android_kernel_google_msm/drivers/video/msm/hdmi_msm.c
Ajay Singh Parmar e6ed1f23d7 msm_fb: hdmi: Do not turn on HPD at boot
HPD is getting turned on by userspace if HDMI is enabled.
We don't need to turn on the HPD from HDMI driver.

CRs-Fixed: 377899
Change-Id: I29af0ca6ba222c7af61b1a0e8b51be35dee6426c
Signed-off-by: Ajay Singh Parmar <aparmar@codeaurora.org>
2013-02-27 18:15:39 -08:00

4836 lines
141 KiB
C

/* Copyright (c) 2010-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/* #define DEBUG */
#define DEV_DBG_PREFIX "HDMI: "
/* #define REG_DUMP */
#define CEC_MSG_PRINT
#define TOGGLE_CEC_HARDWARE_FSM
#include <linux/types.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/mutex.h>
#include <mach/msm_hdmi_audio.h>
#include <mach/clk.h>
#include <mach/msm_iomap.h>
#include <mach/socinfo.h>
#include "msm_fb.h"
#include "hdmi_msm.h"
/* Supported HDMI Audio channels */
#define MSM_HDMI_AUDIO_CHANNEL_2 0
#define MSM_HDMI_AUDIO_CHANNEL_4 1
#define MSM_HDMI_AUDIO_CHANNEL_6 2
#define MSM_HDMI_AUDIO_CHANNEL_8 3
#define MSM_HDMI_AUDIO_CHANNEL_MAX 4
#define MSM_HDMI_AUDIO_CHANNEL_FORCE_32BIT 0x7FFFFFFF
/* Supported HDMI Audio sample rates */
#define MSM_HDMI_SAMPLE_RATE_32KHZ 0
#define MSM_HDMI_SAMPLE_RATE_44_1KHZ 1
#define MSM_HDMI_SAMPLE_RATE_48KHZ 2
#define MSM_HDMI_SAMPLE_RATE_88_2KHZ 3
#define MSM_HDMI_SAMPLE_RATE_96KHZ 4
#define MSM_HDMI_SAMPLE_RATE_176_4KHZ 5
#define MSM_HDMI_SAMPLE_RATE_192KHZ 6
#define MSM_HDMI_SAMPLE_RATE_MAX 7
#define MSM_HDMI_SAMPLE_RATE_FORCE_32BIT 0x7FFFFFFF
static int msm_hdmi_sample_rate = MSM_HDMI_SAMPLE_RATE_48KHZ;
/* HDMI/HDCP Registers */
#define HDCP_DDC_STATUS 0x0128
#define HDCP_DDC_CTRL_0 0x0120
#define HDCP_DDC_CTRL_1 0x0124
#define HDMI_DDC_CTRL 0x020C
struct workqueue_struct *hdmi_work_queue;
struct hdmi_msm_state_type *hdmi_msm_state;
DEFINE_MUTEX(hdmi_msm_state_mutex);
EXPORT_SYMBOL(hdmi_msm_state_mutex);
static DEFINE_MUTEX(hdcp_auth_state_mutex);
static void hdmi_msm_dump_regs(const char *prefix);
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
static void hdmi_msm_hdcp_enable(void);
#else
static inline void hdmi_msm_hdcp_enable(void) {}
#endif
static void hdmi_msm_turn_on(void);
static int hdmi_msm_audio_off(void);
static int hdmi_msm_read_edid(void);
static void hdmi_msm_hpd_off(void);
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT
static void hdmi_msm_cec_line_latch_detect(void);
#ifdef TOGGLE_CEC_HARDWARE_FSM
static boolean msg_send_complete = TRUE;
static boolean msg_recv_complete = TRUE;
#endif
#define HDMI_MSM_CEC_REFTIMER_REFTIMER_ENABLE BIT(16)
#define HDMI_MSM_CEC_REFTIMER_REFTIMER(___t) (((___t)&0xFFFF) << 0)
#define HDMI_MSM_CEC_TIME_SIGNAL_FREE_TIME(___t) (((___t)&0x1FF) << 7)
#define HDMI_MSM_CEC_TIME_ENABLE BIT(0)
#define HDMI_MSM_CEC_ADDR_LOGICAL_ADDR(___la) (((___la)&0xFF) << 0)
#define HDMI_MSM_CEC_CTRL_LINE_OE BIT(9)
#define HDMI_MSM_CEC_CTRL_FRAME_SIZE(___sz) (((___sz)&0x1F) << 4)
#define HDMI_MSM_CEC_CTRL_SOFT_RESET BIT(2)
#define HDMI_MSM_CEC_CTRL_SEND_TRIG BIT(1)
#define HDMI_MSM_CEC_CTRL_ENABLE BIT(0)
#define HDMI_MSM_CEC_INT_FRAME_RD_DONE_MASK BIT(7)
#define HDMI_MSM_CEC_INT_FRAME_RD_DONE_ACK BIT(6)
#define HDMI_MSM_CEC_INT_FRAME_RD_DONE_INT BIT(6)
#define HDMI_MSM_CEC_INT_MONITOR_MASK BIT(5)
#define HDMI_MSM_CEC_INT_MONITOR_ACK BIT(4)
#define HDMI_MSM_CEC_INT_MONITOR_INT BIT(4)
#define HDMI_MSM_CEC_INT_FRAME_ERROR_MASK BIT(3)
#define HDMI_MSM_CEC_INT_FRAME_ERROR_ACK BIT(2)
#define HDMI_MSM_CEC_INT_FRAME_ERROR_INT BIT(2)
#define HDMI_MSM_CEC_INT_FRAME_WR_DONE_MASK BIT(1)
#define HDMI_MSM_CEC_INT_FRAME_WR_DONE_ACK BIT(0)
#define HDMI_MSM_CEC_INT_FRAME_WR_DONE_INT BIT(0)
#define HDMI_MSM_CEC_FRAME_WR_SUCCESS(___st) (((___st)&0xB) ==\
(HDMI_MSM_CEC_INT_FRAME_WR_DONE_INT |\
HDMI_MSM_CEC_INT_FRAME_WR_DONE_MASK |\
HDMI_MSM_CEC_INT_FRAME_ERROR_MASK))
#define HDMI_MSM_CEC_RETRANSMIT_NUM(___num) (((___num)&0xF) << 4)
#define HDMI_MSM_CEC_RETRANSMIT_ENABLE BIT(0)
#define HDMI_MSM_CEC_WR_DATA_DATA(___d) (((___d)&0xFF) << 8)
void hdmi_msm_cec_init(void)
{
/* 0x02A8 CEC_REFTIMER */
HDMI_OUTP(0x02A8,
HDMI_MSM_CEC_REFTIMER_REFTIMER_ENABLE
| HDMI_MSM_CEC_REFTIMER_REFTIMER(27 * 50)
);
/*
* 0x02A0 CEC_ADDR
* Starting with a default address of 4
*/
HDMI_OUTP(0x02A0, HDMI_MSM_CEC_ADDR_LOGICAL_ADDR(4));
hdmi_msm_state->first_monitor = 0;
hdmi_msm_state->fsm_reset_done = false;
/* 0x029C CEC_INT */
/* Enable CEC interrupts */
HDMI_OUTP(0x029C, \
HDMI_MSM_CEC_INT_FRAME_WR_DONE_MASK \
| HDMI_MSM_CEC_INT_FRAME_ERROR_MASK \
| HDMI_MSM_CEC_INT_MONITOR_MASK \
| HDMI_MSM_CEC_INT_FRAME_RD_DONE_MASK);
HDMI_OUTP(0x02B0, 0x7FF << 4 | 1);
/*
* Slight adjustment to logic 1 low periods on read,
* CEC Test 8.2-3 was failing, 8 for the
* BIT_1_ERR_RANGE_HI = 8 => 750us, the test used 775us,
* so increased this to 9 which => 800us.
*/
/*
* CEC latch up issue - To fire monitor interrupt
* for every start of message
*/
HDMI_OUTP(0x02E0, 0x880000);
/*
* Slight adjustment to logic 0 low period on write
*/
HDMI_OUTP(0x02DC, 0x8888A888);
/*
* Enable Signal Free Time counter and set to 7 bit periods
*/
HDMI_OUTP(0x02A4, 0x1 | (7 * 0x30) << 7);
/* 0x028C CEC_CTRL */
HDMI_OUTP(0x028C, HDMI_MSM_CEC_CTRL_ENABLE);
}
void hdmi_msm_cec_write_logical_addr(int addr)
{
/* 0x02A0 CEC_ADDR
* LOGICAL_ADDR 7:0 NUM
*/
HDMI_OUTP(0x02A0, addr & 0xFF);
}
void hdmi_msm_dump_cec_msg(struct hdmi_msm_cec_msg *msg)
{
#ifdef CEC_MSG_PRINT
int i;
DEV_DBG("sender_id : %d", msg->sender_id);
DEV_DBG("recvr_id : %d", msg->recvr_id);
if (msg->frame_size < 2) {
DEV_DBG("polling message");
return;
}
DEV_DBG("opcode : %02x", msg->opcode);
for (i = 0; i < msg->frame_size - 2; i++)
DEV_DBG("operand(%2d) : %02x", i + 1, msg->operand[i]);
#endif /* CEC_MSG_PRINT */
}
void hdmi_msm_cec_msg_send(struct hdmi_msm_cec_msg *msg)
{
int i;
uint32 timeout_count = 1;
int retry = 10;
boolean frameType = (msg->recvr_id == 15 ? BIT(0) : 0);
mutex_lock(&hdmi_msm_state_mutex);
hdmi_msm_state->fsm_reset_done = false;
mutex_unlock(&hdmi_msm_state_mutex);
#ifdef TOGGLE_CEC_HARDWARE_FSM
msg_send_complete = FALSE;
#endif
INIT_COMPLETION(hdmi_msm_state->cec_frame_wr_done);
hdmi_msm_state->cec_frame_wr_status = 0;
/* 0x0294 HDMI_MSM_CEC_RETRANSMIT */
HDMI_OUTP(0x0294,
#ifdef DRVR_ONLY_CECT_NO_DAEMON
HDMI_MSM_CEC_RETRANSMIT_NUM(msg->retransmit)
| (msg->retransmit > 0) ? HDMI_MSM_CEC_RETRANSMIT_ENABLE : 0);
#else
HDMI_MSM_CEC_RETRANSMIT_NUM(0) |
HDMI_MSM_CEC_RETRANSMIT_ENABLE);
#endif
/* 0x028C CEC_CTRL */
HDMI_OUTP(0x028C, 0x1 | msg->frame_size << 4);
/* 0x0290 CEC_WR_DATA */
/* header block */
HDMI_OUTP(0x0290,
HDMI_MSM_CEC_WR_DATA_DATA(msg->sender_id << 4 | msg->recvr_id)
| frameType);
/* data block 0 : opcode */
HDMI_OUTP(0x0290,
HDMI_MSM_CEC_WR_DATA_DATA(msg->frame_size < 2 ? 0 : msg->opcode)
| frameType);
/* data block 1-14 : operand 0-13 */
for (i = 0; i < msg->frame_size - 1; i++)
HDMI_OUTP(0x0290,
HDMI_MSM_CEC_WR_DATA_DATA(msg->operand[i])
| (msg->recvr_id == 15 ? BIT(0) : 0));
for (; i < 14; i++)
HDMI_OUTP(0x0290,
HDMI_MSM_CEC_WR_DATA_DATA(0)
| (msg->recvr_id == 15 ? BIT(0) : 0));
while ((HDMI_INP(0x0298) & 1) && retry--) {
DEV_DBG("CEC line is busy(%d)\n", retry);
schedule();
}
/* 0x028C CEC_CTRL */
HDMI_OUTP(0x028C,
HDMI_MSM_CEC_CTRL_LINE_OE
| HDMI_MSM_CEC_CTRL_FRAME_SIZE(msg->frame_size)
| HDMI_MSM_CEC_CTRL_SEND_TRIG
| HDMI_MSM_CEC_CTRL_ENABLE);
timeout_count = wait_for_completion_interruptible_timeout(
&hdmi_msm_state->cec_frame_wr_done, HZ);
if (!timeout_count) {
hdmi_msm_state->cec_frame_wr_status |= CEC_STATUS_WR_TMOUT;
DEV_ERR("%s: timedout", __func__);
hdmi_msm_dump_cec_msg(msg);
} else {
DEV_DBG("CEC write frame done (frame len=%d)",
msg->frame_size);
hdmi_msm_dump_cec_msg(msg);
}
#ifdef TOGGLE_CEC_HARDWARE_FSM
if (!msg_recv_complete) {
/* Toggle CEC hardware FSM */
HDMI_OUTP(0x028C, 0x0);
HDMI_OUTP(0x028C, HDMI_MSM_CEC_CTRL_ENABLE);
msg_recv_complete = TRUE;
}
msg_send_complete = TRUE;
#else
HDMI_OUTP(0x028C, 0x0);
HDMI_OUTP(0x028C, HDMI_MSM_CEC_CTRL_ENABLE);
#endif
}
void hdmi_msm_cec_line_latch_detect(void)
{
/*
* CECT 9-5-1
* The timer period needs to be changed to appropriate value
*/
/*
* Timedout without RD_DONE, WR_DONE or ERR_INT
* Toggle CEC hardware FSM
*/
mutex_lock(&hdmi_msm_state_mutex);
if (hdmi_msm_state->first_monitor == 1) {
DEV_WARN("CEC line is probably latched up - CECT 9-5-1");
if (!msg_recv_complete)
hdmi_msm_state->fsm_reset_done = true;
HDMI_OUTP(0x028C, 0x0);
HDMI_OUTP(0x028C, HDMI_MSM_CEC_CTRL_ENABLE);
hdmi_msm_state->first_monitor = 0;
}
mutex_unlock(&hdmi_msm_state_mutex);
}
void hdmi_msm_cec_msg_recv(void)
{
uint32 data;
int i;
#ifdef DRVR_ONLY_CECT_NO_DAEMON
struct hdmi_msm_cec_msg temp_msg;
#endif
mutex_lock(&hdmi_msm_state_mutex);
if (hdmi_msm_state->cec_queue_wr == hdmi_msm_state->cec_queue_rd
&& hdmi_msm_state->cec_queue_full) {
mutex_unlock(&hdmi_msm_state_mutex);
DEV_ERR("CEC message queue is overflowing\n");
#ifdef DRVR_ONLY_CECT_NO_DAEMON
/*
* Without CEC daemon:
* Compliance tests fail once the queue gets filled up.
* so reset the pointers to the start of the queue.
*/
hdmi_msm_state->cec_queue_wr = hdmi_msm_state->cec_queue_start;
hdmi_msm_state->cec_queue_rd = hdmi_msm_state->cec_queue_start;
hdmi_msm_state->cec_queue_full = false;
#else
return;
#endif
}
if (hdmi_msm_state->cec_queue_wr == NULL) {
DEV_ERR("%s: wp is NULL\n", __func__);
return;
}
mutex_unlock(&hdmi_msm_state_mutex);
/* 0x02AC CEC_RD_DATA */
data = HDMI_INP(0x02AC);
hdmi_msm_state->cec_queue_wr->sender_id = (data & 0xF0) >> 4;
hdmi_msm_state->cec_queue_wr->recvr_id = (data & 0x0F);
hdmi_msm_state->cec_queue_wr->frame_size = (data & 0x1F00) >> 8;
DEV_DBG("Recvd init=[%u] dest=[%u] size=[%u]\n",
hdmi_msm_state->cec_queue_wr->sender_id,
hdmi_msm_state->cec_queue_wr->recvr_id,
hdmi_msm_state->cec_queue_wr->frame_size);
if (hdmi_msm_state->cec_queue_wr->frame_size < 1) {
DEV_ERR("%s: invalid message (frame length = %d)",
__func__, hdmi_msm_state->cec_queue_wr->frame_size);
return;
} else if (hdmi_msm_state->cec_queue_wr->frame_size == 1) {
DEV_DBG("%s: polling message (dest[%x] <- init[%x])",
__func__,
hdmi_msm_state->cec_queue_wr->recvr_id,
hdmi_msm_state->cec_queue_wr->sender_id);
return;
}
/* data block 0 : opcode */
data = HDMI_INP(0x02AC);
hdmi_msm_state->cec_queue_wr->opcode = data & 0xFF;
/* data block 1-14 : operand 0-13 */
for (i = 0; i < hdmi_msm_state->cec_queue_wr->frame_size - 2; i++) {
data = HDMI_INP(0x02AC);
hdmi_msm_state->cec_queue_wr->operand[i] = data & 0xFF;
}
for (; i < 14; i++)
hdmi_msm_state->cec_queue_wr->operand[i] = 0;
DEV_DBG("CEC read frame done\n");
DEV_DBG("=======================================\n");
hdmi_msm_dump_cec_msg(hdmi_msm_state->cec_queue_wr);
DEV_DBG("=======================================\n");
#ifdef DRVR_ONLY_CECT_NO_DAEMON
switch (hdmi_msm_state->cec_queue_wr->opcode) {
case 0x64:
/* Set OSD String */
DEV_INFO("Recvd OSD Str=[%x]\n",\
hdmi_msm_state->cec_queue_wr->operand[3]);
break;
case 0x83:
/* Give Phy Addr */
DEV_INFO("Recvd a Give Phy Addr cmd\n");
memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg));
/* Setup a frame for sending out phy addr */
temp_msg.sender_id = 0x4;
/* Broadcast */
temp_msg.recvr_id = 0xf;
temp_msg.opcode = 0x84;
i = 0;
temp_msg.operand[i++] = 0x10;
temp_msg.operand[i++] = 0x00;
temp_msg.operand[i++] = 0x04;
temp_msg.frame_size = i + 2;
hdmi_msm_cec_msg_send(&temp_msg);
break;
case 0xFF:
/* Abort */
DEV_INFO("Recvd an abort cmd 0xFF\n");
memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg));
temp_msg.sender_id = 0x4;
temp_msg.recvr_id = hdmi_msm_state->cec_queue_wr->sender_id;
i = 0;
/*feature abort */
temp_msg.opcode = 0x00;
temp_msg.operand[i++] =
hdmi_msm_state->cec_queue_wr->opcode;
/*reason for abort = "Refused" */
temp_msg.operand[i++] = 0x04;
temp_msg.frame_size = i + 2;
hdmi_msm_dump_cec_msg(&temp_msg);
hdmi_msm_cec_msg_send(&temp_msg);
break;
case 0x046:
/* Give OSD name */
DEV_INFO("Recvd cmd 0x046\n");
memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg));
temp_msg.sender_id = 0x4;
temp_msg.recvr_id = hdmi_msm_state->cec_queue_wr->sender_id;
i = 0;
/* OSD Name */
temp_msg.opcode = 0x47;
/* Display control byte */
temp_msg.operand[i++] = 0x00;
temp_msg.operand[i++] = 'H';
temp_msg.operand[i++] = 'e';
temp_msg.operand[i++] = 'l';
temp_msg.operand[i++] = 'l';
temp_msg.operand[i++] = 'o';
temp_msg.operand[i++] = ' ';
temp_msg.operand[i++] = 'W';
temp_msg.operand[i++] = 'o';
temp_msg.operand[i++] = 'r';
temp_msg.operand[i++] = 'l';
temp_msg.operand[i++] = 'd';
temp_msg.frame_size = i + 2;
hdmi_msm_cec_msg_send(&temp_msg);
break;
case 0x08F:
/* Give Device Power status */
DEV_INFO("Recvd a Power status message\n");
memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg));
temp_msg.sender_id = 0x4;
temp_msg.recvr_id = hdmi_msm_state->cec_queue_wr->sender_id;
i = 0;
/* OSD String */
temp_msg.opcode = 0x90;
temp_msg.operand[i++] = 'H';
temp_msg.operand[i++] = 'e';
temp_msg.operand[i++] = 'l';
temp_msg.operand[i++] = 'l';
temp_msg.operand[i++] = 'o';
temp_msg.operand[i++] = ' ';
temp_msg.operand[i++] = 'W';
temp_msg.operand[i++] = 'o';
temp_msg.operand[i++] = 'r';
temp_msg.operand[i++] = 'l';
temp_msg.operand[i++] = 'd';
temp_msg.frame_size = i + 2;
hdmi_msm_cec_msg_send(&temp_msg);
break;
case 0x080:
/* Routing Change cmd */
case 0x086:
/* Set Stream Path */
DEV_INFO("Recvd Set Stream\n");
memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg));
temp_msg.sender_id = 0x4;
/*Broadcast this message*/
temp_msg.recvr_id = 0xf;
i = 0;
temp_msg.opcode = 0x82; /* Active Source */
temp_msg.operand[i++] = 0x10;
temp_msg.operand[i++] = 0x00;
temp_msg.frame_size = i + 2;
hdmi_msm_cec_msg_send(&temp_msg);
/*
* sending <Image View On> message
*/
memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg));
temp_msg.sender_id = 0x4;
temp_msg.recvr_id = hdmi_msm_state->cec_queue_wr->sender_id;
i = 0;
/* opcode for Image View On */
temp_msg.opcode = 0x04;
temp_msg.frame_size = i + 2;
hdmi_msm_cec_msg_send(&temp_msg);
break;
case 0x44:
/* User Control Pressed */
DEV_INFO("User Control Pressed\n");
break;
case 0x45:
/* User Control Released */
DEV_INFO("User Control Released\n");
break;
default:
DEV_INFO("Recvd an unknown cmd = [%u]\n",
hdmi_msm_state->cec_queue_wr->opcode);
#ifdef __SEND_ABORT__
memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg));
temp_msg.sender_id = 0x4;
temp_msg.recvr_id = hdmi_msm_state->cec_queue_wr->sender_id;
i = 0;
/* opcode for feature abort */
temp_msg.opcode = 0x00;
temp_msg.operand[i++] =
hdmi_msm_state->cec_queue_wr->opcode;
/*reason for abort = "Unrecognized opcode" */
temp_msg.operand[i++] = 0x00;
temp_msg.frame_size = i + 2;
hdmi_msm_cec_msg_send(&temp_msg);
break;
#else
memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg));
temp_msg.sender_id = 0x4;
temp_msg.recvr_id = hdmi_msm_state->cec_queue_wr->sender_id;
i = 0;
/* OSD String */
temp_msg.opcode = 0x64;
temp_msg.operand[i++] = 0x0;
temp_msg.operand[i++] = 'H';
temp_msg.operand[i++] = 'e';
temp_msg.operand[i++] = 'l';
temp_msg.operand[i++] = 'l';
temp_msg.operand[i++] = 'o';
temp_msg.operand[i++] = ' ';
temp_msg.operand[i++] = 'W';
temp_msg.operand[i++] = 'o';
temp_msg.operand[i++] = 'r';
temp_msg.operand[i++] = 'l';
temp_msg.operand[i++] = 'd';
temp_msg.frame_size = i + 2;
hdmi_msm_cec_msg_send(&temp_msg);
break;
#endif /* __SEND_ABORT__ */
}
#endif /* DRVR_ONLY_CECT_NO_DAEMON */
mutex_lock(&hdmi_msm_state_mutex);
hdmi_msm_state->cec_queue_wr++;
if (hdmi_msm_state->cec_queue_wr == CEC_QUEUE_END)
hdmi_msm_state->cec_queue_wr = hdmi_msm_state->cec_queue_start;
if (hdmi_msm_state->cec_queue_wr == hdmi_msm_state->cec_queue_rd)
hdmi_msm_state->cec_queue_full = true;
mutex_unlock(&hdmi_msm_state_mutex);
DEV_DBG("Exiting %s()\n", __func__);
}
void hdmi_msm_cec_one_touch_play(void)
{
struct hdmi_msm_cec_msg temp_msg;
uint32 i = 0;
memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg));
temp_msg.sender_id = 0x4;
/*
* Broadcast this message
*/
temp_msg.recvr_id = 0xf;
i = 0;
/* Active Source */
temp_msg.opcode = 0x82;
temp_msg.operand[i++] = 0x10;
temp_msg.operand[i++] = 0x00;
/*temp_msg.operand[i++] = 0x04;*/
temp_msg.frame_size = i + 2;
hdmi_msm_cec_msg_send(&temp_msg);
/*
* sending <Image View On> message
*/
memset(&temp_msg, 0x00, sizeof(struct hdmi_msm_cec_msg));
temp_msg.sender_id = 0x4;
temp_msg.recvr_id = hdmi_msm_state->cec_queue_wr->sender_id;
i = 0;
/* Image View On */
temp_msg.opcode = 0x04;
temp_msg.frame_size = i + 2;
hdmi_msm_cec_msg_send(&temp_msg);
}
#endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT */
uint32 hdmi_msm_get_io_base(void)
{
return (uint32)MSM_HDMI_BASE;
}
EXPORT_SYMBOL(hdmi_msm_get_io_base);
/* Table indicating the video format supported by the HDMI TX Core v1.0 */
/* Valid Pixel-Clock rates: 25.2MHz, 27MHz, 27.03MHz, 74.25MHz, 148.5MHz */
static void hdmi_msm_setup_video_mode_lut(void)
{
HDMI_SETUP_LUT(640x480p60_4_3);
HDMI_SETUP_LUT(720x480p60_4_3);
HDMI_SETUP_LUT(720x480p60_16_9);
HDMI_SETUP_LUT(1280x720p60_16_9);
HDMI_SETUP_LUT(1920x1080i60_16_9);
HDMI_SETUP_LUT(1440x480i60_4_3);
HDMI_SETUP_LUT(1440x480i60_16_9);
HDMI_SETUP_LUT(1920x1080p60_16_9);
HDMI_SETUP_LUT(720x576p50_4_3);
HDMI_SETUP_LUT(720x576p50_16_9);
HDMI_SETUP_LUT(1280x720p50_16_9);
HDMI_SETUP_LUT(1440x576i50_4_3);
HDMI_SETUP_LUT(1440x576i50_16_9);
HDMI_SETUP_LUT(1920x1080p50_16_9);
HDMI_SETUP_LUT(1920x1080p24_16_9);
HDMI_SETUP_LUT(1920x1080p25_16_9);
HDMI_SETUP_LUT(1920x1080p30_16_9);
}
#ifdef PORT_DEBUG
const char *hdmi_msm_name(uint32 offset)
{
switch (offset) {
case 0x0000: return "CTRL";
case 0x0020: return "AUDIO_PKT_CTRL1";
