android_kernel_google_msm/drivers/gpio/gpio-msm-v2.c
Ajay Dudani eb6bdd0ce2 gpio: msm: do not re-enable the interrupt and clear the status
If a gpio interrupt is already enabled, do not re-enable it again and do not
clear the interrupt status.

Before this patch: if an edge interrupt is marked as wakeup, the gpio sys
suspend will enable it.  On resume, the gpio sys resume would clear the
intr_status of the wakeup irq.  Thus, if this particular wakeup irq triggered
and woke us up, we would lose its intr_status before calling the gpio summary
handler.  Now, when the summary handler is finally called, the irq handler for
the wakeup interrupt is never called.

With this change: we are *not* re-enabling the gpio-irq again to make sure that
when the irq framework unmasks all irqs on resume, it does not clear the
intr_status.

Change-Id: Ia5a9c6b00173a56b1abbdd4d4821becb7311d7f6
Signed-off-by: Rohit Vaswani <rvaswani@codeaurora.org>
Signed-off-by: Ajay Dudani <adudani@codeaurora.org>
Signed-off-by: Iliyan Malchev <malchev@google.com>
2013-03-04 12:45:28 -08:00

225 lines
6 KiB
C

/* Copyright (c) 2010-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <mach/msm_iomap.h>
#include <mach/gpiomux.h>
#include "gpio-msm-common.h"
/* Bits of interest in the GPIO_IN_OUT register.
*/
enum {
GPIO_IN_BIT = 0,
GPIO_OUT_BIT = 1
};
/* Bits of interest in the GPIO_INTR_STATUS register.
*/
enum {
INTR_STATUS_BIT = 0,
};
/* Bits of interest in the GPIO_CFG register.
*/
enum {
GPIO_OE_BIT = 9,
};
/* Bits of interest in the GPIO_INTR_CFG register.
*/
enum {
INTR_ENABLE_BIT = 0,
INTR_POL_CTL_BIT = 1,
INTR_DECT_CTL_BIT = 2,
INTR_RAW_STATUS_EN_BIT = 3,
};
/* Codes of interest in GPIO_INTR_CFG_SU.
*/
enum {
TARGET_PROC_SCORPION = 4,
TARGET_PROC_NONE = 7,
};
/*
* There is no 'DC_POLARITY_LO' because the GIC is incapable
* of asserting on falling edge or level-low conditions. Even though
* the registers allow for low-polarity inputs, the case can never arise.
*/
enum {
DC_POLARITY_HI = BIT(11),
DC_IRQ_ENABLE = BIT(3),
};
/*
* When a GPIO triggers, two separate decisions are made, controlled
* by two separate flags.
*
* - First, INTR_RAW_STATUS_EN controls whether or not the GPIO_INTR_STATUS
* register for that GPIO will be updated to reflect the triggering of that
* gpio. If this bit is 0, this register will not be updated.
* - Second, INTR_ENABLE controls whether an interrupt is triggered.
*
* If INTR_ENABLE is set and INTR_RAW_STATUS_EN is NOT set, an interrupt
* can be triggered but the status register will not reflect it.
*/
#define INTR_RAW_STATUS_EN BIT(INTR_RAW_STATUS_EN_BIT)
#define INTR_ENABLE BIT(INTR_ENABLE_BIT)
#define INTR_DECT_CTL_EDGE BIT(INTR_DECT_CTL_BIT)
#define INTR_POL_CTL_HI BIT(INTR_POL_CTL_BIT)
#define GPIO_INTR_CFG_SU(gpio) (MSM_TLMM_BASE + 0x0400 + (0x04 * (gpio)))
#define DIR_CONN_INTR_CFG_SU(irq) (MSM_TLMM_BASE + 0x0700 + (0x04 * (irq)))
#define GPIO_CONFIG(gpio) (MSM_TLMM_BASE + 0x1000 + (0x10 * (gpio)))
#define GPIO_IN_OUT(gpio) (MSM_TLMM_BASE + 0x1004 + (0x10 * (gpio)))
#define GPIO_INTR_CFG(gpio) (MSM_TLMM_BASE + 0x1008 + (0x10 * (gpio)))
#define GPIO_INTR_STATUS(gpio) (MSM_TLMM_BASE + 0x100c + (0x10 * (gpio)))
