, in that case (0).
*
* also note that seeking relative to the "end of file" isn't supported:
* it has no meaning, so it returns -EINVAL.
*/
static loff_t memory_lseek(struct file * file, loff_t offset, int orig)
{
loff_t ret;
mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
switch (orig) {
case 0:
file->f_pos = offset;
ret = file->f_pos;
force_successful_syscall_return();
break;
case 1:
file->f_pos += offset;
ret = file->f_pos;
force_successful_syscall_return();
break;
default:
ret = -EINVAL;
}
mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
return ret;
}
static int open_port(struct inode * inode, struct file * filp)
{
return capable(CAP_SYS_RAWIO) ? 0 : -EPERM;
}
#define zero_lseek null_lseek
#define full_lseek null_lseek
#define write_zero write_null
#define read_full read_zero
#define open_mem open_port
#define open_kmem open_mem
#define open_oldmem open_mem
static const struct file_operations mem_fops = {
.llseek = memory_lseek,
.read = read_mem,
.write = write_mem,
.mmap = mmap_mem,
.open = open_mem,
.get_unmapped_area = get_unmapped_area_mem,
};
#ifdef CONFIG_DEVKMEM
static const struct file_operations kmem_fops = {
.llseek = memory_lseek,
.read = read_kmem,
.write = write_kmem,
.mmap = mmap_kmem,
.open = open_kmem,
.get_unmapped_area = get_unmapped_area_mem,
};
#endif
static const struct file_operations null_fops = {
.llseek = null_lseek,
.read = read_null,
.write = write_null,
.splice_write = splice_write_null,
};
#ifdef CONFIG_DEVPORT
static const struct file_operations port_fops = {
.llseek = memory_lseek,
.read = read_port,
.write = write_port,
.open = open_port,
};
#endif
static const struct file_operations zero_fops = {
.llseek = zero_lseek,
.read = read_zero,
.write = write_zero,
.mmap = mmap_zero,
};
/*
* capabilities for /dev/zero
* - permits private mappings, "copies" are taken of the source of zeros
*/
static struct backing_dev_info zero_bdi = {
.capabilities = BDI_CAP_MAP_COPY,
};
static const struct file_operations full_fops = {
.llseek = full_lseek,
.read = read_full,
.write = write_full,
};
#ifdef CONFIG_CRASH_DUMP
static const struct file_operations oldmem_fops = {
.read = read_oldmem,
.open = open_oldmem,
};
#endif
static ssize_t kmsg_write(struct file * file, const char __user * buf,
size_t count, loff_t *ppos)
{
char *tmp;
ssize_t ret;
tmp = kmalloc(count + 1, GFP_KERNEL);
if (tmp == NULL)
return -ENOMEM;
ret = -EFAULT;
if (!copy_from_user(tmp, buf, count)) {
tmp[count] = 0;
ret = printk("%s", tmp);
if (ret > count)
/* printk can add a prefix */
ret = count;
}
kfree(tmp);
return ret;
}
static const struct file_operations kmsg_fops = {
.write = kmsg_write,
};
static int memory_open(struct inode * inode, struct file * filp)
{
switch (iminor(inode)) {
case 1:
filp->f_op = &mem_fops;
filp->f_mapping->backing_dev_info =
&directly_mappable_cdev_bdi;
break;
#ifdef CONFIG_DEVKMEM
case 2:
filp->f_op = &kmem_fops;
filp->f_mapping->backing_dev_info =
&directly_mappable_cdev_bdi;
break;
#endif
case 3:
filp->f_op = &null_fops;
break;
#ifdef CONFIG_DEVPORT
case 4:
filp->f_op = &port_fops;
break;
#endif
case 5:
filp->f_mapping->backing_dev_info = &zero_bdi;
filp->f_op = &zero_fops;
break;
case 7:
filp->f_op = &full_fops;
break;
case 8:
filp->f_op = &random_fops;
break;
case 9:
filp->f_op = &urandom_fops;
break;
case 11:
filp->f_op = &kmsg_fops;
break;
#ifdef CONFIG_CRASH_DUMP
case 12:
filp->f_op = &oldmem_fops;
break;
#endif
default:
return -ENXIO;
}
if (filp->f_op && filp->f_op->open)
return filp->f_op->open(inode,filp);
return 0;
}
static const struct file_operations memory_fops = {
.open = memory_open, /* just a selector for the real open */
};
static const struct {
unsigned int minor;
char *name;
umode_t mode;
const struct file_operations *fops;
} devlist[] = { /* list of minor devices */
{1, "mem", S_IRUSR | S_IWUSR | S_IRGRP, &mem_fops},
#ifdef CONFIG_DEVKMEM
{2, "kmem", S_IRUSR | S_IWUSR | S_IRGRP, &kmem_fops},
#endif
{3, "null", S_IRUGO | S_IWUGO, &null_fops},
#ifdef CONFIG_DEVPORT
{4, "port", S_IRUSR | S_IWUSR | S_IRGRP, &port_fops},
#endif
{5, "zero", S_IRUGO | S_IWUGO, &zero_fops},
{7, "full", S_IRUGO | S_IWUGO, &full_fops},
{8, "random", S_IRUGO | S_IWUSR, &random_fops},
{9, "urandom", S_IRUGO | S_IWUSR, &urandom_fops},
{11,"kmsg", S_IRUGO | S_IWUSR, &kmsg_fops},
#ifdef CONFIG_CRASH_DUMP
{12,"oldmem", S_IRUSR | S_IWUSR | S_IRGRP, &oldmem_fops},
#endif
};
static struct class *mem_class;
static int __init chr_dev_init(void)
{
int i;
int err;
err = bdi_init(&zero_bdi);
if (err)
return err;
if (register_chrdev(MEM_MAJOR,"mem",&memory_fops))
printk("unable to get major %d for memory devs\n", MEM_MAJOR);
mem_class = class_create(THIS_MODULE, "mem");
for (i = 0; i < ARRAY_SIZE(devlist); i++)
device_create(mem_class, NULL,
MKDEV(MEM_MAJOR, devlist[i].minor),
devlist[i].name);
return 0;
}
fs_initcall(chr_dev_init);