case 0x0024: return "ACR_PKT_CTRL";
case 0x0028: return "VBI_PKT_CTRL";
case 0x002C: return "INFOFRAME_CTRL0";
#ifdef CONFIG_FB_MSM_HDMI_3D
case 0x0034: return "GEN_PKT_CTRL";
#endif
case 0x003C: return "ACP";
case 0x0040: return "GC";
case 0x0044: return "AUDIO_PKT_CTRL2";
case 0x0048: return "ISRC1_0";
case 0x004C: return "ISRC1_1";
case 0x0050: return "ISRC1_2";
case 0x0054: return "ISRC1_3";
case 0x0058: return "ISRC1_4";
case 0x005C: return "ISRC2_0";
case 0x0060: return "ISRC2_1";
case 0x0064: return "ISRC2_2";
case 0x0068: return "ISRC2_3";
case 0x006C: return "AVI_INFO0";
case 0x0070: return "AVI_INFO1";
case 0x0074: return "AVI_INFO2";
case 0x0078: return "AVI_INFO3";
#ifdef CONFIG_FB_MSM_HDMI_3D
case 0x0084: return "GENERIC0_HDR";
case 0x0088: return "GENERIC0_0";
case 0x008C: return "GENERIC0_1";
#endif
case 0x00C4: return "ACR_32_0";
case 0x00C8: return "ACR_32_1";
case 0x00CC: return "ACR_44_0";
case 0x00D0: return "ACR_44_1";
case 0x00D4: return "ACR_48_0";
case 0x00D8: return "ACR_48_1";
case 0x00E4: return "AUDIO_INFO0";
case 0x00E8: return "AUDIO_INFO1";
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
case 0x0110: return "HDCP_CTRL";
case 0x0114: return "HDCP_DEBUG_CTRL";
case 0x0118: return "HDCP_INT_CTRL";
case 0x011C: return "HDCP_LINK0_STATUS";
case 0x012C: return "HDCP_ENTROPY_CTRL0";
case 0x0130: return "HDCP_RESET";
case 0x0134: return "HDCP_RCVPORT_DATA0";
case 0x0138: return "HDCP_RCVPORT_DATA1";
case 0x013C: return "HDCP_RCVPORT_DATA2";
case 0x0144: return "HDCP_RCVPORT_DATA3";
case 0x0148: return "HDCP_RCVPORT_DATA4";
case 0x014C: return "HDCP_RCVPORT_DATA5";
case 0x0150: return "HDCP_RCVPORT_DATA6";
case 0x0168: return "HDCP_RCVPORT_DATA12";
#endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT */
case 0x01D0: return "AUDIO_CFG";
case 0x0208: return "USEC_REFTIMER";
case 0x020C: return "DDC_CTRL";
case 0x0214: return "DDC_INT_CTRL";
case 0x0218: return "DDC_SW_STATUS";
case 0x021C: return "DDC_HW_STATUS";
case 0x0220: return "DDC_SPEED";
case 0x0224: return "DDC_SETUP";
case 0x0228: return "DDC_TRANS0";
case 0x022C: return "DDC_TRANS1";
case 0x0238: return "DDC_DATA";
case 0x0250: return "HPD_INT_STATUS";
case 0x0254: return "HPD_INT_CTRL";
case 0x0258: return "HPD_CTRL";
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
case 0x025C: return "HDCP_ENTROPY_CTRL1";
#endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT */
case 0x027C: return "DDC_REF";
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
case 0x0284: return "HDCP_SW_UPPER_AKSV";
case 0x0288: return "HDCP_SW_LOWER_AKSV";
#endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT */
case 0x02B4: return "ACTIVE_H";
case 0x02B8: return "ACTIVE_V";
case 0x02BC: return "ACTIVE_V_F2";
case 0x02C0: return "TOTAL";
case 0x02C4: return "V_TOTAL_F2";
case 0x02C8: return "FRAME_CTRL";
case 0x02CC: return "AUD_INT";
case 0x0300: return "PHY_REG0";
case 0x0304: return "PHY_REG1";
case 0x0308: return "PHY_REG2";
case 0x030C: return "PHY_REG3";
case 0x0310: return "PHY_REG4";
case 0x0314: return "PHY_REG5";
case 0x0318: return "PHY_REG6";
case 0x031C: return "PHY_REG7";
case 0x0320: return "PHY_REG8";
case 0x0324: return "PHY_REG9";
case 0x0328: return "PHY_REG10";
case 0x032C: return "PHY_REG11";
case 0x0330: return "PHY_REG12";
default: return "???";
}
}
void hdmi_outp(uint32 offset, uint32 value)
{
uint32 in_val;
outpdw(MSM_HDMI_BASE+offset, value);
in_val = inpdw(MSM_HDMI_BASE+offset);
DEV_DBG("HDMI[%04x] => %08x [%08x] %s\n",
offset, value, in_val, hdmi_msm_name(offset));
}
uint32 hdmi_inp(uint32 offset)
{
uint32 value = inpdw(MSM_HDMI_BASE+offset);
DEV_DBG("HDMI[%04x] <= %08x %s\n",
offset, value, hdmi_msm_name(offset));
return value;
}
#endif /* DEBUG */
static void hdmi_msm_turn_on(void);
static int hdmi_msm_audio_off(void);
static int hdmi_msm_read_edid(void);
static void hdmi_msm_hpd_off(void);
static void hdmi_msm_hpd_state_work(struct work_struct *work)
{
boolean hpd_state = false;
char *envp[2];
if (hdmi_msm_state->is_mhl_enabled) {
/*
* HPD will be controlled from MHL
*/
envp[0] = "";
DEV_DBG("%s %u\n", envp[0], hpd_state);
return;
}
if (!hdmi_msm_state || !hdmi_msm_state->hpd_initialized ||
!MSM_HDMI_BASE) {
DEV_DBG("%s: ignored, probe failed\n", __func__);
return;
}
DEV_DBG("%s:Got interrupt\n", __func__);
/* HPD_INT_STATUS[0x0250] */
hpd_state = (HDMI_INP(0x0250) & 0x2) >> 1;
mutex_lock(&external_common_state_hpd_mutex);
mutex_lock(&hdmi_msm_state_mutex);
if ((external_common_state->hpd_state != hpd_state) || (hdmi_msm_state->
hpd_prev_state != external_common_state->hpd_state)) {
external_common_state->hpd_state = hpd_state;
hdmi_msm_state->hpd_prev_state =
external_common_state->hpd_state;
DEV_DBG("%s: state not stable yet, wait again (%d|%d|%d)\n",
__func__, hdmi_msm_state->hpd_prev_state,
external_common_state->hpd_state, hpd_state);
mutex_unlock(&external_common_state_hpd_mutex);
hdmi_msm_state->hpd_stable = 0;
mutex_unlock(&hdmi_msm_state_mutex);
mod_timer(&hdmi_msm_state->hpd_state_timer, jiffies + HZ/2);
return;
}
mutex_unlock(&external_common_state_hpd_mutex);
if (hdmi_msm_state->hpd_stable++) {
mutex_unlock(&hdmi_msm_state_mutex);
DEV_DBG("%s: no more timer, depending for IRQ now\n",
__func__);
return;
}
hdmi_msm_state->hpd_stable = 1;
DEV_INFO("HDMI HPD: event detected\n");
if (!hdmi_msm_state->hpd_cable_chg_detected) {
mutex_unlock(&hdmi_msm_state_mutex);
if (hpd_state) {
if (!external_common_state->
disp_mode_list.num_of_elements)
hdmi_msm_read_edid();
}
} else {
hdmi_msm_state->hpd_cable_chg_detected = FALSE;
mutex_unlock(&hdmi_msm_state_mutex);
/* QDSP OFF preceding the HPD event notification */
envp[0] = "HDCP_STATE=FAIL";
envp[1] = NULL;
DEV_INFO("HDMI HPD: QDSP OFF\n");
kobject_uevent_env(external_common_state->uevent_kobj,
KOBJ_CHANGE, envp);
switch_set_state(&external_common_state->sdev, 0);
DEV_INFO("Hdmi state switch to %d: %s\n",
external_common_state->sdev.state, __func__);
if (hpd_state) {
/* Build EDID table */
hdmi_msm_read_edid();
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
hdmi_msm_state->reauth = FALSE ;
#endif
DEV_INFO("HDMI HPD: sense CONNECTED: send ONLINE\n");
kobject_uevent(external_common_state->uevent_kobj,
KOBJ_ONLINE);
#ifndef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
/* Send Audio for HDMI Compliance Cases*/
envp[0] = "HDCP_STATE=PASS";
envp[1] = NULL;
DEV_INFO("HDMI HPD: sense : send HDCP_PASS\n");
kobject_uevent_env(external_common_state->uevent_kobj,
KOBJ_CHANGE, envp);
switch_set_state(&external_common_state->sdev, 1);
DEV_INFO("Hdmi state switch to %d: %s\n",
external_common_state->sdev.state, __func__);
#endif
} else {
DEV_INFO("HDMI HPD: sense DISCONNECTED: send OFFLINE\n"
);
kobject_uevent(external_common_state->uevent_kobj,
KOBJ_OFFLINE);
switch_set_state(&external_common_state->sdev, 0);
DEV_INFO("Hdmi state switch to %d: %s\n",
external_common_state->sdev.state, __func__);
}
}
/* HPD_INT_CTRL[0x0254]
* 31:10 Reserved
* 9 RCV_PLUGIN_DET_MASK receiver plug in interrupt mask.
* When programmed to 1,
* RCV_PLUGIN_DET_INT will toggle
* the interrupt line
* 8:6 Reserved
* 5 RX_INT_EN Panel RX interrupt enable
* 0: Disable
* 1: Enable
* 4 RX_INT_ACK WRITE ONLY. Panel RX interrupt
* ack
* 3 Reserved
* 2 INT_EN Panel interrupt control
* 0: Disable
* 1: Enable
* 1 INT_POLARITY Panel interrupt polarity
* 0: generate interrupt on disconnect
* 1: generate interrupt on connect
* 0 INT_ACK WRITE ONLY. Panel interrupt ack */
/* Set IRQ for HPD */
HDMI_OUTP(0x0254, 4 | (hpd_state ? 0 : 2));
}
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT
static void hdmi_msm_cec_latch_work(struct work_struct *work)
{
hdmi_msm_cec_line_latch_detect();
}
#endif
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
static void hdcp_deauthenticate(void);
static void hdmi_msm_hdcp_reauth_work(struct work_struct *work)
{
/* Don't process recursive actions */
mutex_lock(&hdmi_msm_state_mutex);
if (hdmi_msm_state->hdcp_activating) {
mutex_unlock(&hdmi_msm_state_mutex);
return;
}
mutex_unlock(&hdmi_msm_state_mutex);
/*
* Reauth=>deauth, hdcp_auth
* hdcp_auth=>turn_on() which calls
* HDMI Core reset without informing the Audio QDSP
* this can do bad things to video playback on the HDTV
* Therefore, as surprising as it may sound do reauth
* only if the device is HDCP-capable
*/
if (external_common_state->present_hdcp) {
hdcp_deauthenticate();
mod_timer(&hdmi_msm_state->hdcp_timer, jiffies + HZ/2);
}
}
static void hdmi_msm_hdcp_work(struct work_struct *work)
{
/* Only re-enable if cable still connected */
mutex_lock(&external_common_state_hpd_mutex);
if (external_common_state->hpd_state &&
!(hdmi_msm_state->full_auth_done)) {
mutex_unlock(&external_common_state_hpd_mutex);
hdmi_msm_state->reauth = TRUE;
hdmi_msm_turn_on();
} else
mutex_unlock(&external_common_state_hpd_mutex);
}
#endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT */
static irqreturn_t hdmi_msm_isr(int irq, void *dev_id)
{
uint32 hpd_int_status;
uint32 hpd_int_ctrl;
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT
uint32 cec_intr_status;
#endif
uint32 ddc_int_ctrl;
uint32 audio_int_val;
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
uint32 hdcp_int_val;
char *envp[2];
#endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT */
static uint32 fifo_urun_int_occurred;
static uint32 sample_drop_int_occurred;
const uint32 occurrence_limit = 5;
if (!hdmi_msm_state || !hdmi_msm_state->hpd_initialized ||
!MSM_HDMI_BASE) {
DEV_DBG("ISR ignored, probe failed\n");
return IRQ_HANDLED;
}
/* Process HPD Interrupt */
/* HDMI_HPD_INT_STATUS[0x0250] */
hpd_int_status = HDMI_INP_ND(0x0250);
/* HDMI_HPD_INT_CTRL[0x0254] */
hpd_int_ctrl = HDMI_INP_ND(0x0254);
if ((hpd_int_ctrl & (1 << 2)) && (hpd_int_status & (1 << 0))) {
boolean cable_detected = (hpd_int_status & 2) >> 1;
/* HDMI_HPD_INT_CTRL[0x0254] */
/* Clear all interrupts, timer will turn IRQ back on
* Leaving the bit[2] on, else core goes off
* on getting HPD during power off
*/
HDMI_OUTP(0x0254, (1 << 2) | (1 << 0));
DEV_DBG("%s: HPD IRQ, Ctrl=%04x, State=%04x\n", __func__,
hpd_int_ctrl, hpd_int_status);
mutex_lock(&hdmi_msm_state_mutex);
hdmi_msm_state->hpd_cable_chg_detected = TRUE;
/* ensure 2 readouts */
hdmi_msm_state->hpd_prev_state = cable_detected ? 0 : 1;
external_common_state->hpd_state = cable_detected ? 1 : 0;
hdmi_msm_state->hpd_stable = 0;
mod_timer(&hdmi_msm_state->hpd_state_timer, jiffies + HZ/2);
mutex_unlock(&hdmi_msm_state_mutex);
/*
* HDCP Compliance 1A-01:
* The Quantum Data Box 882 triggers two consecutive
* HPD events very close to each other as a part of this
* test which can trigger two parallel HDCP auth threads
* if HDCP authentication is going on and we get ISR
* then stop the authentication , rather than
* reauthenticating it again
*/
if (!(hdmi_msm_state->full_auth_done)) {
DEV_DBG("%s getting hpd while authenticating\n",\
__func__);
mutex_lock(&hdcp_auth_state_mutex);
hdmi_msm_state->hpd_during_auth = TRUE;
mutex_unlock(&hdcp_auth_state_mutex);
}
return IRQ_HANDLED;
}
/* Process DDC Interrupts */
/* HDMI_DDC_INT_CTRL[0x0214] */
ddc_int_ctrl = HDMI_INP_ND(0x0214);
if ((ddc_int_ctrl & (1 << 2)) && (ddc_int_ctrl & (1 << 0))) {
/* SW_DONE INT occured, clr it */
HDMI_OUTP_ND(0x0214, ddc_int_ctrl | (1 << 1));
complete(&hdmi_msm_state->ddc_sw_done);
return IRQ_HANDLED;
}
/* FIFO Underrun Int is enabled */
/* HDMI_AUD_INT[0x02CC]
* [3] AUD_SAM_DROP_MASK [R/W]
* [2] AUD_SAM_DROP_ACK [W], AUD_SAM_DROP_INT [R]
* [1] AUD_FIFO_URUN_MASK [R/W]
* [0] AUD_FIFO_URUN_ACK [W], AUD_FIFO_URUN_INT [R] */
audio_int_val = HDMI_INP_ND(0x02CC);
if ((audio_int_val & (1 << 1)) && (audio_int_val & (1 << 0))) {
/* FIFO Underrun occured, clr it */
HDMI_OUTP(0x02CC, audio_int_val | (1 << 0));
++fifo_urun_int_occurred;
DEV_INFO("HDMI AUD_FIFO_URUN: %d\n", fifo_urun_int_occurred);
if (fifo_urun_int_occurred >= occurrence_limit) {
HDMI_OUTP(0x02CC, HDMI_INP(0x02CC) & ~(1 << 1));
DEV_INFO("HDMI AUD_FIFO_URUN: INT has been disabled "
"by the ISR after %d occurences...\n",
fifo_urun_int_occurred);
}
return IRQ_HANDLED;
}
/* Audio Sample Drop int is enabled */
if ((audio_int_val & (1 << 3)) && (audio_int_val & (1 << 2))) {
/* Audio Sample Drop occured, clr it */
HDMI_OUTP(0x02CC, audio_int_val | (1 << 2));
DEV_DBG("%s: AUD_SAM_DROP", __func__);
++sample_drop_int_occurred;
if (sample_drop_int_occurred >= occurrence_limit) {
HDMI_OUTP(0x02CC, HDMI_INP(0x02CC) & ~(1 << 3));
DEV_INFO("HDMI AUD_SAM_DROP: INT has been disabled "
"by the ISR after %d occurences...\n",
sample_drop_int_occurred);
}
return IRQ_HANDLED;
}
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
/* HDCP_INT_CTRL[0x0118]
* [0] AUTH_SUCCESS_INT [R] HDCP Authentication Success
* interrupt status
* [1] AUTH_SUCCESS_ACK [W] Acknowledge bit for HDCP
* Authentication Success bit - write 1 to clear
* [2] AUTH_SUCCESS_MASK [R/W] Mask bit for HDCP Authentication
* Success interrupt - set to 1 to enable interrupt */
hdcp_int_val = HDMI_INP_ND(0x0118);
if ((hdcp_int_val & (1 << 2)) && (hdcp_int_val & (1 << 0))) {
/* AUTH_SUCCESS_INT */
HDMI_OUTP(0x0118, (hdcp_int_val | (1 << 1)) & ~(1 << 0));
DEV_INFO("HDCP: AUTH_SUCCESS_INT received\n");
complete_all(&hdmi_msm_state->hdcp_success_done);
return IRQ_HANDLED;
}
/* [4] AUTH_FAIL_INT [R] HDCP Authentication Lost
* interrupt Status
* [5] AUTH_FAIL_ACK [W] Acknowledge bit for HDCP
* Authentication Lost bit - write 1 to clear
* [6] AUTH_FAIL_MASK [R/W] Mask bit fo HDCP Authentication
* Lost interrupt set to 1 to enable interrupt
* [7] AUTH_FAIL_INFO_ACK [W] Acknowledge bit for HDCP
* Authentication Failure Info field - write 1 to clear */
if ((hdcp_int_val & (1 << 6)) && (hdcp_int_val & (1 << 4))) {
/* AUTH_FAIL_INT */
/* Clear and Disable */
HDMI_OUTP(0x0118, (hdcp_int_val | (1 << 5))
& ~((1 << 6) | (1 << 4)));
DEV_INFO("HDCP: AUTH_FAIL_INT received, LINK0_STATUS=0x%08x\n",
HDMI_INP_ND(0x011C));
if (hdmi_msm_state->full_auth_done) {
envp[0] = "HDCP_STATE=FAIL";
envp[1] = NULL;
DEV_INFO("HDMI HPD:QDSP OFF\n");
kobject_uevent_env(external_common_state->uevent_kobj,
KOBJ_CHANGE, envp);
switch_set_state(&external_common_state->sdev, 0);
DEV_INFO("Hdmi state switch to %d: %s\n",
external_common_state->sdev.state, __func__);
mutex_lock(&hdcp_auth_state_mutex);
hdmi_msm_state->full_auth_done = FALSE;
mutex_unlock(&hdcp_auth_state_mutex);
/* Calling reauth only when authentication
* is sucessful or else we always go into
* the reauth loop
*/
queue_work(hdmi_work_queue,
&hdmi_msm_state->hdcp_reauth_work);
}
mutex_lock(&hdcp_auth_state_mutex);
/* This flag prevents other threads from re-authenticating
* after we've just authenticated (i.e., finished part3)
*/
hdmi_msm_state->full_auth_done = FALSE;
mutex_unlock(&hdcp_auth_state_mutex);
DEV_DBG("calling reauthenticate from %s HDCP FAIL INT ",
__func__);
/* Clear AUTH_FAIL_INFO as well */
HDMI_OUTP(0x0118, (hdcp_int_val | (1 << 7)));
return IRQ_HANDLED;
}
/* [8] DDC_XFER_REQ_INT [R] HDCP DDC Transfer Request
* interrupt status
* [9] DDC_XFER_REQ_ACK [W] Acknowledge bit for HDCP DDC
* Transfer Request bit - write 1 to clear
* [10] DDC_XFER_REQ_MASK [R/W] Mask bit for HDCP DDC Transfer
* Request interrupt - set to 1 to enable interrupt */
if ((hdcp_int_val & (1 << 10)) && (hdcp_int_val & (1 << 8))) {
/* DDC_XFER_REQ_INT */
HDMI_OUTP_ND(0x0118, (hdcp_int_val | (1 << 9)) & ~(1 << 8));
if (!(hdcp_int_val & (1 << 12)))
return IRQ_HANDLED;
}
/* [12] DDC_XFER_DONE_INT [R] HDCP DDC Transfer done interrupt
* status
* [13] DDC_XFER_DONE_ACK [W] Acknowledge bit for HDCP DDC
* Transfer done bit - write 1 to clear
* [14] DDC_XFER_DONE_MASK [R/W] Mask bit for HDCP DDC Transfer
* done interrupt - set to 1 to enable interrupt */
if ((hdcp_int_val & (1 << 14)) && (hdcp_int_val & (1 << 12))) {
/* DDC_XFER_DONE_INT */
HDMI_OUTP_ND(0x0118, (hdcp_int_val | (1 << 13)) & ~(1 << 12));
DEV_INFO("HDCP: DDC_XFER_DONE received\n");
return IRQ_HANDLED;
}
#endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT */
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT
/* Process CEC Interrupt */
/* HDMI_MSM_CEC_INT[0x029C] */
cec_intr_status = HDMI_INP_ND(0x029C);
DEV_DBG("cec interrupt status is [%u]\n", cec_intr_status);
if (HDMI_MSM_CEC_FRAME_WR_SUCCESS(cec_intr_status)) {
DEV_DBG("CEC_IRQ_FRAME_WR_DONE\n");
HDMI_OUTP(0x029C, cec_intr_status |
HDMI_MSM_CEC_INT_FRAME_WR_DONE_ACK);
mutex_lock(&hdmi_msm_state_mutex);
hdmi_msm_state->cec_frame_wr_status |= CEC_STATUS_WR_DONE;
hdmi_msm_state->first_monitor = 0;
del_timer(&hdmi_msm_state->cec_read_timer);
mutex_unlock(&hdmi_msm_state_mutex);
complete(&hdmi_msm_state->cec_frame_wr_done);
return IRQ_HANDLED;
}
if ((cec_intr_status & (1 << 2)) && (cec_intr_status & (1 << 3))) {
DEV_DBG("CEC_IRQ_FRAME_ERROR\n");
#ifdef TOGGLE_CEC_HARDWARE_FSM
/* Toggle CEC hardware FSM */
HDMI_OUTP(0x028C, 0x0);
HDMI_OUTP(0x028C, HDMI_MSM_CEC_CTRL_ENABLE);
#endif
HDMI_OUTP(0x029C, cec_intr_status);
mutex_lock(&hdmi_msm_state_mutex);
hdmi_msm_state->first_monitor = 0;
del_timer(&hdmi_msm_state->cec_read_timer);
hdmi_msm_state->cec_frame_wr_status |= CEC_STATUS_WR_ERROR;
mutex_unlock(&hdmi_msm_state_mutex);
complete(&hdmi_msm_state->cec_frame_wr_done);
return IRQ_HANDLED;
}
if ((cec_intr_status & (1 << 4)) && (cec_intr_status & (1 << 5))) {
DEV_DBG("CEC_IRQ_MONITOR\n");
HDMI_OUTP(0x029C, cec_intr_status |
HDMI_MSM_CEC_INT_MONITOR_ACK);
/*
* CECT 9-5-1
* On the first occassion start a timer
* for few hundred ms, if it expires then
* reset the CEC block else go on with
* frame transactions as usual.