static inline void set_gpio_bits(unsigned n, void __iomem *reg)
{
__raw_writel(__raw_readl(reg) | n, reg);
}
static inline void clr_gpio_bits(unsigned n, void __iomem *reg)
{
__raw_writel(__raw_readl(reg) & ~n, reg);
}
unsigned __msm_gpio_get_inout(unsigned gpio)
{
return __raw_readl(GPIO_IN_OUT(gpio)) & BIT(GPIO_IN_BIT);
}
void __msm_gpio_set_inout(unsigned gpio, unsigned val)
{
__raw_writel(val ? BIT(GPIO_OUT_BIT) : 0, GPIO_IN_OUT(gpio));
}
void __msm_gpio_set_config_direction(unsigned gpio, int input, int val)
{
if (input)
clr_gpio_bits(BIT(GPIO_OE_BIT), GPIO_CONFIG(gpio));
else {
__msm_gpio_set_inout(gpio, val);
set_gpio_bits(BIT(GPIO_OE_BIT), GPIO_CONFIG(gpio));
}
}
void __msm_gpio_set_polarity(unsigned gpio, unsigned val)
{
if (val)
clr_gpio_bits(INTR_POL_CTL_HI, GPIO_INTR_CFG(gpio));
else
set_gpio_bits(INTR_POL_CTL_HI, GPIO_INTR_CFG(gpio));
}
unsigned __msm_gpio_get_intr_status(unsigned gpio)
{
return __raw_readl(GPIO_INTR_STATUS(gpio)) &
BIT(INTR_STATUS_BIT);
}
void __msm_gpio_set_intr_status(unsigned gpio)
{
__raw_writel(BIT(INTR_STATUS_BIT), GPIO_INTR_STATUS(gpio));
}
unsigned __msm_gpio_get_intr_config(unsigned gpio)
{
return __raw_readl(GPIO_INTR_CFG(gpio));
}
void __msm_gpio_set_intr_cfg_enable(unsigned gpio, unsigned val)
{
if (val) {
set_gpio_bits(INTR_ENABLE, GPIO_INTR_CFG(gpio));
} else {
clr_gpio_bits(INTR_ENABLE, GPIO_INTR_CFG(gpio));
}
}
unsigned __msm_gpio_get_intr_cfg_enable(unsigned gpio)
{
return __msm_gpio_get_intr_config(gpio) & INTR_ENABLE;
}
void __msm_gpio_set_intr_cfg_type(unsigned gpio, unsigned type)
{
unsigned cfg;
/* RAW_STATUS_EN is left on for all gpio irqs. Due to the
* internal circuitry of TLMM, toggling the RAW_STATUS
* could cause the INTR_STATUS to be set for EDGE interrupts.
*/
cfg = __msm_gpio_get_intr_config(gpio);
cfg |= INTR_RAW_STATUS_EN;
__raw_writel(cfg, GPIO_INTR_CFG(gpio));
__raw_writel(TARGET_PROC_SCORPION, GPIO_INTR_CFG_SU(gpio));
cfg = __msm_gpio_get_intr_config(gpio);
if (type & IRQ_TYPE_EDGE_BOTH)
cfg |= INTR_DECT_CTL_EDGE;
else
cfg &= ~INTR_DECT_CTL_EDGE;
if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_LEVEL_HIGH))
cfg |= INTR_POL_CTL_HI;
else
cfg &= ~INTR_POL_CTL_HI;
__raw_writel(cfg, GPIO_INTR_CFG(gpio));
/* Sometimes it might take a little while to update
* the interrupt status after the RAW_STATUS is enabled
* We clear the interrupt status before enabling the
* interrupt in the unmask call-back.
*/
udelay(5);
}
void __gpio_tlmm_config(unsigned config)
{
uint32_t flags;
unsigned gpio = GPIO_PIN(config);
flags = ((GPIO_DIR(config) << 9) & (0x1 << 9)) |
((GPIO_DRVSTR(config) << 6) & (0x7 << 6)) |
((GPIO_FUNC(config) << 2) & (0xf << 2)) |
((GPIO_PULL(config) & 0x3));
__raw_writel(flags, GPIO_CONFIG(gpio));
}
void __msm_gpio_install_direct_irq(unsigned gpio, unsigned irq,
unsigned int input_polarity)
{
uint32_t bits;
__raw_writel(__raw_readl(GPIO_CONFIG(gpio)) | BIT(GPIO_OE_BIT),
GPIO_CONFIG(gpio));
__raw_writel(__raw_readl(GPIO_INTR_CFG(gpio)) &
~(INTR_RAW_STATUS_EN | INTR_ENABLE),
GPIO_INTR_CFG(gpio));
__raw_writel(DC_IRQ_ENABLE | TARGET_PROC_NONE,
GPIO_INTR_CFG_SU(gpio));
bits = TARGET_PROC_SCORPION | (gpio << 3);
if (input_polarity)
bits |= DC_POLARITY_HI;
__raw_writel(bits, DIR_CONN_INTR_CFG_SU(irq));
}