* Below adds hdmi_msm_cec_msg_recv() as an
* item into the work queue instead of running in
* interrupt context
*/
mutex_lock(&hdmi_msm_state_mutex);
if (hdmi_msm_state->first_monitor == 0) {
/* This timer might have to be changed
* worst case theoritical =
* 16 bytes * 8 * 2.7msec = 346 msec
*/
mod_timer(&hdmi_msm_state->cec_read_timer,
jiffies + HZ/2);
hdmi_msm_state->first_monitor = 1;
}
mutex_unlock(&hdmi_msm_state_mutex);
return IRQ_HANDLED;
}
if ((cec_intr_status & (1 << 6)) && (cec_intr_status & (1 << 7))) {
DEV_DBG("CEC_IRQ_FRAME_RD_DONE\n");
mutex_lock(&hdmi_msm_state_mutex);
hdmi_msm_state->first_monitor = 0;
del_timer(&hdmi_msm_state->cec_read_timer);
mutex_unlock(&hdmi_msm_state_mutex);
HDMI_OUTP(0x029C, cec_intr_status |
HDMI_MSM_CEC_INT_FRAME_RD_DONE_ACK);
hdmi_msm_cec_msg_recv();
#ifdef TOGGLE_CEC_HARDWARE_FSM
if (!msg_send_complete)
msg_recv_complete = FALSE;
else {
/* Toggle CEC hardware FSM */
HDMI_OUTP(0x028C, 0x0);
HDMI_OUTP(0x028C, HDMI_MSM_CEC_CTRL_ENABLE);
}
#else
HDMI_OUTP(0x028C, 0x0);
HDMI_OUTP(0x028C, HDMI_MSM_CEC_CTRL_ENABLE);
#endif
return IRQ_HANDLED;
}
#endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT */
DEV_DBG("%s: HPD<Ctrl=%04x, State=%04x>, ddc_int_ctrl=%04x, "
"aud_int=%04x, cec_intr_status=%04x\n", __func__, hpd_int_ctrl,
hpd_int_status, ddc_int_ctrl, audio_int_val,
HDMI_INP_ND(0x029C));
return IRQ_HANDLED;
}
static int check_hdmi_features(void)
{
/* RAW_FEAT_CONFIG_ROW0_LSB */
uint32 val = inpdw(QFPROM_BASE + 0x0238);
/* HDMI_DISABLE */
boolean hdmi_disabled = (val & 0x00200000) >> 21;
/* HDCP_DISABLE */
boolean hdcp_disabled = (val & 0x00400000) >> 22;
DEV_DBG("Features <val:0x%08x, HDMI:%s, HDCP:%s>\n", val,
hdmi_disabled ? "OFF" : "ON", hdcp_disabled ? "OFF" : "ON");
if (hdmi_disabled) {
DEV_ERR("ERROR: HDMI disabled\n");
return -ENODEV;
}
if (hdcp_disabled)
DEV_WARN("WARNING: HDCP disabled\n");
return 0;
}
static boolean hdmi_msm_has_hdcp(void)
{
/* RAW_FEAT_CONFIG_ROW0_LSB, HDCP_DISABLE */
return (inpdw(QFPROM_BASE + 0x0238) & 0x00400000) ? FALSE : TRUE;
}
static boolean hdmi_msm_is_power_on(void)
{
/* HDMI_CTRL, ENABLE */
return (HDMI_INP_ND(0x0000) & 0x00000001) ? TRUE : FALSE;
}
/* 1.2.1.2.1 DVI Operation
* HDMI compliance requires the HDMI core to support DVI as well. The
* HDMI core also supports DVI. In DVI operation there are no preambles
* and guardbands transmitted. THe TMDS encoding of video data remains
* the same as HDMI. There are no VBI or audio packets transmitted. In
* order to enable DVI mode in HDMI core, HDMI_DVI_SEL field of
* HDMI_CTRL register needs to be programmed to 0. */
static boolean hdmi_msm_is_dvi_mode(void)
{
/* HDMI_CTRL, HDMI_DVI_SEL */
return (HDMI_INP_ND(0x0000) & 0x00000002) ? FALSE : TRUE;
}
void hdmi_msm_set_mode(boolean power_on)
{
uint32 reg_val = 0;
if (power_on) {
/* ENABLE */
reg_val |= 0x00000001; /* Enable the block */
if (external_common_state->hdmi_sink == 0) {
/* HDMI_DVI_SEL */
reg_val |= 0x00000002;
if (external_common_state->present_hdcp)
/* HDMI Encryption */
reg_val |= 0x00000004;
/* HDMI_CTRL */
HDMI_OUTP(0x0000, reg_val);
/* HDMI_DVI_SEL */
reg_val &= ~0x00000002;
} else {
if (external_common_state->present_hdcp)
/* HDMI_Encryption_ON */
reg_val |= 0x00000006;
else
reg_val |= 0x00000002;
}
} else
reg_val = 0x00000002;
/* HDMI_CTRL */
HDMI_OUTP(0x0000, reg_val);
DEV_DBG("HDMI Core: %s, HDMI_CTRL=0x%08x\n",
power_on ? "Enable" : "Disable", reg_val);
}
static void msm_hdmi_init_ddc(void)
{
/* 0x0220 HDMI_DDC_SPEED
[31:16] PRESCALE prescale = (m * xtal_frequency) /
(desired_i2c_speed), where m is multiply
factor, default: m = 1
[1:0] THRESHOLD Select threshold to use to determine whether value
sampled on SDA is a 1 or 0. Specified in terms of the ratio
between the number of sampled ones and the total number of times
SDA is sampled.
* 0x0: >0
* 0x1: 1/4 of total samples
* 0x2: 1/2 of total samples
* 0x3: 3/4 of total samples */
/* Configure the Pre-Scale multiplier
* Configure the Threshold */
HDMI_OUTP_ND(0x0220, (10 << 16) | (2 << 0));
/*
* 0x0224 HDMI_DDC_SETUP
* Setting 31:24 bits : Time units to wait before timeout
* when clock is being stalled by external sink device
*/
HDMI_OUTP_ND(0x0224, 0xff000000);
/* 0x027C HDMI_DDC_REF
[6] REFTIMER_ENABLE Enable the timer
* 0: Disable
* 1: Enable
[15:0] REFTIMER Value to set the register in order to generate
DDC strobe. This register counts on HDCP application clock */
/* Enable reference timer
* 27 micro-seconds */
HDMI_OUTP_ND(0x027C, (1 << 16) | (27 << 0));
}
static int hdmi_msm_ddc_clear_irq(const char *what)
{
const uint32 time_out = 0xFFFF;
uint32 time_out_count, reg_val;
/* clear pending and enable interrupt */
time_out_count = time_out;
do {
--time_out_count;
/* HDMI_DDC_INT_CTRL[0x0214]
[2] SW_DONE_MK Mask bit for SW_DONE_INT. Set to 1 to enable
interrupt.
[1] SW_DONE_ACK WRITE ONLY. Acknowledge bit for SW_DONE_INT.
Write 1 to clear interrupt.
[0] SW_DONE_INT READ ONLY. SW_DONE interrupt status */
/* Clear and Enable DDC interrupt */
/* Write */
HDMI_OUTP_ND(0x0214, (1 << 2) | (1 << 1));
/* Read back */
reg_val = HDMI_INP_ND(0x0214);
} while ((reg_val & 0x1) && time_out_count);
if (!time_out_count) {
DEV_ERR("%s[%s]: timedout\n", __func__, what);
return -ETIMEDOUT;
}
return 0;
}
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
static int hdmi_msm_ddc_write(uint32 dev_addr, uint32 offset,
const uint8 *data_buf, uint32 data_len, const char *what)
{
uint32 reg_val, ndx;
int status = 0, retry = 10;
uint32 time_out_count;
if (NULL == data_buf) {
status = -EINVAL;
DEV_ERR("%s[%s]: invalid input paramter\n", __func__, what);
goto error;
}
again:
status = hdmi_msm_ddc_clear_irq(what);
if (status)
goto error;
/* Ensure Device Address has LSB set to 0 to indicate Slave addr read */
dev_addr &= 0xFE;
/* 0x0238 HDMI_DDC_DATA
[31] INDEX_WRITE WRITE ONLY. To write index field, set this bit to
1 while writing HDMI_DDC_DATA.
[23:16] INDEX Use to set index into DDC buffer for next read or
current write, or to read index of current read or next write.
Writable only when INDEX_WRITE=1.
[15:8] DATA Use to fill or read the DDC buffer
[0] DATA_RW Select whether buffer access will be a read or write.
For writes, address auto-increments on write to HDMI_DDC_DATA.
For reads, address autoincrements on reads to HDMI_DDC_DATA.
* 0: Write
* 1: Read */
/* 1. Write to HDMI_I2C_DATA with the following fields set in order to
* handle portion #1
* DATA_RW = 0x1 (write)
* DATA = linkAddress (primary link address and writing)
* INDEX = 0x0 (initial offset into buffer)
* INDEX_WRITE = 0x1 (setting initial offset) */
HDMI_OUTP_ND(0x0238, (0x1UL << 31) | (dev_addr << 8));
/* 2. Write to HDMI_I2C_DATA with the following fields set in order to
* handle portion #2
* DATA_RW = 0x0 (write)
* DATA = offsetAddress
* INDEX = 0x0
* INDEX_WRITE = 0x0 (auto-increment by hardware) */
HDMI_OUTP_ND(0x0238, offset << 8);
/* 3. Write to HDMI_I2C_DATA with the following fields set in order to
* handle portion #3
* DATA_RW = 0x0 (write)
* DATA = data_buf[ndx]
* INDEX = 0x0
* INDEX_WRITE = 0x0 (auto-increment by hardware) */
for (ndx = 0; ndx < data_len; ++ndx)
HDMI_OUTP_ND(0x0238, ((uint32)data_buf[ndx]) << 8);
/* Data setup is complete, now setup the transaction characteristics */
/* 0x0228 HDMI_DDC_TRANS0
[23:16] CNT0 Byte count for first transaction (excluding the first
byte, which is usually the address).
[13] STOP0 Determines whether a stop bit will be sent after the first
transaction
* 0: NO STOP
* 1: STOP
[12] START0 Determines whether a start bit will be sent before the
first transaction
* 0: NO START
* 1: START
[8] STOP_ON_NACK0 Determines whether the current transfer will stop
if a NACK is received during the first transaction (current
transaction always stops).
* 0: STOP CURRENT TRANSACTION, GO TO NEXT TRANSACTION
* 1: STOP ALL TRANSACTIONS, SEND STOP BIT
[0] RW0 Read/write indicator for first transaction - set to 0 for
write, 1 for read. This bit only controls HDMI_DDC behaviour -
the R/W bit in the transaction is programmed into the DDC buffer
as the LSB of the address byte.
* 0: WRITE
* 1: READ */
/* 4. Write to HDMI_I2C_TRANSACTION0 with the following fields set in
order to handle characteristics of portion #1 and portion #2
* RW0 = 0x0 (write)
* START0 = 0x1 (insert START bit)
* STOP0 = 0x0 (do NOT insert STOP bit)
* CNT0 = 0x1 (single byte transaction excluding address) */
HDMI_OUTP_ND(0x0228, (1 << 12) | (1 << 16));
/* 0x022C HDMI_DDC_TRANS1
[23:16] CNT1 Byte count for second transaction (excluding the first
byte, which is usually the address).
[13] STOP1 Determines whether a stop bit will be sent after the second
transaction
* 0: NO STOP
* 1: STOP
[12] START1 Determines whether a start bit will be sent before the
second transaction
* 0: NO START
* 1: START
[8] STOP_ON_NACK1 Determines whether the current transfer will stop if
a NACK is received during the second transaction (current
transaction always stops).
* 0: STOP CURRENT TRANSACTION, GO TO NEXT TRANSACTION
* 1: STOP ALL TRANSACTIONS, SEND STOP BIT
[0] RW1 Read/write indicator for second transaction - set to 0 for
write, 1 for read. This bit only controls HDMI_DDC behaviour -
the R/W bit in the transaction is programmed into the DDC buffer
as the LSB of the address byte.
* 0: WRITE
* 1: READ */
/* 5. Write to HDMI_I2C_TRANSACTION1 with the following fields set in
order to handle characteristics of portion #3
* RW1 = 0x1 (read)
* START1 = 0x1 (insert START bit)
* STOP1 = 0x1 (insert STOP bit)
* CNT1 = data_len (0xN (write N bytes of data))
* Byte count for second transition (excluding the first
* Byte which is usually the address) */
HDMI_OUTP_ND(0x022C, (1 << 13) | ((data_len-1) << 16));
/* Trigger the I2C transfer */
/* 0x020C HDMI_DDC_CTRL
[21:20] TRANSACTION_CNT
Number of transactions to be done in current transfer.
* 0x0: transaction0 only
* 0x1: transaction0, transaction1
* 0x2: transaction0, transaction1, transaction2
* 0x3: transaction0, transaction1, transaction2, transaction3
[3] SW_STATUS_RESET
Write 1 to reset HDMI_DDC_SW_STATUS flags, will reset SW_DONE,
ABORTED, TIMEOUT, SW_INTERRUPTED, BUFFER_OVERFLOW,
STOPPED_ON_NACK, NACK0, NACK1, NACK2, NACK3
[2] SEND_RESET Set to 1 to send reset sequence (9 clocks with no
data) at start of transfer. This sequence is sent after GO is
written to 1, before the first transaction only.
[1] SOFT_RESET Write 1 to reset DDC controller
[0] GO WRITE ONLY. Write 1 to start DDC transfer. */
/* 6. Write to HDMI_I2C_CONTROL to kick off the hardware.
* Note that NOTHING has been transmitted on the DDC lines up to this
* point.
* TRANSACTION_CNT = 0x1 (execute transaction0 followed by
* transaction1)
* GO = 0x1 (kicks off hardware) */
INIT_COMPLETION(hdmi_msm_state->ddc_sw_done);
HDMI_OUTP_ND(0x020C, (1 << 0) | (1 << 20));
time_out_count = wait_for_completion_interruptible_timeout(
&hdmi_msm_state->ddc_sw_done, HZ/2);
HDMI_OUTP_ND(0x0214, 0x2);
if (!time_out_count) {
if (retry-- > 0) {
DEV_INFO("%s[%s]: failed timout, retry=%d\n", __func__,
what, retry);
goto again;
}
status = -ETIMEDOUT;
DEV_ERR("%s[%s]: timedout, DDC SW Status=%08x, HW "
"Status=%08x, Int Ctrl=%08x\n", __func__, what,
HDMI_INP_ND(0x0218), HDMI_INP_ND(0x021C),
HDMI_INP_ND(0x0214));
goto error;
}
/* Read DDC status */
reg_val = HDMI_INP_ND(0x0218);
reg_val &= 0x00001000 | 0x00002000 | 0x00004000 | 0x00008000;
/* Check if any NACK occurred */
if (reg_val) {
if (retry > 1)
HDMI_OUTP_ND(0x020C, BIT(3)); /* SW_STATUS_RESET */
else
HDMI_OUTP_ND(0x020C, BIT(1)); /* SOFT_RESET */
if (retry-- > 0) {
DEV_DBG("%s[%s]: failed NACK=%08x, retry=%d\n",
__func__, what, reg_val, retry);
msleep(100);
goto again;
}
status = -EIO;
DEV_ERR("%s[%s]: failed NACK: %08x\n", __func__, what, reg_val);
goto error;
}
DEV_DBG("%s[%s] success\n", __func__, what);
error:
return status;
}
#endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT */
static int hdmi_msm_ddc_read_retry(uint32 dev_addr, uint32 offset,
uint8 *data_buf, uint32 data_len, uint32 request_len, int retry,
const char *what)
{
uint32 reg_val, ndx;
int status = 0;
uint32 time_out_count;
int log_retry_fail = retry != 1;
if (NULL == data_buf) {
status = -EINVAL;
DEV_ERR("%s: invalid input paramter\n", __func__);
goto error;
}
again:
status = hdmi_msm_ddc_clear_irq(what);
if (status)
goto error;
/* Ensure Device Address has LSB set to 0 to indicate Slave addr read */
dev_addr &= 0xFE;
/* 0x0238 HDMI_DDC_DATA
[31] INDEX_WRITE WRITE ONLY. To write index field, set this bit to
1 while writing HDMI_DDC_DATA.
[23:16] INDEX Use to set index into DDC buffer for next read or
current write, or to read index of current read or next write.
Writable only when INDEX_WRITE=1.
[15:8] DATA Use to fill or read the DDC buffer
[0] DATA_RW Select whether buffer access will be a read or write.
For writes, address auto-increments on write to HDMI_DDC_DATA.
For reads, address autoincrements on reads to HDMI_DDC_DATA.
* 0: Write
* 1: Read */
/* 1. Write to HDMI_I2C_DATA with the following fields set in order to
* handle portion #1
* DATA_RW = 0x0 (write)
* DATA = linkAddress (primary link address and writing)
* INDEX = 0x0 (initial offset into buffer)
* INDEX_WRITE = 0x1 (setting initial offset) */
HDMI_OUTP_ND(0x0238, (0x1UL << 31) | (dev_addr << 8));
/* 2. Write to HDMI_I2C_DATA with the following fields set in order to
* handle portion #2
* DATA_RW = 0x0 (write)
* DATA = offsetAddress
* INDEX = 0x0
* INDEX_WRITE = 0x0 (auto-increment by hardware) */
HDMI_OUTP_ND(0x0238, offset << 8);
/* 3. Write to HDMI_I2C_DATA with the following fields set in order to
* handle portion #3
* DATA_RW = 0x0 (write)
* DATA = linkAddress + 1 (primary link address 0x74 and reading)
* INDEX = 0x0
* INDEX_WRITE = 0x0 (auto-increment by hardware) */
HDMI_OUTP_ND(0x0238, (dev_addr | 1) << 8);
/* Data setup is complete, now setup the transaction characteristics */
/* 0x0228 HDMI_DDC_TRANS0
[23:16] CNT0 Byte count for first transaction (excluding the first
byte, which is usually the address).
[13] STOP0 Determines whether a stop bit will be sent after the first
transaction
* 0: NO STOP
* 1: STOP
[12] START0 Determines whether a start bit will be sent before the
first transaction
* 0: NO START
* 1: START
[8] STOP_ON_NACK0 Determines whether the current transfer will stop
if a NACK is received during the first transaction (current
transaction always stops).
* 0: STOP CURRENT TRANSACTION, GO TO NEXT TRANSACTION
* 1: STOP ALL TRANSACTIONS, SEND STOP BIT
[0] RW0 Read/write indicator for first transaction - set to 0 for
write, 1 for read. This bit only controls HDMI_DDC behaviour -
the R/W bit in the transaction is programmed into the DDC buffer
as the LSB of the address byte.
* 0: WRITE
* 1: READ */
/* 4. Write to HDMI_I2C_TRANSACTION0 with the following fields set in
order to handle characteristics of portion #1 and portion #2
* RW0 = 0x0 (write)
* START0 = 0x1 (insert START bit)
* STOP0 = 0x0 (do NOT insert STOP bit)
* CNT0 = 0x1 (single byte transaction excluding address) */
HDMI_OUTP_ND(0x0228, (1 << 12) | (1 << 16));
/* 0x022C HDMI_DDC_TRANS1
[23:16] CNT1 Byte count for second transaction (excluding the first
byte, which is usually the address).
[13] STOP1 Determines whether a stop bit will be sent after the second
transaction
* 0: NO STOP
* 1: STOP
[12] START1 Determines whether a start bit will be sent before the
second transaction
* 0: NO START
* 1: START
[8] STOP_ON_NACK1 Determines whether the current transfer will stop if
a NACK is received during the second transaction (current
transaction always stops).
* 0: STOP CURRENT TRANSACTION, GO TO NEXT TRANSACTION
* 1: STOP ALL TRANSACTIONS, SEND STOP BIT
[0] RW1 Read/write indicator for second transaction - set to 0 for
write, 1 for read. This bit only controls HDMI_DDC behaviour -
the R/W bit in the transaction is programmed into the DDC buffer
as the LSB of the address byte.
* 0: WRITE
* 1: READ */
/* 5. Write to HDMI_I2C_TRANSACTION1 with the following fields set in
order to handle characteristics of portion #3
* RW1 = 0x1 (read)
* START1 = 0x1 (insert START bit)
* STOP1 = 0x1 (insert STOP bit)
* CNT1 = data_len (it's 128 (0x80) for a blk read) */
HDMI_OUTP_ND(0x022C, 1 | (1 << 12) | (1 << 13) | (request_len << 16));
/* Trigger the I2C transfer */
/* 0x020C HDMI_DDC_CTRL
[21:20] TRANSACTION_CNT
Number of transactions to be done in current transfer.
* 0x0: transaction0 only
* 0x1: transaction0, transaction1
* 0x2: transaction0, transaction1, transaction2
* 0x3: transaction0, transaction1, transaction2, transaction3
[3] SW_STATUS_RESET
Write 1 to reset HDMI_DDC_SW_STATUS flags, will reset SW_DONE,
ABORTED, TIMEOUT, SW_INTERRUPTED, BUFFER_OVERFLOW,
STOPPED_ON_NACK, NACK0, NACK1, NACK2, NACK3
[2] SEND_RESET Set to 1 to send reset sequence (9 clocks with no
data) at start of transfer. This sequence is sent after GO is
written to 1, before the first transaction only.
[1] SOFT_RESET Write 1 to reset DDC controller
[0] GO WRITE ONLY. Write 1 to start DDC transfer. */
/* 6. Write to HDMI_I2C_CONTROL to kick off the hardware.
* Note that NOTHING has been transmitted on the DDC lines up to this
* point.
* TRANSACTION_CNT = 0x1 (execute transaction0 followed by
* transaction1)
* SEND_RESET = Set to 1 to send reset sequence
* GO = 0x1 (kicks off hardware) */
INIT_COMPLETION(hdmi_msm_state->ddc_sw_done);
HDMI_OUTP_ND(0x020C, (1 << 0) | (1 << 20));
time_out_count = wait_for_completion_interruptible_timeout(
&hdmi_msm_state->ddc_sw_done, HZ/2);
HDMI_OUTP_ND(0x0214, 0x2);
if (!time_out_count) {
if (retry-- > 0) {
DEV_INFO("%s: failed timout, retry=%d\n", __func__,
retry);
goto again;
}
status = -ETIMEDOUT;
DEV_ERR("%s: timedout(7), DDC SW Status=%08x, HW "
"Status=%08x, Int Ctrl=%08x\n", __func__,
HDMI_INP(0x0218), HDMI_INP(0x021C), HDMI_INP(0x0214));
goto error;
}
/* Read DDC status */
reg_val = HDMI_INP_ND(0x0218);
reg_val &= 0x00001000 | 0x00002000 | 0x00004000 | 0x00008000;
/* Check if any NACK occurred */
if (reg_val) {
HDMI_OUTP_ND(0x020C, BIT(3)); /* SW_STATUS_RESET */
if (retry == 1)
HDMI_OUTP_ND(0x020C, BIT(1)); /* SOFT_RESET */
if (retry-- > 0) {
DEV_DBG("%s(%s): failed NACK=0x%08x, retry=%d, "
"dev-addr=0x%02x, offset=0x%02x, "
"length=%d\n", __func__, what,
reg_val, retry, dev_addr,
offset, data_len);
goto again;
}
status = -EIO;
if (log_retry_fail)
DEV_ERR("%s(%s): failed NACK=0x%08x, dev-addr=0x%02x, "
"offset=0x%02x, length=%d\n", __func__, what,
reg_val, dev_addr, offset, data_len);
goto error;
}
/* 0x0238 HDMI_DDC_DATA
[31] INDEX_WRITE WRITE ONLY. To write index field, set this bit to 1
while writing HDMI_DDC_DATA.
[23:16] INDEX Use to set index into DDC buffer for next read or
current write, or to read index of current read or next write.
Writable only when INDEX_WRITE=1.
[15:8] DATA Use to fill or read the DDC buffer
[0] DATA_RW Select whether buffer access will be a read or write.
For writes, address auto-increments on write to HDMI_DDC_DATA.
For reads, address autoincrements on reads to HDMI_DDC_DATA.
* 0: Write
* 1: Read */
/* 8. ALL data is now available and waiting in the DDC buffer.
* Read HDMI_I2C_DATA with the following fields set
* RW = 0x1 (read)
* DATA = BCAPS (this is field where data is pulled from)
* INDEX = 0x3 (where the data has been placed in buffer by hardware)
* INDEX_WRITE = 0x1 (explicitly define offset) */
/* Write this data to DDC buffer */
HDMI_OUTP_ND(0x0238, 0x1 | (3 << 16) | (1 << 31));
/* Discard first byte */
HDMI_INP_ND(0x0238);
for (ndx = 0; ndx < data_len; ++ndx) {
reg_val = HDMI_INP_ND(0x0238);
data_buf[ndx] = (uint8) ((reg_val & 0x0000FF00) >> 8);
}
DEV_DBG("%s[%s] success\n", __func__, what);
error:
return status;
}
static int hdmi_msm_ddc_read_edid_seg(uint32 dev_addr, uint32 offset,
uint8 *data_buf, uint32 data_len, uint32 request_len, int retry,
const char *what)
{
uint32 reg_val, ndx;
int status = 0;
uint32 time_out_count;
int log_retry_fail = retry != 1;
int seg_addr = 0x60, seg_num = 0x01;
if (NULL == data_buf) {
status = -EINVAL;
DEV_ERR("%s: invalid input paramter\n", __func__);
goto error;
}
again:
status = hdmi_msm_ddc_clear_irq(what);
if (status)
goto error;
/* Ensure Device Address has LSB set to 0 to indicate Slave addr read */
dev_addr &= 0xFE;
/* 0x0238 HDMI_DDC_DATA
[31] INDEX_WRITE WRITE ONLY. To write index field, set this bit to
1 while writing HDMI_DDC_DATA.
[23:16] INDEX Use to set index into DDC buffer for next read or
current write, or to read index of current read or next write.
Writable only when INDEX_WRITE=1.
[15:8] DATA Use to fill or read the DDC buffer
[0] DATA_RW Select whether buffer access will be a read or write.
For writes, address auto-increments on write to HDMI_DDC_DATA.
For reads, address autoincrements on reads to HDMI_DDC_DATA.
* 0: Write
* 1: Read */
/* 1. Write to HDMI_I2C_DATA with the following fields set in order to
* handle portion #1
* DATA_RW = 0x0 (write)
* DATA = linkAddress (primary link address and writing)
* INDEX = 0x0 (initial offset into buffer)
* INDEX_WRITE = 0x1 (setting initial offset) */
HDMI_OUTP_ND(0x0238, (0x1UL << 31) | (seg_addr << 8));
/* 2. Write to HDMI_I2C_DATA with the following fields set in order to
* handle portion #2
* DATA_RW = 0x0 (write)
* DATA = offsetAddress
* INDEX = 0x0
* INDEX_WRITE = 0x0 (auto-increment by hardware) */
HDMI_OUTP_ND(0x0238, seg_num << 8);
/* 3. Write to HDMI_I2C_DATA with the following fields set in order to
* handle portion #3
* DATA_RW = 0x0 (write)
* DATA = linkAddress + 1 (primary link address 0x74 and reading)
* INDEX = 0x0
* INDEX_WRITE = 0x0 (auto-increment by hardware) */
HDMI_OUTP_ND(0x0238, dev_addr << 8);
HDMI_OUTP_ND(0x0238, offset << 8);
HDMI_OUTP_ND(0x0238, (dev_addr | 1) << 8);
/* Data setup is complete, now setup the transaction characteristics */
/* 0x0228 HDMI_DDC_TRANS0
[23:16] CNT0 Byte count for first transaction (excluding the first
byte, which is usually the address).
[13] STOP0 Determines whether a stop bit will be sent after the first
transaction
* 0: NO STOP
* 1: STOP
[12] START0 Determines whether a start bit will be sent before the
first transaction
* 0: NO START
* 1: START
[8] STOP_ON_NACK0 Determines whether the current transfer will stop
if a NACK is received during the first transaction (current
transaction always stops).
* 0: STOP CURRENT TRANSACTION, GO TO NEXT TRANSACTION
* 1: STOP ALL TRANSACTIONS, SEND STOP BIT
[0] RW0 Read/write indicator for first transaction - set to 0 for
write, 1 for read. This bit only controls HDMI_DDC behaviour -
the R/W bit in the transaction is programmed into the DDC buffer
as the LSB of the address byte.
* 0: WRITE
* 1: READ */
/* 4. Write to HDMI_I2C_TRANSACTION0 with the following fields set in
order to handle characteristics of portion #1 and portion #2
* RW0 = 0x0 (write)
* START0 = 0x1 (insert START bit)
* STOP0 = 0x0 (do NOT insert STOP bit)
* CNT0 = 0x1 (single byte transaction excluding address) */
HDMI_OUTP_ND(0x0228, (1 << 12) | (1 << 16));
/* 0x022C HDMI_DDC_TRANS1
[23:16] CNT1 Byte count for second transaction (excluding the first
byte, which is usually the address).
[13] STOP1 Determines whether a stop bit will be sent after the second
transaction
* 0: NO STOP
* 1: STOP
[12] START1 Determines whether a start bit will be sent before the
second transaction
* 0: NO START
* 1: START
[8] STOP_ON_NACK1 Determines whether the current transfer will stop if
a NACK is received during the second transaction (current
transaction always stops).
* 0: STOP CURRENT TRANSACTION, GO TO NEXT TRANSACTION
* 1: STOP ALL TRANSACTIONS, SEND STOP BIT
[0] RW1 Read/write indicator for second transaction - set to 0 for
write, 1 for read. This bit only controls HDMI_DDC behaviour -
the R/W bit in the transaction is programmed into the DDC buffer
as the LSB of the address byte.
* 0: WRITE
* 1: READ */
/* 5. Write to HDMI_I2C_TRANSACTION1 with the following fields set in
order to handle characteristics of portion #3
* RW1 = 0x1 (read)
* START1 = 0x1 (insert START bit)
* STOP1 = 0x1 (insert STOP bit)
* CNT1 = data_len (it's 128 (0x80) for a blk read) */
HDMI_OUTP_ND(0x022C, (1 << 12) | (1 << 16));
/* 0x022C HDMI_DDC_TRANS2
[23:16] CNT1 Byte count for second transaction (excluding the first
byte, which is usually the address).
[13] STOP1 Determines whether a stop bit will be sent after the second
transaction
* 0: NO STOP
* 1: STOP
[12] START1 Determines whether a start bit will be sent before the
second transaction
* 0: NO START
* 1: START
[8] STOP_ON_NACK1 Determines whether the current transfer will stop if
a NACK is received during the second transaction (current
transaction always stops).
* 0: STOP CURRENT TRANSACTION, GO TO NEXT TRANSACTION
* 1: STOP ALL TRANSACTIONS, SEND STOP BIT
[0] RW1 Read/write indicator for second transaction - set to 0 for
write, 1 for read. This bit only controls HDMI_DDC behaviour -
the R/W bit in the transaction is programmed into the DDC buffer
as the LSB of the address byte.
* 0: WRITE
* 1: READ */
/* 5. Write to HDMI_I2C_TRANSACTION1 with the following fields set in
order to handle characteristics of portion #3
* RW1 = 0x1 (read)
* START1 = 0x1 (insert START bit)
* STOP1 = 0x1 (insert STOP bit)
* CNT1 = data_len (it's 128 (0x80) for a blk read) */
HDMI_OUTP_ND(0x0230, 1 | (1 << 12) | (1 << 13) | (request_len << 16));
/* Trigger the I2C transfer */
/* 0x020C HDMI_DDC_CTRL
[21:20] TRANSACTION_CNT
Number of transactions to be done in current transfer.
* 0x0: transaction0 only
* 0x1: transaction0, transaction1
* 0x2: transaction0, transaction1, transaction2
* 0x3: transaction0, transaction1, transaction2, transaction3
[3] SW_STATUS_RESET
Write 1 to reset HDMI_DDC_SW_STATUS flags, will reset SW_DONE,
ABORTED, TIMEOUT, SW_INTERRUPTED, BUFFER_OVERFLOW,
STOPPED_ON_NACK, NACK0, NACK1, NACK2, NACK3
[2] SEND_RESET Set to 1 to send reset sequence (9 clocks with no
data) at start of transfer. This sequence is sent after GO is
written to 1, before the first transaction only.
[1] SOFT_RESET Write 1 to reset DDC controller
[0] GO WRITE ONLY. Write 1 to start DDC transfer. */
/* 6. Write to HDMI_I2C_CONTROL to kick off the hardware.
* Note that NOTHING has been transmitted on the DDC lines up to this
* point.
* TRANSACTION_CNT = 0x2 (execute transaction0 followed by
* transaction1)
* GO = 0x1 (kicks off hardware) */
INIT_COMPLETION(hdmi_msm_state->ddc_sw_done);
HDMI_OUTP_ND(0x020C, (1 << 0) | (2 << 20));
time_out_count = wait_for_completion_interruptible_timeout(
&hdmi_msm_state->ddc_sw_done, HZ/2);
HDMI_OUTP_ND(0x0214, 0x2);
if (!time_out_count) {
if (retry-- > 0) {
DEV_INFO("%s: failed timout, retry=%d\n", __func__,
retry);
goto again;
}
status = -ETIMEDOUT;
DEV_ERR("%s: timedout(7), DDC SW Status=%08x, HW "
"Status=%08x, Int Ctrl=%08x\n", __func__,
HDMI_INP(0x0218), HDMI_INP(0x021C), HDMI_INP(0x0214));
goto error;
}
/* Read DDC status */
reg_val = HDMI_INP_ND(0x0218);
reg_val &= 0x00001000 | 0x00002000 | 0x00004000 | 0x00008000;
/* Check if any NACK occurred */
if (reg_val) {
HDMI_OUTP_ND(0x020C, BIT(3)); /* SW_STATUS_RESET */
if (retry == 1)
HDMI_OUTP_ND(0x020C, BIT(1)); /* SOFT_RESET */
if (retry-- > 0) {
DEV_DBG("%s(%s): failed NACK=0x%08x, retry=%d, "
"dev-addr=0x%02x, offset=0x%02x, "
"length=%d\n", __func__, what,
reg_val, retry, dev_addr,
offset, data_len);
goto again;
}
status = -EIO;
if (log_retry_fail)
DEV_ERR("%s(%s): failed NACK=0x%08x, dev-addr=0x%02x, "
"offset=0x%02x, length=%d\n", __func__, what,
reg_val, dev_addr, offset, data_len);
goto error;
}
/* 0x0238 HDMI_DDC_DATA
[31] INDEX_WRITE WRITE ONLY. To write index field, set this bit to 1
while writing HDMI_DDC_DATA.
[23:16] INDEX Use to set index into DDC buffer for next read or
current write, or to read index of current read or next write.
Writable only when INDEX_WRITE=1.
[15:8] DATA Use to fill or read the DDC buffer
[0] DATA_RW Select whether buffer access will be a read or write.
For writes, address auto-increments on write to HDMI_DDC_DATA.
For reads, address autoincrements on reads to HDMI_DDC_DATA.
* 0: Write
* 1: Read */
/* 8. ALL data is now available and waiting in the DDC buffer.
* Read HDMI_I2C_DATA with the following fields set
* RW = 0x1 (read)
* DATA = BCAPS (this is field where data is pulled from)
* INDEX = 0x5 (where the data has been placed in buffer by hardware)
* INDEX_WRITE = 0x1 (explicitly define offset) */
/* Write this data to DDC buffer */
HDMI_OUTP_ND(0x0238, 0x1 | (5 << 16) | (1 << 31));
/* Discard first byte */
HDMI_INP_ND(0x0238);
for (ndx = 0; ndx < data_len; ++ndx) {
reg_val = HDMI_INP_ND(0x0238);
data_buf[ndx] = (uint8) ((reg_val & 0x0000FF00) >> 8);
}
DEV_DBG("%s[%s] success\n", __func__, what);
error:
return status;
}
static int hdmi_msm_ddc_read(uint32 dev_addr, uint32 offset, uint8 *data_buf,
uint32 data_len, int retry, const char *what, boolean no_align)
{
int ret = hdmi_msm_ddc_read_retry(dev_addr, offset, data_buf, data_len,
data_len, retry, what);
if (!ret)
return 0;
if (no_align) {
return hdmi_msm_ddc_read_retry(dev_addr, offset, data_buf,
data_len, data_len, retry, what);
} else {
return hdmi_msm_ddc_read_retry(dev_addr, offset, data_buf,
data_len, 32 * ((data_len + 31) / 32), retry, what);
}
}
static int hdmi_msm_read_edid_block(int block, uint8 *edid_buf)
{
int i, rc = 0;
int block_size = 0x80;
do {
DEV_DBG("EDID: reading block(%d) with block-size=%d\n",
block, block_size);
for (i = 0; i < 0x80; i += block_size) {
/*Read EDID twice with 32bit alighnment too */
if (block < 2) {
rc = hdmi_msm_ddc_read(0xA0, block*0x80 + i,
edid_buf+i, block_size, 1,
"EDID", FALSE);
} else {
rc = hdmi_msm_ddc_read_edid_seg(0xA0,
block*0x80 + i, edid_buf+i, block_size,
block_size, 1, "EDID");
}
if (rc)
break;
}
block_size /= 2;
} while (rc && (block_size >= 16));
return rc;
}
static int hdmi_msm_read_edid(void)
{
int status;
msm_hdmi_init_ddc();
/* Looks like we need to turn on HDMI engine before any
* DDC transaction */
if (!hdmi_msm_is_power_on()) {
DEV_ERR("%s: failed: HDMI power is off", __func__);
status = -ENXIO;
goto error;
}
external_common_state->read_edid_block = hdmi_msm_read_edid_block;
status = hdmi_common_read_edid();
if (!status)
DEV_DBG("EDID: successfully read\n");
error:
return status;
}
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
static void hdcp_auth_info(uint32 auth_info)
{
switch (auth_info) {
case 0:
DEV_INFO("%s: None", __func__);
break;
case 1:
DEV_INFO("%s: Software Disabled Authentication", __func__);
break;
case 2:
DEV_INFO("%s: An Written", __func__);
break;
case 3:
DEV_INFO("%s: Invalid Aksv", __func__);
break;
case 4:
DEV_INFO("%s: Invalid Bksv", __func__);
break;
case 5:
DEV_INFO("%s: RI Mismatch (including RO)", __func__);
break;
case 6:
DEV_INFO("%s: consecutive Pj Mismatches", __func__);
break;
case 7:
DEV_INFO("%s: HPD Disconnect", __func__);
break;
case 8:
default:
DEV_INFO("%s: Reserved", __func__);
break;
}
}
static void hdcp_key_state(uint32 key_state)
{
switch (key_state) {
case 0:
DEV_WARN("%s: No HDCP Keys", __func__);
break;
case 1:
DEV_WARN("%s: Not Checked", __func__);
break;
case 2:
DEV_DBG("%s: Checking", __func__);
break;
case 3:
DEV_DBG("%s: HDCP Keys Valid", __func__);
break;
case 4:
DEV_WARN("%s: AKSV not valid", __func__);
break;
case 5:
DEV_WARN("%s: Checksum Mismatch", __func__);
break;
case 6:
DEV_DBG("%s: Production AKSV"
"with ENABLE_USER_DEFINED_AN=1", __func__);
break;
case 7:
default:
DEV_INFO("%s: Reserved", __func__);
break;
}
}
static int hdmi_msm_count_one(uint8 *array, uint8 len)
{
int i, j, count = 0;
for (i = 0; i < len; i++)
for (j = 0; j < 8; j++)
count += (((array[i] >> j) & 0x1) ? 1 : 0);
return count;
}
static void hdcp_deauthenticate(void)
{
int hdcp_link_status = HDMI_INP(0x011C);
/* Disable HDCP interrupts */
HDMI_OUTP(0x0118, 0x0);
external_common_state->hdcp_active = FALSE;
/* 0x0130 HDCP_RESET
[0] LINK0_DEAUTHENTICATE */
HDMI_OUTP(0x0130, 0x1);
/* 0x0110 HDCP_CTRL
[8] ENCRYPTION_ENABLE
[0] ENABLE */
/* encryption_enable = 0 | hdcp block enable = 1 */
HDMI_OUTP(0x0110, 0x0);
if (hdcp_link_status & 0x00000004)
hdcp_auth_info((hdcp_link_status & 0x000000F0) >> 4);
}
static void check_and_clear_HDCP_DDC_Failure(void)
{
int hdcp_ddc_ctrl1_reg;
int hdcp_ddc_status;
int failure;
int nack0;
/*
* Check for any DDC transfer failures
* 0x0128 HDCP_DDC_STATUS
* [16] FAILED Indicates that the last HDCP HW DDC transer
* failed. This occurs when a transfer is
* attempted with HDCP DDC disabled
* (HDCP_DDC_DISABLE=1) or the number of retries
* match HDCP_DDC_RETRY_CNT
*
* [14] NACK0 Indicates that the last HDCP HW DDC transfer
* was aborted due to a NACK on the first
* transaction - cleared by writing 0 to GO bit
*/
hdcp_ddc_status = HDMI_INP(HDCP_DDC_STATUS);
failure = (hdcp_ddc_status >> 16) & 0x1;
nack0 = (hdcp_ddc_status >> 14) & 0x1;
DEV_DBG("%s: On Entry: HDCP_DDC_STATUS = 0x%x, FAILURE = %d,"
"NACK0 = %d\n", __func__ , hdcp_ddc_status, failure, nack0);
if (failure == 0x1) {
/*
* Indicates that the last HDCP HW DDC transfer failed.
* This occurs when a transfer is attempted with HDCP DDC
* disabled (HDCP_DDC_DISABLE=1) or the number of retries
* matches HDCP_DDC_RETRY_CNT.
* Failure occured, let's clear it.
*/
DEV_INFO("%s: DDC failure detected. HDCP_DDC_STATUS=0x%08x\n",
__func__, hdcp_ddc_status);
/*
* First, Disable DDC
* 0x0120 HDCP_DDC_CTRL_0
* [0] DDC_DISABLE Determines whether HDCP Ri and Pj reads
* are done unassisted by hardware or by
* software via HDMI_DDC (HDCP provides
* interrupts to request software
* transfers)
* 0 : Use Hardware DDC
* 1 : Use Software DDC
*/
HDMI_OUTP(HDCP_DDC_CTRL_0, 0x1);
/*
* ACK the Failure to Clear it
* 0x0124 HDCP_DDC_CTRL_1
* [0] DDC_FAILED_ACK Write 1 to clear
* HDCP_STATUS.HDCP_DDC_FAILED
*/
hdcp_ddc_ctrl1_reg = HDMI_INP(HDCP_DDC_CTRL_1);
HDMI_OUTP(HDCP_DDC_CTRL_1, hdcp_ddc_ctrl1_reg | 0x1);
/* Check if the FAILURE got Cleared */
hdcp_ddc_status = HDMI_INP(HDCP_DDC_STATUS);
hdcp_ddc_status = (hdcp_ddc_status >> 16) & 0x1;
if (hdcp_ddc_status == 0x0) {
DEV_INFO("%s: HDCP DDC Failure has been cleared\n",
__func__);
} else {
DEV_WARN("%s: Error: HDCP DDC Failure DID NOT get"
"cleared\n", __func__);
}
/* Re-Enable HDCP DDC */
HDMI_OUTP(HDCP_DDC_CTRL_0, 0x0);
}
if (nack0 == 0x1) {
/*
* 0x020C HDMI_DDC_CTRL
* [3] SW_STATUS_RESET Write 1 to reset HDMI_DDC_SW_STATUS
* flags, will reset SW_DONE, ABORTED,
* TIMEOUT, SW_INTERRUPTED,
* BUFFER_OVERFLOW, STOPPED_ON_NACK, NACK0,
* NACK1, NACK2, NACK3
*/
HDMI_OUTP_ND(HDMI_DDC_CTRL,
HDMI_INP(HDMI_DDC_CTRL) | (0x1 << 3));
msleep(20);
HDMI_OUTP_ND(HDMI_DDC_CTRL,
HDMI_INP(HDMI_DDC_CTRL) & ~(0x1 << 3));
}
hdcp_ddc_status = HDMI_INP(HDCP_DDC_STATUS);
failure = (hdcp_ddc_status >> 16) & 0x1;
nack0 = (hdcp_ddc_status >> 14) & 0x1;
DEV_DBG("%s: On Exit: HDCP_DDC_STATUS = 0x%x, FAILURE = %d,"
"NACK0 = %d\n", __func__ , hdcp_ddc_status, failure, nack0);
}
static int hdcp_authentication_part1(void)
{
int ret = 0;
boolean is_match;
boolean is_part1_done = FALSE;
uint32 timeout_count;
uint8 bcaps;
uint8 aksv[5];
uint32 qfprom_aksv_0, qfprom_aksv_1, link0_aksv_0, link0_aksv_1;
uint8 bksv[5];
uint32 link0_bksv_0, link0_bksv_1;
uint8 an[8];
uint32 link0_an_0, link0_an_1;
uint32 hpd_int_status, hpd_int_ctrl;
static uint8 buf[0xFF];
memset(buf, 0, sizeof(buf));
if (!is_part1_done) {
is_part1_done = TRUE;
/* Fetch aksv from QFprom, this info should be public. */
qfprom_aksv_0 = inpdw(QFPROM_BASE + 0x000060D8);
qfprom_aksv_1 = inpdw(QFPROM_BASE + 0x000060DC);
/* copy an and aksv to byte arrays for transmission */
aksv[0] = qfprom_aksv_0 & 0xFF;
aksv[1] = (qfprom_aksv_0 >> 8) & 0xFF;
aksv[2] = (qfprom_aksv_0 >> 16) & 0xFF;
aksv[3] = (qfprom_aksv_0 >> 24) & 0xFF;
aksv[4] = qfprom_aksv_1 & 0xFF;
/* check there are 20 ones in AKSV */
if (hdmi_msm_count_one(aksv, 5) != 20) {
DEV_ERR("HDCP: AKSV read from QFPROM doesn't have "
"20 1's and 20 0's, FAIL (AKSV=%02x%08x)\n",
qfprom_aksv_1, qfprom_aksv_0);
ret = -EINVAL;
goto error;
}
DEV_DBG("HDCP: AKSV=%02x%08x\n", qfprom_aksv_1, qfprom_aksv_0);
/* 0x0288 HDCP_SW_LOWER_AKSV
[31:0] LOWER_AKSV */
/* 0x0284 HDCP_SW_UPPER_AKSV
[7:0] UPPER_AKSV */
/* This is the lower 32 bits of the SW
* injected AKSV value(AKSV[31:0]) read
* from the EFUSE. It is needed for HDCP
* authentication and must be written
* before enabling HDCP. */
HDMI_OUTP(0x0288, qfprom_aksv_0);
HDMI_OUTP(0x0284, qfprom_aksv_1);
msm_hdmi_init_ddc();
/* read Bcaps at 0x40 in HDCP Port */
ret = hdmi_msm_ddc_read(0x74, 0x40, &bcaps, 1, 5, "Bcaps",
TRUE);
if (ret) {
DEV_ERR("%s(%d): Read Bcaps failed", __func__,
__LINE__);
goto error;
}
DEV_DBG("HDCP: Bcaps=%02x\n", bcaps);
/* HDCP setup prior to HDCP enabled */
/* 0x0148 HDCP_RCVPORT_DATA4
[15:8] LINK0_AINFO
[7:0] LINK0_AKSV_1 */
/* LINK0_AINFO = 0x2 FEATURE 1.1 on.
* = 0x0 FEATURE 1.1 off*/
HDMI_OUTP(0x0148, 0x0);
/* 0x012C HDCP_ENTROPY_CTRL0
[31:0] BITS_OF_INFLUENCE_0 */
/* 0x025C HDCP_ENTROPY_CTRL1
[31:0] BITS_OF_INFLUENCE_1 */
HDMI_OUTP(0x012C, 0xB1FFB0FF);
HDMI_OUTP(0x025C, 0xF00DFACE);
/* 0x0114 HDCP_DEBUG_CTRL
[2] DEBUG_RNG_CIPHER
else default 0 */
HDMI_OUTP(0x0114, HDMI_INP(0x0114) & 0xFFFFFFFB);
/* 0x0110 HDCP_CTRL
[8] ENCRYPTION_ENABLE
[0] ENABLE */
/* encryption_enable | enable */
HDMI_OUTP(0x0110, (1 << 8) | (1 << 0));
/*
* Check to see if a HDCP DDC Failure is indicated in
* HDCP_DDC_STATUS. If yes, clear it.
*/
check_and_clear_HDCP_DDC_Failure();
/* 0x0118 HDCP_INT_CTRL
* [2] AUTH_SUCCESS_MASK [R/W] Mask bit for\
* HDCP Authentication
* Success interrupt - set to 1 to enable interrupt
*
* [6] AUTH_FAIL_MASK [R/W] Mask bit for HDCP
* Authentication
* Lost interrupt set to 1 to enable interrupt
*
* [7] AUTH_FAIL_INFO_ACK [W] Acknwledge bit for HDCP
* Auth Failure Info field - write 1 to clear
*
* [10] DDC_XFER_REQ_MASK [R/W] Mask bit for HDCP\
* DDC Transfer
* Request interrupt - set to 1 to enable interrupt
*
* [14] DDC_XFER_DONE_MASK [R/W] Mask bit for HDCP\
* DDC Transfer
* done interrupt - set to 1 to enable interrupt */
/* enable all HDCP ints */
HDMI_OUTP(0x0118, (1 << 2) | (1 << 6) | (1 << 7));
/* 0x011C HDCP_LINK0_STATUS
[8] AN_0_READY
[9] AN_1_READY */
/* wait for an0 and an1 ready bits to be set in LINK0_STATUS */
mutex_lock(&hdcp_auth_state_mutex);
timeout_count = 100;
while (((HDMI_INP_ND(0x011C) & (0x3 << 8)) != (0x3 << 8))
&& timeout_count--)
msleep(20);
if (!timeout_count) {
ret = -ETIMEDOUT;
DEV_ERR("%s(%d): timedout, An0=%d, An1=%d\n",
__func__, __LINE__,
(HDMI_INP_ND(0x011C) & BIT(8)) >> 8,
(HDMI_INP_ND(0x011C) & BIT(9)) >> 9);
mutex_unlock(&hdcp_auth_state_mutex);
goto error;
}
/* 0x0168 HDCP_RCVPORT_DATA12
[23:8] BSTATUS
[7:0] BCAPS */
HDMI_OUTP(0x0168, bcaps);
/* 0x014C HDCP_RCVPORT_DATA5
[31:0] LINK0_AN_0 */
/* read an0 calculation */
link0_an_0 = HDMI_INP(0x014C);
/* 0x0150 HDCP_RCVPORT_DATA6
[31:0] LINK0_AN_1 */
/* read an1 calculation */
link0_an_1 = HDMI_INP(0x0150);
mutex_unlock(&hdcp_auth_state_mutex);
/* three bits 28..30 */
hdcp_key_state((HDMI_INP(0x011C) >> 28) & 0x7);
/* 0x0144 HDCP_RCVPORT_DATA3
[31:0] LINK0_AKSV_0 public key
0x0148 HDCP_RCVPORT_DATA4
[15:8] LINK0_AINFO
[7:0] LINK0_AKSV_1 public key */
link0_aksv_0 = HDMI_INP(0x0144);
link0_aksv_1 = HDMI_INP(0x0148);
/* copy an and aksv to byte arrays for transmission */
aksv[0] = link0_aksv_0 & 0xFF;
aksv[1] = (link0_aksv_0 >> 8) & 0xFF;
aksv[2] = (link0_aksv_0 >> 16) & 0xFF;
aksv[3] = (link0_aksv_0 >> 24) & 0xFF;
aksv[4] = link0_aksv_1 & 0xFF;
an[0] = link0_an_0 & 0xFF;
an[1] = (link0_an_0 >> 8) & 0xFF;
an[2] = (link0_an_0 >> 16) & 0xFF;
an[3] = (link0_an_0 >> 24) & 0xFF;
an[4] = link0_an_1 & 0xFF;
an[5] = (link0_an_1 >> 8) & 0xFF;
an[6] = (link0_an_1 >> 16) & 0xFF;
an[7] = (link0_an_1 >> 24) & 0xFF;
/* Write An 8 bytes to offset 0x18 */
ret = hdmi_msm_ddc_write(0x74, 0x18, an, 8, "An");
if (ret) {
DEV_ERR("%s(%d): Write An failed", __func__, __LINE__);
goto error;
}
/* Write Aksv 5 bytes to offset 0x10 */
ret = hdmi_msm_ddc_write(0x74, 0x10, aksv, 5, "Aksv");
if (ret) {
DEV_ERR("%s(%d): Write Aksv failed", __func__,
__LINE__);
goto error;
}
DEV_DBG("HDCP: Link0-AKSV=%02x%08x\n",
link0_aksv_1 & 0xFF, link0_aksv_0);
/* Read Bksv 5 bytes at 0x00 in HDCP port */
ret = hdmi_msm_ddc_read(0x74, 0x00, bksv, 5, 5, "Bksv", TRUE);
if (ret) {
DEV_ERR("%s(%d): Read BKSV failed", __func__, __LINE__);
goto error;
}
/* check there are 20 ones in BKSV */
if (hdmi_msm_count_one(bksv, 5) != 20) {
DEV_ERR("HDCP: BKSV read from Sink doesn't have "
"20 1's and 20 0's, FAIL (BKSV="
"%02x%02x%02x%02x%02x)\n",
bksv[4], bksv[3], bksv[2], bksv[1], bksv[0]);
ret = -EINVAL;
goto error;
}
link0_bksv_0 = bksv[3];
link0_bksv_0 = (link0_bksv_0 << 8) | bksv[2];
link0_bksv_0 = (link0_bksv_0 << 8) | bksv[1];
link0_bksv_0 = (link0_bksv_0 << 8) | bksv[0];
link0_bksv_1 = bksv[4];
DEV_DBG("HDCP: BKSV=%02x%08x\n", link0_bksv_1, link0_bksv_0);
/* 0x0134 HDCP_RCVPORT_DATA0
[31:0] LINK0_BKSV_0 */
HDMI_OUTP(0x0134, link0_bksv_0);
/* 0x0138 HDCP_RCVPORT_DATA1
[31:0] LINK0_BKSV_1 */
HDMI_OUTP(0x0138, link0_bksv_1);
DEV_DBG("HDCP: Link0-BKSV=%02x%08x\n", link0_bksv_1,
link0_bksv_0);
/* HDMI_HPD_INT_STATUS[0x0250] */
hpd_int_status = HDMI_INP_ND(0x0250);
/* HDMI_HPD_INT_CTRL[0x0254] */
hpd_int_ctrl = HDMI_INP_ND(0x0254);
DEV_DBG("[SR-DEUG]: HPD_INTR_CTRL=[%u] HPD_INTR_STATUS=[%u] "
"before reading R0'\n", hpd_int_ctrl, hpd_int_status);
/*
* HDCP Compliace Test case 1B-01:
* Wait here until all the ksv bytes have been
* read from the KSV FIFO register.
*/
msleep(125);
/* Reading R0' 2 bytes at offset 0x08 */
ret = hdmi_msm_ddc_read(0x74, 0x08, buf, 2, 5, "RO'", TRUE);
if (ret) {
DEV_ERR("%s(%d): Read RO's failed", __func__,
__LINE__);
goto error;
}
DEV_DBG("HDCP: R0'=%02x%02x\n", buf[1], buf[0]);
INIT_COMPLETION(hdmi_msm_state->hdcp_success_done);
/* 0x013C HDCP_RCVPORT_DATA2_0
[15:0] LINK0_RI */
HDMI_OUTP(0x013C, (((uint32)buf[1]) << 8) | buf[0]);
timeout_count = wait_for_completion_interruptible_timeout(
&hdmi_msm_state->hdcp_success_done, HZ*2);
if (!timeout_count) {
ret = -ETIMEDOUT;
is_match = HDMI_INP(0x011C) & BIT(12);
DEV_ERR("%s(%d): timedout, Link0=<%s>\n", __func__,
__LINE__,
is_match ? "RI_MATCH" : "No RI Match INTR in time");
if (!is_match)
goto error;
}
/* 0x011C HDCP_LINK0_STATUS
[12] RI_MATCHES [0] MISMATCH, [1] MATCH
[0] AUTH_SUCCESS */
/* Checking for RI, R0 Match */
/* RI_MATCHES */
if ((HDMI_INP(0x011C) & BIT(12)) != BIT(12)) {
ret = -EINVAL;
DEV_ERR("%s: HDCP_LINK0_STATUS[RI_MATCHES]: MISMATCH\n",
__func__);
goto error;
}
DEV_INFO("HDCP: authentication part I, successful\n");
is_part1_done = FALSE;
return 0;
error:
DEV_ERR("[%s]: HDCP Reauthentication\n", __func__);
is_part1_done = FALSE;
return ret;
} else {
return 1;
}
}
static int hdmi_msm_transfer_v_h(void)
{
/* Read V'.HO 4 Byte at offset 0x20 */
char what[20];
int ret;
uint8 buf[4];
snprintf(what, sizeof(what), "V' H0");
ret = hdmi_msm_ddc_read(0x74, 0x20, buf, 4, 5, what, TRUE);
if (ret) {
DEV_ERR("%s: Read %s failed", __func__, what);
return ret;
}
DEV_DBG("buf[0]= %x , buf[1] = %x , buf[2] = %x , buf[3] = %x\n ",
buf[0] , buf[1] , buf[2] , buf[3]);
/* 0x0154 HDCP_RCVPORT_DATA7
[31:0] V_HO */
HDMI_OUTP(0x0154 ,
(buf[3] << 24 | buf[2] << 16 | buf[1] << 8 | buf[0]));
snprintf(what, sizeof(what), "V' H1");
ret = hdmi_msm_ddc_read(0x74, 0x24, buf, 4, 5, what, TRUE);
if (ret) {
DEV_ERR("%s: Read %s failed", __func__, what);
return ret;
}
DEV_DBG("buf[0]= %x , buf[1] = %x , buf[2] = %x , buf[3] = %x\n ",
buf[0] , buf[1] , buf[2] , buf[3]);
/* 0x0158 HDCP_RCVPORT_ DATA8
[31:0] V_H1 */
HDMI_OUTP(0x0158,
(buf[3] << 24 | buf[2] << 16 | buf[1] << 8 | buf[0]));
snprintf(what, sizeof(what), "V' H2");
ret = hdmi_msm_ddc_read(0x74, 0x28, buf, 4, 5, what, TRUE);
if (ret) {
DEV_ERR("%s: Read %s failed", __func__, what);
return ret;
}
DEV_DBG("buf[0]= %x , buf[1] = %x , buf[2] = %x , buf[3] = %x\n ",
buf[0] , buf[1] , buf[2] , buf[3]);
/* 0x015c HDCP_RCVPORT_DATA9
[31:0] V_H2 */
HDMI_OUTP(0x015c ,
(buf[3] << 24 | buf[2] << 16 | buf[1] << 8 | buf[0]));
snprintf(what, sizeof(what), "V' H3");
ret = hdmi_msm_ddc_read(0x74, 0x2c, buf, 4, 5, what, TRUE);
if (ret) {
DEV_ERR("%s: Read %s failed", __func__, what);
return ret;
}
DEV_DBG("buf[0]= %x , buf[1] = %x , buf[2] = %x , buf[3] = %x\n ",
buf[0] , buf[1] , buf[2] , buf[3]);
/* 0x0160 HDCP_RCVPORT_DATA10
[31:0] V_H3 */
HDMI_OUTP(0x0160,
(buf[3] << 24 | buf[2] << 16 | buf[1] << 8 | buf[0]));
snprintf(what, sizeof(what), "V' H4");
ret = hdmi_msm_ddc_read(0x74, 0x30, buf, 4, 5, what, TRUE);
if (ret) {
DEV_ERR("%s: Read %s failed", __func__, what);
return ret;
}
DEV_DBG("buf[0]= %x , buf[1] = %x , buf[2] = %x , buf[3] = %x\n ",
buf[0] , buf[1] , buf[2] , buf[3]);
/* 0x0164 HDCP_RCVPORT_DATA11
[31:0] V_H4 */
HDMI_OUTP(0x0164,
(buf[3] << 24 | buf[2] << 16 | buf[1] << 8 | buf[0]));
return 0;
}
static int hdcp_authentication_part2(void)
{
int ret = 0;
uint32 timeout_count;
int i = 0;
int cnt = 0;
uint bstatus;
uint8 bcaps;
uint32 down_stream_devices;
uint32 ksv_bytes;
static uint8 buf[0xFF];
static uint8 kvs_fifo[5 * 127];
boolean max_devs_exceeded = 0;
boolean max_cascade_exceeded = 0;
boolean ksv_done = FALSE;
memset(buf, 0, sizeof(buf));
memset(kvs_fifo, 0, sizeof(kvs_fifo));
/* wait until READY bit is set in bcaps */
timeout_count = 50;
do {
timeout_count--;
/* read bcaps 1 Byte at offset 0x40 */
ret = hdmi_msm_ddc_read(0x74, 0x40, &bcaps, 1, 1,
"Bcaps", FALSE);
if (ret) {
DEV_ERR("%s(%d): Read Bcaps failed", __func__,
__LINE__);
goto error;
}
msleep(100);
} while ((0 == (bcaps & 0x20)) && timeout_count); /* READY (Bit 5) */
if (!timeout_count) {
ret = -ETIMEDOUT;
DEV_ERR("%s:timedout(1)", __func__);
goto error;
}
/* read bstatus 2 bytes at offset 0x41 */
ret = hdmi_msm_ddc_read(0x74, 0x41, buf, 2, 5, "Bstatus", FALSE);
if (ret) {
DEV_ERR("%s(%d): Read Bstatus failed", __func__, __LINE__);
goto error;
}
bstatus = buf[1];
bstatus = (bstatus << 8) | buf[0];
/* 0x0168 DCP_RCVPORT_DATA12
[7:0] BCAPS
[23:8 BSTATUS */
HDMI_OUTP(0x0168, bcaps | (bstatus << 8));
/* BSTATUS [6:0] DEVICE_COUNT Number of HDMI device attached to repeater
* - see HDCP spec */
down_stream_devices = bstatus & 0x7F;
if (down_stream_devices == 0x0) {
/* There isn't any devices attaced to the Repeater */
DEV_ERR("%s: there isn't any devices attached to the "
"Repeater\n", __func__);
ret = -EINVAL;
goto error;
}
/*
* HDCP Compliance 1B-05:
* Check if no. of devices connected to repeater
* exceed max_devices_connected from bit 7 of Bstatus.
*/
max_devs_exceeded = (bstatus & 0x80) >> 7;
if (max_devs_exceeded == 0x01) {
DEV_ERR("%s: Number of devs connected to repeater "
"exceeds max_devs\n", __func__);
ret = -EINVAL;
goto hdcp_error;
}
/*
* HDCP Compliance 1B-06:
* Check if no. of cascade connected to repeater
* exceed max_cascade_connected from bit 11 of Bstatus.
*/
max_cascade_exceeded = (bstatus & 0x800) >> 11;
if (max_cascade_exceeded == 0x01) {
DEV_ERR("%s: Number of cascade connected to repeater "
"exceeds max_cascade\n", __func__);
ret = -EINVAL;
goto hdcp_error;
}
/* Read KSV FIFO over DDC
* Key Slection vector FIFO
* Used to pull downstream KSVs from HDCP Repeaters.
* All bytes (DEVICE_COUNT * 5) must be read in a single,
* auto incrementing access.
* All bytes read as 0x00 for HDCP Receivers that are not
* HDCP Repeaters (REPEATER == 0). */
ksv_bytes = 5 * down_stream_devices;
/* Reading KSV FIFO / KSV FIFO */
ksv_done = FALSE;
ret = hdmi_msm_ddc_read(0x74, 0x43, kvs_fifo, ksv_bytes, 5,
"KSV FIFO", TRUE);
do {
if (ret) {
DEV_ERR("%s(%d): Read KSV FIFO failed",
__func__, __LINE__);
/*
* HDCP Compliace Test case 1B-01:
* Wait here until all the ksv bytes have been
* read from the KSV FIFO register.
*/
msleep(25);
} else {
ksv_done = TRUE;
}
cnt++;
} while (!ksv_done && cnt != 20);
if (ksv_done == FALSE)
goto error;
ret = hdmi_msm_transfer_v_h();
if (ret)
goto error;
/* Next: Write KSV FIFO to HDCP_SHA_DATA.
* This is done 1 byte at time starting with the LSB.
* On the very last byte write,
* the HDCP_SHA_DATA_DONE bit[0]
*/
/* 0x023C HDCP_SHA_CTRL
[0] RESET [0] Enable, [1] Reset
[4] SELECT [0] DIGA_HDCP, [1] DIGB_HDCP */
/* reset SHA engine */
HDMI_OUTP(0x023C, 1);
/* enable SHA engine, SEL=DIGA_HDCP */
HDMI_OUTP(0x023C, 0);
for (i = 0; i < ksv_bytes - 1; i++) {
/* Write KSV byte and do not set DONE bit[0] */
HDMI_OUTP_ND(0x0244, kvs_fifo[i] << 16);
/* Once 64 bytes have been written, we need to poll for
* HDCP_SHA_BLOCK_DONE before writing any further
*/
if (i && !((i+1)%64)) {
timeout_count = 100;
while (!(HDMI_INP_ND(0x0240) & 0x1)
&& (--timeout_count)) {
DEV_DBG("HDCP Auth Part II: Waiting for the "
"computation of the current 64 byte to "
"complete. HDCP_SHA_STATUS=%08x. "
"timeout_count=%d\n",
HDMI_INP_ND(0x0240), timeout_count);
msleep(20);
}
if (!timeout_count) {
ret = -ETIMEDOUT;
DEV_ERR("%s(%d): timedout", __func__, __LINE__);
goto error;
}
}
}
/* Write l to DONE bit[0] */
HDMI_OUTP_ND(0x0244, (kvs_fifo[ksv_bytes - 1] << 16) | 0x1);
/* 0x0240 HDCP_SHA_STATUS
[4] COMP_DONE */
/* Now wait for HDCP_SHA_COMP_DONE */
timeout_count = 100;
while ((0x10 != (HDMI_INP_ND(0x0240) & 0xFFFFFF10)) && --timeout_count)
msleep(20);
if (!timeout_count) {
ret = -ETIMEDOUT;
DEV_ERR("%s(%d): timedout", __func__, __LINE__);
goto error;
}
/* 0x011C HDCP_LINK0_STATUS
[20] V_MATCHES */
timeout_count = 100;
while (((HDMI_INP_ND(0x011C) & (1 << 20)) != (1 << 20))
&& --timeout_count) {
msleep(20);
}
if (!timeout_count) {
ret = -ETIMEDOUT;
DEV_ERR("%s(%d): timedout", __func__, __LINE__);
goto error;
}
DEV_INFO("HDCP: authentication part II, successful\n");
hdcp_error:
error:
return ret;
}
static int hdcp_authentication_part3(uint32 found_repeater)
{
int ret = 0;
int poll = 3000;
while (poll) {
/* 0x011C HDCP_LINK0_STATUS
[30:28] KEYS_STATE = 3 = "Valid"
[24] RO_COMPUTATION_DONE [0] Not Done, [1] Done
[20] V_MATCHES [0] Mismtach, [1] Match
[12] RI_MATCHES [0] Mismatch, [1] Match
[0] AUTH_SUCCESS */
if (HDMI_INP_ND(0x011C) != (0x31001001 |
(found_repeater << 20))) {
DEV_ERR("HDCP: autentication part III, FAILED, "
"Link Status=%08x\n", HDMI_INP(0x011C));
ret = -EINVAL;
goto error;
}
poll--;
}
DEV_INFO("HDCP: authentication part III, successful\n");
error:
return ret;
}
static void hdmi_msm_hdcp_enable(void)
{
int ret = 0;
uint8 bcaps;
uint32 found_repeater = 0x0;
char *envp[2];
if (!hdmi_msm_has_hdcp()) {
switch_set_state(&external_common_state->sdev, 1);
DEV_INFO("Hdmi state switch to %d: %s\n",
external_common_state->sdev.state, __func__);
return;
}
mutex_lock(&hdmi_msm_state_mutex);
hdmi_msm_state->hdcp_activating = TRUE;
mutex_unlock(&hdmi_msm_state_mutex);
fill_black_screen();
mutex_lock(&hdcp_auth_state_mutex);
/*
* Initialize this to zero here to make
* sure HPD has not happened yet
*/
hdmi_msm_state->hpd_during_auth = FALSE;
/* This flag prevents other threads from re-authenticating
* after we've just authenticated (i.e., finished part3)
* We probably need to protect this in a mutex lock */
hdmi_msm_state->full_auth_done = FALSE;
mutex_unlock(&hdcp_auth_state_mutex);
/* PART I Authentication*/
ret = hdcp_authentication_part1();
if (ret)
goto error;
/* PART II Authentication*/
/* read Bcaps at 0x40 in HDCP Port */
ret = hdmi_msm_ddc_read(0x74, 0x40, &bcaps, 1, 5, "Bcaps", FALSE);
if (ret) {
DEV_ERR("%s(%d): Read Bcaps failed\n", __func__, __LINE__);
goto error;
}
DEV_DBG("HDCP: Bcaps=0x%02x (%s)\n", bcaps,
(bcaps & BIT(6)) ? "repeater" : "no repeater");
/* if REPEATER (Bit 6), perform Part2 Authentication */
if (bcaps & BIT(6)) {
found_repeater = 0x1;
ret = hdcp_authentication_part2();
if (ret)
goto error;
} else
DEV_INFO("HDCP: authentication part II skipped, no repeater\n");
/* PART III Authentication*/
ret = hdcp_authentication_part3(found_repeater);
if (ret)
goto error;
unfill_black_screen();
external_common_state->hdcp_active = TRUE;
mutex_lock(&hdmi_msm_state_mutex);
hdmi_msm_state->hdcp_activating = FALSE;
mutex_unlock(&hdmi_msm_state_mutex);
mutex_lock(&hdcp_auth_state_mutex);
/*
* This flag prevents other threads from re-authenticating
* after we've just authenticated (i.e., finished part3)
*/
hdmi_msm_state->full_auth_done = TRUE;
mutex_unlock(&hdcp_auth_state_mutex);
if (!hdmi_msm_is_dvi_mode()) {
DEV_INFO("HDMI HPD: sense : send HDCP_PASS\n");
envp[0] = "HDCP_STATE=PASS";
envp[1] = NULL;
kobject_uevent_env(external_common_state->uevent_kobj,
KOBJ_CHANGE, envp);
}
switch_set_state(&external_common_state->sdev, 1);
DEV_INFO("Hdmi state switch to %d: %s\n",
external_common_state->sdev.state, __func__);
return;
error:
mutex_lock(&hdmi_msm_state_mutex);
hdmi_msm_state->hdcp_activating = FALSE;
mutex_unlock(&hdmi_msm_state_mutex);
if (hdmi_msm_state->hpd_during_auth) {
DEV_WARN("Calling Deauthentication: HPD occured during "
"authentication from [%s]\n", __func__);
hdcp_deauthenticate();
mutex_lock(&hdcp_auth_state_mutex);
hdmi_msm_state->hpd_during_auth = FALSE;
mutex_unlock(&hdcp_auth_state_mutex);
} else {
DEV_WARN("[DEV_DBG]: Calling reauth from [%s]\n", __func__);
if (hdmi_msm_state->panel_power_on)
queue_work(hdmi_work_queue,
&hdmi_msm_state->hdcp_reauth_work);
}
switch_set_state(&external_common_state->sdev, 0);
DEV_INFO("Hdmi state switch to %d: %s\n",
external_common_state->sdev.state, __func__);
}
#endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT */
static void hdmi_msm_video_setup(int video_format)
{
uint32 total_v = 0;
uint32 total_h = 0;
uint32 start_h = 0;
uint32 end_h = 0;
uint32 start_v = 0;
uint32 end_v = 0;
const struct hdmi_disp_mode_timing_type *timing =
hdmi_common_get_supported_mode(video_format);
/* timing register setup */
if (timing == NULL) {
DEV_ERR("video format not supported: %d\n", video_format);
return;
}
/* Hsync Total and Vsync Total */
total_h = timing->active_h + timing->front_porch_h
+ timing->back_porch_h + timing->pulse_width_h - 1;
total_v = timing->active_v + timing->front_porch_v
+ timing->back_porch_v + timing->pulse_width_v - 1;
/* 0x02C0 HDMI_TOTAL
[27:16] V_TOTAL Vertical Total
[11:0] H_TOTAL Horizontal Total */
HDMI_OUTP(0x02C0, ((total_v << 16) & 0x0FFF0000)
| ((total_h << 0) & 0x00000FFF));
/* Hsync Start and Hsync End */
start_h = timing->back_porch_h + timing->pulse_width_h;
end_h = (total_h + 1) - timing->front_porch_h;
/* 0x02B4 HDMI_ACTIVE_H
[27:16] END Horizontal end
[11:0] START Horizontal start */
HDMI_OUTP(0x02B4, ((end_h << 16) & 0x0FFF0000)
| ((start_h << 0) & 0x00000FFF));
start_v = timing->back_porch_v + timing->pulse_width_v - 1;
end_v = total_v - timing->front_porch_v;
/* 0x02B8 HDMI_ACTIVE_V
[27:16] END Vertical end
[11:0] START Vertical start */
HDMI_OUTP(0x02B8, ((end_v << 16) & 0x0FFF0000)
| ((start_v << 0) & 0x00000FFF));
if (timing->interlaced) {
/* 0x02C4 HDMI_V_TOTAL_F2
[11:0] V_TOTAL_F2 Vertical total for field2 */
HDMI_OUTP(0x02C4, ((total_v + 1) << 0) & 0x00000FFF);
/* 0x02BC HDMI_ACTIVE_V_F2
[27:16] END_F2 Vertical end for field2
[11:0] START_F2 Vertical start for Field2 */
HDMI_OUTP(0x02BC,
(((start_v + 1) << 0) & 0x00000FFF)
| (((end_v + 1) << 16) & 0x0FFF0000));
} else {
/* HDMI_V_TOTAL_F2 */
HDMI_OUTP(0x02C4, 0);
/* HDMI_ACTIVE_V_F2 */
HDMI_OUTP(0x02BC, 0);
}
hdmi_frame_ctrl_cfg(timing);
}
struct hdmi_msm_audio_acr {
uint32 n; /* N parameter for clock regeneration */
uint32 cts; /* CTS parameter for clock regeneration */
};
struct hdmi_msm_audio_arcs {
uint32 pclk;
struct hdmi_msm_audio_acr lut[MSM_HDMI_SAMPLE_RATE_MAX];
};
#define HDMI_MSM_AUDIO_ARCS(pclk, ...) { pclk, __VA_ARGS__ }
/* Audio constants lookup table for hdmi_msm_audio_acr_setup */
/* Valid Pixel-Clock rates: 25.2MHz, 27MHz, 27.03MHz, 74.25MHz, 148.5MHz */
static const struct hdmi_msm_audio_arcs hdmi_msm_audio_acr_lut[] = {
/* 25.200MHz */
HDMI_MSM_AUDIO_ARCS(25200, {
{4096, 25200}, {6272, 28000}, {6144, 25200}, {12544, 28000},
{12288, 25200}, {25088, 28000}, {24576, 25200} }),
/* 27.000MHz */
HDMI_MSM_AUDIO_ARCS(27000, {
{4096, 27000}, {6272, 30000}, {6144, 27000}, {12544, 30000},
{12288, 27000}, {25088, 30000}, {24576, 27000} }),
/* 27.027MHz */
HDMI_MSM_AUDIO_ARCS(27030, {
{4096, 27027}, {6272, 30030}, {6144, 27027}, {12544, 30030},
{12288, 27027}, {25088, 30030}, {24576, 27027} }),
/* 74.250MHz */
HDMI_MSM_AUDIO_ARCS(74250, {
{4096, 74250}, {6272, 82500}, {6144, 74250}, {12544, 82500},
{12288, 74250}, {25088, 82500}, {24576, 74250} }),
/* 148.500MHz */
HDMI_MSM_AUDIO_ARCS(148500, {
{4096, 148500}, {6272, 165000}, {6144, 148500}, {12544, 165000},
{12288, 148500}, {25088, 165000}, {24576, 148500} }),
};
static void hdmi_msm_audio_acr_setup(boolean enabled, int video_format,
int audio_sample_rate, int num_of_channels)
{
/* Read first before writing */
/* HDMI_ACR_PKT_CTRL[0x0024] */
uint32 acr_pck_ctrl_reg = HDMI_INP(0x0024);
if (enabled) {
const struct hdmi_disp_mode_timing_type *timing =
hdmi_common_get_supported_mode(video_format);
const struct hdmi_msm_audio_arcs *audio_arc =
&hdmi_msm_audio_acr_lut[0];
const int lut_size = sizeof(hdmi_msm_audio_acr_lut)
/sizeof(*hdmi_msm_audio_acr_lut);
uint32 i, n, cts, layout, multiplier, aud_pck_ctrl_2_reg;
if (timing == NULL) {
DEV_WARN("%s: video format %d not supported\n",
__func__, video_format);
return;
}
for (i = 0; i < lut_size;
audio_arc = &hdmi_msm_audio_acr_lut[++i]) {
if (audio_arc->pclk == timing->pixel_freq)
break;
}
if (i >= lut_size) {
DEV_WARN("%s: pixel clock %d not supported\n", __func__,
timing->pixel_freq);
return;
}
n = audio_arc->lut[audio_sample_rate].n;
cts = audio_arc->lut[audio_sample_rate].cts;
layout = (MSM_HDMI_AUDIO_CHANNEL_2 == num_of_channels) ? 0 : 1;
if ((MSM_HDMI_SAMPLE_RATE_192KHZ == audio_sample_rate) ||
(MSM_HDMI_SAMPLE_RATE_176_4KHZ == audio_sample_rate)) {
multiplier = 4;
n >>= 2; /* divide N by 4 and use multiplier */
} else if ((MSM_HDMI_SAMPLE_RATE_96KHZ == audio_sample_rate) ||
(MSM_HDMI_SAMPLE_RATE_88_2KHZ == audio_sample_rate)) {
multiplier = 2;
n >>= 1; /* divide N by 2 and use multiplier */
} else {
multiplier = 1;
}
DEV_DBG("%s: n=%u, cts=%u, layout=%u\n", __func__, n, cts,
layout);
/* AUDIO_PRIORITY | SOURCE */
acr_pck_ctrl_reg |= 0x80000100;
/* N_MULTIPLE(multiplier) */
acr_pck_ctrl_reg |= (multiplier & 7) << 16;
if ((MSM_HDMI_SAMPLE_RATE_48KHZ == audio_sample_rate) ||
(MSM_HDMI_SAMPLE_RATE_96KHZ == audio_sample_rate) ||
(MSM_HDMI_SAMPLE_RATE_192KHZ == audio_sample_rate)) {
/* SELECT(3) */
acr_pck_ctrl_reg |= 3 << 4;
/* CTS_48 */
cts <<= 12;
/* CTS: need to determine how many fractional bits */
/* HDMI_ACR_48_0 */
HDMI_OUTP(0x00D4, cts);
/* N */
/* HDMI_ACR_48_1 */
HDMI_OUTP(0x00D8, n);
} else if ((MSM_HDMI_SAMPLE_RATE_44_1KHZ == audio_sample_rate)
|| (MSM_HDMI_SAMPLE_RATE_88_2KHZ ==
audio_sample_rate)
|| (MSM_HDMI_SAMPLE_RATE_176_4KHZ ==
audio_sample_rate)) {
/* SELECT(2) */
acr_pck_ctrl_reg |= 2 << 4;
/* CTS_44 */
cts <<= 12;
/* CTS: need to determine how many fractional bits */
/* HDMI_ACR_44_0 */
HDMI_OUTP(0x00CC, cts);
/* N */
/* HDMI_ACR_44_1 */
HDMI_OUTP(0x00D0, n);
} else { /* default to 32k */
/* SELECT(1) */
acr_pck_ctrl_reg |= 1 << 4;
/* CTS_32 */
cts <<= 12;
/* CTS: need to determine how many fractional bits */
/* HDMI_ACR_32_0 */
HDMI_OUTP(0x00C4, cts);
/* N */
/* HDMI_ACR_32_1 */
HDMI_OUTP(0x00C8, n);
}
/* Payload layout depends on number of audio channels */
/* LAYOUT_SEL(layout) */
aud_pck_ctrl_2_reg = 1 | (layout << 1);
/* override | layout */
/* HDMI_AUDIO_PKT_CTRL2[0x00044] */
HDMI_OUTP(0x00044, aud_pck_ctrl_2_reg);
/* SEND | CONT */
acr_pck_ctrl_reg |= 0x00000003;
} else {
/* ~(SEND | CONT) */
acr_pck_ctrl_reg &= ~0x00000003;
}
/* HDMI_ACR_PKT_CTRL[0x0024] */
HDMI_OUTP(0x0024, acr_pck_ctrl_reg);
}
static void hdmi_msm_outpdw_chk(uint32 offset, uint32 data)
{
uint32 check, i = 0;
#ifdef DEBUG
HDMI_OUTP(offset, data);
#endif
do {
outpdw(MSM_HDMI_BASE+offset, data);
check = inpdw(MSM_HDMI_BASE+offset);
} while (check != data && i++ < 10);
if (check != data)
DEV_ERR("%s: failed addr=%08x, data=%x, check=%x",
__func__, offset, data, check);
}
static void hdmi_msm_rmw32or(uint32 offset, uint32 data)
{
uint32 reg_data;
reg_data = inpdw(MSM_HDMI_BASE+offset);
reg_data = inpdw(MSM_HDMI_BASE+offset);
hdmi_msm_outpdw_chk(offset, reg_data | data);
}
#define HDMI_AUDIO_CFG 0x01D0
#define HDMI_AUDIO_ENGINE_ENABLE 1
#define HDMI_AUDIO_FIFO_MASK 0x000000F0
#define HDMI_AUDIO_FIFO_WATERMARK_SHIFT 4
#define HDMI_AUDIO_FIFO_MAX_WATER_MARK 8
int hdmi_audio_enable(bool on , u32 fifo_water_mark)
{
u32 hdmi_audio_config;
hdmi_audio_config = HDMI_INP(HDMI_AUDIO_CFG);
if (on) {
if (fifo_water_mark > HDMI_AUDIO_FIFO_MAX_WATER_MARK) {
pr_err("%s : HDMI audio fifo water mark can not be more"
" than %u\n", __func__,
HDMI_AUDIO_FIFO_MAX_WATER_MARK);
return -EINVAL;
}
/*
* Enable HDMI Audio engine.
* MUST be enabled after Audio DMA is enabled.
*/
hdmi_audio_config &= ~(HDMI_AUDIO_FIFO_MASK);
hdmi_audio_config |= (HDMI_AUDIO_ENGINE_ENABLE |
(fifo_water_mark << HDMI_AUDIO_FIFO_WATERMARK_SHIFT));
} else
hdmi_audio_config &= ~(HDMI_AUDIO_ENGINE_ENABLE);
HDMI_OUTP(HDMI_AUDIO_CFG, hdmi_audio_config);
mb();
pr_info("%s :HDMI_AUDIO_CFG 0x%08x\n", __func__,
HDMI_INP(HDMI_AUDIO_CFG));
return 0;
}
EXPORT_SYMBOL(hdmi_audio_enable);
#define HDMI_AUDIO_PKT_CTRL 0x0020
#define HDMI_AUDIO_SAMPLE_SEND_ENABLE 1
int hdmi_audio_packet_enable(bool on)
{
u32 hdmi_audio_pkt_ctrl;
hdmi_audio_pkt_ctrl = HDMI_INP(HDMI_AUDIO_PKT_CTRL);
if (on)
hdmi_audio_pkt_ctrl |= HDMI_AUDIO_SAMPLE_SEND_ENABLE;
else
hdmi_audio_pkt_ctrl &= ~(HDMI_AUDIO_SAMPLE_SEND_ENABLE);
HDMI_OUTP(HDMI_AUDIO_PKT_CTRL, hdmi_audio_pkt_ctrl);
mb();
pr_info("%s : HDMI_AUDIO_PKT_CTRL 0x%08x\n", __func__,
HDMI_INP(HDMI_AUDIO_PKT_CTRL));
return 0;
}
EXPORT_SYMBOL(hdmi_audio_packet_enable);
/* TO-DO: return -EINVAL when num_of_channels and channel_allocation
* does not match CEA 861-D spec.
*/
int hdmi_msm_audio_info_setup(bool enabled, u32 num_of_channels,
u32 channel_allocation, u32 level_shift, bool down_mix)
{
uint32 channel_count = 1; /* Default to 2 channels
-> See Table 17 in CEA-D spec */
uint32 check_sum, audio_info_0_reg, audio_info_1_reg;
uint32 audio_info_ctrl_reg;
u32 aud_pck_ctrl_2_reg;
u32 layout;
layout = (MSM_HDMI_AUDIO_CHANNEL_2 == num_of_channels) ? 0 : 1;
aud_pck_ctrl_2_reg = 1 | (layout << 1);
HDMI_OUTP(0x00044, aud_pck_ctrl_2_reg);
/* Please see table 20 Audio InfoFrame in HDMI spec
FL = front left
FC = front Center
FR = front right
FLC = front left center
FRC = front right center
RL = rear left
RC = rear center
RR = rear right
RLC = rear left center
RRC = rear right center
LFE = low frequency effect
*/
/* Read first then write because it is bundled with other controls */
/* HDMI_INFOFRAME_CTRL0[0x002C] */
audio_info_ctrl_reg = HDMI_INP(0x002C);
if (enabled) {
switch (num_of_channels) {
case MSM_HDMI_AUDIO_CHANNEL_2:
channel_allocation = 0; /* Default to FR,FL */
break;
case MSM_HDMI_AUDIO_CHANNEL_4:
channel_count = 3;
/* FC,LFE,FR,FL */
channel_allocation = 0x3;
break;
case MSM_HDMI_AUDIO_CHANNEL_6:
channel_count = 5;
/* RR,RL,FC,LFE,FR,FL */
channel_allocation = 0xB;
break;
case MSM_HDMI_AUDIO_CHANNEL_8:
channel_count = 7;
/* FRC,FLC,RR,RL,FC,LFE,FR,FL */
channel_allocation = 0x1f;
break;
default:
pr_err("%s(): Unsupported num_of_channels = %u\n",
__func__, num_of_channels);
return -EINVAL;
break;
}
/* Program the Channel-Speaker allocation */
audio_info_1_reg = 0;
/* CA(channel_allocation) */
audio_info_1_reg |= channel_allocation & 0xff;
/* Program the Level shifter */
/* LSV(level_shift) */
audio_info_1_reg |= (level_shift << 11) & 0x00007800;
/* Program the Down-mix Inhibit Flag */
/* DM_INH(down_mix) */
audio_info_1_reg |= (down_mix << 15) & 0x00008000;
/* HDMI_AUDIO_INFO1[0x00E8] */
HDMI_OUTP(0x00E8, audio_info_1_reg);
/* Calculate CheckSum
Sum of all the bytes in the Audio Info Packet bytes
(See table 8.4 in HDMI spec) */
check_sum = 0;
/* HDMI_AUDIO_INFO_FRAME_PACKET_HEADER_TYPE[0x84] */
check_sum += 0x84;
/* HDMI_AUDIO_INFO_FRAME_PACKET_HEADER_VERSION[0x01] */
check_sum += 1;
/* HDMI_AUDIO_INFO_FRAME_PACKET_LENGTH[0x0A] */
check_sum += 0x0A;
check_sum += channel_count;
check_sum += channel_allocation;
/* See Table 8.5 in HDMI spec */
check_sum += (level_shift & 0xF) << 3 | (down_mix & 0x1) << 7;
check_sum &= 0xFF;
check_sum = (uint8) (256 - check_sum);
audio_info_0_reg = 0;
/* CHECKSUM(check_sum) */
audio_info_0_reg |= check_sum & 0xff;
/* CC(channel_count) */
audio_info_0_reg |= (channel_count << 8) & 0x00000700;
/* HDMI_AUDIO_INFO0[0x00E4] */
HDMI_OUTP(0x00E4, audio_info_0_reg);
/* Set these flags */
/* AUDIO_INFO_UPDATE | AUDIO_INFO_SOURCE | AUDIO_INFO_CONT
| AUDIO_INFO_SEND */
audio_info_ctrl_reg |= 0x000000F0;
} else {
/* Clear these flags */
/* ~(AUDIO_INFO_UPDATE | AUDIO_INFO_SOURCE | AUDIO_INFO_CONT
| AUDIO_INFO_SEND) */
audio_info_ctrl_reg &= ~0x000000F0;
}
/* HDMI_INFOFRAME_CTRL0[0x002C] */
HDMI_OUTP(0x002C, audio_info_ctrl_reg);
hdmi_msm_dump_regs("HDMI-AUDIO-ON: ");
return 0;
}
EXPORT_SYMBOL(hdmi_msm_audio_info_setup);
static void hdmi_msm_en_gc_packet(boolean av_mute_is_requested)
{
/* HDMI_GC[0x0040] */
HDMI_OUTP(0x0040, av_mute_is_requested ? 1 : 0);
/* GC packet enable (every frame) */
/* HDMI_VBI_PKT_CTRL[0x0028] */
hdmi_msm_rmw32or(0x0028, 3 << 4);
}
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_ISRC_ACP_SUPPORT
static void hdmi_msm_en_isrc_packet(boolean isrc_is_continued)
{
static const char isrc_psuedo_data[] =
"ISRC1:0123456789isrc2=ABCDEFGHIJ";
const uint32 * isrc_data = (const uint32 *) isrc_psuedo_data;
/* ISRC_STATUS =0b010 | ISRC_CONTINUE | ISRC_VALID */
/* HDMI_ISRC1_0[0x00048] */
HDMI_OUTP(0x00048, 2 | (isrc_is_continued ? 1 : 0) << 6 | 0 << 7);
/* HDMI_ISRC1_1[0x004C] */
HDMI_OUTP(0x004C, *isrc_data++);
/* HDMI_ISRC1_2[0x0050] */
HDMI_OUTP(0x0050, *isrc_data++);
/* HDMI_ISRC1_3[0x0054] */
HDMI_OUTP(0x0054, *isrc_data++);
/* HDMI_ISRC1_4[0x0058] */
HDMI_OUTP(0x0058, *isrc_data++);
/* HDMI_ISRC2_0[0x005C] */
HDMI_OUTP(0x005C, *isrc_data++);
/* HDMI_ISRC2_1[0x0060] */
HDMI_OUTP(0x0060, *isrc_data++);
/* HDMI_ISRC2_2[0x0064] */
HDMI_OUTP(0x0064, *isrc_data++);
/* HDMI_ISRC2_3[0x0068] */
HDMI_OUTP(0x0068, *isrc_data);
/* HDMI_VBI_PKT_CTRL[0x0028] */
/* ISRC Send + Continuous */
hdmi_msm_rmw32or(0x0028, 3 << 8);
}
#else
static void hdmi_msm_en_isrc_packet(boolean isrc_is_continued)
{
/*
* Until end-to-end support for various audio packets
*/
}
#endif
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_ISRC_ACP_SUPPORT
static void hdmi_msm_en_acp_packet(uint32 byte1)
{
/* HDMI_ACP[0x003C] */
HDMI_OUTP(0x003C, 2 | 1 << 8 | byte1 << 16);
/* HDMI_VBI_PKT_CTRL[0x0028] */
/* ACP send, s/w source */
hdmi_msm_rmw32or(0x0028, 3 << 12);
}
#else
static void hdmi_msm_en_acp_packet(uint32 byte1)
{
/*
* Until end-to-end support for various audio packets
*/
}
#endif
int hdmi_msm_audio_get_sample_rate(void)
{
return msm_hdmi_sample_rate;
}
EXPORT_SYMBOL(hdmi_msm_audio_get_sample_rate);
void hdmi_msm_audio_sample_rate_reset(int rate)
{
msm_hdmi_sample_rate = rate;
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
if (hdmi_msm_has_hdcp())
hdcp_deauthenticate();
else
#endif
hdmi_msm_turn_on();
}
EXPORT_SYMBOL(hdmi_msm_audio_sample_rate_reset);
static void hdmi_msm_audio_setup(void)
{
const int channels = MSM_HDMI_AUDIO_CHANNEL_2;
/* (0) for clr_avmute, (1) for set_avmute */
hdmi_msm_en_gc_packet(0);
/* (0) for isrc1 only, (1) for isrc1 and isrc2 */
hdmi_msm_en_isrc_packet(1);
/* arbitrary bit pattern for byte1 */
hdmi_msm_en_acp_packet(0x5a);
DEV_DBG("Not setting ACP, ISRC1, ISRC2 packets\n");
hdmi_msm_audio_acr_setup(TRUE,
external_common_state->video_resolution,
msm_hdmi_sample_rate, channels);
hdmi_msm_audio_info_setup(TRUE, channels, 0, 0, FALSE);
/* Turn on Audio FIFO and SAM DROP ISR */
HDMI_OUTP(0x02CC, HDMI_INP(0x02CC) | BIT(1) | BIT(3));
DEV_INFO("HDMI Audio: Enabled\n");
}
static int hdmi_msm_audio_off(void)
{
uint32 audio_pkt_ctrl, audio_cfg;
/* Number of wait iterations */
int i = 10;
audio_pkt_ctrl = HDMI_INP_ND(0x0020);
audio_cfg = HDMI_INP_ND(0x01D0);
/* Checking BIT[0] of AUDIO PACKET CONTROL and */
/* AUDIO CONFIGURATION register */
while (((audio_pkt_ctrl & 0x00000001) || (audio_cfg & 0x00000001))
&& (i--)) {
audio_pkt_ctrl = HDMI_INP_ND(0x0020);
audio_cfg = HDMI_INP_ND(0x01D0);
DEV_DBG("%d times :: HDMI AUDIO PACKET is %08x and "
"AUDIO CFG is %08x", i, audio_pkt_ctrl, audio_cfg);
msleep(100);
if (!i) {
DEV_ERR("%s:failed to set BIT[0] AUDIO PACKET"
"CONTROL or AUDIO CONFIGURATION REGISTER\n",
__func__);
return -ETIMEDOUT;
}
}
hdmi_msm_audio_info_setup(FALSE, 0, 0, 0, FALSE);
hdmi_msm_audio_acr_setup(FALSE, 0, 0, 0);
DEV_INFO("HDMI Audio: Disabled\n");
return 0;
}
static uint8 hdmi_msm_avi_iframe_lut[][16] = {
/* 480p60 480i60 576p50 576i50 720p60 720p50 1080p60 1080i60 1080p50
1080i50 1080p24 1080p30 1080p25 640x480p 480p60_16_9 576p50_4_3 */
{0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10,
0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10}, /*00*/
{0x18, 0x18, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28,
0x28, 0x28, 0x28, 0x28, 0x18, 0x28, 0x18}, /*01*/
{0x00, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x88, 0x00, 0x04}, /*02*/
{0x02, 0x06, 0x11, 0x15, 0x04, 0x13, 0x10, 0x05, 0x1F,
0x14, 0x20, 0x22, 0x21, 0x01, 0x03, 0x11}, /*03*/
{0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*04*/
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*05*/
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*06*/
{0xE1, 0xE1, 0x41, 0x41, 0xD1, 0xd1, 0x39, 0x39, 0x39,
0x39, 0x39, 0x39, 0x39, 0xe1, 0xE1, 0x41}, /*07*/
{0x01, 0x01, 0x02, 0x02, 0x02, 0x02, 0x04, 0x04, 0x04,
0x04, 0x04, 0x04, 0x04, 0x01, 0x01, 0x02}, /*08*/
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*09*/
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*10*/
{0xD1, 0xD1, 0xD1, 0xD1, 0x01, 0x01, 0x81, 0x81, 0x81,
0x81, 0x81, 0x81, 0x81, 0x81, 0xD1, 0xD1}, /*11*/
{0x02, 0x02, 0x02, 0x02, 0x05, 0x05, 0x07, 0x07, 0x07,
0x07, 0x07, 0x07, 0x07, 0x02, 0x02, 0x02} /*12*/
};
static void hdmi_msm_avi_info_frame(void)
{
/* two header + length + 13 data */
uint8 aviInfoFrame[16];
uint8 checksum;
uint32 sum;
uint32 regVal;
int i;
int mode = 0;
boolean use_ce_scan_info = TRUE;
switch (external_common_state->video_resolution) {
case HDMI_VFRMT_720x480p60_4_3:
mode = 0;
break;
case HDMI_VFRMT_720x480i60_16_9:
mode = 1;
break;
case HDMI_VFRMT_720x576p50_16_9:
mode = 2;
break;
case HDMI_VFRMT_720x576i50_16_9:
mode = 3;
break;
case HDMI_VFRMT_1280x720p60_16_9:
mode = 4;
break;
case HDMI_VFRMT_1280x720p50_16_9:
mode = 5;
break;
case HDMI_VFRMT_1920x1080p60_16_9:
mode = 6;
break;
case HDMI_VFRMT_1920x1080i60_16_9:
mode = 7;
break;
case HDMI_VFRMT_1920x1080p50_16_9:
mode = 8;
break;
case HDMI_VFRMT_1920x1080i50_16_9:
mode = 9;
break;
case HDMI_VFRMT_1920x1080p24_16_9:
mode = 10;
break;
case HDMI_VFRMT_1920x1080p30_16_9:
mode = 11;
break;
case HDMI_VFRMT_1920x1080p25_16_9:
mode = 12;
break;
case HDMI_VFRMT_640x480p60_4_3:
mode = 13;
break;
case HDMI_VFRMT_720x480p60_16_9:
mode = 14;
break;
case HDMI_VFRMT_720x576p50_4_3:
mode = 15;
break;
default:
DEV_INFO("%s: mode %d not supported\n", __func__,
external_common_state->video_resolution);
return;
}
/* InfoFrame Type = 82 */
aviInfoFrame[0] = 0x82;
/* Version = 2 */
aviInfoFrame[1] = 2;
/* Length of AVI InfoFrame = 13 */
aviInfoFrame[2] = 13;
/* Data Byte 01: 0 Y1 Y0 A0 B1 B0 S1 S0 */
aviInfoFrame[3] = hdmi_msm_avi_iframe_lut[0][mode];
/*
* If the sink specified support for both underscan/overscan
* then, by default, set the underscan bit.
* Only checking underscan support for preferred format and cea formats
*/
if ((external_common_state->video_resolution ==
external_common_state->preferred_video_format)) {
use_ce_scan_info = FALSE;
switch (external_common_state->pt_scan_info) {
case 0:
/*
* Need to use the info specified for the corresponding
* IT or CE format
*/
DEV_DBG("%s: No underscan information specified for the"
" preferred video format\n", __func__);
use_ce_scan_info = TRUE;
break;
case 3:
DEV_DBG("%s: Setting underscan bit for the preferred"
" video format\n", __func__);
aviInfoFrame[3] |= 0x02;
break;
default:
DEV_DBG("%s: Underscan information not set for the"
" preferred video format\n", __func__);
break;
}
}
if (use_ce_scan_info) {
if (3 == external_common_state->ce_scan_info) {
DEV_DBG("%s: Setting underscan bit for the CE video"
" format\n", __func__);
aviInfoFrame[3] |= 0x02;
} else {
DEV_DBG("%s: Not setting underscan bit for the CE video"
" format\n", __func__);
}
}
/* Data Byte 02: C1 C0 M1 M0 R3 R2 R1 R0 */
aviInfoFrame[4] = hdmi_msm_avi_iframe_lut[1][mode];
/* Data Byte 03: ITC EC2 EC1 EC0 Q1 Q0 SC1 SC0 */
aviInfoFrame[5] = hdmi_msm_avi_iframe_lut[2][mode];
/* Data Byte 04: 0 VIC6 VIC5 VIC4 VIC3 VIC2 VIC1 VIC0 */
aviInfoFrame[6] = hdmi_msm_avi_iframe_lut[3][mode];
/* Data Byte 05: 0 0 0 0 PR3 PR2 PR1 PR0 */
aviInfoFrame[7] = hdmi_msm_avi_iframe_lut[4][mode];
/* Data Byte 06: LSB Line No of End of Top Bar */
aviInfoFrame[8] = hdmi_msm_avi_iframe_lut[5][mode];
/* Data Byte 07: MSB Line No of End of Top Bar */
aviInfoFrame[9] = hdmi_msm_avi_iframe_lut[6][mode];
/* Data Byte 08: LSB Line No of Start of Bottom Bar */
aviInfoFrame[10] = hdmi_msm_avi_iframe_lut[7][mode];
/* Data Byte 09: MSB Line No of Start of Bottom Bar */
aviInfoFrame[11] = hdmi_msm_avi_iframe_lut[8][mode];
/* Data Byte 10: LSB Pixel Number of End of Left Bar */
aviInfoFrame[12] = hdmi_msm_avi_iframe_lut[9][mode];
/* Data Byte 11: MSB Pixel Number of End of Left Bar */
aviInfoFrame[13] = hdmi_msm_avi_iframe_lut[10][mode];
/* Data Byte 12: LSB Pixel Number of Start of Right Bar */
aviInfoFrame[14] = hdmi_msm_avi_iframe_lut[11][mode];
/* Data Byte 13: MSB Pixel Number of Start of Right Bar */
aviInfoFrame[15] = hdmi_msm_avi_iframe_lut[12][mode];
sum = 0;
for (i = 0; i < 16; i++)
sum += aviInfoFrame[i];
sum &= 0xFF;
sum = 256 - sum;
checksum = (uint8) sum;
regVal = aviInfoFrame[5];
regVal = regVal << 8 | aviInfoFrame[4];
regVal = regVal << 8 | aviInfoFrame[3];
regVal = regVal << 8 | checksum;
HDMI_OUTP(0x006C, regVal);
regVal = aviInfoFrame[9];
regVal = regVal << 8 | aviInfoFrame[8];
regVal = regVal << 8 | aviInfoFrame[7];
regVal = regVal << 8 | aviInfoFrame[6];
HDMI_OUTP(0x0070, regVal);
regVal = aviInfoFrame[13];
regVal = regVal << 8 | aviInfoFrame[12];
regVal = regVal << 8 | aviInfoFrame[11];
regVal = regVal << 8 | aviInfoFrame[10];
HDMI_OUTP(0x0074, regVal);
regVal = aviInfoFrame[1];
regVal = regVal << 16 | aviInfoFrame[15];
regVal = regVal << 8 | aviInfoFrame[14];
HDMI_OUTP(0x0078, regVal);
/* INFOFRAME_CTRL0[0x002C] */
/* 0x3 for AVI InfFrame enable (every frame) */
HDMI_OUTP(0x002C, HDMI_INP(0x002C) | 0x00000003L);
}
#ifdef CONFIG_FB_MSM_HDMI_3D
static void hdmi_msm_vendor_infoframe_packetsetup(void)
{
uint32 packet_header = 0;
uint32 check_sum = 0;
uint32 packet_payload = 0;
if (!external_common_state->format_3d) {
HDMI_OUTP(0x0034, 0);
return;
}
/* 0x0084 GENERIC0_HDR
* HB0 7:0 NUM
* HB1 15:8 NUM
* HB2 23:16 NUM */
/* Setup Packet header and payload */
/* 0x81 VS_INFO_FRAME_ID
0x01 VS_INFO_FRAME_VERSION
0x1B VS_INFO_FRAME_PAYLOAD_LENGTH */
packet_header = 0x81 | (0x01 << 8) | (0x1B << 16);
HDMI_OUTP(0x0084, packet_header);
check_sum = packet_header & 0xff;
check_sum += (packet_header >> 8) & 0xff;
check_sum += (packet_header >> 16) & 0xff;
/* 0x008C GENERIC0_1
* BYTE4 7:0 NUM
* BYTE5 15:8 NUM
* BYTE6 23:16 NUM
* BYTE7 31:24 NUM */
/* 0x02 VS_INFO_FRAME_3D_PRESENT */
packet_payload = 0x02 << 5;
switch (external_common_state->format_3d) {
case 1:
/* 0b1000 VIDEO_3D_FORMAT_SIDE_BY_SIDE_HALF */
packet_payload |= (0x08 << 8) << 4;
break;
case 2:
/* 0b0110 VIDEO_3D_FORMAT_TOP_AND_BOTTOM_HALF */
packet_payload |= (0x06 << 8) << 4;
break;
}
HDMI_OUTP(0x008C, packet_payload);
check_sum += packet_payload & 0xff;
check_sum += (packet_payload >> 8) & 0xff;
#define IEEE_REGISTRATION_ID 0xC03
/* Next 3 bytes are IEEE Registration Identifcation */
/* 0x0088 GENERIC0_0
* BYTE0 7:0 NUM (checksum)
* BYTE1 15:8 NUM
* BYTE2 23:16 NUM
* BYTE3 31:24 NUM */
check_sum += IEEE_REGISTRATION_ID & 0xff;
check_sum += (IEEE_REGISTRATION_ID >> 8) & 0xff;
check_sum += (IEEE_REGISTRATION_ID >> 16) & 0xff;
HDMI_OUTP(0x0088, (0x100 - (0xff & check_sum))
| ((IEEE_REGISTRATION_ID & 0xff) << 8)
| (((IEEE_REGISTRATION_ID >> 8) & 0xff) << 16)
| (((IEEE_REGISTRATION_ID >> 16) & 0xff) << 24));
/* 0x0034 GEN_PKT_CTRL
* GENERIC0_SEND 0 0 = Disable Generic0 Packet Transmission
* 1 = Enable Generic0 Packet Transmission
* GENERIC0_CONT 1 0 = Send Generic0 Packet on next frame only
* 1 = Send Generic0 Packet on every frame
* GENERIC0_UPDATE 2 NUM
* GENERIC1_SEND 4 0 = Disable Generic1 Packet Transmission
* 1 = Enable Generic1 Packet Transmission
* GENERIC1_CONT 5 0 = Send Generic1 Packet on next frame only
* 1 = Send Generic1 Packet on every frame
* GENERIC0_LINE 21:16 NUM
* GENERIC1_LINE 29:24 NUM
*/
/* GENERIC0_LINE | GENERIC0_UPDATE | GENERIC0_CONT | GENERIC0_SEND
* Setup HDMI TX generic packet control
* Enable this packet to transmit every frame
* Enable this packet to transmit every frame
* Enable HDMI TX engine to transmit Generic packet 0 */
HDMI_OUTP(0x0034, (1 << 16) | (1 << 2) | BIT(1) | BIT(0));
}
static void hdmi_msm_switch_3d(boolean on)
{
mutex_lock(&external_common_state_hpd_mutex);
if (external_common_state->hpd_state)
hdmi_msm_vendor_infoframe_packetsetup();
mutex_unlock(&external_common_state_hpd_mutex);
}
#endif
#define IFRAME_CHECKSUM_32(d) \
((d & 0xff) + ((d >> 8) & 0xff) + \
((d >> 16) & 0xff) + ((d >> 24) & 0xff))
static void hdmi_msm_spd_infoframe_packetsetup(void)
{
uint32 packet_header = 0;
uint32 check_sum = 0;
uint32 packet_payload = 0;
uint32 packet_control = 0;
uint8 *vendor_name = external_common_state->spd_vendor_name;
uint8 *product_description =
external_common_state->spd_product_description;
/* 0x00A4 GENERIC1_HDR
* HB0 7:0 NUM
* HB1 15:8 NUM
* HB2 23:16 NUM */
/* Setup Packet header and payload */
/* 0x83 InfoFrame Type Code
0x01 InfoFrame Version Number
0x19 Length of Source Product Description InfoFrame
*/
packet_header = 0x83 | (0x01 << 8) | (0x19 << 16);
HDMI_OUTP(0x00A4, packet_header);
check_sum += IFRAME_CHECKSUM_32(packet_header);
/* Vendor Name (7bit ASCII code) */
/* 0x00A8 GENERIC1_0
* BYTE0 7:0 CheckSum
* BYTE1 15:8 VENDOR_NAME[0]
* BYTE2 23:16 VENDOR_NAME[1]
* BYTE3 31:24 VENDOR_NAME[2] */
packet_payload = ((vendor_name[0] & 0x7f) << 8)
| ((vendor_name[1] & 0x7f) << 16)
| ((vendor_name[2] & 0x7f) << 24);
check_sum += IFRAME_CHECKSUM_32(packet_payload);
packet_payload |= ((0x100 - (0xff & check_sum)) & 0xff);
HDMI_OUTP(0x00A8, packet_payload);
/* 0x00AC GENERIC1_1
* BYTE4 7:0 VENDOR_NAME[3]
* BYTE5 15:8 VENDOR_NAME[4]
* BYTE6 23:16 VENDOR_NAME[5]
* BYTE7 31:24 VENDOR_NAME[6] */
packet_payload = (vendor_name[3] & 0x7f)
| ((vendor_name[4] & 0x7f) << 8)
| ((vendor_name[5] & 0x7f) << 16)
| ((vendor_name[6] & 0x7f) << 24);
HDMI_OUTP(0x00AC, packet_payload);
check_sum += IFRAME_CHECKSUM_32(packet_payload);
/* Product Description (7-bit ASCII code) */
/* 0x00B0 GENERIC1_2
* BYTE8 7:0 VENDOR_NAME[7]
* BYTE9 15:8 PRODUCT_NAME[ 0]
* BYTE10 23:16 PRODUCT_NAME[ 1]
* BYTE11 31:24 PRODUCT_NAME[ 2] */
packet_payload = (vendor_name[7] & 0x7f)
| ((product_description[0] & 0x7f) << 8)
| ((product_description[1] & 0x7f) << 16)
| ((product_description[2] & 0x7f) << 24);
HDMI_OUTP(0x00B0, packet_payload);
check_sum += IFRAME_CHECKSUM_32(packet_payload);
/* 0x00B4 GENERIC1_3
* BYTE12 7:0 PRODUCT_NAME[ 3]
* BYTE13 15:8 PRODUCT_NAME[ 4]
* BYTE14 23:16 PRODUCT_NAME[ 5]
* BYTE15 31:24 PRODUCT_NAME[ 6] */
packet_payload = (product_description[3] & 0x7f)
| ((product_description[4] & 0x7f) << 8)
| ((product_description[5] & 0x7f) << 16)
| ((product_description[6] & 0x7f) << 24);
HDMI_OUTP(0x00B4, packet_payload);
check_sum += IFRAME_CHECKSUM_32(packet_payload);
/* 0x00B8 GENERIC1_4
* BYTE16 7:0 PRODUCT_NAME[ 7]
* BYTE17 15:8 PRODUCT_NAME[ 8]
* BYTE18 23:16 PRODUCT_NAME[ 9]
* BYTE19 31:24 PRODUCT_NAME[10] */
packet_payload = (product_description[7] & 0x7f)
| ((product_description[8] & 0x7f) << 8)
| ((product_description[9] & 0x7f) << 16)
| ((product_description[10] & 0x7f) << 24);
HDMI_OUTP(0x00B8, packet_payload);
check_sum += IFRAME_CHECKSUM_32(packet_payload);
/* 0x00BC GENERIC1_5
* BYTE20 7:0 PRODUCT_NAME[11]
* BYTE21 15:8 PRODUCT_NAME[12]
* BYTE22 23:16 PRODUCT_NAME[13]
* BYTE23 31:24 PRODUCT_NAME[14] */
packet_payload = (product_description[11] & 0x7f)
| ((product_description[12] & 0x7f) << 8)
| ((product_description[13] & 0x7f) << 16)
| ((product_description[14] & 0x7f) << 24);
HDMI_OUTP(0x00BC, packet_payload);
check_sum += IFRAME_CHECKSUM_32(packet_payload);
/* 0x00C0 GENERIC1_6
* BYTE24 7:0 PRODUCT_NAME[15]
* BYTE25 15:8 Source Device Information
* BYTE26 23:16 NUM
* BYTE27 31:24 NUM */
/* Source Device Information
* 00h unknown
* 01h Digital STB
* 02h DVD
* 03h D-VHS
* 04h HDD Video
* 05h DVC
* 06h DSC
* 07h Video CD
* 08h Game
* 09h PC general */
packet_payload = (product_description[15] & 0x7f) | 0x00 << 8;
HDMI_OUTP(0x00C0, packet_payload);
check_sum += IFRAME_CHECKSUM_32(packet_payload);
/* GENERIC1_LINE | GENERIC1_CONT | GENERIC1_SEND
* Setup HDMI TX generic packet control
* Enable this packet to transmit every frame
* Enable HDMI TX engine to transmit Generic packet 1 */
packet_control = HDMI_INP_ND(0x0034);
packet_control |= ((0x1 << 24) | (1 << 5) | (1 << 4));
HDMI_OUTP(0x0034, packet_control);
}
int hdmi_msm_clk(int on)
{
int rc;
DEV_DBG("HDMI Clk: %s\n", on ? "Enable" : "Disable");
if (on) {
rc = clk_prepare_enable(hdmi_msm_state->hdmi_app_clk);
if (rc) {
DEV_ERR("'hdmi_app_clk' clock enable failed, rc=%d\n",
rc);
return rc;
}
rc = clk_prepare_enable(hdmi_msm_state->hdmi_m_pclk);
if (rc) {
DEV_ERR("'hdmi_m_pclk' clock enable failed, rc=%d\n",
rc);
return rc;
}
rc = clk_prepare_enable(hdmi_msm_state->hdmi_s_pclk);
if (rc) {
DEV_ERR("'hdmi_s_pclk' clock enable failed, rc=%d\n",
rc);
return rc;
}
} else {
clk_disable_unprepare(hdmi_msm_state->hdmi_app_clk);
clk_disable_unprepare(hdmi_msm_state->hdmi_m_pclk);
clk_disable_unprepare(hdmi_msm_state->hdmi_s_pclk);
}
return 0;
}
static void hdmi_msm_turn_on(void)
{
uint32 audio_pkt_ctrl, audio_cfg;
/*
* Number of wait iterations for QDSP to disable Audio Engine
* before resetting HDMI core
*/
int i = 10;
audio_pkt_ctrl = HDMI_INP_ND(0x0020);
audio_cfg = HDMI_INP_ND(0x01D0);
/*
* Checking BIT[0] of AUDIO PACKET CONTROL and
* AUDIO CONFIGURATION register
*/
while (((audio_pkt_ctrl & 0x00000001) || (audio_cfg & 0x00000001))
&& (i--)) {
audio_pkt_ctrl = HDMI_INP_ND(0x0020);
audio_cfg = HDMI_INP_ND(0x01D0);
DEV_DBG("%d times :: HDMI AUDIO PACKET is %08x and "
"AUDIO CFG is %08x", i, audio_pkt_ctrl, audio_cfg);
msleep(20);
}
hdmi_msm_set_mode(FALSE);
mutex_lock(&hdcp_auth_state_mutex);
hdmi_msm_reset_core();
mutex_unlock(&hdcp_auth_state_mutex);
hdmi_msm_init_phy(external_common_state->video_resolution);
/* HDMI_USEC_REFTIMER[0x0208] */
HDMI_OUTP(0x0208, 0x0001001B);
hdmi_msm_set_mode(TRUE);
hdmi_msm_video_setup(external_common_state->video_resolution);
if (!hdmi_msm_is_dvi_mode())
hdmi_msm_audio_setup();
hdmi_msm_avi_info_frame();
#ifdef CONFIG_FB_MSM_HDMI_3D
hdmi_msm_vendor_infoframe_packetsetup();
#endif
hdmi_msm_spd_infoframe_packetsetup();
/* Set IRQ for HPD */
HDMI_OUTP(0x0254, 4 | (external_common_state->hpd_state ? 0 : 2));
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
if (hdmi_msm_state->reauth) {
hdmi_msm_hdcp_enable();
hdmi_msm_state->reauth = FALSE ;
}
#endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT */
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT
/* re-initialize CEC if enabled */
mutex_lock(&hdmi_msm_state_mutex);
if (hdmi_msm_state->cec_enabled == true) {
hdmi_msm_cec_init();
hdmi_msm_cec_write_logical_addr(
hdmi_msm_state->cec_logical_addr);
}
mutex_unlock(&hdmi_msm_state_mutex);
#endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT */
DEV_INFO("HDMI Core: Initialized\n");
}
static void hdmi_msm_hpd_state_timer(unsigned long data)
{
queue_work(hdmi_work_queue, &hdmi_msm_state->hpd_state_work);
}
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
static void hdmi_msm_hdcp_timer(unsigned long data)
{
queue_work(hdmi_work_queue, &hdmi_msm_state->hdcp_work);
}
#endif
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT
static void hdmi_msm_cec_read_timer_func(unsigned long data)
{
queue_work(hdmi_work_queue, &hdmi_msm_state->cec_latch_detect_work);
}
#endif
static void hdmi_msm_hpd_off(void)
{
int rc = 0;
if (!hdmi_msm_state->hpd_initialized) {
DEV_DBG("%s: HPD is already OFF, returning\n", __func__);
return;
}
DEV_DBG("%s: (timer, 5V, IRQ off)\n", __func__);
del_timer(&hdmi_msm_state->hpd_state_timer);
disable_irq(hdmi_msm_state->irq);
hdmi_msm_set_mode(FALSE);
hdmi_msm_state->pd->enable_5v(0);
hdmi_msm_clk(0);
rc = hdmi_msm_state->pd->gpio_config(0);
if (rc != 0)
DEV_INFO("%s: Failed to disable GPIOs. Error=%d\n",
__func__, rc);
hdmi_msm_state->hpd_initialized = FALSE;
}
static void hdmi_msm_dump_regs(const char *prefix)
{
#ifdef REG_DUMP
print_hex_dump(KERN_INFO, prefix, DUMP_PREFIX_OFFSET, 32, 4,
(void *)MSM_HDMI_BASE, 0x0334, false);
#endif
}
static int hdmi_msm_hpd_on(bool trigger_handler)
{
static int phy_reset_done;
uint32 hpd_ctrl;
int rc = 0;
if (hdmi_msm_state->hpd_initialized) {
DEV_DBG("%s: HPD is already ON\n", __func__);
} else {
rc = hdmi_msm_state->pd->gpio_config(1);
if (rc) {
DEV_ERR("%s: Failed to enable GPIOs. Error=%d\n",
__func__, rc);
goto error1;
}
rc = hdmi_msm_clk(1);
if (rc) {
DEV_ERR("%s: Failed to enable clocks. Error=%d\n",
__func__, rc);
goto error2;
}
rc = hdmi_msm_state->pd->enable_5v(1);
if (rc) {
DEV_ERR("%s: Failed to enable 5V regulator. Error=%d\n",
__func__, rc);
goto error3;
}
hdmi_msm_dump_regs("HDMI-INIT: ");
hdmi_msm_set_mode(FALSE);
if (!phy_reset_done) {
hdmi_phy_reset();
phy_reset_done = 1;
}
hdmi_msm_set_mode(TRUE);
/* HDMI_USEC_REFTIMER[0x0208] */
HDMI_OUTP(0x0208, 0x0001001B);
/* set timeout to 4.1ms (max) for hardware debounce */
hpd_ctrl = HDMI_INP(0x0258) | 0x1FFF;
/* Toggle HPD circuit to trigger HPD sense */
HDMI_OUTP(0x0258, ~(1 << 28) & hpd_ctrl);
HDMI_OUTP(0x0258, (1 << 28) | hpd_ctrl);
hdmi_msm_state->hpd_initialized = TRUE;
/* Check HPD State */
enable_irq(hdmi_msm_state->irq);
}
if (trigger_handler) {
/* Set HPD state machine: ensure at least 2 readouts */
mutex_lock(&external_common_state_hpd_mutex);
mutex_lock(&hdmi_msm_state_mutex);
hdmi_msm_state->hpd_stable = 0;
hdmi_msm_state->hpd_prev_state = TRUE;
external_common_state->hpd_state = FALSE;
hdmi_msm_state->hpd_cable_chg_detected = TRUE;
mutex_unlock(&hdmi_msm_state_mutex);
mutex_unlock(&external_common_state_hpd_mutex);
mod_timer(&hdmi_msm_state->hpd_state_timer,
jiffies + HZ/2);
}
DEV_DBG("%s: (IRQ, 5V on) <trigger:%s>\n", __func__,
trigger_handler ? "true" : "false");
return 0;
error3:
hdmi_msm_clk(0);
error2:
hdmi_msm_state->pd->gpio_config(0);
error1:
return rc;
}
static int hdmi_msm_power_ctrl(boolean enable)
{
int rc = 0;
if (!hdmi_prim_display && !external_common_state->hpd_feature_on)
return 0;
if (enable) {
DEV_DBG("%s: Turning HPD ciruitry on\n", __func__);
rc = hdmi_msm_hpd_on(true);
} else {
DEV_DBG("%s: Turning HPD ciruitry off\n", __func__);
hdmi_msm_hpd_off();
}
return rc;
}
static int hdmi_msm_power_on(struct platform_device *pdev)
{
struct msm_fb_data_type *mfd = platform_get_drvdata(pdev);
bool changed;
if (!hdmi_msm_state || !hdmi_msm_state->hdmi_app_clk || !MSM_HDMI_BASE)
return -ENODEV;
DEV_INFO("power: ON (%dx%d %d)\n", mfd->var_xres, mfd->var_yres,
mfd->var_pixclock);
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
mutex_lock(&hdmi_msm_state_mutex);
if (hdmi_msm_state->hdcp_activating) {
hdmi_msm_state->panel_power_on = TRUE;
DEV_INFO("HDCP: activating, returning\n");
}
mutex_unlock(&hdmi_msm_state_mutex);
#endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT */
changed = hdmi_common_get_video_format_from_drv_data(mfd);
hdmi_msm_audio_info_setup(TRUE, 0, 0, 0, FALSE);
mutex_lock(&external_common_state_hpd_mutex);
hdmi_msm_state->panel_power_on = TRUE;
if (external_common_state->hpd_state && hdmi_msm_is_power_on()) {
DEV_DBG("%s: Turning HDMI on\n", __func__);
mutex_unlock(&external_common_state_hpd_mutex);
hdmi_msm_turn_on();
hdmi_msm_hdcp_enable();
} else
mutex_unlock(&external_common_state_hpd_mutex);
hdmi_msm_dump_regs("HDMI-ON: ");
DEV_INFO("power=%s DVI= %s\n",
hdmi_msm_is_power_on() ? "ON" : "OFF" ,
hdmi_msm_is_dvi_mode() ? "ON" : "OFF");
return 0;
}
void mhl_connect_api(boolean on)
{
char *envp[2];
/* Simulating a HPD event based on MHL event */
hdmi_msm_state->hpd_cable_chg_detected = FALSE;
/* QDSP OFF preceding the HPD event notification */
switch_set_state(&external_common_state->sdev, 0);
DEV_INFO("Hdmi state switch to %d: %s\n",
external_common_state->sdev.state, __func__);
if (on) {
hdmi_msm_read_edid();
if (hdmi_msm_has_hdcp())
hdmi_msm_state->reauth = FALSE ;
/* Build EDID table */
hdmi_msm_turn_on();
DEV_INFO("HDMI HPD: sense CONNECTED: send ONLINE\n");
kobject_uevent(external_common_state->uevent_kobj,
KOBJ_ONLINE);
hdmi_msm_hdcp_enable();
envp[0] = 0;
if (!hdmi_msm_has_hdcp()) {
/* Send Audio for HDMI Compliance Cases*/
envp[0] = "HDCP_STATE=PASS";
envp[1] = NULL;
DEV_INFO("HDMI HPD: sense : send HDCP_PASS\n");
kobject_uevent_env(external_common_state->uevent_kobj,
KOBJ_CHANGE, envp);
switch_set_state(&external_common_state->sdev, 1);
DEV_INFO("Hdmi state switch to %d: %s\n",
external_common_state->sdev.state, __func__);
}
} else {
DEV_INFO("HDMI HPD: sense DISCONNECTED: send OFFLINE\n"
);
kobject_uevent(external_common_state->uevent_kobj,
KOBJ_OFFLINE);
switch_set_state(&external_common_state->sdev, 0);
DEV_INFO("Hdmi state switch to %d: %s\n",
external_common_state->sdev.state, __func__);
}
}
EXPORT_SYMBOL(mhl_connect_api);
/* Note that power-off will also be called when the cable-remove event is
* processed on the user-space and as a result the framebuffer is powered
* down. However, we are still required to be able to detect a cable-insert
* event; so for now leave the HDMI engine running; so that the HPD IRQ is
* still being processed.
*/
static int hdmi_msm_power_off(struct platform_device *pdev)
{
if (!hdmi_msm_state->hdmi_app_clk)
return -ENODEV;
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
mutex_lock(&hdmi_msm_state_mutex);
if (hdmi_msm_state->hdcp_activating) {
hdmi_msm_state->panel_power_on = FALSE;
mutex_unlock(&hdmi_msm_state_mutex);
DEV_INFO("HDCP: activating, returning\n");
return 0;
}
mutex_unlock(&hdmi_msm_state_mutex);
#endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT */
DEV_INFO("power: OFF (audio off, Reset Core)\n");
hdmi_msm_audio_off();
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
hdcp_deauthenticate();
#endif
hdmi_msm_powerdown_phy();
hdmi_msm_state->panel_power_on = FALSE;
return 0;
}
static int __devinit hdmi_msm_probe(struct platform_device *pdev)
{
int rc;
struct platform_device *fb_dev;
if (!hdmi_msm_state) {
pr_err("%s: hdmi_msm_state is NULL\n", __func__);
return -ENOMEM;
}
external_common_state->dev = &pdev->dev;
DEV_DBG("probe\n");
if (pdev->id == 0) {
struct resource *res;
#define GET_RES(name, mode) do { \
res = platform_get_resource_byname(pdev, mode, name); \
if (!res) { \
DEV_ERR("'" name "' resource not found\n"); \
rc = -ENODEV; \
goto error; \
} \
} while (0)
#define IO_REMAP(var, name) do { \
GET_RES(name, IORESOURCE_MEM); \
var = ioremap(res->start, resource_size(res)); \
if (!var) { \
DEV_ERR("'" name "' ioremap failed\n"); \
rc = -ENOMEM; \
goto error; \
} \
} while (0)
#define GET_IRQ(var, name) do { \
GET_RES(name, IORESOURCE_IRQ); \
var = res->start; \
} while (0)
IO_REMAP(hdmi_msm_state->qfprom_io, "hdmi_msm_qfprom_addr");
hdmi_msm_state->hdmi_io = MSM_HDMI_BASE;
GET_IRQ(hdmi_msm_state->irq, "hdmi_msm_irq");
hdmi_msm_state->pd = pdev->dev.platform_data;
#undef GET_RES
#undef IO_REMAP
#undef GET_IRQ
return 0;
}
hdmi_msm_state->hdmi_app_clk = clk_get(&pdev->dev, "core_clk");
if (IS_ERR(hdmi_msm_state->hdmi_app_clk)) {
DEV_ERR("'core_clk' clk not found\n");
rc = IS_ERR(hdmi_msm_state->hdmi_app_clk);
goto error;
}
hdmi_msm_state->hdmi_m_pclk = clk_get(&pdev->dev, "master_iface_clk");
if (IS_ERR(hdmi_msm_state->hdmi_m_pclk)) {
DEV_ERR("'master_iface_clk' clk not found\n");
rc = IS_ERR(hdmi_msm_state->hdmi_m_pclk);
goto error;
}
hdmi_msm_state->hdmi_s_pclk = clk_get(&pdev->dev, "slave_iface_clk");
if (IS_ERR(hdmi_msm_state->hdmi_s_pclk)) {
DEV_ERR("'slave_iface_clk' clk not found\n");
rc = IS_ERR(hdmi_msm_state->hdmi_s_pclk);
goto error;
}
hdmi_msm_state->is_mhl_enabled = hdmi_msm_state->pd->is_mhl_enabled;
rc = check_hdmi_features();
if (rc) {
DEV_ERR("Init FAILED: check_hdmi_features rc=%d\n", rc);
goto error;
}
if (!hdmi_msm_state->pd->core_power) {
DEV_ERR("Init FAILED: core_power function missing\n");
rc = -ENODEV;
goto error;
}
if (!hdmi_msm_state->pd->enable_5v) {
DEV_ERR("Init FAILED: enable_5v function missing\n");
rc = -ENODEV;
goto error;
}
if (!hdmi_msm_state->pd->cec_power) {
DEV_ERR("Init FAILED: cec_power function missing\n");
rc = -ENODEV;
goto error;
}
rc = request_threaded_irq(hdmi_msm_state->irq, NULL, &hdmi_msm_isr,
IRQF_TRIGGER_HIGH | IRQF_ONESHOT, "hdmi_msm_isr", NULL);
if (rc) {
DEV_ERR("Init FAILED: IRQ request, rc=%d\n", rc);
goto error;
}
disable_irq(hdmi_msm_state->irq);
init_timer(&hdmi_msm_state->hpd_state_timer);
hdmi_msm_state->hpd_state_timer.function =
hdmi_msm_hpd_state_timer;
hdmi_msm_state->hpd_state_timer.data = (uint32)NULL;
hdmi_msm_state->hpd_state_timer.expires = 0xffffffffL;
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
init_timer(&hdmi_msm_state->hdcp_timer);
hdmi_msm_state->hdcp_timer.function =
hdmi_msm_hdcp_timer;
hdmi_msm_state->hdcp_timer.data = (uint32)NULL;
hdmi_msm_state->hdcp_timer.expires = 0xffffffffL;
#endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT */
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT
init_timer(&hdmi_msm_state->cec_read_timer);
hdmi_msm_state->cec_read_timer.function =
hdmi_msm_cec_read_timer_func;
hdmi_msm_state->cec_read_timer.data = (uint32)NULL;
hdmi_msm_state->cec_read_timer.expires = 0xffffffffL;
#endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT */
fb_dev = msm_fb_add_device(pdev);
if (fb_dev) {
rc = external_common_state_create(fb_dev);
if (rc) {
DEV_ERR("Init FAILED: hdmi_msm_state_create, rc=%d\n",
rc);
goto error;
}
} else
DEV_ERR("Init FAILED: failed to add fb device\n");
if (hdmi_prim_display) {
rc = hdmi_msm_hpd_on(true);
if (rc)
goto error;
}
if (hdmi_msm_has_hdcp()) {
/* Don't Set Encryption in case of non HDCP builds */
external_common_state->present_hdcp = FALSE;
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
external_common_state->present_hdcp = TRUE;
#endif
} else {
external_common_state->present_hdcp = FALSE;
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
/*
* If the device is not hdcp capable do
* not start hdcp timer.
*/
del_timer(&hdmi_msm_state->hdcp_timer);
#endif
}
/* Initialize hdmi node and register with switch driver */
if (hdmi_prim_display)
external_common_state->sdev.name = "hdmi_as_primary";
else
external_common_state->sdev.name = "hdmi";
if (switch_dev_register(&external_common_state->sdev) < 0)
DEV_ERR("Hdmi switch registration failed\n");
return 0;
error:
if (hdmi_msm_state->qfprom_io)
iounmap(hdmi_msm_state->qfprom_io);
hdmi_msm_state->qfprom_io = NULL;
if (hdmi_msm_state->hdmi_io)
iounmap(hdmi_msm_state->hdmi_io);
hdmi_msm_state->hdmi_io = NULL;
external_common_state_remove();
if (hdmi_msm_state->hdmi_app_clk)
clk_put(hdmi_msm_state->hdmi_app_clk);
if (hdmi_msm_state->hdmi_m_pclk)
clk_put(hdmi_msm_state->hdmi_m_pclk);
if (hdmi_msm_state->hdmi_s_pclk)
clk_put(hdmi_msm_state->hdmi_s_pclk);
hdmi_msm_state->hdmi_app_clk = NULL;
hdmi_msm_state->hdmi_m_pclk = NULL;
hdmi_msm_state->hdmi_s_pclk = NULL;
return rc;
}
static int __devexit hdmi_msm_remove(struct platform_device *pdev)
{
DEV_INFO("HDMI device: remove\n");
DEV_INFO("HDMI HPD: OFF\n");
/* Unregister hdmi node from switch driver */
switch_dev_unregister(&external_common_state->sdev);
hdmi_msm_hpd_off();
free_irq(hdmi_msm_state->irq, NULL);
if (hdmi_msm_state->qfprom_io)
iounmap(hdmi_msm_state->qfprom_io);
hdmi_msm_state->qfprom_io = NULL;
if (hdmi_msm_state->hdmi_io)
iounmap(hdmi_msm_state->hdmi_io);
hdmi_msm_state->hdmi_io = NULL;
external_common_state_remove();
if (hdmi_msm_state->hdmi_app_clk)
clk_put(hdmi_msm_state->hdmi_app_clk);
if (hdmi_msm_state->hdmi_m_pclk)
clk_put(hdmi_msm_state->hdmi_m_pclk);
if (hdmi_msm_state->hdmi_s_pclk)
clk_put(hdmi_msm_state->hdmi_s_pclk);
hdmi_msm_state->hdmi_app_clk = NULL;
hdmi_msm_state->hdmi_m_pclk = NULL;
hdmi_msm_state->hdmi_s_pclk = NULL;
kfree(hdmi_msm_state);
hdmi_msm_state = NULL;
return 0;
}
static int hdmi_msm_hpd_feature(int on)
{
int rc = 0;
DEV_INFO("%s: %d\n", __func__, on);
if (on) {
rc = hdmi_msm_hpd_on(true);
} else {
hdmi_msm_hpd_off();
/* Set HDMI switch node to 0 on HPD feature disable */
switch_set_state(&external_common_state->sdev, 0);
}
return rc;
}
static struct platform_driver this_driver = {
.probe = hdmi_msm_probe,
.remove = hdmi_msm_remove,
.driver.name = "hdmi_msm",
};
static struct msm_fb_panel_data hdmi_msm_panel_data = {
.on = hdmi_msm_power_on,
.off = hdmi_msm_power_off,
.power_ctrl = hdmi_msm_power_ctrl,
};
static struct platform_device this_device = {
.name = "hdmi_msm",
.id = 1,
.dev.platform_data = &hdmi_msm_panel_data,
};
static int __init hdmi_msm_init(void)
{
int rc;
if (msm_fb_detect_client("hdmi_msm"))
return 0;
#ifdef CONFIG_FB_MSM_HDMI_AS_PRIMARY
hdmi_prim_display = 1;
#endif
hdmi_msm_setup_video_mode_lut();
hdmi_msm_state = kzalloc(sizeof(*hdmi_msm_state), GFP_KERNEL);
if (!hdmi_msm_state) {
pr_err("hdmi_msm_init FAILED: out of memory\n");
rc = -ENOMEM;
goto init_exit;
}
external_common_state = &hdmi_msm_state->common;
external_common_state->video_resolution = HDMI_VFRMT_1920x1080p30_16_9;
#ifdef CONFIG_FB_MSM_HDMI_3D
external_common_state->switch_3d = hdmi_msm_switch_3d;
#endif
memset(external_common_state->spd_vendor_name, 0,
sizeof(external_common_state->spd_vendor_name));
memset(external_common_state->spd_product_description, 0,
sizeof(external_common_state->spd_product_description));
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT
hdmi_msm_state->cec_queue_start =
kzalloc(sizeof(struct hdmi_msm_cec_msg)*CEC_QUEUE_SIZE,
GFP_KERNEL);
if (!hdmi_msm_state->cec_queue_start) {
pr_err("hdmi_msm_init FAILED: CEC queue out of memory\n");
rc = -ENOMEM;
goto init_exit;
}
hdmi_msm_state->cec_queue_wr = hdmi_msm_state->cec_queue_start;
hdmi_msm_state->cec_queue_rd = hdmi_msm_state->cec_queue_start;
hdmi_msm_state->cec_queue_full = false;
#endif
/*
* Create your work queue
* allocs and returns ptr
*/
hdmi_work_queue = create_workqueue("hdmi_hdcp");
external_common_state->hpd_feature = hdmi_msm_hpd_feature;
rc = platform_driver_register(&this_driver);
if (rc) {
pr_err("hdmi_msm_init FAILED: platform_driver_register rc=%d\n",
rc);
goto init_exit;
}
hdmi_common_init_panel_info(&hdmi_msm_panel_data.panel_info);
init_completion(&hdmi_msm_state->ddc_sw_done);
INIT_WORK(&hdmi_msm_state->hpd_state_work, hdmi_msm_hpd_state_work);
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
init_completion(&hdmi_msm_state->hdcp_success_done);
INIT_WORK(&hdmi_msm_state->hdcp_reauth_work, hdmi_msm_hdcp_reauth_work);
INIT_WORK(&hdmi_msm_state->hdcp_work, hdmi_msm_hdcp_work);
#endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT */
#ifdef CONFIG_FB_MSM_HDMI_MSM_PANEL_CEC_SUPPORT
INIT_WORK(&hdmi_msm_state->cec_latch_detect_work,
hdmi_msm_cec_latch_work);
init_completion(&hdmi_msm_state->cec_frame_wr_done);
init_completion(&hdmi_msm_state->cec_line_latch_wait);
#endif
rc = platform_device_register(&this_device);
if (rc) {
pr_err("hdmi_msm_init FAILED: platform_device_register rc=%d\n",
rc);
platform_driver_unregister(&this_driver);
goto init_exit;
}
pr_debug("%s: success:"
#ifdef DEBUG
" DEBUG"
#else
" RELEASE"
#endif
" AUDIO EDID HPD HDCP"
#ifndef CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT
":0"
#endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_HDCP_SUPPORT */
" DVI"
#ifndef CONFIG_FB_MSM_HDMI_MSM_PANEL_DVI_SUPPORT
":0"
#endif /* CONFIG_FB_MSM_HDMI_MSM_PANEL_DVI_SUPPORT */
"\n", __func__);
return 0;
init_exit:
kfree(hdmi_msm_state);
hdmi_msm_state = NULL;
return rc;
}
static void __exit hdmi_msm_exit(void)
{
platform_device_unregister(&this_device);
platform_driver_unregister(&this_driver);
}
module_init(hdmi_msm_init);
module_exit(hdmi_msm_exit);
MODULE_LICENSE("GPL v2");
MODULE_VERSION("0.3");
MODULE_AUTHOR("Qualcomm Innovation Center, Inc.");
MODULE_DESCRIPTION("HDMI MSM TX driver");